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Abstract

Unresolved questions about the discrete/continuous dichotomy of protein fold space permeate structural

and evolutionary biology. From protein structure comparison and classification to evolutionary analyses

and function prediction, our views of fold space implicitly rest upon many assumptions that impact how

we analyze, interpret and come to understand biological systems. Discrete views of fold space categorize

similar folds into separate groups; unfortunately, such a ‘binning’ process inherently fails to capture

many remote relationships. While hierarchical databases such as CATH, SCOP, and ECOD represent

major steps forward in protein classification, we believe that a scalable, objective and conceptually flexible

method that is less reliant upon assumptions and heuristics could enable a more systematic and thorough

exploration of fold space and evolutionary-distant relationships. Here, we develop a structure-guided,

comparative analysis of proteins, leveraging embeddings derived from deep generative models, which

represent a highly-compressed, lower-dimensional space of a given protein and its sequence, structure and

biophysical properties. Building upon a recent ‘Urfold’ model of protein structure, the deep generative

approach developed here, termed ‘DeepUrfold’, suggests a new, mostly-continuous view of fold space—a

view that extends beyond simple 3D structural/geometric similarity, towards the realm of integrated

sequence↔structure↔function properties. We find that such an approach can quantitatively represent

and detect evolutionarily-remote relationships that are not captured by existing methods.
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Introduction

Much remains unknown about the precise

historical trajectory of the protein universe

(Kolodny et al., 2013), from (proto-)peptides,

to protein domains, to multi-domain proteins

(Alva et al., 2015). Presumably, the protein

universe—meaning the set of all proteins

(known or unknown, ancestral or extent)—did

not spontaneously arise with intact, full-sized

domains. Rather, smaller, sub-domain–sized

protein fragments likely preceded the modern

domains; the genomic elements encoding these

primitive fragments were subject to natural
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evolutionary processes of duplication, mutation

and recombination to give rise to extant domains

found in contemporary proteins (Alva et al., 2015;

Alvarez-Carreño et al., 2022; Bromberg et al.,

2022; Kolodny et al., 2021; Youkharibache, 2019).

Our ability to detect common fragments, shared

amongst at least two domains, relies on (i) having

an accurate similarity metric and (ii) a suitable

random/background distribution (i.e. null model)

for distances under this metric; historically, such

metrics have been rooted in the comparison of

either amino acid sequences or 3D structures.

The advent of deep learning, including the

application of such approaches to protein

sequence and structure representations,

creates a new opportunity to study protein

interrelationships in a wholly different manner—

namely, via quantitative comparison of ‘latent

space’ representations of a protein as lower-

dimensional ‘embeddings’; such embeddings can

be at arbitrary levels of granularity (e.g., atomic),

and can subsume virtually any types of properties

(such as amino acid type, physicochemical

features such as electronegatitivty, and

phylogenetic conservation of the site). The

present work explores the idea that viewing

protein fold space in terms of latent spaces (what

regions are populated, with what densities, etc.)

is likely to implicitly harbor deep information

about protein interrelationships, over a vast

multitude of protein evolutionary timescales.

The traditional approach to examining fold

space has been to hierarchically cluster domains

via 3D structure comparison, as exemplified

in databases such as CATH (Sillitoe et al.,

2019), SCOP (Andreeva et al., 2014; Fox

et al., 2014), and ECOD (Cheng et al., 2014).

Despite being some of the most comprehensive

resources available, these databases have intrinsic

limitations that stem from their fundamental

structuring scheme, reflecting assumptions and

constraints of any hierarchical system (e.g.,

assigning a given protein sequence to one

mutually exclusive bin versus others); in this

design schema, domains with the same fold or

superfamily (SF) cluster discretely into their own

independent ‘islands.’ The inability to traverse,

e.g. hop from island to island or create ’bridges’

between the islands, in the fold spaces presented

by these databases implies that some folds

have no well-defined or discernible relationships,

i.e. we miss the weak or more indeterminate

(but nevertheless bona fide) signals of remote

relationships that link distantly-related folds. In

addition to mutually exclusive clustering, the 3D

structural comparisons used in building these

databases generally rely upon fairly rigid spatial

criteria, such as requiring identical topologies for

two entities to group together at the lower (more

homologous) levels; what relationships might be

detectable if we relax the constraints of strict

topological identity?
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FIG. 1. DeepUrfold method of identifying domains that capture the phenomenon of “architectural similarity
despite topological variability”. (A) SH3 and OB domains are considered part of the small β-barrel (SBB) ‘urfold’
because they have the same architecture, yet different topology; they have strikingly similar folds and share many similar
functions (e.g. PPI binding on the same edge-strand and nucleic acid binding (Mura et al., 2013; Youkharibache et al.,
2019)), yet these similarities are obscured by their having been classified differently. In the case of the SBB urfold, the loops
between the β strands have been permuted, resulting in different topologies, observed by their superposition. (B) If the
‘Urfold’ phenomenon is viewed in terms of CATH, it is hypothesized to be a discrete entity (‘level’ of structure) that lies
between the Architecture and Topology strata. (C) DeepUrfold, which applies deep learning to the Urfold model of protein
structure, identifies new potential urfolds by creating 20 superfamily-specific variational autoencoder neural network models
and comparing output scores from all representative domains from those superfamilies (3654) to every other superfamily
model. For the first metric we compare the latent variables from domain represents through models trained from the same
superfamily (colored lines; see Fig. 3) and then we perform an all-vs-all comparison, which is clustered using Stochastic
Block Models (see Fig. 4).

The transition of a protein sequence from one

fold to another, either naturally (via evolution) or

artificially (via design/engineering), likely occurs

over multiple intermediate steps, for example

by combining and/or permuting short secondary

structure segments, or mutating single residues

(Alvarez-Carreño et al., 2021, 2022; Grishin,

2001; Kinch and Grishin, 2002; Krishna and

Grishin, 2005). Each step may correspond to

the same or a different fold than its preceding

step. The similarity between these transitional

states blurs the line of distinct groups—

increasing or decreasing a relatively arbitrary

and heuristic quantity (namely, the similarity

threshold) changes which structures belong to

which groups. In this sense, the discrete versus

continuous duality of protein fold space can

be viewed largely as a matter of semantics

or thresholding, versus any ‘real’ (intrinsic or

fundamental) feature of the space itself (Sadreyev

et al., 2009).

Pairwise similarity metrics in structure space

first indicated remote connections in a continuous

fold space via shared fragments (Taylor, 2020).

In an early landmark study, (Holm and Sander,

1996) discovered that the protein universe harbors

five peptide ‘attractors’, representing frequently-

adopted folding motifs (e.g., the β-meander);

this finding rested upon creating an all-by-all

similarity matrix from 3D structural alignments.

Later, similar pairwise analyses across the protein

structure space showed that ‘all-α’ and ‘all-β’

proteins are separated by ‘α/β’ proteins (Hou

et al., 2005).
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The all-by-all similarity metric of full domains

or small fragments can also be viewed as an

adjacency matrix of a graph, thereby enabling

the creation of a network representation of fold

space. Such networks are nearly connected, linking

domains in 4-8 steps (Edwards and Deane, 2015;

Friedberg and Godzik, 2005; Skolnick et al., 2009).

Graph-based representations of single proteins

also pushed the thinking of common short

fragments. (Harrison et al., 2002) found maximal

common cliques of connected secondary structure

elements (SSE) in a graph-based representation

of proteins, consisting of SSEs as vertices. In that

work, 80% of folds shared common cliques with

other folds, and these were quantified as a term

they called ‘gregariousness’.

Even though short peptide fragments (sub-

domain-sized) have been thoroughly studied,

relatively few approaches have taken an

evolutionary perspective with a continuous

fold space. (Goncearenco et al., 2015) identified

common loop fragments flanked by SSEs, called

Elementary Functional Loops (EFL), that couple

in 3D space to perform enzymatic activity.

(Youkharibache, 2019) noticed that peptide

fragments, called ‘protodomains’, are often

composed (with C2 symmetry) to give a larger,

full-sized domain. Most recently, (Bromberg

et al., 2022) identified common fragments

between metal-binding proteins using ‘sahle’,

a new length-dependent structural alignment

similarity metric.

The two state-of-the art evolution-based

fragment libraries are ‘primordial peptides’ (Alva

et al., 2015) and ‘themes’ (Nepomnyachiy et al.,

2017). Both methods create a set of common

short peptide fragments based on HHsearch

(Steinegger et al., 2019) profiles for proteins in

SCOP and ECOD respectively. The sizes of the

libraries created by these two approaches (40

primordial peptides, 2195 themes) vary greatly,

reflecting different stringencies of thresholds and

ultimately their different goals.

Another approach to study shared, commonly-

occurring fragments is to describe a protein by

a vector of fragments. For example, the FragBag

method (Budowski-Tal et al., 2010) describes

a protein by the occurrence of fragments in

a clustered fragment library (Kolodny et al.,

2002). A recent and somewhat unique approach,

Geometricus (Durairaj et al., 2020), creates

protein embeddings by taking two parallel

approaches to fragmentation: (i) a k-mer based

fragmentation runs along the sequence (yielding

contiguous segments), while (ii) a radius-

based fragmentation uses the method of spatial

moment invariants to compute (potentially non-

contiguous) geometric ‘fragments’ for each residue

position and its neighborhood within a given

radius, which are then mapped to ‘shape-mers’.

Conceptually, this allowance for discontinuous

fragments is a key step in allowing an algorithm

to bridge more of fold space, as similarities

between such non-contiguous fragments can imply
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an ancestral contiguous peptide that duplicated

and removed its terminal SSE in a process termed

‘creative destruction’, resulting in two different

folds with different topologies, but similar

architecture (Alvarez-Carreño et al., 2021, 2022).

Previously, we identified structure/function-

driven connections between several SFs that

exhibit architectural similarity despite topological

variability, in a new level of structural granularity

of discontinuous fragments that we termed

the ‘Urfold’ shown in Fig. 1B (Mura et al.,

2019; Youkharibache, 2019). Urfolds were first

described in small β-barrel (SBB) domains

(Fig. 1A) because of their structure/function

similarity in the deeply-varying collection of

proteins that adopted either the SH3/Sm or

OB superfolds (Youkharibache, 2019). Notably,

these are two of the most ancient protein folds,

and their antiquity is reflected in the fact

that they permeate much of information storage

and processing pathways (transcription and

translation apparatus) throughout all domains of

life (Agrawal and Kishan, 2001; Alvarez-Carreño

et al., 2021).

Here we present a new method to systematically

identify Urfolds using a new alignment-free,

biochemically-aware similarity metric of domain

structures based on deep generative models

and mixed-membership community detection. We

leverage similarities in latent-spaces rather than

simple/purely-geometric 3D structures directly,

and we can encode biophysical and other

properties, thereby allowing higher orders of

similarity to be detected that may correspond to

(dis-)contiguous fragments (Fig. 1C).

Results

Deep generative models can identify
similarities between topologically-distinct
folds

Conventionally, folds that have similar

architectures, but varying topologies, are

often thought of as resulting from convergent

evolution. However, as in the case with the SH3

and OB superfolds, the structure/function

similarities (Youkharibache, 2019), and

even sequence/structure/function similarities

(Alvarez-Carreño et al., 2021), often prove

to be quite striking, suggesting that these

domain architectures did not arise independently

(Alvarez-Carreño et al., 2021; Youkharibache,

2019). In order to study what may be even quite

weak 3D similarities, we model the evolutionary

process giving rise to proteins as a 3D structure

‘generator’. In so doing, we seek to learn

probability distributions p(x |θ) that describe the

specific geometries and biophysical properties

of different folds, where the random variable x

denotes a single structure drawn from (x∈x) a

set of structures labelled as having the same fold

(x) and θ denotes the collection of parameters

describing the variational distribution over the

background (i.e., latent) parameters. We posit

that folds with similar probabilistic distributions

likely have similar geometries/architectures and

biophysical properties, regardless of potentially
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differing topologies, and that, in turn, may imply

a common evolutionary history.

DeepUrfold learns the background distribution

parameters θi for 20 superfamily distributions,

pi(xij|θi), by constructing variational

autoencoders (VAE) for each superfamily i

and domain structure j. The original/underlying

distribution p(xij|θi) is unknown and intractable,

so it must be approximated by modeling it

as an easier-to-learn distribution, qi(zij|xi). In

our case, qi(zij|xi) is taken as sampling from a

Gaussian. To ensure qi(zij|xi) can adequately

describe p(xij|θi), we maximize the Evidence

Lower BOund, or ELBO quantity, which is the

lower bound of the marginal likelihood of a single

structure, ln[pi(xij)]. The ELBO inequality can

be written as:

ln pi(xij)≥Eqi(zij |xi)[ln pi(xij |zij)]−

DKL[qi(zij |xij)||p(zij)]
(1)

where pi(xij) is the log-likelihood, E is the

expected value of q in terms of p, and DKL[p||q]

is the Kullback-Leibler divergence, or relative

entropy, between the two probability distributions

q and p. In other words, maximizing the

ELBO maximizes the log-likelihood of the model,

corresponding to minimizing the entropy between

(i) the true underlying distribution pi(xij|θi) and

(ii) our learned/inferred posterior distribution

of latent parameters given the data, qi(zij|xi).

In a similar manner, we train joint models of

superfamilies with different topologies, e.g. SH3

and OB, while accounting for the class imbalance

(Lemâıtre et al., 2017; Prati et al., 2009) that

stems from there being vastly different numbers of

available 3D structural data for different protein

superfamilies.

As input to the VAE, we encode the 3D

structure of each protein domain by representing

it as a 3D volumetric object, akin to the

input used in 3D convolutional neural networks

(CNNs). In our discretization, atoms are binned

into voxels, each of which can be labeled,

atom-wise, with arbitrary properties (biophysical,

phylogenetic, etc.). This representation is agnostic

of polypeptide chain topology, as the covalent

bonding information between residues, and the

order of SSEs, is not explicitly retained; note,

however, that no information is lost by this

representation, as such information is implicit

in the proximity of atom-occupied voxels in

the model (and can be used to unambiguously

reconstruct the 3D structure).

As an initial assessment of our SH3, OB

and joint SH3/OB DeepUrfold models, and

to examine the Urfold model more broadly,

we explicitly tested the Urfold’s underlying

concept of “architectural similarity despite

topological variability”. This test was performed

by considering artificial protein domains that

have identical architectures but specifically

introduced loop permutations; this systematic

perturbation of a 3D structure’s topology was

obtained via ‘rewiring’ of the SSEs (scrambling

the loops), while retaining the overall 3D
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FIG. 2. Likelihood values can be used to quantify similarities among multi-loop permuted structures. To gauge
the sensitivity of our DeepUrfold metric to loop orderings (topology) via generation of fictitious folds, we implemented a
multi-loop permutation algorithm (Dai and Zhou, 2011) in order to ‘scramble’ the SSEs found in an SH3 domain (1k2A00)
and an OB domain (1uebA03); in these loop ‘rewiring’ calculations, we stitched together the SSEs and energetically relaxed
the resultant 3D structures using the MODELLER suite. While 96 unique permutations are theoretically possible for a
4-stranded β-sheet (Youkharibache et al., 2019), only 55 SH3 and 274 OB permuted domains were able to be modeled,
presumably because their geometries lie within the radius of convergence of MODELLER (e.g., the loop-creation algorithm
did not have to span excessive distances in those cases). Each novel permuted structure was subjected to a model that had
been trained on all other domains from either the (A) SH3; (B) OB; or (C) joint SH3/OB models. Fit to the model was
approximated by the ELBO score, which can be viewed as a similarity metric or a measure of ‘goodness-of-fit’. In reference
to a given model, a given permutant query structure having an ELBO score less than its wild-type structure for that model
can be considered as structurally more similar (a better fit) to the model, and thus perhaps more thermodynamically stable.
As reference points, we also include the ELBO scores for ancestrally-reconstructed progenitors of the OB (uL2) and SH3
(uL24) superfolds, based on (Alvarez-Carreño et al., 2021).

structure (architecture). Specifically, we (i)

created permuted (fictitious) 3D structures

for representative SH3 and representative OB

domains (Supp. Fig. 7A), and then (ii) subjected

these to the SH3, OB, and joint SH3/OB

DeepUrfold models. Because small β-barrels

(SBBs) typically have six SSEs, including four

‘core’ β-strands, each β-sheet core of an SBB can

theoretically adopt one of at least 96 distinct loop

permutations (Youkharibache et al., 2019); note

that, based on the operational definitions/usage

of the terms ‘topology’ and ‘fold’ in systems

such as SCOP, CATH, etc., such engineered

permutants almost certainly would be annotated

as being from different homologous superfamilies,

implying no evolutionary relatedness.

We find that the permuted domain structures

have similar ELBO scores as the corresponding

wild-type domains (Fig. 2). Those permuted

domain structures with ELBO scores less than

the wild-type domains can be interpreted as

being more similar (structurally, biophysically,

etc.) to the DeepUrfold variational model, and

thus perhaps more thermodynamically stable or

structurally robust were they to exist in reality (an

interesting possibility as regards protein design

and engineering). TM-Scores (Xu and Zhang,

2010) for permuted domain structures against the

corresponding wild-type typically lied in the range

≈0.3−0.5—values which would indicate that the

permutants and wild-type are not from identical

folds, yet are more than just randomly similar

(Supp. Fig. 7B).
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These findings show that the DeepUrfold

model is well suited to our task because our

encoding is agnostic to topological ‘connectivity’

information and rather is only sensitive to

3D spatial architecture/shape. Even though

polypeptide connectivity is implicitly captured

in our discretization, our DeepUrfold model

intentionally does not consider if two residues are

linked by a peptide bond or if two secondary

structures are contiguous in sequence–space. This

approach is useful in finding similarities amongst

sets of seemingly dissimilar 3D structures—and

thereby identifying specific candidate urfolds—

because two sub-domain portions from otherwise

rather (structurally) different domains may be

quite similar to each other, even if the domains

they are a part of have different (domain-level)

topologies but identical overall architectures. This

concept can be represented symbolically: for a

subset of SSEs, d, drawn from a full domain D, the

Urfold model permits relations (denoted by the

‘ ’ symbol) to be detected between two different

‘folds’, i and j (i.e. di∼dj), without requiring that

relation to also be preserved with the stringency

of matched topologies at the higher ‘level’ of

the full domain. That is, di∼dj ⇏Di∼Dj, even

though di ⊂Di and dj ⊂Dj. Here, we can view

the characteristic stringency or ‘threshold’ level

of the urfold ‘d’ as being that of architecture,

while D reflects both architecture and topology

(corresponding to the classical usage of the term

‘fold’).

Latent spaces capture gross structural
properties across many superfamilies, and
reveal the continuous nature of fold space

The latent space of each superfamily (SF)-level

DeepUrfold model provides a uniquely informative

view of fold space. Each SF model captures

the different 3D geometries and physicochemical

properties that characterize that individual SF

as a single ‘compressed’ data point; in this way,

the latent space representation (or ‘distillation’)

is more comprehensible than is a full 3D domain

structure (or superimpositions thereof). In a

sense, the DeepUrfold approach—and its inherent

latent space representational model of each

SF—is able to reconcile the discrete/continuous

dichotomy because the Urfold model (i) begins

with no assumptions about the nature of fold

space (i.e., patterns of protein interrelationships),

and (ii) does not restrictively enforce full

topological ordering as a requirement for a

relation to be detected between two otherwise

seemingly unrelated domains (e.g., dSH3∼dOB is

not forbidden, using the terminology introduced

above).

We represent and analyze the latent space

of representative domains for 20 SFs, mapped

into two dimensions. Proteins that share similar

geometries and biophysical properties have similar

embeddings that are close together in this latent-

space representation, regardless of the annotated

‘true’ superfamily. Though this picture of the

protein universe is limited to 20 highly populated
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CATH SFs (in the present work), already we can

see that these SF domains appear to be ordered

by secondary structure composition, consistent

with past analyses that used approaches such

as multidimensional scaling (Hou et al., 2005).

Intriguingly, variable degrees of intermixing

between SFs can be seen in UMAP projections

such as illustrated in Fig. 3. In addition to

this mixing, the latent space projection is not

punctate: rather, it is fairly ‘compact’ (in a

loose mathematical sense) and well-connected,

with only a few disjoint ‘outlier’ regions. During

manual inspection of outlier domain structures,

we find that many of them are incomplete sub-

domains or a single part of a domain swapped

region. Together, these findings support a rather

continuous view of fold space, at least for these 20

exemplary superfamilies.

While each superfamily model is trained

independently, with different domain structures

(SH3, OB, etc.), the distributions that these VAE-

based SF models each learn (again, as ‘good’

approximations to the true posterior pi(xij|θi))

are similar, in terms of the dominant features

of their latent spaces. In other words, the

multiple VAE models (across each unique SF)

each learn a structurally low-level or ‘coarse-

grained’ similarity that then yields the extensive

overlap seen in Fig. 3. When colored by a score

that measures secondary structure content, there

are clear directions along which the latent-space

can be seen to follow, as a gradient from ‘all-α’

FIG. 3. Dominant variables of the latent space
capture gross structural properties and indicate
a continuous ‘fold space’. As a proof-of-principle,
we fit 20 distributions from 20 CATH homologous
superfamilies, each being modeled via the DeepUrfold
approach. Representatives from each SF were subjected
to models trained on domains from the same SF, and
the latent space variables for each structural domain were
examined via the uniform manifold approximation and
projection (UMAP) method to reduce the 1024 dimensions
of the actual model to a two-dimensional projection.
In this representation, kernel density estimates (contour
lines) surround domains with the same annotated CATH
Class. Each domain is colored by a secondary structure
score, showing that they are roughly ordered by secondary
structure composition. The secondary structure score is
computed as #β atoms − #α atoms

2(#β atoms + #α atoms)
+0.5

domains to ‘all-β’ domains, separated by ‘α/β’

domains. This finding is reassuring with respect

to previous studies of protein fold space (Hou

et al., 2005), as well as the geometric intuition that

the similarity between two domains would track

with their secondary structural content (e.g., two

arbitrary all-β proteins are more likely to share

geometric similarity than would an all-β and an

all-α).

Protein interrelationships defy discrete
clusterings

Our finding that protein fold space is

rather continuous implies that there are, on

average, webs of interconnections (similarities,
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relationships) between a protein A and its

neighbors in fold space (A′, A′′, B,...). Therefore,

we believe that an optimally realistic view

of fold space will not entail hierarchically

clustering proteins into mutually exclusive

bins. Alternatives to discrete clustering would

be fuzzy clustering, multi-label classification,

or mixed-membership community detection

algorithms. In DeepUrfold, we formulate this

labeling/classification problem by fitting an edge-

weighted (Peixoto, 2018), mixed-membership

(Peixoto, 2015, 2021), hierarchical (Peixoto,

2014) stochastic block model (SBM; (Peixoto,

2017)) to a fully connected bipartite graph that

is built from the similarity scores between (i)

the VAE-based SF-level models (one part of the

bipartite graph), and (ii) representative structural

domains from the representative SFs (the other

part of the bipartite graph). In our case, we

weight each edge by -log(ELBO). Such a bipartite

graph can be represented as an adjacency matrix

Ad×sfam and covariate edge weights x (between

vertices in the two ‘parts’ of the bipartite

graph), where sfam∈ 20 representative SFs

and d∈ 3654 representative domains from 20

representative SFs. The likelihood of such a

bipartite graph/network occurring by chance—

with the same nodes connected by the same

edges—is defined by:

P (A,x|θ,γ,b,e)=∫
P (x|A,θ,γ,b,e)P (e)P (θ)P (γ) δeδθδγ ×∫
P (A|θ,γ,b,e)P (e)P (θ)P (γ) δeδθδγ,

(2)

with θ as the SBM’s latent parameters, x are

edge covariate parameters, b represents the blocks

(protein communities) in terms of the number of

blocks and their membership (which nodes map

to which blocks), and e edges may exist between

blocks to account for mixed-membership.

The parameters for a given SBM are found using

Markov chain Monte Carlo (MCMC) methods.

Several different models are created for different

b and e in order to find the optimal number of

blocks with overlapping edges between them, and

these are evaluated using a posterior odds-ratio

test (Peixoto, 2015, 2021).

DeepUrfold’s overall methodological approach

can be summarized as (i) dataset construction,

e.g. via the aforementioned discretization of

the 3D structures and biophysical properties

into voxelized representations (Draizen et al., in

prep); (ii) training of SF-specific models, using

VAE-based deep networks; (iii) in an inference

stage, calculation of ELBO-based scores for ‘fits’

obtained by subjecting SF representative i to the

VAE model of another SF, j(̸=i); (iv) to detect

any patterns amongst these scores, utilization

of SBM-based analysis of ‘community structure’

among the full set of score similarities from the

VAE-based SF-level models.

Application of this DeepUrfold methodology to

the 20 most highly-populated CATH superfamilies

leads us to identify many potential communities

of domain structures and SFs (Fig. 4). Subjecting

all domain representatives to all 20 SF-specific
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FIG. 4. Protein interrelationships defy discrete clusterings: Stochastic block modeling of an all-vs-all
comparison of domain structures and superfamily models. A) We represent the the SBM communities predicted
by DeepUrfold as a circle packing diagram following the same hierarchy. Each domain is displayed as the inner most circles
(leafs) colored by the annotated CATH superfamily and sized by their number of atoms. All of the superfamily labelled
nodes clustered together and were removed from this list (See supplemental file 2). As proof of concept, we show the SH3
and OB domains are found within the same communities. B) CATH Hierarchy represented as a circle packing diagram
showing that DeepUrfold is learning a completely different hierarchy.

models, in an exhaustive allSF-models×allSF-reps

analysis, reveals the overall community structure

shown in Fig. 4. We argue that two proteins

drawn from vastly different SFs (in the sense of

their classification in databases such as CATH

or SCOP) can share other, more generalized

regions of geometric/structural and biophysical

properties, beyond simple permutations of

secondary structural elements. And, we believe

that the minimally-heuristic manner in which

the DeepUrfold model is constructed allows it

to capture such ‘distant’ linkages. In particular,

these linkages can be identified and quantitatively

described as patterns of similarity in the

DeepUrfold model’s latent space. Clustering

domains and superfamilies based on this new

similarity metric provides a new view of protein

interrelationships—a view that extends beyond

simple structural/geometric similarity, towards

the realm of integrated structure/function

properties.

Domains that have similar ELBO scores

against different superfamily models are more

likely to contain important biophysical properties

at particular (and, presumably, functionally

important) locations in 3D space for that

superfamily. Furthermore, if two domains are in

the same SBM community, it is likely that both

domains share the same scores when run through

each superfamily (i.e. an inference calculation),

so we hypothesize it might contain an urfold

that subsumes those two domains (agnostic of

whatever SFs they are labeled as belonging to

in CATH or other databases). We also expect

domains to be in multiple communities, which

may represent a protein being constructed of
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several ‘urfold’ or sub-domain elements. However,

due to the complexities of analyzing such high

dimensional data, we only show the most likely

cluster each domain belongs to.

Because our model uses a different input

representation of proteins that intentionally

ignores all topological/connectivity information,

we expect that our model will be least similar to

CATH in terms of SBM-related measures such as

partition overlap, homogeneity, and completeness

(Peixoto, 2021).

Due to the stochastic nature of the SBM,

we ran 6 different replicas. While each replica

produced slightly different hierarchies and number

of clusters (19-23), the communities at lowest

level remained consistent with varying degrees

of intermixing. In each of the replicas, SH3 and

OB clustered into the same communities as well

as Rossman-like and P-loop NTPases, instead

of their own individual clusters—consistent with

the Urfold view of these particular SFs, as

predicted based on manual/visual analysis (Mura

et al., 2019). In Fig. 4, we chose to display the

replica with 20 superfamilies and highest overlap

score compared to CATH in order to enable

easy comparison with CATH. Most notably,

each community contains domains from different

superfamilies, consistent with the Urfold model

(Fig. 4A). In the particular subset of proteins

treated here, the domains from ‘mainly α’ and

‘α/β’ are preferentially associated, while domains

from ‘mainly β’ and ‘α/β’ group together (Fig.

4B) and SH3 and OB cluster together in the same

communities (Fig. 4A).

In addition to coloring each domain

node by CATH superfamily in the circle-

packing diagrams, we also explored coloring

domain nodes by secondary structure, average

electrostatic potential, average partial charge,

and enriched GO terms (Supp. Fig. 12-17; https:

//bournelab.org/research/DeepUrfold/).

Interestingly, domains with similar average

electrostatic potentials (Supp. Fig. 12) and

partial charges (Supp. Fig. 13) can be found to

cluster into similar groups, whereas the CATH

circle-packing diagrams colored by those same

features have no discernable order or structuring;

whether or not this phenomenon stems from

any underlying, functionally-relevant ‘signal’ is a

question of interest in further work.

In order to assess how ‘well’ our DeepUrfold

model does, we compare our clustering results

to CATH. However, we emphasize that there

is no reliable, objective ground truth for a

map of fold space, as there is no universally-

accepted, ‘correct’ description of fold space

(and, it can be argued, even ‘fold’). Therefore,

we compare our DeepUrfold results to a well-

established system (e.g., CATH) with the

awareness that these are fundamentally different

approaches to representing and describing

the protein universe. Given all this, models

that differ from CATH—versus matching

or recapitulating it—can be considered as
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representing an alternative view of the protein

universe. Somewhat counterintuitively, we deem

poorer comparison metrics (e.g., less similarity

to CATH) as providing stronger support for the

Urfold model of protein structure. Simultaneously,

we compare how well other, independently-

developed sequence- and structure-based models

can reconstruct CATH (Fig. 5). Among all these

methods, our DeepUrfold approach produces

results are the most divergent from CATH,

consistent with DeepUrfold’s approach of taking

a wholly new view of the protein universe and the

domain-level structural similarities that shape

it. We also show that many other algorithms

have difficulty reconstructing CATH, possibly

due to the extensive manual curation of CATH,

but much more closely reproduce CATH than

does our method—we suspect that this is due,

in large part, to DeepUrfold’s incorporation and

integration of more types of information than

purely 3D geometry.

Discussion

This work has presented a new deep learning-

based approach, termed ‘DeepUrfold’, aimed at

systematically identifying putative new urfolds.

Notably, the DeepUrfold framework (i) is sensitive

to 3D structure and structural similarity between

pairs of proteins, but is minimally heuristic (e.g.,

it does not rely upon pre-set RMSD thresholds

or the like) and, most notably, is alignment-

free (as it leverages latent-space embeddings

of structure, versus direct 3D coordinates, for

FIG. 5. DeepUrfold does not recapitulate CATH.
We compare DeepUrfold to other sequence- and structure-
based protein similarity tools by attempting to reconstruct
CATH. The scores from each of the algorithms are used
as edge weights in the SBM. If scores were increasing e.g.
were a distance metric, the converted to a similarity metric
by -x or -log(x). We take the communities at the lowest
hierarchical level as clusters and use cluster comparison
metrics to understand how well each algorithm/similarity
metric can be used to recapitulate CATH. For each
metric of Silhouette Score, overlap, homogeneity, and
completeness, a value of 1 is deemed best. DeepUrfold
does poorly based for each metric because it does not
produce the same clusters, and is learning something
completely different compared to the other algorithms. For
TM-Align, ‘CP’ stands for Circular Permutation. For more
information, see Supp Table 2.

comparison purposes); (ii) beyond the residue-

level geometric information defining a 3D

structure (i.e. coordinates), DeepUrfold is an

extensible model insofar as it can incorporate

any types of properties of interest (so long as

they can be encoded in a deep model), e.g.

biophysical and physicochemical characteristics

(electrostatic charge, solvent exposure, etc.),

site-by-site phylogenetic conservation, and so

on; (iii) the method provides a quantitative

metric, in the form of the deep neural

network’s loss function (at the inference stage),

that is amenable to approaches that are

more generalized than brute-force hierarchical

clustering (e.g., using loss function scores in
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stochastic block modeling to construct mixed-

membership ‘communities’ of proteins). In the

above ways, DeepUrfold can be viewed as an

integrative approach that, while motivated by

structural (dis)similarities across fold space, is

also cognizant of sequence/structure/function

interrelationships. This is intentional: molecular

evolution acts on the sequence/structure/function

triad as its base ‘entity’, not on purely

geometric/3D structure alone.

We demonstrate (i) the general utility of this

new type of similarity metric for representing and

comparing protein domain structures, based on

deep generative models, and (ii) that a mixed-

membership community detection algorithm

can identify what we previously found (via

manual/visual analysis) to be putative urfolds.

Finally, we emphasize that because DeepUrfold is

agnostic of precise protein topology (i.e., order of

SSEs in 3-space), higher levels of similarity can

be readily detected (‘higher’ than CATH’s ‘T’

level, below its ‘A’ level), including the potential

of non-contiguous fragments. We believe that

such such spatially-compact groups of frequently

recurring sub-domain fragments, sharing similar

architectures (independent of topology) within a

given group—which, again, we term an ‘urfold’—

could correspond to primitive ‘design elements’ in

the early evolution of protein domains (Skolnick

et al., 2009).

Overall, the DeepUrfold framework provides a

sensitive approach to detect and thus explore

distant protein inter-relationships, which we

suspect correspond to weak phylogenetic signals

(perhaps as echoes of remote/deep homology).

Also notable, the embeddings produced by our

VAE models and ELBO similarity scores provide

new methods to visualize and interpret protein

interrelationships on the scale of a full fold space.

From these models, it is clear that there is

a fair degree of continuity between proteins in

fold space, and intermixing between what has

previously been labeled as separate superfamilies;

a corollary of this finding is that discretely

clustering protein embeddings is ill-advised from

this perspective of a densely-populated, smoother-

than-expected fold space. An open question is the

degree to which the extent of overlap between

individual proteins (or groups of proteins, as an

urfold) in this fold space is reflective of underlying

evolutionary processes, e.g. akin to Edwards &

Deane’s finding that “evolutionary information is

encoded along these structural bridges [in fold

space]” (Edwards and Deane, 2015)).

An informative next step would be to use

DeepUrfold to identify structural fragments

that contain similar patterns of geometry and

biophysical properties between proteins from

very different superfamilies. Notably, these

fragments may be continuous or discontinuous,

and pursuing this goal might help unify

the ‘primordial peptides’ (Alva et al., 2015)

and ‘themes’ (Nepomnyachiy et al., 2017)

concepts with the Urfold hypothesis, allowing
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connections between unexplored (or at least

under-explored) regions of fold space. We suspect

that ‘Explainable AI’ techniques, such as Layer-

wise Relevance Propagation (LRP; (Hochuli et al.,

2018; Montavon et al., 2019)), can be used

to elucidate which atoms/residues, along with

their 3D locations and biophysical properties, are

deemed most important in defining the various

classification groups (i.e., into urfold A versus

urfold B). This goal can be pursued within

the DeepUrfold framework because we discretize

full domain structures into voxels: thus, we

can probe the neural network to learn about

specific voxels, or groups of specific voxels (e.g.,

amino acid residues), that contribute as sub-

domain structural elements. Doing so would,

in turn, be useful in finding common sub-

domain segments from different superfamilies.

We hypothesize that the most ‘relevant’ (in the

sense of LRP) voxels would highlight important

sub-structures; most promisingly, that we know

the position, physicochemical and biophysical

properties, and so on about the residues would

greatly illuminate the physical basis for the

deep learning-based classification. In addition,

this would enable us to explore in more detail

the mechanistic/structural basis for the mixed-

membership features of the SBM-based protein

communities. Such communities—beyond helping

to detect and define new urfolds—may offer a

novel perspective on remote protein homology.

Materials and Methods

Dataset

We create the ‘Prop3D’ dataset using the

20 CATH superfamilies of interest (Fig. 1C;

Supp. Table 1). Domain structures from each

of the 20 superfamilies are ’cleaned’ by adding

missing residues with MODELLER (Eswar et al.,

2006), missing atoms with SCWRL4 (Krivov

et al., 2009), and protonating and energy

minimizing (simple de-bump) with PDB2PQR

(Dolinsky et al., 2007). Next, we compute a

host of derived properties for each domain in

CATH (Draizen et al., in prep)–including (i)

include purely geometric/structural quantities,

e.g. secondary structure (Kabsch and Sander,

1983), solvent accessibility, (ii) physicochemical

properties, e.g. hydrophobicity, partial charges,

electrostatic potentials, and (iii) basic chemical

descriptors (atom and residue types). The

computation was performed using the Toil

workflow engine (Vivian et al., 2017) and data

was stored using the Hierarchical Data Format

(version 5) in the Highly Scalable Data Service

(HSDS). The domains from each superfamily

were split such that all members of a S35

35% sequence identity cluster (pre-calculated

by CATH) were on the same side of the

split. We split them roughly 80% training, 10%

validation, and 10% test (Draizen et al., in prep;

https://doi.org/10.5281/zenodo.6873024).

Each atom was attributed with 7 groups

of boolean (one-hot encoded) features: (1)
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Atom Type (C,CA,N,O,OH,Unknown); (2)

Residue Type* (ALA, CYS, ASP, GLU, PHE,

GLY, HIS, ILE, LYS, LEU, MET, ASN,

PRO, GLN, ARG, SER, THR, VAL, TRP,

TYR, Unknown); (3) Secondary Structure

(Helix,Sheet,Loop/Unknown); (4) Hydrophobic;

(5)Electronegative; (6) Positively Charged; and

(7) Not exposed to solvent. For all models

reported, residue type was removed because it

was was found to be uninformative for this type

of representation (Supp. Fig. 3).

Protein Representation

We represent protein domains as voxels, or 3D

volumetric pixels. Briefly, our method centers

protein domains in a 2563 Å
3
cube volume to

allow large domains, and each atom is mapped to

1Å
3
voxels using a kD-tree data structure with

a query ball radius set to the van der Waals

radius of the atom. If two atoms share the space

in a given voxel, the maximum between their

feature vectors is used because they all contain

binary values. Because a significant fraction

of voxels do not contain any atoms, protein

domain structures can be encoded via a sparse

representation; this substantially mitigates the

computational costs of our deep learning workflow

using MinkowskiEngine (Choy et al., 2019).

Because there is no ‘correct’ orientation of a

protein domain, we applied random rotations to

each protein domain structure; these rotations

were in the form of orthogonal transformation

matrices drawn from the Haar distribution, which

is the uniform distribution on the 3D rotation

group (i.e. SO(3); (Stewart, 1980)).

VAE Model Design and Training

A sparse 3D-CNN variational autoencoder was

adapted from MinkowskiEngine (Choy et al.,

2019; Gwak et al., 2020). In the Encoder,

there are 7 blocks consisting of Convolution

(n->2n), BatchNorm, ELU, Convolution

(2n->2n), BatchNorm, and ELU, where

n=[16,32,64,128,256,512,1024], doubling at each

block. Finally, the tensors are pooled using Global

pooling, and the model outputs both a normal

distribution’s mean and log variance. Next, the

learned distribution is sampled from and used

as input into the Decoder. In the decoder, there

are also 7 blocks, where each block consists

of ConvolutionTranspose(2n->n), BatchNorm,

ELU, Convolution(n->n), BatchNorm, and ELU.

Finally, one more convolution is used to output

a reconstructed domain structure in a 2643Å
3

volume.

In VAEs, a ‘reparameterization trick’ allows

for backpropagation through random variables

by making only the mean (µ) and variance

(σ) differentiable, with a random variable that

is normally distributed (N (0,I)). That is, the

latent variable posterior z is given by z = µ +

σ
⊙

N (0,I), where
⊙

denotes the Hadamard

(element-wise) matrix product and N is the

‘auxiliary noise’ term (Kingma and Welling,

2013).
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We optimize against the Evidence Lower BOund

(ELBO) described in equation 1, which combines

(a) the mean squared error (MSE) of the

reconstructed domain and (b) the difference

between the learned distribution and the true

distribution of the SF (i.e., the Kullback–Leibler

[KL] divergence, or relative entropy) (Kingma and

Welling, 2013).

We used stochastic gradient descent (SGD) as

the optimization algorithm, with a momentum

of 0.9 and 0.0001 weight decay. We began

with a learning rate of 0.2 and decreased its

value by 0.9 every epoch using an exponential

learning rate scheduler. Our final network has

around 110M parameters in total and all the

networks were trained for 30 epochs, using a

batch size of 255. We used the open-source

frameworks PyTorch (Paszke et al., 2019) and

PytorchLightning (Falcon et al., 2020) to simplify

training and inference and make the models more

reproducible.

In order to determine the best hyperparameters

for the VAE, we used Weights & Biases Sweeps

(Biewald, 2020) to search over the batch size,

learning rate, convolution kernel size, transpose

convolution kernel size, and convolution stride in

the Ig model while optimizing the ELBO. We

used the Bayesian Optimization search strategy

and hyperband method with 3 iterations for early

termination. We found no significant changes and

used the default values: convolution kernel size

of 3, transpose convolution kernel size of 2, and

convolution stride of 2.

Due to a large-scale class imbalance between

the number of domains in each superfamily, we

follow the One-Class Classifier approach, creating

one VAE for each superfamily. We also train a

joint SH3 and OB model and compare random

over- and under-sampling from ImbalancedLearn

(Lemâıtre et al., 2017) on joint models of multiple

superfamilies (Supp. Fig. 8).

Evaluation of Model Performance

We calculate the area under the Receiver

Operating Characteristic curve (auAUC) and the

area under the precision-recall curve (auPRC) for

20 SFs. Representative domains, as defined by

CATH, for each superfamily were subjected to

their SF-specific VAE and predicted values were

micro-averaged to perform auROC and auPRC

calculations. Immunoglobulins were chosen to

display in the supplemental material for this paper

(Supp. Fig. 4-6), but the results for all SFs can

be found in the extended supplemental material.

All SFs report similar metrics for each group of

features.

Assess the Urfold model by subjecting
proteins with permuted secondary structures
to the superfamily-specific VAEs

To gauge the sensitivity of our DeepUrfold

model to loop orderings (topology), we generate

fictitious folds by implementing a multi-loop

permutation algorithm (Dai and Zhou, 2011)

in order to ‘scramble’ the secondary structural
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elements (SSEs) found in a representative SH3

and OB domains. We stitch together the SSEs

and relax new 3D structures using MODELLER

(Eswar et al., 2006).

Next, each novel permuted structure is

subjected to a VAE model trained on all other

domains from the SH3 homologous superfamily.

Fit to the model is approximated by the log

likelihood score of the permuted and natural

(wild-type) protein represented ELBO scores,

which can be viewed as a similarity metric. We

also calculate a ‘background’ distribution of each

model by perming an all vs all TM-align for all

domains in our representative CATH domains,

saving domain that have a TM-Score ≤ 0.3 as

that is thought to represent domains that have

random similarity.

Latent-space Organization

We subject representative domains from a single

superfamily through its superfamily model and

visualize the latent space of each representative.

A ‘latent-space’ for a given domain corresponds

to a 1024 dimensional vector describing the

representatives in their most ‘compressed’ form,

accounting for the position of each atom and

their biophysical properties represented by the

mean of the learned distribution. We combine

the latent spaces from each domain from each

superfamily and then reduce the number of

dimensions to two in order to easily visualize

it; the latter is achieved using the uniform

manifold approximation and projection (UMAP)

algorithm. UMAP is a dimensionality reduction

algorithm that is similar to methods such as

PCA (principal component analysis; Supp. Fig. 9)

and particularly t-SNE (t-distributed stochastic

neighbor embedding; Supp. Fig. 10), but preserves

topological relationships at both local and global

scales in a dataset.

Mixed-membership Community Detection

We performed all-vs-all comparisons of domains

and superfamilies by subjecting representative

protein domain structures from each of the 20

chosen SF through each SF-specific one-class VAE

model. The ELBO loss score for each domain—

SF-model pair can be used to quantitatively

evaluate pairwise ’distances’ between SFs by

treating it as a fully connected bipartite graph

between domains and SF models, with edges

weighted by the -log(ELBO) score. Stochastic

Block Models (SBM; (Peixoto, 2017)) are a

generative model for random graphs that can

be used to partition the bipartite graph into

communities of domains that have similar

distribution of edge covariates between them

(Peixoto, 2018).

Using the same SBM approach as we did for

DeepUrfold, we compare our results to state-of-

the-art sequence- and structure-based methods

for comparing proteins. All SBMs are created

using fully connected bipartite graphs connected

n CATH S35 domains to m Superfamily models.

In this case, we used 3654 representative CATH

domains from 20 superfamilies, creating a 3654
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× 20 similarity matrix for each method we wish

to compare. Each SBM was degree corrected,

overlapping, and nested and fit to a real normal

distribution of edge covariates. For methods with

decreasing scores (closer to zero is best), we took

the negative log of each score, whereas scores

from methods with increasing scores remained the

same.

While only the ‘Superfamily-specific‘ models are

directly comparable (e.g. where n×m matrices

are the original output created by subjecting n

CATH representative domains without labels to

m superfamily-specific models), we also included

‘Pairwise’ and ‘Single Model’ methods. For

pairwise approaches, an all-vs-all n×n similarity

matrix is created and is converted to an n×

m by taking the median distance of a single

CATH domain to every other domain in a given

superfamily. ‘Single Model’ approaches are where

a single model is trained on all known proteins

and outputs a single embedding score for each

domain, creating an n×1 vector. To convert it into

an n×m matrix, we take the median distance of

a single CATH domain embedding to every other

domain embedding from a given superfamily.

Because we have no ground truth with

the Urfold view of the protein universe, we

perform cluster comparison metrics on each SBM

community compared to the original CATH

clusterings; these measures can include partition

overlap, homogeneity, and completeness for each

of the protein comparison tools:

• Silhouette Score: measure of how similar

an object is to its own cluster (cohesion)

compared to next closest cluster (separation).

-1: incorrect, 0: perfect, 1: too dense

• Overlap: maximum overlap between partitions

by solving an instance of the maximum

weighted bipartite matching problem (Peixoto,

2021)

• Homogeneity: each cluster contains only

members of a single class. [0, 1], 1=best

• Completeness: all members of a given class

are assigned to the same cluster. [0, 1], 1=best

All comparisons start using the sequence

and structure representatives from CATH’s S35

cluster for each of the 20 superfamilies of

interest. USEARCH (Edgar, 2010) was run

twice with parameters -allpairs local and

-allpairs global; both runs included the

-acceptall parameter. HMMER (Mistry et al.,

2013) models were built using (1) MUSCLE

(Edgar, 2004) alignments from CATH’s S35

cluster; and (2) a deep MSA created from

EVcouplings (Hopf et al., 2019) using jackhmmer

(Mistry et al., 2013) and UniRef90 of the

first S35 representative for each superfamily.

Each HMMER model was used to search all

representatives, reporting all sequences with

bitscores ≥−1012. SeqDesign (Shin et al., 2021)

was run using the same MSAs from EVcouplings.

We also compared against the pretrained ESM

models (Rives et al., 2021).
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For other structure-based comparisons, we

ran TM-Align (Zhang and Skolnick, 2005) on

all representative domains with and without

circular permutations saving RMSD and TM-

Scores. Struct2Seq (Ingraham et al., 2019) was

run with default parameters after converting

domain structure representatives into dictionaries

matching the required input.

Data Availability

The Prop3D dataset used to train each

superfamily model can found at https:

//doi.org/10.5281/zenodo.6873024, which

includes the raw HDF file as well as instructions

to access the public version of the dataset on the

University of Virginia Research Computing HSDS

endpoint http://hsds.uvarc.io (in prep).

The extended supplemental material, including

the 20 pre-trained SF models and raw output from

the stochastic block modelling of DeepUrfold and

other tools used to compare against can be found

at https://doi.org/10.5281/zenodo.6916524.

All code to build datasets and train models

can be found at http://github.com/bouralab/

Prop3D and http://github.com/bouralab/

DeepUrfold respectively.

We also provide an accompanying website

to explore the SBM communities and the

CATH hierarchy at https://bournelab.org/

research/DeepUrfold/
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