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Abstract. Inferring network topology from dynamical observations is a fundamental
problem pervading research on complex systems. Here, we present a simple, direct
method to infer the structural connection topology of a network, given an observation
of one collective dynamical trajectory. The general theoretical framework is applicable
to arbitrary network dynamical systems described by ordinary differential equations.
No interference (external driving) is required and the type of dynamics is not
restricted in any way. In particular, the observed dynamics may be arbitrarily
complex; stationary, invariant or transient; synchronous or asynchronous and chaotic
or periodic. Presupposing a knowledge of the functional form of the dynamical units
and of the coupling functions between them, we present an analytical solution to the
inverse problem of finding the network topology. Robust reconstruction is achieved
in any sufficiently long generic observation of the system. We extend our method
to simultaneously reconstruct both the entire network topology and all parameters
appearing linear in the system’s equations of motion. Reconstruction of network
topology and system parameters is viable even in the presence of substantial external
noise.
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1. Background

Understanding the relations between network topology and its collective dynamics is
at the heart of current interdisciplinary research on networked systems [1]. Often it
is possible to observe the dynamics of the individual units of the network, whereas
the coupling strengths between them and the underlying network topology cannot be
directly measured. Hence, various methods have been proposed to solve the inverse
problem of inferring network structure from observation and control of dynamics.

Perturbing a fixed point of a network dynamical system constitutes the simplest
controlled intervention of a system. The method of Tegnér et al. [2] perturbs the
steady state expression levels of selected genes. Their iterative algorithm can reveal the
structure of an underlying gene regulatory network by analysing resultant dynamical
changes in the pattern of gene expression levels. A similar iterative method based on
multiple regression, coupled with transcriptional perturbations to the fixed points of
a genetic network, has been used to successfully identify a nine-gene sub-network [3].
A method introduced by Timme [4] extends reconstruction to networks of smoothly
coupled limit-cycle oscillators with periodic collective dynamics. The underlying idea
is that the asymptotic response dynamics of a network to different externally induced
driving conditions is a function of its topology and of the (external) driving signals. Thus
measuring the response to suitable driving signals in different experiments restricts the
set of network topologies that are consistent with the driving-response pairs, yielding
the network’s topology for sufficiently many experiments.

Can we reconstruct a network displaying collective dynamics richer than simple
fixed points or limit-cycles? Yu et al. [5] introduced a synchronization method to identify
networks of chaotic Lorenz oscillators up to N=17 units. Assuming full knowledge of all
model parameters, the network topology of a clone of the system is varied progressively
via error minimisation until it synchronizes with the original system. The topology
of the clone is then recognised as that of the original network. An extension of
this synchronisation method [6] involves additional ‘control signals’ to externally drive
the system to steady states, allowing the inference of interaction topology for sparse,
symmetric networks.

Here, we introduce a simple, direct and intervention-free method to reconstruct
networks of arbitrary topology from the mere observation of generic collective dynamics.
Given the functional form of the intrinsic and interaction dynamics, we show that all
other factors of the network dynamical system, such as network topology and coupling
strengths (and even typical parameters), can be reliably and efficiently reconstructed.

2. Theory of Direct Reconstruction from Dynamical Trajectories

Given an observation of the collective trajectory of a dynamical network, how can we
infer its underlying topology? We consider a dynamical system consisting of N units,
where the dynamics of each unit is specified by an arbitrary set of dynamical equations,
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Figure 1. Reconstruction of networks is possible for various types of collective
dynamics. A 32-unit random network of Rössler oscillators (7) with fixed connection
probability p = 0.5 exhibiting (a) a synchronous periodic state (ai ≡ 0.2, bi ≡ 1.7

and ci ≡ 4.0 for all units); (b) a synchronous chaotic state (ai ≡ 0.2, bi ≡ 1.7 and
ci ≡ 13.0 for all units); (c) an asynchronous periodic state (parameters randomly
drawn independently from ai ∈ [0.10, 0.101], bi ∈ [0.10, 0.101] and ci ∈ {4, 6, 12});
(d) an asynchronous chaotic state (parameters randomly drawn independently from
ai ∈ [0.0, 0.38], bi ∈ [0.0, 2.0] and ci ∈ [13, 16]) The x -values of three out of N = 32

oscillators are shown. Close to perfect reconstructions from all these distinct dynamics
are shown in Fig. 2.

and the interactions between the units take place via edges in the network. The units
of the dynamical system are coupled on a directed graph of unknown connectivity with
their dynamics satisfying

d

dt
xi = fi (xi) +

N∑
j=1

Jijgij (xi ,xj) (1)

where i, j ∈ {1, 2, . . . N}, and xi =
[
x
(1)
i , x

(2)
i , · · · , x(D)

i

]
∈ RD describes the state of the

i -th unit, and the functions fi,gi : RD → RD mediate intrinsic and interaction dynamics
of the D-dimensional unit, and are known. Methods based on copy-synchronisation [5, 6]
rely on the construction of a new network, with dynamics governed by Eq. 1 and network
parameters J ′ij that are tuned to that of the real network by an error minimisation
procedure. Here, we reduce the same reconstruction problem by evaluating the states
and their derivatives directly, recognising that the only remaining unknowns in Eq. 1
are the coupling strengths, which are to be determined.

The dynamics of the d -th dimension of the i -th unit is given by

ẋ
(d)
i (tm) = f

(d)
i (xi (tm)) +

N∑
j=1

Jij g
(d)
ij

(
xi (tm) ,xj (tm)

)
(2)

where tm ∈ R are the times we evaluate Equation 1 and we now write ż for the rate of
change d

dt
z of a scalar variable z. If there are M such times, m ∈ {1, . . . ,M}, we have
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M equations of the form

ẋ
(d)
i,m = f

(d)
i,m +

N∑
j=1

J
ij
g
(d)
ijm (3)

for each dimension d of the local dynamical systems f (d)
i separately. As the equations

(3) are uncoupled for any two different dimensions d and d′, we treat these separately
and drop the index (d) from now on.

Repeated evaluations of the equations of motion (2) of the system at different times
tm thus comprise a simple and implicit restriction on the network topology Jij as follows:
writing Xi,m = ẋi,m − fi,m, these equations constitute the matrix equation

Xi = JiGi (4)

where Xi ∈ R1×M , Ji ∈ R1×N and Gi ∈ RN×M . Here the elements of the i -th row of J
are given by Ji and comprise the sequence (Jij)j∈{1,...,N} of all input coupling strengths
to unit i.

Can we rewrite this equation explicitly for Ji? Generically, M > N , and we wish
to solve this overdetermined problem by minimising the error function given by

Ei

(
Ĵi

)
=

M∑
m=1

(
xim −

N∑
k=1

Ĵikgikm

)2

(5)

for the best (in Euclidean (`2) norm) solution Ĵi. Here Ĵik represents the reconstructed
value of the real coupling strength Jik. Equating to zero the derivatives of the error
function with respect to the matrix elements, ∂

∂Jik
Ei

(
Ĵi

)
!

= 0, yields an analytical
solution to `2 error-minimisation given by

Ĵi = XGT
i

(
GiG

T
i

)−1 (6)

and thus the set of input coupling strengths (and input connectivity) of unit i.
Evaluating such equations for all i ∈ {1, . . . , N} yields the complete reconstructed
network Ĵ . This mathematical form of minimum `2-norm solution is implemented in
many mathematical packages (e.g. as the mrdivide function in MATLAB [7]).

3. Performance for Different Collective Dynamics

How does this theoretical method perform in applications on data? To illustrate the
performance of the method and its insensitivity to the type of dynamics, we apply it
to four distinct collective dynamical states ranging from simple periodic synchronous
dynamics to very complex, highly chaotic asynchronous states. We choose networks of
Rössler oscillators that can exhibit a rich repertoire of collective dynamics from multi-
dimensional chaos to periodicity and from global synchrony to asynchrony (see Fig. 1),
depending on local unit parameters and coupling functions.
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Figure 2. Successful reconstruction of the topology of networks from very different
dynamics. Each of the panels (a)-(d) shows a reconstruction of the network’s topology
from the dynamics shown in the respective panels (a)-(d) of Figure 1. The smaller
panels show absolute differences (magnified by a factor of 108) from the actual network
(picked randomly from an ensemble of networks with connection probability p = 0.5).
The reconstructions (a)-(d) used trajectories from very different dynamical states, as
shown in Figure 1 (a)-(d). Reconstructions in (c) and (d) have lower errors as they
utilise whole dynamical trajectories, instead of transients towards synchrony, as in (a)
and (b).

3.1. Successful reconstruction from different dynamics

The dynamics of each Rössler oscillator [8] is given by the three ordinary differential
equations

ẋi = −yi − zi +
N∑
j=1

Jijf (xi, xj)

ẏi = xi + aiyi

żi = bi + zi(xi − ci) (7)

where ai, bi, ci are local parameters. The coupling function was set to f (xi, xj) = xj−xi
to induce synchronisation and to f (xi, xj) = sin (xj) to prevent it. The local unit
parameters ai, bi and ci of the Rössler oscillators are chosen to induce either chaotic
or periodic dynamics. The parameters were treated as unknown and are not needed
for the reconstruction of the network topology. This is the case in this example, since
the equations where the parameters of network topology occur (in the x -dimension) do
not contain any other (unknown) parameter. We now demonstrate a reconstruction of
the network in all four dynamical paradigms illustrated in Fig. 1: periodic synchronous,
chaotic synchronous, periodic asynchronous and chaotic asynchronous collective states.
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Reconstruction in praxis works as follows: for networks exhibiting synchronised
dynamics, the coupling function f (xi, xj) = xj − xi is uniformly zero for all time for all
units, revealing no information about the network topology. Nevertheless, the network
can still be reconstructed from its transient dynamics towards the synchronous state. In
general, by substitutingXi,m = ẋi (tm)+yi (tm)+zi (tm) and Gij,m = f (xi(tm), xj(tm)) in
(4), we find the least-squares reconstructed network according to (6). Since each unit has
at most N − 1 incoming links of unknown weights, the diagonals in the reconstructed
Ĵ are zero. A reliable reconstruction of the network from trajectories (as shown in
Figure 1) is illustrated in Figure 2, for all four dynamical paradigms considered.

3.2. Quality of Reconstruction

How accurate is such a reconstruction? The quality of reconstruction

Qα :=
1

N2

∑
i,j

H ((1− α)−∆Jij) ∈ [0, 1] (8)

is defined as the fraction of coupling strengths that are considered correct. Here α ≤ 1

is the required accuracy of the coupling strengths and H is the Heaviside step function,
H (x) = 1 for x ≥ 0 and is H(x) = 0 otherwise. The normalized element-wise difference
between the reconstructed and real network is

∆Jij :=
∣∣∣Ĵij − Jij∣∣∣ / (2Jmax) (9)

where Jmax = maxi′,j′
{
|Ji′,j′ | ,

∣∣∣Ĵi′,j′∣∣∣}. Typically, the quality of reconstruction increases
with both the sampling rate and the length of trajectory observed, becoming close to 1
even at lower sampling rates for longer times (see Fig. 3).

3.3. Required observation time

What is the minimum length of observation required to reconstruct a network? We
define

Tq,α,ω := min {T |Qα (T ) ≥ q} (10)

to be the minimum length of time of observation at a sampling rate ω required for
accurate reconstruction at quality level q at accuracy α. A general observation is that
with increasing sampling rate ω or increasing observation time T , the quality increases,
due to more accurate information that is obtained about the system’s states. In general,
however, it is not only the total number T × ω of restricting equations (per node and
per dimension) that controls the quality. For instance, at a given observation time, high
quality close to Q0.95 = 1 is reached even at lower sampling frequency if the collective
dynamics is more irregular, cf., Figure 3a,b vs. Figure 3c,d. We ascribe this to the lower
degree of correlation among observations at different times that is required for accurate
reconstruction numerics in (6), e.g. for irregular dynamics, sample points more distant
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Figure 3. Quality of reconstruction (Q0.95) as function of sampling rate ω and
observation time T . Good quality reconstruction can be achieved even at low sampling
rates. Underlying system dynamics used for reconstruction in panels (a)-(d) are shown
in Fig. 1 (a)-(d). Lengths of observations are T = 1 (4), T = 5 (+), T = 10 (♦), and
T = 20 (©). Each point is the result of averaging over 50 networks.

in time provide more relevant information increase about the system as they are less
correlated than closer-by points.

How does the minimum required observation time scale with system size? Figure 4
shows T0.98,0.95,200, the minimum length of time of observation required to have at least
q = 98% of the links accurate in strength to an accuracy of at least α = 0.95, sampled at
a rate of ω = 200, as a function of N. The numerics suggest that, at fixed ω, Tq,α,ω scales
sublinearly with network size N for reasonably small 0 < 1− α� 1 and 0 < 1− q � 1

(reasonably large α and q). This implies that the cost of observation does not grow
prohibitively quickly, and that even large networks can be reconstructed by a single
observation of the collective dynamics.

3.4. Robustness: Substantial noise and unknown parameters

Is reconstruction still feasible in the presence of substantial noise? Is it possible
to find unknown parameters of the local unit systems? In the preceding examples,
none of the unknown parameters appeared in the dimension of coupling, making the
problem of reconstructing network topology distinct from that of inferring dynamical
parameters. In the following example we illustrate reconstructing networks with intrinsic
unit dynamics that are governed by arbitrary functions with K unknown parameters,
and where the dynamics are influenced by substantial additive noise ξ(d)i . Assuming
that all ξ(d)i have a finite variance, we note that an observation of the dynamics of the
system yields a system of equations linear in the K+N unknowns, which we can solve
as before. A simple example is a network of Lorenz oscillators [9], where the dynamics
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Figure 4. Sublinear scaling of reconstruction time with system size. (a) Minimum
required time of observation for reconstruction (q = 0.98, α = 0.95, ω = 200) grows
sublinearly (presumably algebraically) with system size N for networks with various
fixed indegrees K = 10 (•), K = 50 (O), K = 100 (M). The fit suggests that
Tq,α,ω ∝ Nγ , where the exponent of scaling γ ≈ 0.5. (b) An algebraic scaling
(black) fits the data (K=100, M) best. Data plotted on a bilogarithmic scale. Linear
best-fits (green dashes) overestimate and logarithmic fits (red dots) underestimate
reconstruction time. All fits to data from N=100 to N=2000.

of each oscillator is given by

ẋi = σi (yi − xi) +
N∑
j=1

Jij (xj − xi) + ηξ
(x)
i

ẏi = xi (ρi − zi)− yi + ηξ
(y)
i

żi = xiyi − βizi + ηξ
(z)
i (11)

where the parameters σi, ρi and βi are unknown, and chosen randomly from intervals
where the Lorenz system is known to be chaotic: σi ∈ [9, 11] , ρi ∈ [20, 35] , βi ∈ [2, 3].
The noise terms ξ(d)i , d ∈ {x, y, z}, i ∈ {1, . . . , N} are independent identically distributed
random variables (on the discrete simulation time scale of ∆t = 0.001) drawn from
the standard normal distribution. The network topology and all parameters of the
system can be reconstructed and the reconstruction method works despite substantial
interference from noise. Figure 5 shows a successful reconstruction of the network and
of all dynamical parameters for a network of heterogeneous Lorenz oscillators, where
the noise amplitude η = 0.5 is chosen such that it drastically alters the dynamics
from its deterministic counterpart (black vs. blue curve in Figure 5a). This illustrates
by example that the theory is insensitive to additive noise and capable of successful
reconstruction, as desired for generic real-world systems.
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Figure 5. Reconstructing a network and unknown parameters for a system in the
presence of substantial external noise. (a) The dynamics of a unit in a network
of 32 Lorenz oscillators in the noise-free (blue) and noise-driven (black) regimes.
The network was a realisation from an ensemble of networks with edge connection
probability p = 0.5. Starting from the same initial condition, the noise-driven
trajectory quickly deviates due to the chaotic nature of the system. Reconstruction
of the network topology (d) and parameters (f) with corresponding absolute errors
(e), (g). (b) shows the actual network, and (c) shows the false positives in the
reconstruction. There were no false negatives.

4. Conclusion

In summary, we have introduced a simple robust method to infer connection topology
from observations of deterministic and noisy network dynamical systems, where the
functional form of the evolution equations is known.

Our method is unique in the following ways. A simple sufficiently long observation of
the system dynamics suffices to reconstruct the network topology and coupling strengths.
In many cases, experimental access to the system, say, to introduce ‘control signals’, as
in [4, 6] may not be possible, and the method proposed here does not require any form
of system intervention. Furthermore, the type of collective dynamics is not restricted
to, e.g., fixed points, periodic orbits, synchronous states, or any other specific type
of motion, cf. [3, 4]. Using entire dynamical trajectories, including transients, for
the reconstruction, we demonstrate robust reconstruction for a wide range of observed
dynamical states, from asynchronous chaotic states to transient states towards global
synchrony. Moreover, we treated the system as a ‘gray box’, where we know some general
principles of the system (like the coupling functions) but lack the details, like network
structure or intrinsic parameters. Given (e.g. experimental) dynamical observation
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data, our theory provides an explicit analytic solution to the inverse problem of finding
the network structure. This solution is a direct restatement of the differential equations
governing the dynamics of the system, and is thus conceptually the simplest possible.
This simplicity suggests highest attainable quality for such inverse problems.

The method scales sublinearly with network size, seems robust against substantial
addition of noise, and thus provides a promising complement to existing reconstruction
methods. Thus, our method offers a conceptual simplification over other methods that
make the same assumptions we do, but rely on more complex techniques like copy-
synchronisation (called auto-synchronization in [6]) or the use of topology estimating
clone models or control signals [5]. Further, the method suggested here is capable of
reconstructing network structure from a simple observation of the system’s dynamics,
without resorting to any external intervention to drive the system into or from some
canonical state, as in [4].

Efforts to understand the general interplay of network structure and dynamics
have yielded several promising approaches, mainly applicable to smaller systems.
Notable among the forward methods, i.e., methods that predict dynamical features
from knowledge of network topology are those that study the propagation of a harmonic
perturbation through a network of coupled phase oscillators [10, 11], and methods to
predict disordered dynamics from structures of strongly connected components in the
network [12]. Cimponeriu et al. [13] introduce two methods to estimate the interaction
delay in weak coupling between two self-sustained oscillators from observed dynamical
time series. Arenas et al. [14] show that times of synchronisation can reveal the
hierarchical structure of a network, revealing a connection between synchronisation
dynamics and topological clustering. In an alternative approach, Memmesheimer and
Timme [15, 16] present an analytical method to design networks of spiking neurons
that display a required spike pattern. Other inverse methods have relied on stochastic
optimisation [17] to fit a model of a network of spiking neurons to an observation of a
real network to infer its topological parameters.

Several avenues for further research present themselves. As suggested by previous
work [4, 2], minimising the `1 norm, instead of the `2 norm as used here may result
in more efficient reconstruction of sparse networks [18]. In addition, our preliminary
studies suggest that this highly overdetermined inverse problem can be reduced to
an exactly-determined problem by selectively choosing points on the time series to
ensure that the resultant system of equations is maximally linearly independent. This
reduction significantly reduces the cost of computation to reconstruct large networks.
Furthermore, it is straightforward to extend this method to coupled map networks and
to systems with delay. Finally, recent studies show that a method analogous to the one
presented here for smoothly coupled systems is capable of reconstructing networks of
pulse-coupled systems such as integrate-and-fire neurons [19].
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