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Abstract. We study the performances of stochastic heuristic search algorithms on Uniquely
Extendible Constraint Satisfaction Problems with random inputs. We show that, for any
heuristic preserving the Poissonian nature of the underlying instance, the (heuristic-dependent)
largest ratio αa of constraints per variables for which a search algorithm is likely to find solutions
is smaller than the critical ratio αd above which solutions are clustered and highly correlated.
In addition we show that the clustering ratio can be reached when the number k of variables
per constraints goes to infinity by the so-called Generalized Unit Clause heuristic.

1. Introduction
The application of statistical mechanics ideas and tools to random optimization problems,
initiated in the mid-eighties [1], has benefited from a renewed interest from the discovery of
phase transitions in Constraint Satisfaction Problems (CSP) fifteen years ago. Briefly speaking,
one wants to decide whether a set of randomly drawn constraints over a set of variables admits (at
least) one solution. When the number of variables goes to infinity at fixed ratio α of constraints
per variable the answer abruptly changes from (almost surely) Yes to No when the ratio crosses
some critical value αs. Statistical physics studies have pointed out the existence of another
phase transition in the Yes region [2, 3]. The set of solutions goes from being connected to a
collection of disconnected clusters at some ratio αd < αs, a translation in optimization terms of
the replica symmetry breaking transition identified by Parisi in mean-field spin glass theory.

It is expected that this clustering transition may have dynamical consequences. As replica
symmetry breaking signals a loss of ergodicity, sampling algorithms (e.g. Monte Carlo procedure)
run into problems at that transition. A quantitative study of the slowing down of MC scheme was
done in [4] for the case of the k-XORSAT model where constraints are simply linear equations
(modulo 2) over k Boolean variables (for an introduction, see [5] and references therein). Yet,
finding a solution should in principle be easier than sampling, and the exact nature of the
relationship between the performances of resolution algorithms and the static phase transitions
characterizing the solution space is far from being obvious [6]. The present paper is a modest
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step in elucidating this question for the k-XORSAT problem, and some related NP-complete
problems sharing the same random structure.

Hereafter we consider simple stochastic search heuristic algorithms working in polynomial
(linear) time for solving k-XORSAT instances [8, 5]. By successively assigning variables
according to some heuristic rules those algorithms either produce a solution, or end up with
a contradiction. The probability that a solution is found is a decreasing function of the ratio α,
and vanishes above some heuristic-dependent ratio αa in the infinite size limit. We show that
αa < αd for any assignment heuristic in the class of rules preserving the Poissonian structure of
the instance. In addition, we determine the most efficient heuristic, that is, the one maximizing
αa in this class and show that for large k, the two critical ratios match, αa(k) ' αd(k) ' log k/k.

The plan of the paper is as follows. In section 2 we define the random k-XORSAT decision
problem and its extension, as well as the search algorithms studied. Section 3 presents a method
to characterize the phase diagrams of those random decision problems, depending on the content
(numbers of constraints over j variables, with j ranging from 1 to k) of their instances. We
show that all important information is encoded in a unique ‘thermodynamical’ potential for the
fraction of frozen variables (backbone). The analysis of the dynamical evolution of the instance
content is exposed in section 4. These dynamical results are combined with the static phase
diagram in section 5 to show that the success-to-failure critical ratio of search heuristic, αa, is
smaller than the ratio corresponding to the onset of clustering and large backbones, αd. We
then show that the so-called Generalized Unit Clause heuristic rule is optimal (in the class of
Poissonian heuristics) and its critical ratio αa is asymptotically equal to αd in the large k limit.
Our results are discussed in section 6.

2. Definitions
2.1. Decision problems
The decision problems we consider in this paper are (k, d)-Uniquely Extendible (UE) Constraint
Satisfaction Problems (CSP) defined as follows [7]. One considers N variables xi ∈ {0, 1, · · · , d−
1}. A UE constraint, or clause, is a constraint on k variables such that, if one fixes a subset of
k− 1 variables, the value of the k-th variable is uniquely determined. A (k, d)-UE-CSP formula
is a collection of M = αN clauses, each involving k variables (out of the N available ones). A
solution is an assignment of the N variables such that all the clauses are satisfied. k-XORSAT
corresponds to d = 2 and is solvable in polynomial time with standard linear algebra techniques.
For d = 3 the problem is still in P, while for d ≥ 4 it has been shown that (3, d)-UE-CSP is
NP-complete [7].

A random formula is obtained by choosing, for each clause, the k variables, and the actual
UE constraint, uniformly at random. It is known that, in the infinite size limit N →∞ and at
fixed clause-to-variable ratio α, [7, 11, 12, 13]:

• there is a critical ratio αs(k) such that a random (k, d)-UE-CSP is almost surely satisfiable
(respectively, unsatisfiable) if α < αs(k) (respectively, α > αs(k)).

• in the satisfiable phase there is another phase transition at some ratio αd(k) such that:
- for α < αd(k) the space of solutions is ‘connected’: with high probability there is

a path in the set of solutions joining any two solutions such that a step along the path
requires to change O(1) variables.

- for α > αd(k) the space of solution is disconnected into an exponentially large number
of clusters, each one enjoying the above connectedness property, and far away from each
other (going from one solution in one cluster to another solution in another cluster requires
to change O(N) variables). In addition, in each cluster, a finite fraction of variables are
frozen i.e. take the same value in all solutions (backbone).
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2.2. Search algorithms
We will consider simple algorithms acting on the formula in an attempt to find solutions. Those
algorithms were introduced and analyzed by Chao and Franco [8] (see [9] for a review). Briefly
speaking, starting from a randomly drawn formula, the algorithm assigns one variable at each
time step according to the following principles:

• If there is (at least) one clause of length one (called unit-clause) then satisfy it by adequately
assigning its variable. This rule is called unit propagation.

• If all clauses have length two or more, then choose a variable according to some heuristic
rules. Two simple rules are:

- Unit Clause (UC): pick up uniformly at random any variable and set it to a random
uniform value in {0, · · · , d− 1};

- Generalized Unit Clause (GUC): pick up uniformly at random one of the shortest
clauses, then a variable it this clause, and finally its value.

In this analysis, we will discuss a general heuristics in which the variable to be set is chosen among
those that appear in the clauses of length j with some probability pj(C1, · · · , Ck), depending in
general on the number of clauses of length j present in the formula, that we shall call Cj . Unit
propagation implies that if C1 6= 0, then pj = δj,1. We consider also the possibility that the
variable is chosen irrespective of the clause length, then

∑k
j=1 pj ≤ 1.

Both UC and GUC are special cases of this general class: in UC variables are chosen at
random, irrespectively of the clauses they appear in (if any), so that pj = 0 unless there are
unit clauses; GUC corresponds to pj = δj,j∗ where j∗ is the length of the shortest clause in the
system. Notice that since the variables are selected independently of their number of occurrences,
the latter remains Poissonian under the action of the algorithm (even though the value of the
parameter in the distribution of occurrences may vary). More involved heuristics do exist but
will not be analyzed here.

Under the action of the algorithm clauses get reduced (decrease in length) until they disappear
once satisfied. The algorithm stops either when all clauses have been satisfied or when two
incompatible unit-clauses have been generated e.g. x = 0 and x = 1. In the latter case the
algorithm outputs ‘I do not know whether there is a solution’, while in the former case the
output reads ‘Satisfiable’ and returns a solution to the formula. The probability of success,
that is, the probability (over the choices of the algorithms and the formula) of getting the
‘Satisfiable’ output vanishes above some heuristic-dependent ratio αa(< αs) in the infinite N
limit. This success-to-failure transition coincides with the polynomial-to-exponential transition
of backtracking algorithms [5, 10].

3. ‘Thermodynamical’ Characterization of the Space of Solutions
Under the action of the algorithm the length of the clauses changes; therefore the initial (k, d)-
UE-CSP formula where all clauses have length k evolves into a formula with some distribution
of clauses of different lengths. We wish then to characterize the space of solutions of a generic
d-UE-CSP formula made by N variables and by {C0

j }j=2,···,k clauses of length j, assuming that
there are no unit clauses. This characterization will be useful to analyze the performance of
search algorithm in the following.

3.1. Leaf removal procedure and its analysis
Our starting observation is that, due to the UE property, when a variable has a unique
occurrence in the formula, then the clause it appears in can always be satisfied. Hence the
subformula obtained by removing this clause is equivalent (in terms of satisfiability) to the
original system [11]. The interest of this remark is that it can be iterated, and more and more
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clauses eliminated. Monitoring the evolution of the formula under this procedure, called leaf
removal, provides us with useful information on the nature of the solution space [12, 13, 14].

One clause is removed at each time step. After T steps we denote by Cj(T ) the number of
clauses of length j. Those numbers obey the evolution equations (in expectation),

Cj(T + 1)− Cj(T ) = − j Cj(T )∑k
j′=2 j′Cj′(T )

(1)

where the denominator is the total number of occurrences of all variables appearing in the
formula. The r.h.s. of (1) is simply (minus) the probability that the unique-occurrence variable
is drawn from a clause of length j.

In addition let us define the number N`(T ) of variables appearing in ` equations exactly. The
evolution equations for those numbers are (in expectation)

N`(T + 1)−N`(T ) =
k∑

j=2

j(j − 1) Cj(T )∑k
j′=2 j′Cj′(T )

×
[
(` + 1) N`+1(T )− ` N`(T )∑∞

`′=0 `′N`′(T )

]
− δ`,1 + δ`,0 . (2)

The above is easy to interpret. The second term in the square bracket on the r.h.s. is the
average number of removed variables (other than the single-occurrence variable), that is, the
average length of the removed clause minus one. The first term expresses that, if one of those
variables appeared ` + 1 times before its removal, the number of its occurrences has decreased
down to ` after the removal. Finally, the two δ correspond to the elimination from the system
of the single-occurrence variable.

In the large N limit we may turn those finite difference equations over extensive quantities
Cj , N` into differential equations for their intensive counterparts cj = Cj/N, n` = N`/N as
functions of the reduced number of steps, τ = T/N . The outcome is

dcj

dτ
= −jcj

N , (j = 2, . . . , k) , (3)

dn`

dτ
=

k∑

j=2

j(j − 1)cj

N
[
(` + 1)n`+1 − `n`

N
]
− δ`,1 + δ`,0 , (4)

where N (τ) =
∑k

j=2 jcj(τ) =
∑

`≥1 ` n`(τ). The initial conditions are

cj(0) =
C0

j

N
; n`(0) = e−λ0

(λ0)`

`!
, (5)

where λ0 is determined by
∑

` ` n`(0) = λ0 =
∑

j jcj(0).
It is easy to check that equations (3) are solved by cj(τ) = cj(0) b(τ)j provided N

b
db
dτ = −1.

It is convenient to introduce the generating function

G(b) =
k∑

j=2

cj(0) bj . (6)

Derivative(s) of G with respect to its argument will be denoted by prime(s). We have that
N (τ) = b(τ)G′(b(τ)). In addition, we define γ(τ) =

∑
j cj(τ) = G(b(τ)). We deduce the

equation for b(τ):

dγ

dτ
=
N
b

db

dτ
= −1 ⇒ τ = γ(0)− γ(τ) =

k∑

j=2

cj(0)(1− b(τ)j) . (7)
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The interpretation of the equation above is just that at each step of the leaf removal one equation
is eliminated.

The solution to (4) remains Poissonian at all times for all ` ≥ 2. Substituting n`(τ) =
e−λ(τ) λ(τ)`

`! we obtain an equation for λ(τ):

dλ

dτ
= −

∑
j≥2 j(j − 1)cj(τ)
(
∑

j≥2 jcj(τ))2
λ(τ) = −

[
G′′(b)
G′(b)2

]

b=b(τ)

λ(τ) , (8)

with the initial condition imposed by λ(0) = λ0 =
∑

j jcj(0) = G′(1). From (7) we get
dτ
db = −G′(b) so that

dλ

db
=

dλ

dτ

dτ

db
=

G′′(b)
G′(b)

λ , (9)

which is solved by
λ(b) = G′(b) , (10)

where the normalization is fixed by the initial condition for λ. (7) and (10) determine b(τ) and
λ(τ), which describe the evolution of the formula under the action of the leaf removal algorithm.

3.2. Static Phase Transitions
The structure of the subformula remaining at the end of the leaf-removal (if any) is indicative
of the nature of the phase corresponding to typical formulas, uniformly drawn at fixed {C0

j }.
Three phases are possible: the unclustered phase where formulas are satisfiable and the solutions
form a unique cluster; the clustered phase where solutions are divided into many clusters; and
the unsat phase where the typical formula is not satisfiable
(i) Clustering transition: The leaf removal algorithm starts from b = 1, then b decreases

according to (7) and the algorithm stops at the largest value of b such that n1 = 0, i.e.
there are no more variables with unique occurrence. We have

n1 =
k∑

j=2

jcj −
∑

`>1

`n` = bG′(b)−
∑

`>1

`e−λ(b) λ(b)`

`!

= bλ(b)− e−λ(b)λ(b)
[
eλ(b) − 1

]
= λ(b)

[
b− 1 + e−λ(b)

]
,

therefore
n1 = 0 ⇔ 1− b = e−λ(b) = e−G′(b) . (11)

This equation always has the solution b = 0, that gives cj = 0 for all j when the algorithm
stops. This corresponds to a backbone-free formula whose solution space is connected. On
the other hand, if this equation admits non-trivial solutions b > 0, the algorithm stops when
b is equal to the largest of them, i.e. it is unable to eliminate all clauses in the formula.
Then the space is clustered and the largest solution represents the fraction of variables in
the backbone of each cluster [12, 13].
In the pure (k, d)-UE-CSP case, i.e. when c0

j = αδj,k, the critical ratio at which clustering
appears decreases with k, from αd(3) ' 0.818 to αd(k) ' log k/k at large k.

(ii) Sat/unsat transition: The formula is satisfiable when the subformula left by the removal
algorithm has a solution. This happens with high probability if and only if the number of
equations, given by G(b), is smaller than the number of variables,

∑
`≥2 n` [12, 13]. Using

the condition n1 = 0, the satisfiability condition is

G(b) ≤ b + (1− b) log(1− b) . (12)

For (k, d)-UE-CSP, the critical ratio at which formulas go from typically satisfiable to
typically unsatisfiable increases with k, from αs(3) ' 0.918 to αd(k) → 1 at large k.
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3.3. The potential for the backbone
The outcome of the previous section can be summarized as follows. We considered a formula
specified by a set {c0

j}j=2,···,k, or equivalently by the generating function (6). In the following
we will drop the superscript 0 to simplify the notation. We define the potential

V (b) = −G(b) + b + (1− b) log(1− b) . (13)

The condition n1 = 0 (11), is equivalent to V ′(b) = 0. Thus, if V (b) has a single minimum in
b = 0, the solution space is not clustered, while if there is another minimum at b 6= 0, there
are clusters. Moreover, the condition for satisfiability (12), is that at the secondary minimum
V (b) ≥ 0. Examples are given in figure 2.

The sat/unsat surface Σs, that separates the sat and the unsat phase, is defined by the
condition:

Σs ≡ {cj : V (b) = 0 and V ′(b) = 0 admit a solution b > 0} . (14)

The clustering surface Σd, that separates the clustered and unclustered regions, is defined
similarly by

Σd ≡ {cj : V ′(b) = 0 and V ′′(b) = 0 admit a solution b > 0} . (15)

The equations above have to be interpreted as coupled equations for (b, cj); therefore Σs,Σd

have dimension k − 2 and are surfaces in the space {cj}j=2,···,k of dimension k − 1. Note that
in (14) and (15), one must always choose the largest solution for b, to which we will refer as bs

and bd, respectively.
In addition to the previous sets, in the following a special role will be played by the condition

2c2 = 1, or equivalently V ′′(0) = 0, that defines the contradiction surface Σq:

Σq ≡ {cj : V ′′(0) = 0} . (16)

The surface Σq is simply a hyperplane of dimension k − 2.

3.4. The phase diagram
We draw a phase diagram in the space of the cj by representing surfaces Σs, Σd,Σq. We focus
on the region cj ∈ [0, 1] for j = 3, . . . , k and c2 ∈ [0, 1/2]. Indeed, if one of the cj > 1, the
system is surely in the unsat phase [7] while if c2 > 1/2 the algorithm discussed above find a
contradiction with very high probability.

Examples of the phase diagram are in figure 1 for k = 3 and k = 4. There are some special
“lines” (i.e. intersections of surfaces) on which we will concentrate.

(i) Recall that Σq is defined by V ′′(0) = 0 and note that V ′(0) = 0 for all b, cj . Thus, on
Σq, the point b = 0 is a solution of both equations (14) and (15). The surfaces Σs, Σd are
defined by the existence of solutions with b > 0, but they might intersect Σq if for some
values of {cj} the solution with b > 0 merges with the solution b = 0. This happen when
V ′′′(0) = 0, as this is the limiting case in which a saddle at b = bd > 0 and a secondary
minimum at b = bs > 0 can merge for bd, bs → 0. The condition V ′′′(0) = 0 is equivalent to
c3 = 1/6, and this defines the k − 3-dimensional surface

Σcrit ≡ {cj : c2 = 1/2, c3 = 1/6} , (17)

to which we will refer as critical surface. It is easy to see that the three surfaces Σs, Σd,Σq

are tangent to each other on the region of the critical surface where they intersect. To
show that one must consider a displacement c3 = 1/6 + ε and show that (15), (14) admit a
solution with bs, bd ∼ ε if c2 − 1/2 ∼ ε2. We say that in this case the phase transitions are
of second order because the order parameter b vanishes continuously at the transition.
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Figure 1. (Left) Schematic phase diagram of k=4-UE-CSP. The full (black) curve is the surface
Σd, the dot-dashed (red) surface is Σs. The two surfaces meet along a portion of the line Σcrit,
defined by c2 = 1/2 and c3 = 1/6 and represented as a dashed (blue) line. (Right, top and
bottom) The sections of Σd (full, black) and of Σs (dot-dashed, red), at fixed c2 (= 0, 0.1, 0.2,
0.3, 0.4, 0.5 from top to bottom) as a function of c3 on the top panel, and at fixed c4 (= 0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7 from top to bottom) as a function of c2 in the bottom one. The lines
corresponding to c4 = 0 also represent the phase diagram of 3-UE-CSP.

(ii) There is no a priori reason for which the three surfaces must cross at Σcrit. In fact, the
solutions at b > 0 might also disappear discontinuously, like in figure 2, and the surfaces Σs

and Σd can intersect the surface Σq in regions different from Σcrit. This does not happen
for k = 3 but happens for k = 4 for large c4, see figure 1. In this case the transition is called
first order because the order parameter jumps at the transition.

The generic phase diagram for all k has the shape of the one for k = 4 which we report in
figure 1, left panel.

4. Search Trajectories in the Space of Formulas
The heuristics we defined in section 2 enjoy the property that, after any number of steps of
the algorithm, the reduced formula is uniformly distributed over the set of remaining N − T
variables conditioned to the numbers Cj(T ) of clauses of length j (= 2, ..., k) [8, 9]. This
statistical property, combined with the concentration phenomenon taking place in the large N
limit, allows us to study the evolution of the average clauses densities cj(t) = Cj(T )/N on the
time scale t = T/N (fraction of assigned variables), which defines a trajectory in the cj ’s space.
Note that these cj(t) are defined with respect to N , therefore the actual clause density for the
reduced system of N − T variables are c̃j(t) = cj(t)/(1 − t). The trajectory of the c̃j(t) moves
in the cj space of the previous section1.

Initially we have cj(0) = α δjk, i.e. the evolution starts on the ck axis at ck = α. The

1 The reader should keep in mind this change of notation to avoid confusion in the following arguments
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evolution equation for the densities take the form of first order differential equations,

ċj =
(j + 1)cj+1 − jcj

1− t
− ρj(t) . (18)

The interpretation of the equations above is the following. Let us consider an interval [t, t + dt]
of continuous time that corresponds to ∆T ∼ Ndt time steps of the algorithm. The first term
on the r.h.s. arises from the decrease by one of the length of the clauses that contained the
variable just assigned by the algorithms during this interval. The second term corresponds to
an additional loss of clauses which is present when the variable is selected from a clause of
length j: as the heuristics explicitly chooses an equation (and a variable therein) of length j
with probability pj (see section 2), this equation will be reduced irrespectively of the number of
other occurrences of the variable. Hence ρj(t) is given, for j ≥ 1, by

ρj(t) = lim
∆T→∞

lim
N→∞

1
∆T

tN+∆T−1∑

T=tN

(pj − pj+1) ≡ 〈pj − pj+1〉 , (19)

where both pj , pj+1 depend on their arguments (numbers of clauses) and 〈•〉 represents the
average over ∆T defined in (19). Here pk+1 ≡ 0. Note that the case j = 1 is special as all
clauses of length one that are produced are immediately eliminated. On average

ρ1 ≡ 2c2

1− t
(20)

clauses of length 2 become of length 1 and are then eliminated by unit propagation. The total
fraction of eliminated clauses is

γ̇(t) ≡ −
k∑

j=2

ċj(t) =
2c2(t)
1− t

+
k∑

j=2

ρj(t) =
k∑

j=1

ρj(t) ≤ 1 , (21)

where the last inequality follows from (19). As only clauses of length one are eliminated, the
violation of (21) can only happen if too many such clauses are generated. This corresponds
to ρ1 → 1−; in this case a contradiction occurs with high probability and the algorithm stops
with the ‘Don’t know’ output. When ρ1 → 1−, the algorithm makes only unit propagations and
ρj → 0+ for all j ≥ 2. For this reason we called the plane ρ1 = 1, i.e. c̃2 = 1/2, contradiction
surface.

4.1. Unit Clause (UC)
In the UC heuristic variables are chosen at random when there is no unit clause. Hence ρj = 0
for j = 2, · · · , k. The solution to (18) is cj(t) = α

(k
j

)
(1 − t)jtk−j . The algorithm will generate

a contradiction with high probability (w.h.p.) if the average number of unit clauses starts to
build-up, i.e. if 2c2(t)/(1 − t) ≥ 1. This gives an equation for the value of α at which the
probability that the algorithm finds a solution vanishes: for k = 3, α

(UC)
a = 2/3.

4.2. Generalized Unit Clause (GUC)
In the GUC heuristic the algorithm always fixes a variable appearing in the shortest clauses. In
the continuum limit cj = 0 for j smaller than a given value; therefore we define

j∗(t) = min{j : cj(t) > 0} , (22)
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the minimal length of clauses with positive densities. We also define

t∗(j) = min[t : cj−1(t) > 0] (23)

the time at which j∗ jumps down from j to j − 1. Essentially, the algorithm picks one clause of
length j∗ and assigns successively all the variables in this clause until the clause disappears. But
in doing so, other clauses of length j < j∗ are generated and have to be eliminated to recover
the situation in which Cj = 0 for all j < j∗; for this reason ρj∗ is not given exactly by 1/j∗.
When the number of generated clauses is so high that the algorithm is unable to remove them,
cj∗−1 becomes different from 0 and j∗ jumps down by 1. The resulting motion equations for the
clause densities are, for j ≥ j∗(t):

ċj(t) =
(j + 1)cj+1(t)− jcj(t)

1− t
− δj,j∗(t)

(
1
j
− (j − 1)cj(t)

1− t

)
. (24)

The transition times t∗ are given by

cj(t∗(j))
1− t

=
1

j(j − 1)
, (25)

where the algorithm is no more able to remove the clauses of length j∗ because too many clauses
of length j∗ − 1 are being generated by propagations.

Comparing with (18) above, we observe that in the interval t ∈ [t∗(j+1), t∗(j)], where j∗ = j,
only two ρj are different from 0:

ρj∗ =
1
j∗
− (j∗ − 1)cj∗(t)

1− t
, ρj∗−1 =

j∗cj∗(t)
1− t

, (26)

the first representing clauses of length j∗ which are directly eliminated, the second representing
the clauses of length j∗ − 1 that are produced and subsequently eliminated in the process. In
this interval of time, the ratio cj∗(t)/(1 − t) increases from 0 to 1/j∗/(j∗ − 1) from condition
(25). Then

1
j∗(t)

≤ γ̇(t) = (ρj∗ + ρj∗−1) ≤ 1
j∗(t)− 1

, (27)

which is consistent with (but stronger than) (21) above.

5. Analysis of the “dynamic” phase diagram
Consider now a given heuristic, and a generic (k, d)-UE-CSP formula specified by its clause-to-
variable ratio α. The formula, in the cj space, starts on the axis ck at ck = α. The evolution
of the formula under the action of the algorithm is represented by a trajectory {cj(t, α)}j=2,···,k
or equivalently by G(b; t, α) =

∑k
j=2 bjcj(t, α), that depends on α through the initial condition

G(b; 0, α) = αbk. We define a potential V (b; t, α) by replacing in (13) G(b) → G(b; t, α)/(1− t);
the normalization (1 − t) is due to the fact that the cj = Cj/N are divided by N instead of
N − T .

We follow the evolution of the formula by looking at the times at which the trajectory
starting at ck = α at time 0 crosses the surfaces Σs, Σd, Σq defined in section 3.3, which we call
ts(α), td(α), tq(α) respectively. As an example, in figure 2 we report the potential at different
times during the evolution of a formula according to the UC heuristic for α > α

(UC)
a .

We draw a “dynamic phase diagram” by representing in the (t, α) plane the lines separating
the unclustered, clustered, unsat and contradiction phases, which we call αd(t), αs(t), αq(t) and
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Figure 2. An example of the potential V (b; t, α) plotted (from top to bottom) at times
t = {0, td = 0.02957, 0.07327, ts = 0.11697, 0.20642} during the evolution of a (3, d)-UE-CSP
formula with α = 0.8 under the UC heuristic. In the unclustered region it is a convex function
of b with a global minimum in b = 0. On the clustering line td it first develops a secondary
minimum. On the sat/unsat line the value of V at the secondary minimum becomes equal to 0.

are just the inverse of the times defined above. Examples in the case of the UC and GUC
heuristics are given in figure 3.

From the general properties of the function V (b; t, α) we can deduce a number of properties
of the lines αd(t), αs(t), αq(t). We will show that the three lines intersect at a “critical point”
(ta, αa), located at αa ≤ αd, under the more general conditions. This implies that the algorithm
stops working at the value αa ≤ αd, which is our central result: Poissonian search algorithm
cannot find a solution in polynomial time in the clustered region.

5.1. Equations for the transition lines
The generating function G(b; t, α) satisfy an evolution equation which is easily derived from (18):

Ġ(b; t, α) =
1− b

1− t
G′(b; t, α)− F (b; t, α) , (28)

F (b; t, α) ≡ 2c2(t)
1− t

b +
k∑

j=2

ρj(t)bj =
k∑

j=1

ρj(t)bj . (29)

Performing the total derivative with respect to t of the first condition (V ′ = 0) in (15) for
(αd, bd) and using the second condition, V ′′ = 0, we have

∂V ′

∂α

dαd

dt
+ V̇ ′ = 0 ⇒ dαd

dt
= − V̇ ′(bd; t, αd)

∂V ′
∂α (bd; t, αd)

. (30)

Using the definition (13) we have

V̇ ′(b; t, α) = − 1
1− t

[
Ġ′(b; t, α) +

G′(b; t, α)
1− t

]
, (31)
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Figure 3. (Left) Phase boundary lines in the (t, α) plane for the UC and GUC heuristics for
k = 3. The three lines meet at the critical point (ta, αa) at which the algorithm is no more
able to find a solution (black dot). (Right) The generic shape of the clustering and of the
sat/unsat lines. The possibility of a maximum cannot be excluded, but in any case t must be a
single-valued function of α, meaning that if the algorithm enters the cluster (or unsat) phase it
cannot escape at later times.

∂V ′

∂α
= − 1

1− t

∂G′

∂α
= − 1

1− t

∑

j≥2

jbj−1 ∂cj(t, α)
∂α

. (32)

Then
dαd

dt
= − Ġ′(b; t, α) + G′(b;t,α)

1−t

∂αG′(b; t, α)

∣∣∣∣∣∣
α=αd(t),b=bd(t)

. (33)

Using (28) and differentiating with respect to b we have

Ġ′(b; t, α) +
G′(b; t, α)

1− t
=

1− b

1− t
G′′(b; t, α)− F ′(b; t, α) . (34)

Now using V ′′(b; t, α) = −G′′(b;t,α)
1−t + 1

1−b and V ′′(bd, t) = 0 we have 1−b
1−tG

′′(b; t, α) = 1 for b = bd

and finally we get
dαd

dt
= − 1− F ′(b; t, α)

∂αG′(b; t, α)

∣∣∣∣
α=αd(t),b=bd(t)

. (35)

A very similar reasoning leads to the following equation for the sat/unsat line:

dαs

dt
= − b− F (b; t, α)

∂αG(b; t, α)

∣∣∣∣
α=αs(t),b=bs(t)

. (36)

The equation for the contradiction line is easily derived from its definition c̃2(t, α) = c2(t,α)
1−t = 1

2 ,
which immediately gives

dαq

dt
= − 1 + 2ċ2(t, α)

2∂αc2(t, α)

∣∣∣∣
α=αq(t)

. (37)
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5.2. General properties of the transition lines
We wish to show that the transition lines td(α),ts(α) and tq(α) in the (α, t) plane are single-
valued functions of α, and that they meet in a point (αa, ta) where they have infinite slope and
are therefore tangent to each other; the value αa correspond to a trajectory which is tangent to
the crytical surface Σcrit.

Our argument goes as follows:

(i) We defined αa as the value of α for which the probability of finding a solution for the
chosen heuristic vanishes. Then the trajectory2 corresponding to any α > αa must cross
the contradiction surface, while the trajectory corresponding to any α < αa must not cross
it, so that the trajectory corresponding to αa must be tangent to the contradiction surface
Σq. The latter trajectory is tangent to Σq when c̃2(t) = 1/2, d

dt c̃2(t) = 0; the solution to
these conditions gives ta and αa.
Moreover, c̃2(t) = 1/2 implies that ρ1 = 1 which then implies ρj = 0 for all j ≥ 2, as already
discussed. Then we have

d

dt
c̃2(t) =

d

dt

2c2(t)
1− t

=
2ċ2(t)
1− t

+
2c2(t)

(1− t)2
= 0 ⇒ ċ2(t) = − c2(t)

1− t
= −1

2
, (38)

which, together with the equations of motion (18) and ρ2 = 0 gives

− c2(t)
1− t

=
dc2(t)

dt
=

3c3(t)− 2c2(t)
1− t

⇒ c̃3(t) =
c3(t)
1− t

=
1
3

c2(t)
1− t

=
1
6

. (39)

Therefore the point where the trajectory for α = αa is tangent to the contradiction surface
belongs to the critical surface Σcrit. From equation (37) it is clear that since ċ2 = −1/2,
the function tq(α) has infinite slope in (ta, αa), as in figure 3.

(ii) Next we show that the numerators of the fractions appearing in α̇d(t) and α̇s(t) are strictly
positive if t < tq(α), i.e. in before a contradiction is found. Using the definition (19) we
can write:

F (b; t, α) =
k∑

j=1

ρj(t)bj = b


〈p1〉+

k∑

j=2

bj−2(b− 1) 〈pj〉

 , (40)

F ′(b; t, α) =
k∑

j=1

jρj(t)bj−1 = 〈p1〉+
k∑

j=2

bj−2 [1− j(1− b)] 〈pj〉 .

The coefficients in front of 〈pj〉 ≥ 0 in the sums above are always smaller than 1,
independently of j, so that

F (b; t, α) ≤ b


〈p1〉+

k∑

j=2

〈pj〉

 ≤ b , (41)

F ′(b; t, α) ≤ 〈p1〉+
k∑

j=2

〈pj〉 ≤ 1 . (42)

The functions F (b; t, α) and F ′(b; t, α) are to be computed in b = bs(t, α) or b = bd(t, α)
in equations (35) and (36). Both bs and bd are strictly smaller than 1 for all (t, α), as one
can directly show from their definitions because V ′(b → 1) → ∞. Then the coefficients in
the sums in (40) are strictly smaller than 1, and the only solution to F = b or F ′ = 1 is
〈pj〉 = δ1j , which happens only on the contradiction line.

2 Recall that we are here talking about average trajectories.
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(iii) The denominators in equations (35), (36) are surely positive at t = 0, as G(b; 0, α) = αbk

independently of the heuristic. If they remain positive at all times, then α̇d(t), α̇s(t) ≤ 0 at
all times, or equivalently dtd

dα , dts
dα ≤ 0 at all α, so that td, ts always increase on decreasing α.

The other possibility is that the denominator in (35) crosses zero and become negative,
leading to a maximum in td(α), which will then decrease on decreasing α. Possibly the
denominators can vanish again, giving rise to a sequence of maxima and minima, see right
panel of figure 3.
What is important is that the numerator is always strictly positive, and as a consequence
td(α) or ts(α) are single-valued functions of α. In fact, for td(α) or ts(α) to be multiple-
valued functions of α, at some point their slope must become infinite, which is excluded by
the analysis above.

(iv) The statement above, that td(α) and ts(α) are single valued functions of α, implies that
if a trajectory enters the clustered or unsat phase, it cannot exit from it. This is enough
to show that αa ≤ αd; in fact, the trajectory for α = αa cannot start inside the clustered
phase, as it would not be able to escape and reach the origin, which is required to find a
solution.

(v) In general the function c̃2(t) increases until it reaches a maximum and then decreases
to 0. For α = αa the value at the maximum is c̃2 = 1/2. For α > αa, the value
at the maximum is c̃2 > 1/2, therefore the contradiction c̃2 = 1/2 is reached before
the maximum, when c̃2 is still increasing. Then d

dt c̃2 > 0 at the contradiction point.
Performing a simple computation similar to equations (38), (39), one can show that the
trajectories for α > αa meet the contradiction surface at c̃3 > 1/6. Notice then that,
as it is evident in figure 1, the trajectories corresponding to α > αa must enter first the
clustered and then the unsat phases in order to reach the contradiction surface, therefore
for α < αa one has td(α) < ts(α) < tq(α). On the contrary the trajectories corresponding
to α < αa must stay away from the clustering and sat/unsat surfaces, otherwise they could
not exit and should meet the contradiction surface: therefore for any α < αa, td(α) and
ts(α) do not exist. For α → α+

a , as the surfaces Σd,Σs, Σq are tangent in Σcrit, one has
td(αa) = ts(αa) = tq(αa) = ta and the three curves have infinite slope as all the numerators
in equations (35), (36), (37) vanish on the contradiction surface. This is indeed what is
observed in figure 3 for the UC and GUC heuristics, and this argument confirms that this
is the generic behavior for all the heuristics in the class considered here.

This structure is particularly evident for UC, where

G(UC)(b; t, α) = α[1− (1− b)(1− t)]k − αtk−1[kb(1− t) + t] . (43)

From (43) it is straightforward to check that ∂αG(b; t, α) > 0, ∂αG′(b; t, α) > 0, if b > 0. Then,
as F (b; t, α) = 2bc2(t)

1−t for UC, both α̇d(t) and α̇s(t) are proportional to 2c2(t)
1−t − 1. This means

that αs,αd are decreasing functions of t below the contradiction line.
The conclusion is that for a generic Poissonian heuristic, the three lines cross at a critical

point (ta, αa) which depends on the heuristic. Above αa the heuristic will cross all the lines
and find a contradiction. From the properties of the dynamical line, we have that generically
αa ≤ αd, that is no Poissonian search heuristic can find a solution in polynomial time above
αd, as stated at the beginning of this section. The natural question is then if there exists an
heuristic that saturates the bound, i.e. such that αa = αd. From the discussion above it is clear
that this is possible only if α̇d(t) ≡ 0, i.e. the dynamical line in the (t, α) plane is a straight
vertical line, which is possible only if the numerator in (35) is identically vanishing.
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5.3. Optimality of GUC
It is quite easy to see that GUC is the heuristic that locally optimizes the numerator in (35).
Indeed, from the definition F ′(b; t, α) =

∑k
j=1 jbj−1ρj and the bound F ′(1, t) ≤ 1, it is clear

that F ′(b; t, α) is maximized by maximizing ρj for the smallest possible j, i.e. by picking clauses
from the shortest possible ones, that is GUC. Unfortunately a general proof of the optimality
of GUC for finite k seems difficult, because one should prove that GUC optimizes globally the
clustering line, and also control the denominator in (35). In this section we will show that for
k →∞, GUC is optimal in the sense that α̇d ≡ 0 and αd = αa at leading order in k.

From the definition γ(t) = −∑k
j=2 cj(t) and integrating over time the bound (27), we have

for GUC:

α−
∫ t

0

dt′

j∗(t′)− 1
≤ −γ(t) ≤ α−

∫ t

0

dt′

j∗(t′)
. (44)

or, equivalently,

α−
∑

j

t∗(j)− t∗(j + 1)
j − 1

≤ −γ(t) ≤ α−
∑

j

t∗(j)− t∗(j + 1)
j

. (45)

where the sums are limited to the values of j that are reached during the search. In the large k
limit, provided the hypothesis

t∗(j)− t∗(j + 1) =
1
k

+ o(1/k) (46)

holds for most j, we obtain

−γ(t) ' α− 1
k

k∑

j∗(t)

1
j

. (47)

The hypothesis (46) is well supported by numerical data, as shown in figure 4. As the sum of the
inverse of the first k integers is equivalent to log k (harmonic number) we see that the minimal
value of j∗ over t is much larger than 2 if α is much smaller than log k/k. Therefore

αa ≥ log k

k
. (48)

The r.h.s. of the above inequality coincides with the asymptotic scaling of the clustering critical
ratio (section 3.2). Since the results of the previous section require that αa ≤ αd, we obtain
that α

(GUC)
a = αd ' log k/k at the leading order in k → ∞. As a comparison, it is easy to see

that for UC the threshold for large k is α
(UC)
a ' e/k, which is therefore much lower than the

threshold for GUC.
These arguments are supported by numerical simulations that we performed up to k = 216,

in which the equations of motion (24) are integrated as finite differences equations for all values
of j (see figure 4). The numerical investigation confirms that kα

(GUC)
a is very well fitted by

log k + 2.15 for k in the range 28 ÷ 216. Moreover, a finite size scaling analysis (with respect to
k) of the data shown in figure 4 shows that

k[t∗(j)− t∗(j + 1)] = 1 + kν × f(j/k) (49)

where f(x) is a function independent on k which behaves as x−µ for x close to 0. From the
numerical data, it appears that ν = µ = 0.5, which confirms that the first correction to the
leading term log k/k is of order 1/k.
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Figure 4. Finite size scaling results for GUC at large k. Top Left Each curve shows the values
of k[t∗(j)− t∗(j + 1)] as a function of j/k for k = 28, 29, . . . , 216 (from the farthest to the closest
curve to 1), and was obtained by integrating the equations of motion (24) by finite differences.
For each k, the value of α used is αGUC

a (k), determined as the value of α for which the maximum
reached by 2c2(t)/(1 − t) is 1. Top Right Data points of αGUC

a (k) versus log k/k + 2.15/k (full
red line). Bottom left The same data as above, plotted as {k × [t∗(j)− t∗(j + 1)]} × k1/2. The
curves “collapse”, showing f(x) and confirming the value of ν = 1/2. Bottom right By plotting
the same curves on logarithmic scale it is easily seen that for x close to 0 f(x) ' x−µ with
µ = 1/2, corresponding to the slope of the full red line.

6. Conclusions
One of the main results of this paper, that is, that linear-time search heuristic are not able to
solve instances in the clustered phase of UE-CSP problems should be interpreted with care. In
XORSAT-like models the clustering transition coincide with the emergence of strong correlations
between variables in solutions, while the two phenomena generally define two distinct critical
ratios for other random decision problems [15, 16]. From an intuitive point of view it is expected
that the performances of search heuristics are affected by correlations between variables rather
than the clustering of solutions. Indeed, as the search algorithms investigated here do not allow
for backtracking or corrections of wrongly assigned variables, very strong correlations between
O(N) variables (recall that the backbone includes O(N) variables in the clustered phase) are
likely to result in e−O(N) probabilities of success for the algorithm.

Extending the present work to the random Satisfiability (k-SAT) problem would be interesting
from this point of view, because even if the clustering and freezing transition coincide at leading
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order for k → ∞ [3], their finite k values are different in this case. Moreover, in some similar
problems (k-COL [17] and 1-in-k-SAT [18]) it has been proven that search algorithms similar to
the ones investigated here are efficient beyond the point where the replica-symmetry-breaking
solution is stable. Therefore these algorithms might beat the clustering threshold in these
problems. Note however that in these cases the transition is continuous, so that the structure
of the clusters is expected to be very different from the one of XORSAT.

In addition, while the Generalized Unit Clause heuristic is here shown to be optimal for the
k-XORSAT problem and to saturate the clustering ratio when k → ∞, it is certainly not the
case of the k-SAT problem. Determining a provably optimal search heuristic for this problem
remains an open problem.
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