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An Empirical Study of the Relation between 
Community Structure and Transitivity 

Keziban Orman, Vincent Labatut, and Hocine Cherifi1 

Abstract. One of the most prominent properties in real-world networks is the 
presence of a community structure, i.e. dense and loosely interconnected groups of 
nodes called communities. In an attempt to better understand this concept, we 
study the relationship between the strength of the community structure and the 
network transitivity (or clustering coefficient). Although intuitively appealing, this 
analysis was not performed before. We adopt an approach based on random mod-
els to empirically study how one property varies depending on the other. It turns 
out the transitivity increases with the community structure strength, and is also af-
fected by the distribution of the community sizes. Furthermore, increasing the 
transitivity also results in a stronger community structure. More surprisingly, if a 
very weak community structure causes almost zero transitivity, the opposite is not 
true and a network with a close to zero transitivity can still have a clearly defined 
community structure. Further analytical work is necessary to characterize the ex-
act nature of the identified relationship. 

1   Introduction 

In a complex network, a community is a cohesive subset of nodes with denser in-
ner links, relatively to the rest of the network [1]. The presence of such groups is a 
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common feature in networks modeling different types of real-world systems, in-
cluding biological, social, information or technological ones [2]. When a network 
takes the form of a set of interconnected communities, it is said to possess a com-
munity structure.   

The presence of a community structure is presumably related to other topologi-
cal properties of the network. Uncovering what causes a community structure to 
appear, and what its effects are, would be valuable for a better understanding of 
the complex networks structure and dynamics. In particular, it would allow im-
proving or explaining the existing community detection methods, and provide 
tools to interpret the communities identified in real-world networks. This angle 
was adopted in a few studies, with different objectives and/or in different contexts.  

Pastor-Satorras et al. [3] showed how the presence of a hierarchical community 
structure and a power law degree distribution are sufficient conditions to cause a 
high transitivity (also called clustering coefficient). For this matter, they defined a 
generative model implementing these properties and studied the obtained net-
works. Moreover, they derived a new use for the transitivity measure, by utilizing 
its distribution to characterize the network hierarchical structure. Clauset et al. [4] 
proposed a different hierarchical approach: they defined a parameterized hierar-
chical model which they fit to various real-world data. The obtained hierarchical 
structures possess various properties present in real-world networks, including be-
ing scale-free (power law distributed degree) and having a high transitivity. This 
seems to indicate the hierarchical structure alone is enough to get both a scale-free 
and highly transitive network. Lie & Hu [5] proposed a model able to generate 
networks with community structures of various strengths, and showed the transi-
tivity of the resulting networks depend on this strength. They used their model to 
study the effect of community structure on the network epidemic threshold. Inte-
restingly, the generated networks are neither scale-free nor have a hierarchical 
structure, which seems to indicate these are sufficient, but not necessary condi-
tions. Wang and Qin [6] had the same objective, but used a different model. It is a 
mixture of Watts-StrogatzÊs small-world model [7] and NewmanÊs community 
structure model [1]. It is therefore not hierarchical either, nor is it scale-free.  

The previous studies intended at studying the effects of the community struc-
ture on some topological properties of interest. In the works by Jin et. al [8] and 
Boguñá et. al [9], the community structure is, on the contrary, a byproduct. The 
authors focused on social networks and designed their models as multi-agent sys-
tems mimicking social interaction. The generated networks turned out to possess 
some properties observed in real-world social networks, including hierarchical 
community structure and high transitivity. Interestingly, the degree is not power 
law-distributed in social networks, which seems to confirm the scale-free property 
is not a prerequisite to get highly transitive and/or community structured networks. 

In this article, our goal is to study how transitivity and community structure can 
mutually affect each other in realistic networks. Contrarily to the first cited studies 
[3, 4], we consider non-hierarchical networks, since this property does not seem to 
be a necessary condition to the presence of a community structure. The obvious 
difference with studies [5, 6] is our focus on transitivity, which intuitively seems 
to be a good candidate to explain the presence of a community structure (cf.  
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section 3 ). Another important difference is our aim of evaluating not only the ef-
fect of the community structure on this property, like in [3-6], but also the effect 
of the property on the community structure. Finally, we are not interested in the 
specific process resulting in the network structure, like in [8, 9], but rather in the 
general relationships between community structure and transitivity.  

To study this relationship, we adopt an empirical approach based on several ge-
nerative models. First, we use an existing model to generate realistic networks 
possessing a community structure with a controlled strength, [10] and study its 
transitivity. Second, an existing model [11] and a new model of our own are used 
to generate networks with a high or controlled transitivity, and we study the 
strength of their community structure. The rest of the document is structured as 
follows. In the next two sections, we review the notion of community structure 
and justify our choice of the transitivity as a property of interest relatively to its 
study. Section 4  is dedicated to the description of our methods, and more particu-
larly the models we are using. We then present the results of our simulation and 
discuss the nature of the uncovered relationships in sections 5.1  and 5.2 . Finally, 
we conclude by highlighting our contributions and the possible extensions of our 
work. 

2   Community Structure 

The concept of community can be formally defined in several ways: mutually ex-
clusive vs. overlapping, hierarchical vs. flat, local vs. global, etc. [12]. The nature 
of the community structure directly depends on the considered definition of a 
community. Independently from this choice, stating the presence or absence of a 
community structure is itself an ambiguous task. For this matter, one can clearly 
distinguish two extreme cases: on the one hand, the complete absence of any 
community structure (e.g. a complete network, in which all nodes are connected to 
each others), and on the other hand a perfect community structure (a network 
made up of several disconnected components). Between these two extremes lies a 
continuum of networks exhibiting community structures of various strengths. It 
makes therefore more sense to measure this strength rather than the presence or 
absence of a community structure. 

In this article we selected the modularity [1] for this matter. It is certainly the 
most widely spread measure to assess the strength of a community structure. It is 
based on the numbers of intra- and inter-community links, and consists in compar-
ing the proportion of intra-community links present in the network of interest, to 
the expectation of the same quantity for a randomly generated network of similar 
size and degree distribution. It is worth noticing some limits have been identified 
since the creation of this measure [12]. The most important seems to be its resolu-
tion limit, causing it to fail identifying communities considered as small relatively 
to the network size and community interconnection pattern [13]. However, we 
considered it to be sufficient for this exploratory work. 

Let us note  the proportion of links connecting nodes in community  to 
nodes in community . Then the proportion of intra-community links for the whole 
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network is ∑ . Let us note  the proportion of links connecting at least 
one node from community . For the same community, Newman defines the ex-
pected number of inter-community links as , in a network whose links are dis-
tributed randomly. The modularity is therefore: ∑ . 

3   Transitivity 

The transitivity (also called clustering coefficient) of a network is the relative pro-
portion of triangles among all connected triads it contains [14]: ⁄  where 

 and  are the numbers of triangles and connected triads, respectively. A trian-
gle is a set of three completely connected nodes, whereas a triad can be either a 
triangle, or a set of three nodes connected by only two links (instead of three). The 
transitivity can be interpreted as the probability of finding a direct connection be-
tween two nodes having a common neighbor. The measure therefore ranges from 
0 to 1.  Besides this global version, a local one exist, defined at the level of some 

node  [7]: ⁄ , where  is the degree of , and  the number of trian-

gles containing this node. The denominator corresponds to the number of combi-
nations of two neighbors of , in other words: the number of connected triads  
centered on . The ratio can therefore be interpreted as the probability of finding a 
direct connection between two neighbors of . The local transitivity can be aver-
aged over the whole network to obtain a global measure. Real-world networks are 
characterized by a high transitivity, whatever the considered version [2]. 

Transitivity and community structure are frequently jointly observed in real-
world networks. Let us consider for instance the comparative study conducted in 
[15]. The authors classify networks depending on the systems they model, and 
analyze their community structures. According to our processing, the transitivity 
values associated to these community-structured networks are significantly higher 
than for same-sized random networks, by several orders of magnitude and for all 
considered classes.  

The relationship between transitivity and community structure may seem trivial 
at first. Intuitively, a high transitivity appears to be the natural consequence of a 
community structure: links are concentrated in communities and should therefore 
form many triangles. Reciprocally, it seems a high transitivity indicate the links 
are form clusters, and therefore communities. However, it is relatively easy to find 
counter-examples to refute these propositions. First, consider a network whose 
communities are fully connected multipartite networks: the community structure 
can be very strong, with dense communities, but the transitivity is nevertheless ze-
ro. One could alternatively consider communities taking the form of connected 
stars, for the same result. Second, consider a fully connected network: the transi-
tivity is maximal, but there is no community structure (just a single community).  

To avoid this kind of situation, we based our analysis on randomly generated 
networks with realistic properties. When possible, we selected generative models 
able to mimic the topological properties consensually considered to be present in 
real-world networks. 
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4   Methods 

The empirical approach we adopted to study the relationship between community 
structure and transitivity is two-stepped. First, we generate artificial realistic net-
works with controllable community structure and analyze how changes in the 
community structure affect the transitivity. Second, we use two different models 
able to generate transitive networks, and analyze how changes in the transitivity 
affect the community structure. The identification of the community structures is 
performed by applying two different and complementary algorithms. In this sec-
tion, we describe all three generative models, and summarize the principle of both 
community detection algorithms. 

4.1   Community Structure Model 

To generate networks possessing a community structure, we used a modified ver-
sion of the LFR model [10]. This model applies a three-stepped generative process 
based on the use of a more basic model, i.e. one not supposed to produce a com-
munity structure. First, the basic model is used to generate an initial network. 
Second, virtual communities are randomly drawn so that their sizes follow a pow-
er law distribution. Third, an iterative process takes place to rewire certain links, 
in order to make the community structure appear while preserving the degree dis-
tribution of the initial network. 

The strength of the community structure is controlled by a specific parameter 
called the mixing coefficient . This parameter allows us to produce networks 
with various community structure strengths and analyze how this affects the tran-
sitivity. The mixing coefficient represents the desired average proportion of links 
between a node and nodes located outside its community, called inter-community 
links. Consequently, the proportion of intra-community links is 1– .  

By construction, the LFR model guaranties to obtain power law-distributed 
community sizes, which is a property present in community-structured real-world 
networks [10]. Since the degree distribution is preserved during the rewiring step 
of the generative process, the rest of the topological properties depend mainly on 
the basic model used at the first step. The original LFR process relies on the Con-
figuration Model (CM) [16], which is able to produce networks with a specified 
degree distribution. In LFR, it was used to obtain a power law-distributed degree, 
also a well identified feature of many real-world networks [2]. To detect any po-
tential effect the basic model could have on the transitivity measured in the final 
networks, we selected two alternatives to the CM, both able to produce scale-free 
networks too. Barabási–Albert’s model (BA) [17] implements a completely differ-
ent, more realistic, generative process based on preferential attachment. The  
Evolutionary Preferential Attachment model (EV) [18] is a variant of BA able to 
produce networks with a higher transitivity. 
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4.2   Transitive Models 

We used two different models to study the effect of the transitivity on the commu-
nity structure. We first selected a model by Newman [11] (NM), which could be 
considered as an adaptation of the CM able to produce networks with a controlled 
transitivity. Instead of specifying the degree  of each node  like in the CM, one 
has to define both the number of single links  and the number of distinct trian-
gles  attached to the node. In other words, a distinction is made between the links 
depending on their belonging to a triangle. Both are mutually exclusive, meaning 
one link is either a single link or appears in only one triangle. In the end, the total 
degree is 2 . For our study, we wanted to obtain scale-free networks for 
matters of realism, and we therefore needed to control . We consequently intro-
duced in our implementation of NM a parameter called transitivity coefficient 0,1 , in order to control the proportion of the degree dedicated to triangles 
(vs. single links). Let  denote the round function, then we have 2⁄  
and 1 .  

The main advantage of NM is it allows artificially changing the transitivity of 
the generated networks. However, for our study, it also has an important limita-
tion: the obtained transitive structure is not very realistic. Indeed, the created tri-
angles are all distinct, i.e. they cannot share more than one node. Put differently, it 
is not possible for them to have a common side. This also limits the transitivity 
(both the global and local versions). The maximal local transitivity some node  
can reach is 1 1⁄  when 0. 

In order to overcome this disadvantage, we developed our Highly Transitive 
model (HT). It is able to randomly generate networks with both a specified degree 
distribution and a high transitivity. The process starts with a ring network, in order 
to avoid isolated nodes or components in the final network. Links are then ran-
domly added while respecting the desired degree distribution and favoring the 
connection of nodes with common neighbors (in order to increase the transitivity).  

Our model allows obtaining networks whose transitivity is much higher than in 
NM networks. However, we are not able to control it with a parameter like we did 
for NM. Both models are therefore complementary: NM allows us to test for the ef-
fect of various level of transitivity, even if the maximal transitivity obtained is not 
very high (greater than in random networks though, so still realistically high). HT al-
lows us to test for the effect of a very high transitivity on the community structure. 

4.3   Community Detection 

In the first part of our experiment, the community structure of the generated net-
works is known, because it is defined by construction. However, this is not the 
case in the second part, and we therefore need to identify it. For this purpose, we 
used two recent algorithms: Louvain [19] and Infomap [20].  

Louvain (LV) is an optimization algorithm proposed by Blondel et al. [19]. It 
uses a two-stepped hierarchical agglomerative approach. During the first step,  
the algorithm performs a greedy optimization of the modularity (cf. section 2 ) to 



An Empirical Study of the Relation between Community Structure and Transitivity 105
 

identify small communities. During the second step, it builds a new network whose 
nodes are the communities found during the first step. In this new network, the intra-
community links are represented by self-loops, whereas the inter-community links 
are aggregated and represented as links between the new nodes. The process is re-
peated on this new network, and stops when only one community remains. 

Infomap (INP) is an algorithm developed by Rosvall and Bergstorm [20]. The 
task of finding the best community structure is expressed as a compression prob-
lem. The authors want to minimize the quantity of information needed to represent 
the path of some random walker traveling through the network. The community 
structure is represented through a two-part nomenclature based on Huffman cod-
ing: the first part is used to distinguish communities in the network and the second 
to distinguish nodes in a community. With a partition containing few inter-
community links, the walker will probably stay longer inside communities, there-
fore only the second level will be needed to describe its path, leading to a compact 
representation. The authors optimize their criterion using simulated annealing.  

As mentioned in section 2 , many different definitions of the concept of com-
munity exist. Louvain optimizes directly the modularity, whereas Infomap relies 
on a completely different definition of what a community is. The first is from far 
the most widely spread, and the second proved to be very efficient [21]. From this 
point of view, these two algorithms are complementary, which is why we selected 
them. This allows us to detect if the community structure induced by a high transi-
tivity favors one definition or the other. 

5   Results 

5.1   Effects of Community Structure on Transitivity 

By applying the LFR rewiring process to the three basic models (CM, BA and 
EV), we generated three different sets of community structured networks. We se-
lected our parameters values based on previous experiments regarding artificial 
networks generation [10], and descriptions of real-world networks measurements 
from the literature [2, 22], so that the produced networks were the most realistic 
possible. Some parameters are common to all three processes: we fixed the size 5000 and the power law exponent for the community sizes distribution 2, and made the mixing coefficient  range from 0.05 to 0.95 with a 0.05 step. 
Other parameters are model-dependent. CM allows a precise control of the degree, 
since it is possible to specify the desired power law exponent  for the degree dis-
tribution, and the average  and maximal degrees . We used the values 3, 15,30  and 45,90 . Both other models do not let as much 
control, and we had to adjust their parameters so that the resulting networks had 
approximately the same degree-related properties. Preferential attachment does 
not give any control on , which tends towards 3 by construction. We produced 25 networks for each combination of parameters, and averaged the transitivity, as 
shown in Fig. 1 (left). Results were very similar for 15 and 30, so we only 
present the latter here, but comments apply to both.  
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Fig. 1. Effect of the mixing coefficient  on the transitivity. Each point corresponds to an 
average over 25 networks generated with 3 and 2. Left: for each LFR variant, 
with 5000, 700 and 30. Right: for several values of  on LFR-CM, 
with 1000 and 15. 

The transitivity of the networks generated by the basic models before rewiring 
are 0.020, 0.008 and 0.030 for CM, BA and EV, respectively. After rewiring, CM 
leads to the highest transitivity, with values around 0.6 for 0, but it reaches 
almost zero for 1, exhibiting a serious sensitiveness to changes in the commu-
nity structure strength. Both other models also show a decreasing transitivity when 

 increases, but the range is much smaller, partly because their values for 0 are 
significantly smaller: around 0.25 and 0.45 for BA and EV, respectively. Like CM, 
their transitivity is close to zero when 1. In the literature, real-world networks 
with a 0.3 transitivity are considered highly transitive [22], so we can state all three 
models exhibit a realistic transitivity for a small  (clearly separated communities). 
The fact the transitivity decreases when the communities become more and more 
difficult to discern, for all three models, supports the assumption that a realistic 
community structure causes a high transitivity.  

Besides its strength, a community structure can be characterized by its commu-
nity size distribution. For realism matters, we chose a power law with fixed expo-
nent 2, but the practical draw of the community sizes requires specifying the 
size of the largest community . In order to study the effect of this limit on the 
transitivity, we generated another batch of networks with 1000, 15 and 200,300,600 , the other parameters being the same than before. Transi-
tivity values for different largest community sizes are shown on Fig. 1 (right). 
When using a smaller , the size difference between the smallest and the larg-
est communities decreases, making the community size distribution more homoge-
neous (or rather: less contrasted, since it still follows a power law). It also affects 
the number of communities, which decreases when  increases: the numbers of 
communities are 40, 30 and 15 for 200, 300 and 600, respectively. 

It turns out the transitivity measured on the obtained networks decreases when 
 increases. In other words, the number of triangles increases when there are 

less communities, with more similar sizes. This makes sense considering the links 
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constituting triangles have more chance to fall between communities when there 
are more of them, especially if they are smaller. This is confirmed by the fact the 
observed effect is stronger for clearly separated communities ( 1). 

5.2   Effects of Transitivity on Community Structure 

We specified the parameter values for our HT model so that they were the most 
similar possible to what was used with LFR. We consequently generated 25 net-
works with 5000 and 5,15,30 , and a power law-distributed degree 
( 3). We obtained an average transitivity of 0.5, 0.45 and 0.3 for 5, 15 
and 30, respectively. This is consistent with the values observed in real-world 
networks. Both community detection algorithms return modularities close to 0.90, 0.72 and 0.74, respectively, indicating a strong community structure. This obser-
vation support the assumption a high transitivity allows obtaining a community 
structure. 

As mentioned before, on the one hand NM does not reach a very high density, 
but on the other hand it can control it through the transitivity coefficient , allow-
ing to analyze how changes in this parameter affects the community structure. It is 
therefore complementary to our model. Because of the local transitivity limit men-
tioned in section 4.2 , we had to use different parameters (compared to HT) to ob-
tain a relatively high transitivity. We generated 6 networks with 1000, 5, 10, and made  range from 0 to 1 with 0.1 steps. Although sparse, the 
generated networks are connected.  

We first focus on the networks obtained for 5. Fig. 2 (left) shows how 
the modularity obtained by both community detection algorithms varies in func-
tion of . They differ in the amplitude of the measured modularity, which is higher 
for Louvain than for Infomap. This might be due to the fact Louvain directly op-
timizes this criterion. However, and more importantly, the trend is the same for 
both algorithms: the detected community structures get stronger when the transi-
tivity increases. This is particularly true when 0.4. It turns out below this val-
ue, the actual transitivity does not change very much ( 0.05), as shown in Fig. 
2 (right), certainly due to the rounding performed during the generative process 
(cf. section 4.2 ). 

The highest modularity is obtained for 1, i.e. when most links are used to 
create triangles. However, because of the model characteristics, this does not nec-
essarily translates into a very high transitivity value, as shown in Fig. 2 (right). 
More surprisingly, even the smallest modularity values (close to 0.5), obtained for 0, are still considered as large in the literature, and reveal a clear community 
structure. The networks generated for 0 are not supposed to contain many tri-
angles (only those obtained by chance, i.e. a negligible number [11]), as confirmed 
by the measured transitivity ( 0.05 . This indicates a high transitivity is not a 
prerequisite to the existence of a strong community structure, at least when consi-
dering the definition implemented by the modularity measure. 
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Fig. 2. Effect of the transitivity coefficient on the modularity. Each point corresponds to an 
average over 6 networks generated by NM with 1000 and 5. 

For the denser networks ( 10), the evolution of both the transitivity and 
modularity are similar to what was observed with 5. However, as men-
tioned before, due to the local transitivity limit present in NM, the transitivity 
reaches a much lower value of only 0.12: this cannot be considered as high. The 
modularity is also lower, ranging from 0.33 to 0.41, however these values are still 
considered as relatively high, even those obtained when  is close to zero. This 
confirms our previous remark regarding the coexistence of both a low transitivity 
and a significant community structure. 

6   Conclusion 

In this study, we took advantage of several generative models to investigate the re-
lation between the community structure and the transitivity of complex networks. 
We first applied three variants of the LFR model [10] to generate artificial net-
works with known community structures. We observed similar results for all three 
variants: the rewiring process allowing the community structure to appear also 
causes a large increase in the transitivity. Moreover, the obtained transitivity is di-
rectly affected by the strength of the community structure and the distribution of 
the community sizes. So for this model, transitivity seems to be an offspring of 
community structure. Secondly, we used two models HT and NM [11] to generate 
transitive networks. The first, designed by us, produces a very high transitivity, 
but cannot control it. The transitivity is clearly lower with the second, but a specif-
ic parameter allows controlling it. Besides this point, the models are also comple-
mentary in the sense they produce networks with very different topologies. We 
used two state-of-the-art algorithms, Louvain [19] and Infomap [20], to identify 
the community structures in the generated networks. It turns out the strength of the 
modularity structure, expressed in terms of modularity, increases with the transi-
tivity, for both generative models and according to both community detection  
algorithms. This also supports our point concerning the relationship between 
community structure and transitivity. More surprisingly, according to the obtained 
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modularity, the networks with almost zero transitivity also have a clear (although 
not as strong) community structure. For NM, it therefore seems the transitivity af-
fects the community structure strength, but is not a prerequisite. 

Our main contribution was to study the relationship between community struc-
ture and transitivity, which, although intuitively trivial, was not objectively ana-
lyzed before. For this purpose, we developed a new random generative model able 
to produce highly transitive networks with a desired degree distribution. We also 
modified the other models used in this article, in order to adapt them to our objec-
tives. Our work can be extended in various ways. It would be possible to develop 
our model, in order to generate more realistic networks, and allow controlling the 
transitivity. We could also use alternative models, for the production of both 
community structure and controlled transitivity, in order to ensure our results are 
not model-dependent. The quality and nature of the community structures could be 
assessed in a deeper way, through various additional tools like community profile 
[23] or some alternative to the modularity [12]. There also are generalized ver-
sions of the transitivity, dealing with cycles of higher order. But a more important 
point would be to characterize the nature of the relationship between transitivity 
and community structure. Complementarily to our empirical study, an analytical 
work would allow identifying the necessary and/or sufficient conditions for the 
existence of a community structure. This might require to consider other topologi-
cal properties, especially the network density and degree distribution. 
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