
ar
X

iv
:2

11
2.

10
38

8v
2

 [
st

at
.C

O
]

 1
0

Ju
l 2

02
3

On some algorithms for estimation

in Gaussian graphical models

BY S. HØJSGAARD

Department of Mathematical Sciences, Aalborg University

Skjernvej 4A, DK-9220 Aalborg, Denmark

sorenh@math.aau.dk

S. LAURITZEN

Department of Mathematical Sciences, University of Copenhagen

Universitetsparken 5, DK-2100 Copemhagen, Denmark

lauritzen@math.ku.dk

SUMMARY

In Gaussian graphical models, the likelihood equations must typically be solved iteratively. We investi-

gate two algorithms: A version of iterative proportional scaling which avoids inversion of large matrices,

resulting in increased speed when graphs are sparse. We compare this to an algorithm based on convex

duality and operating on the covariance matrix by neighbourhood coordinate descent, essentially corre-

sponding to the graphical lasso with zero penalty. For large, sparse graphs, this version of the iterative

proportional scaling algorithm appears feasible and has simple convergence properties. The algorithm

based on neighbourhood coordinate descent is extremely fast and less dependent on sparsity, but needs a

positive definite starting value to converge, which may be difficult to achieve when the number of variables

exceeds the number of observations.

Some key words: Covariance selection; Convex duality; Maximum likelihood estimation.

1. INTRODUCTION

Maximum likelihood estimation in Gaussian graphical models can be carried out via generic opti-

mization algorithms, Newton–Raphson iteration, iterative proportional scaling, other alternating algo-

rithms (Speed and Kiiveri, 1986), and algorithms exploiting duality and operating on the covariance ma-

trix, such as the algorithm given by Wermuth and Scheidt (1977) and neighbourhood coordinate descent

(Hastie et al., 2016, p. 631 ff.). Neighbourhood coordinate descent may be seen as a special instance of

the graphical lasso with zero penalty (Yuan and Lin, 2007; Banerjee et al., 2008; Friedman et al., 2008),

or as a special instance of the GOLAZO algorithm (Lauritzen and Zwiernik, 2022).

Algorithms based on duality need a positive definite starting value to guarantee convergence and this

may be difficult to find when the number of variables exceeds the number of observations. In addition,

the concentration matrix returned by these algorithms after finitely many steps may not have exact zero

values for entries corresponding to non-edges, and additional procedures are neccessary to ensure this.

In contrast, iterative proportional scaling is provably convergent from the identity matrix as a starting

value when the maximum likelihood estimator exists and it satisfies the model restrictions at all times; but

it may be slow when used with many variables.

The main contributions of this article are the following: We present a version of the iterative propor-

tional scaling algorithm that updates the covariance and concentration matrices simultaneously and works

on edges rather than cliques, so identification of cliques becomes unnecessary and inversion of large

1

http://arxiv.org/abs/2112.10388v2

2 S. HØJSGAARD AND S. LAURITZEN

matrices is avoided, resulting in much shorter computing times; further, we present a version of neigh-

bourhood coordinate descent that may not need a positive definite starting value and is guaranteed to

output a positive definite concentration matrix, if convergence is achieved.

Alternative ways of speeding up the iterative proportional scaling algorithm typically involves special

methods for calculating appropriate marginals, for example using probability propagation as described for

the analogous discrete case in Jiroušek and Přeučil (1995). Approaches along these lines have been used

by Hara and Takemura (2010) and Xu et al. (2011, 2012). Xu et al. (2015) gives a thorough survey and

comparison of the methods and also shows how to speed up the scaling algorithms by partitioning of the

cliques and localized updating. The methods investigated in this article are based on simple and general

matrix manipulations and avoid setting up more involved computational structures.

2. LIKELIHOOD EQUATIONS FOR GAUSSIAN GRAPHICAL MODELS

Let X = (Xv, v ∈ V) be a d dimensional random vector, i.e. |V | = d, normally distributed with mean

zero and covariance matrix Σ. The focus is on the pattern of zeros in the inverse covariance matrix, i.e.

in the concentration matrix K = Σ−1. If Kuv = 0 then Xu and Xv are conditionally independent given

XV \{u,v}. The pattern of zeros in K may be represented by an undirected graph G = (V,E) with vertices

V and edges E. A Gaussian graphical model is then defined by demanding Kuv = 0 unless there is an

edge uv ∈ E. For further details, we refer to Lauritzen (1996, Ch. 4).

Let G = (V,E) be a simple, undirected graph and let S denote the empirical covariance matrix obtained

from a sample X1 = x1, . . . , Xn = xn. The maximum likelihood estimate Σ̂ of the covariance matrix Σ
in an undirected Gaussian graphical model is the unique solution to the system of equations (Lauritzen,

1996, p. 133):

Σ̂vv − Svv = 0 for all v ∈ V , (1)

Σ̂uv − Suv = 0 for all uv ∈ E, (2)

K̂uv = (Σ̂−1)uv = 0 for all uv 6∈ E, (3)

provided such a solution exists.

3. ITERATIVE PROPORTIONAL SCALING

3.1. Computational issues of updating

Iterative proportional scaling cycles through subsets c ⊆ V of variables which are complete in G, i.e.

all elements of c are mutual neighbours in the graph. The current estimate of Σ is then updated by keeping

the parameters of the conditional distribution XV \c |Xc fixed, whereas the parameters of the marginal

distribution of Xc are updated to maximize the objective function under that restriction. The updates have

the form

f(x; Σ) ← f(x)
f(xc;Scc)

f(xc; Σcc)
,

where Scc and Σcc here and in the following indicate the corresponding marginals of the empirical covari-

ance matrix and of the current value of Σ; hence the densities are scaled proportionally, whence the name

of the algorithm. The algorithm is provably convergent when started in a point satisfying the model re-

strictions if the likelihood function is bounded, i.e. if the maximum likelihood estimate exists (Lauritzen,

1996, Thm. 5.4).

Let c ⊆ V and a = V \ c where c is a complete subset of V in G. The update for c of the concentration

matrix K takes the form (Lauritzen, 1996, p. 134)

Kcc ← (Scc)
−1 + L, (4)

Algorithms for estimation in Gaussian graphical models 3

whereas Kac,Kaa,Kca are unchanged. There are two alternatives for calculating L:

L = Kca(Kaa)
−1Kac (5)

= Kcc − (Σcc)
−1. (6)

Calculating L as in (5) gives what is referred to in this paper as the concentration version of the algorithm

and has the advantage that Σ = K−1 is not needed, so inversion of K is avoided and Σ need not be stored.

This is efficient if a is small and c is large.

Calculating L as in (6) gives what is referred to in this paper as the covariance version of the algorithm.

Expression (6) has the advantage that computation of (Kaa)
−1 is not needed; this matrix inversion could

be expensive if a is large. On the other hand, Σ needs to be stored and calculated.

Luckily it is possible to update Σ along with K , avoiding repeated and time consuming matrix inver-

sions. This makes expression (6) feasible to use in practice and speeds up the computation considerably.

3.2. Updating Σ

The updated version Σ̃ of Σ can be calculated as

Σ̃ =

(

Scc Scc(Σcc)
−1Σca

Σac(Σcc)
−1Scc Σaa − ΣacHΣca

)

, (7)

where H is equal to

H = (Σcc)
−1 − (Σcc)

−1Scc(Σcc)
−1 (8)

which avoids inverting K . To see this is correct, we may establish that

(

Scc Scc(Σcc)
−1Σca

Σac(Σcc)
−1Scc Σaa − ΣacHΣca

)

=

(

(Scc)
−1 +Kca(Kaa)

−1Kac Kca

Kac Kaa

)−1

,

which follows by direct matrix multiplication, using the identities

(Σcc)
−1Σca = −Kca(Kaa)

−1, (Kaa)
−1 = Σaa − Σac(Σcc)

−1Σca.

The update of Σ as in (7) is also given as formula (19) in Speed and Kiiveri (1986), on p. 185 of ?, and

as formula (2) of Xu et al. (2015), albeit in varying notations.

If the difference between Σcc and Scc is small, the corresponding update may be ignored altogether, see

further in Section 3.4.

There are two natural choices for the system of complete sets c: the set C of cliques of G; or the set of

edges E. Both choices are compared in our experiments, but we focus on the set of edges E, as this avoids

the NP-complete task of determining the cliques of the graph.

3.3. Updating the likelihood function

Consider again a sample X1 = x1, . . . , Xn = xn where Xν ∼ Nd(0,Σ) and let S denote the sample

covariance matrix. The log-likelihood function (ignoring additive constants) is

l(K) =
n

2
log det(K)−

n

2
tr(KS). (9)

If we let ∆cc denote the difference between the updated K̃cc and old Kcc i.e.

∆cc = {(Scc)
−1 + L} −Kcc = (Scc)

−1 − (Σcc)
−1, (10)

we have

det K̃ = det{Kcc +∆cc −Kca(Kaa)
−1Kac} detKaa = det(Scc)

−1 detKaa.

But detK = det(Σcc)
−1 detKaa. Hence, if we let A = (Σcc)

−1Scc we have

log det K̃ = log detK − log detA.

4 S. HØJSGAARD AND S. LAURITZEN

For the trace term we get from (10)

tr(K̃S) = tr(KS) + tr(∆ccScc)

= tr(KS) + |c| − tr{(Σcc)
−1Scc} = tr(KS) + |c| − tr(A),

where |c| = tr{(Scc)
−1Scc} is the size of c. We thus get the expression

ℓ(K̃) = ℓ(K)−
n

2
|c| −

n

2
log detA+

n

2
tr(A)

and note that A has dimension |c| so the adjustment is easily calculated if c is small.

3.4. Convergence issues

Convergence of the algorithms can be assessed by investigating whether the likelihood equations (1)

and (2) are satisfied within a small numerical threshold since (3) remains exactly satisfied at all times.

This requires that Σ is available and we may then express the deviation as ‖Σ(G)− S(G)‖∞, where

‖A‖∞ = max
uv
|Auv |

is the maximum absolute deviation norm, and A(G) is obtained by replacing Auv with zero for uv /∈ E.

The gradient of the log-likelihood function (9) is equal to

∇Kℓ(K) =
n

2
{Σ(G)− S(G)}

so it seems appropriate to continue the iteration until the size of the gradient is small, hence until

‖Σ(G)− S(G)‖∞ ≤ 2ε/n

where ε is a small threshold.

Commonly used, but less stringent, convergence criteria monitor whether changes in the log-likelihood

or changes in parameter values between succesive iterations are small. However, one may find that such

changes only indicates that the algorithm slows down even though the likelihood equations are far from

being satisfied and the value of the likelihood function may be far from its maximum; so we warn against

using such criteria.

3.5. Computational savings

To achieve a further speedup of the algorithm we may for each c check whether ‖Σcc − Scc‖∞ < 2ε/n
before the update is executed. If this is the case we may ignore the update as this will be time consuming

but ineffective; this allows the algorithm to move faster towards the limit when the algorithm is close

but not close enough. If the algorithm is terminated when no local updates are needed, the likelihood

equations (1) and (2) are still satisfied within the same threshold, since

‖Σ(G)− S(G)‖∞ = max
c∈A
‖Σcc − Scc‖∞,

where A is the chosen system of subsets.

4. ALGORITHMS BASED ON CONVEX DUALITY

4.1. The optimization problem and its dual

The problem of maximizing the log-likelihood function, to be referred to as the primal problem, may

be formulated as follows, where as before S denotes the empirical covariance matrix and we have ignored

the multiplicative constant n/2:

maximize
K

ℓ(K) = log det(K)− tr(KS)

subject to K ∈ S
d×d
≻ (G),

(11)

Algorithms for estimation in Gaussian graphical models 5

where S
d×d
≻ (G) denotes the set of positive definite matrices K with Kuv = 0 for all uv /∈ E(G). This is

a convex optimization problem with a unique solution if and only if the maximum likelihood estimate

exists. We shall for the moment assume that S is positive definite so that this is not a problem but later

identify necessary modifications for a more general case. To exploit convex duality (?, Ch. 5), we consider

the Lagrangian

L(Λ,K) = log det(K)− tr(KS)− tr(KΛ),

where Λ is a symmetric matrix satisfying Λuv = 0 for all uv ∈ E and Λuu = 0 for all u ∈ V. We now get

the dual function

g(Λ) = sup
K

L(Λ,K) = − log det(S + Λ)− d.

Since for K ∈ S
d×d(G) we have L(Λ,K) = ℓ(K), the dual function yields an upper bound on ℓ(K)

which we now wish to minimize. Letting Σ = S + Λ yields the dual optimization problem as

minimize
Σ

g(Λ) = − log det(Σ)− d

subject to Σ ∈ S
d×d
≻ , Σuu = Suu,Σuv = Suv for all u ∈ V, uv ∈ E

or, equivalently,

maximize
Σ

det(Σ)

subject to Σ ∈ S
d×d
≻ , Σuu = Suu,Σuv = Suv for all u ∈ V, uv ∈ E.

(12)

A feasible point for (12) is often referred to as a positive definite completion (Grone et al., 1984) of the

partial matrix

ΣG = {Σuu, u ∈ V ; Σuv, uv ∈ E}.

The maximum likelihood estimator of Σ exists if and only if there is such a feasible point. It then holds

that Σ is the unique optimizer of (12) if and only if K = Σ−1 is the unique optimizer of (11).

4.2. Solving the dual problem

For a single vertex u ∈ V we let c = V \ {u}, b = bd(u), and r = cl(u)c; so the variables X may be

partitioned as

X = (Xu, Xbd(u), Xcl(u)c)
⊤ = (Xu, Xb, Xr)

⊤ = (Xu, Xc)
⊤.

Using Schur complements, we may then express the determinant as

detΣ = detΣcc

{

Σuu − Σuc(Σcc)
−1Σcu

}

. (13)

Keeping Σcc fixed and maximizing the Schur complement over feasible values of Σuc leads to changing

the entries of non-neighbours r of u in the rows and columm of Σ as

Σ̃ru = Σrb(Σbb)
−1Sbu = Σrb(Σbb)

−1Σbu = Σrbβbu, (14)

whereas all other entries of Σ are unchanged. Here and in the following we have let

βub = β⊤
bu = Σub(Σbb)

−1

denote the vector of regression coefficients for regressing Xu on Xb. To get the second equality in (14)

we used that Σuv = Suv for all uv ∈ E.

If the graph is sparse, the boundary b is typically a small set and the expression (14) therefore avoids

inversion of large matrices. Simple manipulations yield the updated value of the Schur complement

Σ̃uu − Σ̃uc(Σ̃cc)
−1Σ̃cu = Suu − Sub(Σbb)

−1Sbu = Suu − Subβbu. (15)

6 S. HØJSGAARD AND S. LAURITZEN

This is also the optimization step in the more general GOLAZO algorithm (Lauritzen and Zwiernik, 2022)

when specialized to estimation in Gaussian graphical models. The GOLAZO algorithm solves this step

using quadratic programming, but in our special case the optimization is simple and explicit. Also, it is

easy to verify that the update step in (14) is identical to the update step used in Hastie et al. (2016), Section

17.3.1; we refrain from giving the details as this is only a matter of comparing notations. We shall in the

following refer to this algorithm as neighbourhood coordinate descent.

Another way is to consider non-edges uv /∈ E in turn and factor the determinant as

det(Σ) = det ΣAA det
{

ΣBB − ΣBA(ΣAA)
−1ΣAB

}

,

where A = V \ {u, v} and B = {u, v}, and then maximize the second factor in ΣAB keeping all other

elements of Σ fixed. This can easily be done explicitly; see for example Uhler (2019). This algorithm

was implemented by Wermuth and Scheidt (1977) but we shall not investigate it further, as it will be slow

when graphs are large and sparse, since then the number of non-edges then becomes huge.

4.3. When S is positive semidefinite

A problem with neighbourhood coordinate descent and other dual algorithms is that they need a feasible

starting value Σ that satisfies the constraints of the dual problem i.e. Σuv = Suv for all uv ∈ E. If the

starting value is not positive definite, the update might not be well defined, or the update might not increase

the value of the determinant, and the algorithm may therefore not be convergent.

If the number of observations n used to form S does not exceed the dimension d, S is only positive

semidefinite. We then still make a factorization as in (13)

detΣ = det Σcc

{

Σuu − Σuc(Σcc)
−Σcu

}

, (16)

where now (Σcc)
− is any generalized inverse to Σcc. We may now proceed as in the positive definite case

and maximize the value of the Schur complement, keeping Σcc fixed. As before, the Schur complement

is maximized for

Σ̃ru = Σrb(Σbb)
−Sbu

and after the update we have

det Σ̃ =
{

Σuu − Sub(Σbb)
−Sbu

}

detΣcc.

If detΣcc = 0, it also holds that det Σ̃ = 0. However, since

rankΣ = rankΣcc + rank
{

Σuu − Σuc(Σcc)
−Σcu

}

then if Σuu − Σuc(Σcc)
−Σcu = 0 < Σuu − Sub(Σbb)

−Sbu, we would have rank Σ̃ = rankΣcc + 1, so

if rank(Σcc) = rank(Σ), the rank will increase by one.

This may happen if the sample covariance is based on n+ 1 observations and the graph is sparse so

that deg(u) = | bd(u)| < n < d. In this way, Σ may be positive definite after a few rounds of iterations

which will render the algorithm . But in general it may be difficult to find a positive definite starting value

for the algorithm, see further in Section 4.7.

To illustrate the issue, consider the four-cycle with G = ({1, 2, 3, 4}, {12, 23, 34, 14}) and let S be the

empirical covariance matrix based on n = 3 observations, i.e. rank(S) = 2 almost surely. Then, by ?, the

maximum likelihood estimate of Σ may or may not exist, depending on the exact configuration of the

outcomes. However, updating the variable 1, leads to

Σ̃31 = Σ3,24(Σ24,24)
−S24,1 = S3,24(S24,24)

−1S24,1

and

rank Σ̃ = rank
{

S11 − S1,24(S24,24)
−1S24,1

}

+ rankS234,234.

Algorithms for estimation in Gaussian graphical models 7

But since also rankS24,24 = 2, we have

2 = rankS124,124 = rank
{

S11 − S1,24(S24,24)
−1S24,1

}

+ rankS24,24

= rank
{

S11 − S1,24(S24,24)
−1S24,1

}

+ 2,

so we must have S11 − S1,24(S24,24)
−1S24,1 = 0 and thus rank Σ̃ = rankS234,234 = 2. This argument

may be repeated for subsequent updates. So the updates fail to produce a positive definite matrix no

matter how the outcomes are configured, as opposed to the scaling algorithm that will converge for some

configurations and diverge for others. In contrast, if we have n = 4 observations and rankS = 3, we get

3 = rankS124,124 = rank
{

S11 − S1,24(S24,24)
−1S24,1

}

+ rankS24,24

= rank
{

S11 − S1,24(S24,24)
−1S24,1

}

+ 2,

whence rank
{

S11 − S1,24(S24,24)
−1S24,1

}

= 1 and the rank of the updated covariance matrix is

rank Σ̃ = rank
{

S11 − S1,24(S24,24)
−1S24,1

}

+ rankS234,234 = 1 + 3 = 4.

Thus neighbourhood coordinate descent achieves a positive definite Σ after the first update and thus con-

verges to the right value. Similar phenomena occur when dimensions are larger and graphs more compli-

cated, but the general picture is not clear to us.

4.4. Monitoring convergence

Neighbourhood coordinate descent is implemented in the R package GGM (Marchetti et al., 2020).

Since neighbourhood coordinate descent is identical to the graphical lasso algorithm with zero penalty,

see p. 637 in Hastie et al. (2016), it is in effect also implemented in the GLASSO package (Friedman et al.,

2019). In both of these implementations, convergence is monitored by changes in Σ after a full round of

updating, so the algorithm is halted when consequtive values of Σ are identical up to a given tolerance.

However, as mentioned earlier, this is unsatisfactory as it only indicates that the algorithm slows down.

A more satisfactory indication of convergence is to check that the likelihood equations (3) are satisfied

within a tolerance, as the equations (1) and (2) are satisfied exactly throughout the algorithm. However,

this demands that the inverse K = Σ−1 is calculated.

Since this inversion may be computationally demanding, we suggest that it is only done when the

algorithm is terminated after slowing down as described above. If the likelihood equations still are not

fulfilled to the desired tolerance, we continue the iteration, but now we do not need a full inversion of Σ
at every step as there is a simple procedure for updating K after Σ has been updated to Σ̃ as shown below.

Writing Σ̃ in block form with r = bdc(u) and b = bd(u), we have from (14) that

Σ̃ =

Σrr Σrb Σ̃ru

Σbr Σbb Σbu

Σ̃ur Σub Σuu

=

(

Σcc Σ̃cu

Σ̃uc Σuu

)

where c = r ∪ b and

Σ̃ru = Σrb(Σbb)
−1Σbu, Σ̃bu = Σbu = Sbu, Σ̃uu = Σuu = Suu. (17)

With a similar partitioning of K = Σ−1 and K̃ = Σ̃−1 we then have

K̃cu = −K̃ccΣ̃cu/Σuu = −(Σcc)
−1Σ̃cuK̃uu.

Hence, using (17) and the fact that Σ̃cc = Σcc implies K̃ru = 0 since

K̃ru = −(K̃rrΣ̃ru + K̃rbΣbu)/Σuu

= −(K̃rrΣrb(Σbb)
−1Σbu + K̃rbΣbu)/Σuu

= −(−K̃rr(K̃rr)
−1K̃rbΣbu + K̃rbΣbu)/Σuu = 0.

8 S. HØJSGAARD AND S. LAURITZEN

This again implies

0bu = ΣbrK̃ru +ΣbbK̃bu +ΣbuK̃uu = ΣbbK̃bu + ΣbuK̃uu

whence, if we as before let βbu = (Σbb)
−1Σbu, we have

K̃bu = −(Σbb)
−1ΣbuK̃uu = −βbuK̃uu.

Also from the above we get

1 = Σ̃urK̃ru +ΣubK̃ub +ΣuuK̃uu = ΣubK̃ub +ΣuuK̃uu = ΣuuK̃uu − Σub(Σbb)
−1ΣbuK̃uu

and thus

K̃uu = {Σuu − Σub(Σbb)
−1Σbu}

−1 = (Σuu − Σubβbu)
−1.

Summarizing the above findings gives the following equations for determining K̃cu:

βbu = (Σbb)
−1Σbu, K̃ru = 0, (18)

K̃bu = −βbuK̃uu, where K̃uu = (Σuu − Σubβbu)
−1. (19)

Further we have by standard results for block matrices that

(Σ̃cc)
−1 = (Σcc)

−1 = Kcc −KcuKuc/Kuu = K̃cc − K̃cuK̃uc/K̃uu,

whereby

K̃cc = Kcc −KcuKuc/Kuu + K̃cuK̃uc/K̃uu.

Exploiting that K̃ru = 0 further yields

K̃rr = Krr −Kru(Kur/Kuu), (20)

K̃rb = Krb −Kru(Kub/Kuu), (21)

K̃bb = Kbb −Kbu(Kub/Kuu) + K̃bu(K̃ub/K̃uu). (22)

Combining (18)–(22) yields a procedure for updatingK at every subsequent step in the iteration without

inverting Σ̃. The most expensive operation could be the matrix inversion in (18) if b = bd(u) is large; but

note from (14) that the update ofΣru may also be expressed as Σ̃ru = Σrbβbu. Hence βbu has already been

computed when updating Σ, so the additional work involved when updating K is not as computationally

demanding as it could appear.

4.5. Computational savings

Still, the update of K will take some effort and also here a substantial saving may be obtained by

ignoring unnecessary updates. Introduce the maximum column sum norm of a matrix ∆ = {∆αβ} as

‖|∆|‖1 = max
β

∑

α

|∆αβ | (23)

and let the algorithm terminate when ‖|K(G)−K|‖1 < 2ε/n, since the gradient of the dual of the log-

likelihood function is

∇Σ ℓ∗(Σ) = ∇Σ

{n

2
(− log detΣ− d)

}

=
n

2
{K(G)−K}.

This also corresponds to the equations (3) to be satisfied within that tolerance when properly scaled. Since

‖|K(G)−K|‖1 = max
u∈V
‖|Kru|‖1,

we may ignore the update corresponding to u ∈ V if ‖|Kru|‖1 < 2ε/n and terminate the algorithm when

all updates are ignorable.

Algorithms for estimation in Gaussian graphical models 9

4.6. Finding a feasible K

The inverse K = Σ−1 obtained when the iteration terminates may not have exact zero values for non-

edges, and some modification is necessary to achieve that Ǩ ∈ S
d×d
≺ (G). For example, one might use the

procedure described in Algorithm 17.1 of Hastie et al. (2016), which amounts to using only (18)–(19) in

the final cycle, but ignoring (20)–(22), pretending that convergence has been achieved. This procedure

does not ensure Ǩ to be positive definite and if Ǩ is determined in this way, the result will depend

on the order in which the nodes u ∈ V are visited. It seems difficult to control the outcome of this ad

hoc procedure and when the dimension d was large, early experiments regularly encountered problems,

whence it was abandoned.

Since K is available, it appears more direct to calculate Ǩ from K by replacing elements Kuv for

uv /∈ E with zero, i.e. letting Ǩ = K(G). This also does not ensure that Ǩ is positive definite, but if the

algorithm has been run until the equations (3) are fulfilled up to a sufficiently small tolerance measured in

a matrix norm (?, p. 340–41), it will be.

To see this, we argue as follows. First, to avoid scaling problems, we assume without loss of generality

that S has been scaled as a correlation matrix. Let λmax(A) and λmin(A) denote the largest and smallest

eigenvalue of a symmetric matrix A and let ∆ = K − Ǩ, so Ǩ = K −∆. Then we have

λmin(Ǩ) = inf
{x⊤x=1}

x⊤(K −∆)x ≥ inf
{x⊤x=1}

x⊤K x− sup
{x⊤x=1}

x⊤∆x

= λmin(K)− λmax(∆) =
1

λmax(Σ)
− λmax(∆)

and hence Ǩ will be positive definite if λmax(∆)λmax(Σ) < 1. Further, since it holds throughout the

iterative process that tr(S) = tr(Σ) = d, we have that λmax(Σ) < d. If ‖| · |‖ is any matrix norm, for

example the maximum column sum norm in (23), ?, Theorem 5.6.9 implies

λmax(∆) ≤ ‖|∆|‖.

Hence if we continue the iteration at least until ‖|∆|‖ < d−1, Ǩ will be positive definite.

For any pair (K,Σ) with K ∈ S
d×d
≺ (G) and Σ positive definite and satisfying Σ(G) = S(G), the defi-

nition of the dual function yields

log detK − tr(KS) ≤ − log detΣ− d

with equality if and only if the pair (K,Σ) is optimal; hence

B = −
n

2
(log det Σ + d) (24)

yields an upper bound on the log-likelihood function. Comparing the likelihood function for Ǩ with the

upper bound from the final value of Σ, gives a certificate to what extent the log-likelihood function is

close to its maximum; the likelihood function is always at most γ from its optimum value where γ is the

duality gap

γ =
n

2

{

tr(ǨS)− log det(ǨΣ)− d
}

.

In contrast to neighbourhood coordinate descent, K is feasible during the entire computational process

under iterative proportional scaling; the price paid is that there is no easy certificate available, since K−1

is not dually feasible unless the optimum has been reached exactly.

4.7. Finding feasible starting values

The dual algorithms demand a dually feasible Σ as a starting value to guarantee convergence, i.e.

a positive definite matrix Σ satisfying Σ(G) = S(G). The maximum likelihood estimator exists in the

model if and only if such a feasible Σ exists. If S is positive definite, this is not an issue. But if S is based

on n+ 1 observations and n < d, some effort is needed to obtain a feasible Σ to initialize the algorithm.

10 S. HØJSGAARD AND S. LAURITZEN

If the graph is sparse so that the number of vertices of degree less than n is sufficiently large we may

still run the algorithm and from time to time the rank of Σ may increase by one and after some rounds

of updating the resulting Σ may have full rank. But we are not able to give simple conditions for this to

happen, even when the maximum likelihood estimator is known to exist.

If there exists a chordal graph G̃ ⊃ G with clique size at most n, the maximum likelihood estimator K̃
in the graphical model determined by G̃ exists and K̃ can be explicitly calculated from formula (5.47)

in Lauritzen (1996). Then Σ̃ = K̃−1 is dually feasible, and this may be used as a starting value for the

algorithm. Also this condition ensures in itself the existence of the maximum likelihood estimator in the

smaller model determined by G.

But such a chordal cover might be difficult to find and the maximum likelihood estimator exists more

widely than that, as demonstrated in Gross and Sullivant (2018). They establish, for example, existence of

the maximum likelihood estimator when n− 1 > κ if the κ-core of the graph is empty or, equivalently,

if the maximal coreness of the graph is smaller than n− 1 (Theorem 3.5 loc. cit.). Thus the maximum

likelihood estimator exists when n− 1 ≥ 3 for the r × s grid (Corollary 3.8 loc. cit.), and also for n− 1 ≥
4 for any planar graph G (Corollary 3.9 loc. cit.). The maximal coreness of a graph may be calculated using

the algorithm of ?, as implemented in the R-package IGRAPH (?); hence potential non-existence may be

flagged before the estimation algorithms are activated.

5. EMPIRICAL STUDY

5.1. Implementation of the algorithms

The algorithms have been implemented in R (R Core Team, 2021, version 4.3.0). We have made an

implementation based on C++ using the RCPPARMADILLO package (Eddelbuettel and Sanderson, 2014,

version 0.12.4.1.0). The experiments have been run on AMD EPYC 7302 16-core processors with 64

CPUs and 3 GHz clock frequency. The implementation is naive in the sense that we store the full matrices

K and not just the non-zero elements. On the other hand, we store and calculate Scc and its inverse

(Scc)
−1 for all relevant subsets c once and for all to use for updating K in (4) so the empirical covariance

matrix S is itself not needed. The code producing the results in this section as well as an .html file with a

more detailed output is available as supplementary material.

The algorithms were applied to data representing 102 samples of the expression of 6033 genes asso-

ciated with prostate cancer, originating from Singh et al. (2002) and published in the R package SPLS

(Chung et al., 2019). In addition, artificial data were produced with 102 samples of the relevant number

of variables, all entries simulated from the standard normal N(0, 1) distribution. A default tolerance of

ε = 10−3 was used throughout.

For iterative proportional scaling, the algorithms were run until the likelihood equations were satisfied

with an error less that ε′ = 2ε/102 = 10−3/51, when measured by the maximum absolute deviation norm

‖Σ(G)− S(G)‖∞, to match the tolerance to the gradient of the log-likelihood function. For the covariance

based algorithm, updates were ignored if ‖Σcc − Scc‖∞ < ε′, as described in Section 3.5.

Similarly, neighbourhood coordinate descent was first run until consequtive values of Σ differed less

than ε′ when measured by the maximum column sum norm (23). If the smallest eigenvalue of Σ then

was larger than ε′, a second series of cycles was run, updating K alongside Σ until ‖|K(G)−K|‖1 ≤ ε′′,
where ε′′ = min(ε′, d−1) as described in Section 4.6, thereby ensuring that Ǩ = K(G) is positive definite.

In this second cycle, updates of any vertex u ∈ V was ignored if ‖|Kru|‖1 < ε′′ as described at the end

of Section 4.5.

5.2. Comparing the algorithms for moderate size dense graphs

We first investigated the computing time for the iterative proportional scaling algorithms and neigh-

bourhood coordinate descent for random graphs with 100 variables of varying density. Model fitting for

the scaling algorithms was based on edges or cliques. The median computing time in seconds over five

random graphs is displayed in Table 1.

Algorithms for estimation in Gaussian graphical models 11

Table 1. Median computing time in seconds over five random graphs on 100 vertices for

the covariance (COV) and concentration (CON) based iterative proportional scaling algo-

rithms, applied cliquewise or edgewise, and for neighbourhood coordinate descent (NCD)

Simulated data Prostate data

Expected Cliquewise Edgewise Cliquewise Edgewise

Density # of edges CON COV CON COV NCD CON COV CON COV NCD

10% 495 0.2 0.01 0.6 0.02 0.02 2 0.1 6 0.2 0.1

30% 1,485 2 0.1 3 0.1 0.03 10 0.3 89 2 0.1

50% 2,475 13 1 9 0.4 0.1 35 2 1,615 17 0.2

70% 3,465 300 16 47 1 0.1 552 14 20,360 232 0.2

The general picture in Table 1 is that the covariance based version is considerably faster than the con-

centration based algorithm and the effect is stronger when fitting a dense model and when models are

updated edgewise. There are several reasons for this: Firstly, for sparse graphs, relatively many cliques

would be pairs and hence there is little difference between edgewise or cliquewise updating. Secondly,

when the model is dense, the cliques will be relatively large so updating Σ as in (7) will be time consum-

ing. Thirdly, a random dense graph will typically have many large cliques sharing many variables. This

means that the same edges are updated several times during each iteration. Finally, the speedup due to

ignoring inefficient local updates has smaller effect when using cliques rather than edges.

The neighbourhood coordinate descent algorithm is obviously very fast for this type of models and is

less sensitive to the density or sparsity of the graph. It fits the densest model for the prostate data in less

than a second.

Computing times are systematically shorter when the algorithms are applied to simulated data. This is

most likely a reflection of the fact that the empirical covariance matrix would tend to fit any of the models

investigated and therefore be closer to the final estimate from the outset, hence demanding fewer iterations

in the fitting procedures. For the densest model, the concentration based scaling algorithm sometimes

failed to reach convergence within the specified limit when applied edgewise to the prostate data, even

after 50,000 iterations. Hence the concentration based algorithm seems unfeasible when applied edgewise

to dense graphs.

We also note that the algorithms in this and similar cases slow down much before it stops, but the likeli-

hood function is still far from the correct value. This highlights the danger using slowness as convergence

criterion.

5.3. Comparison with neighbourhood coordinate descent for large, sparse graphs

Next we shall compare computing times for the edgewise covariance based scaling algorithm and neigh-

bourhood coordinate descent for larger dimensions. We use the same data as in the previous section for

comparison.

For random graphs with more than 100 vertices, experiments may become complicated as there is a risk

that the maximum likelihood estimate does not exist. So to extend the above comparisons to larger scale

and a higher degree of sparsity without this difficulty, we first investigate the behaviour for rectangular

grids. For thsuch grids, the maximum likelihood estimate exists with probability one for a sample covari-

ance matrix with just three degrees of freedom (Gross and Sullivant, 2018, Corollary 3.8) and hence 102

observations are plenty. Although neighbourhood coordinate descent in principle needs a positive definite

starting value to converge, this problem never emerged in any of the cases below. Indeed, the rank of

Σ was in all cases catching up during the iteration as described in Section 4.3. For a rectangular grid,

there is no difference between updating edgewise or cliquewise, as all cliques consist of exactly one edge.

Computing times for the algorithms and various grid sizes are displayed in Table 2.

12 S. HØJSGAARD AND S. LAURITZEN

Table 2. Computing time in seconds for covariance based scaling (COV)

and neighbourhood coordinate descent (NCD) over a rectangular grid

Simulated data Prostate data

Grid size # of variables # of edges Density COV NCD COV NCD

20× 25 500 955 0.8% 0.3 0.2 1 2

40× 25 1,000 1,935 0.4% 2 1 6 7

40× 50 2,000 3,910 0.2% 20 7 84 43

80× 50 4,000 7,870 0.1% 156 43 483 220

Table 2 indicates that the covariance based scaling algorithm is slightly slower than neighbourhood

coordinate descent at this level of sparsity; it fits the model of an 80× 50 grid to the prostate data in about

eight minutes and to the simulated data in three minutes, whereas the neighbourhood coordinate descent

algorithm uses about four minutes for the prostate data and about a minute for the simulated data.

Our final experiments are similar to those in Xu et al. (2015). We consider random graphs that are

constructed by adding random edges with probabilities 0.001 and 0.005, and 0.010 to a random tree; the

number of variables varying from 500 to 4,000, and up to 6,000 for the sparsest case. These results are

displayed in Table 3.

Table 3. Median computing time in seconds over five random trees

with additional edges for covariance based iterative proportional

scaling (COV) and neighbourhood coordinate descent (NCD)

Simulated data Prostate data

Density # variables Exp. # of edges COV NCD COV NCD

0.001

500 623 0.1 0.2 0.3 1

1,000 1,498 1 1 4 7

2,000 3,996 47 11 348 72

4,000 11,993 707 135 5,960 438

6,000 23,990 3,202 441 24,234 875

0.005

500 1,120 0.3 0.3 2 1

1,000 3,491 3 1 157 16

2,000 11,984 314 14 4,926 193

4,000 43,969 4,728 157 73,883 705

0.010

500 1,742 0.8 0.5 5 2

1,000 5,984 19 2 516 11

2,000 21,969 799 31 16,191 522

4,000 83,939 8,843 287 247,991 2,613

The computing times of the scaling algorithm is comparable to neighbourhood coordinate descent when

the graph is sparse and the size is moderate, whereas the latter is considerably faster in higher dimension

and higher densities. Neighbourhood coordinate descent is generally less sensitive to sparsity of the graph.

Also, we note that the computing time for the algorithms as before are much higher for the prostate data

than for the simulated data.

Algorithms for estimation in Gaussian graphical models 13

Xu et al. (2015) report best computing times for 4000 variables with simulated data to be 1,044 and

2,407 seconds for densities 0.005 and 0.010 respectively, which should be compared to our 4,682 and

9,681 seconds. However, these numbers are of the are not quite comparable since we have used a much

stricter convergence criterion. We made experiments with a weaker criterion, but abandoned them; al-

though the convergence was faster, the accuracy for the maximized likelihood function was not satisfac-

tory.

It is possible that a partitioning of the edges as described in this reference might potentially also speed

up the scaling algorithm. However, it is not clear to us whether the overhead of finding this partition and

setting up the corresponding structure is included in the CPU times reported by Xu et al. (2015); since this

involves simulated annealing, this might be a considerable bottleneck. We also note that when Xu et al.

(2015) report results on real data with more than 6000 variables; the model has first been determined with

the graphical lasso so tends to fit better than a random graph and as we have seen, this has a strong effect on

the computing times. Also, the models used are extremely sparse, with a total of 11,000 to 15,000 edges

and a maximal connected component between 4,000 and 5,000 variables. They then report computing

times up to 6,000 seconds, which should be compared to our 738 seconds using scaling and 133 seconds

using neighbourhood coordinate descent for a random tree with 4,000 variables and random edges added

at density 0.001, since this has a similar number of edges.

6. DISCUSSION

We have described a version of iterative proportional scaling for fitting Gaussian graphical models

avoiding the NP-complete task of identifying the cliques and updating the concentration and covariance

matrices simultationeously without inverting large matrices. The increase of speed is in particular notice-

able when graphs are sparse.

Further, we have described a version of neighbourhood coordinate descent which is extremely fast,

scales well with the size of the graph, is less sensitive to the density of the graph, and is guaranteed

to provide a positive definite concentration matrix with zeros in the right places, when convergent. In

addition, the algorithm provides a certificate that guarantees the accuracy of the value of the likelihood

function. However, the algorithm might not always be convergent as it formally needs a positive definite

starting value which might be difficult to provide. On the other hand, for sparse graphs, the algorithm

seems to converge without problems although formal conditions for this to happen is unavailable at the

moment.

As a consequence, we recommend to use neighbourhood coordinate descent by default and only use

iterative proportional scaling if the former fails to converge.

REFERENCES

Banerjee, O., El Ghaoui, L., and d’Aspremont, A. (2008). Model selection through sparse maximum likelihood
estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research, 9:485–516.

Chung, D., Chun, H., and Keles, S. (2019). SPLS: Sparse Partial Least Squares (SPLS) Regression and Classification.
R package version 2.2-3.

Eddelbuettel, D. and Sanderson, C. (2014). RCPPARMADILLO: Accelerating R with high-performance C++ linear
algebra. Computational Statistics and Data Analysis, 71:1054–1063.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso.
Biostatistics, 9:432–441.

Friedman, J., Hastie, T., and Tibshirani, R. (2019). glasso: Graphical Lasso: Estimation of Gaussian Graphical
Models. R package version 1.11.

Grone, R., Johnson, C. R., de Sá, E. M., and Wolkowicz, H. (1984). Positive definite completions of partial Hermitian
matrices. Linear Algebra and its Applications, 58:109–124.

Gross, E. and Sullivant, S. (2018). The maximum likelihood threshold of a graph. Bernoulli, 24:386–407.
Hara, H. and Takemura, A. (2010). A localization approach to improve iterative proportional scaling in Gaussian

graphical models. Communications in Statistics—Theory and Methods, 39:1643–1654.
Hastie, T., Tibshirani, R., and Friedman, J. (2016). The Elements of Statistical Learning. Springer-Verlag, New York,

2nd edition. 11th printing.

14 S. HØJSGAARD AND S. LAURITZEN

Jiroušek, R. and Přeučil, R. (1995). On the effective implementation of the iterative proportional fitting procedure.
Computational Statistics and Data Analysis, 19:177–189.

Lauritzen, S., Uhler, C., and Zwiernik, P. (2019). Maximum likelihood estimation in Gaussian models under total
positivity. The Annals of Statistics, 47:1835–1863.

Lauritzen, S. and Zwiernik, P. (2022). Locally associated graphical models and mixed convex exponential families.
The Annals of Statistics, 50:3009–3038.

Lauritzen, S. L. (1996). Graphical Models. Clarendon Press, Oxford, United Kingdom.
Marchetti, G. M., Drton, M., and Sadeghi, K. (2020). ggm: Graphical Markov Models with Mixed Graphs. R package

version 2.5.
R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria.
Singh, D., Febbo, P., Ross, K., Jackson, D., Manola, J., Ladd, C., Tamayo, P., Renshaw, A., DAmico, A., Richie, J.,

Lander, E., Loda, M., Kantoff, P., Golub, T., and Sellers, W. (2002). Gene expression correlates of clinical prostate
cancer behavior. Cancer Cell, 1:203–209.

Speed, T. P. and Kiiveri, H. (1986). Gaussian Markov distributions over finite graphs. The Annals of Statistics,
14:138–150.

Uhler, C. (2019). Gaussian graphical models. In Maathuis, M., Drton, M., Lauritzen, S., and Wainwright, M., editors,
Handbook of Graphical Models, pages 217–238. CRC Press, Boca Raton, FL.

Wermuth, N. and Scheidt, E. (1977). Algorithm as 105: Fitting a covariance selection model to a matrix. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 26:88–92.

Xu, P.-F., Guo, J., and He, X. (2011). An improved iterative proportional scaling procedure for Gaussian graphical
models. Journal of Computational and Graphical Statistics, 20:417–431.

Xu, P.-F., Guo, J., and Tang, M.-L. (2012). An improved Hara–Takamura procedure by sharing computations on
junction tree in Gaussian graphical models. Statistics and Computing, 22:1125–1133.

Xu, P.-F., Guo, J., and Tang, M.-L. (2015). A localized implementation of the iterative proportional scaling procedure
for Gaussian graphical models. Journal of Computational and Graphical Statistics, 24:205–229.

Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika, 94:19–35.

	Introduction
	Likelihood equations for Gaussian graphical models
	Iterative proportional scaling
	Computational issues of updating
	Updating
	Updating the likelihood function
	Convergence issues
	Computational savings

	Algorithms based on convex duality
	The optimization problem and its dual
	Solving the dual problem
	When S is positive semidefinite
	Monitoring convergence
	Computational savings
	Finding a feasible K
	Finding feasible starting values

	Empirical study
	Implementation of the algorithms
	Comparing the algorithms for moderate size dense graphs
	Comparison with neighbourhood coordinate descent for large, sparse graphs

	Discussion

