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Abstract

For many random Constraint Satisfaction Problems, by
now there exist asymptotically tight estimates of the largest
constraint density for which solutions exist. At the same
time, for many of these problems, all known polynomial-
time algorithms stop finding solutions at much smaller den-
sities. For example, it is well-known that it is easy to color a
random graph using twice as many colors as its chromatic
number. Indeed, some of the simplest possible coloring al-
gorithms achieve this goal. Given the simplicity of those
algorithms, one would expect room for improvement. Yet,
to date, no algorithm is known that uses (2− ε)χ colors, in
spite of efforts by numerous researchers over the years.

In view of the remarkable resilience of this factor of 2
against every algorithm hurled at it, we find it natural to
inquire into its origin. We do so by analyzing the evolu-
tion of the set of k-colorings of a random graph, viewed
as a subset of {1, . . . , k}n, as edges are added. We prove
that the factor of 2 corresponds in a precise mathemati-
cal sense to a phase transition in the geometry of this set.
Roughly speaking, we prove that the set of k-colorings looks
like a giant ball for k ≥ 2χ, but like an error-correcting
code for k ≤ (2 − ε)χ. We also prove that an analo-
gous phase transition occurs both in random k-SAT and in
random hypergraph 2-coloring. And that for each of these
three problems, the location of the transition corresponds
to the point where all known polynomial-time algorithms
fail. To prove our results we develop a general technique
that allows us to establish rigorously much of the celebrated
1-step Replica-Symmetry-Breaking hypothesis of statistical
physics for random CSPs.
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1 Introduction

For many random Constraint Satisfaction Problems
(CSP), such as random graph coloring, random k-SAT, ran-
dom Max k-SAT, and hypergraph 2-coloring, by now there
exist asymptotically tight estimates for the largest constraint
density for which typical instances have solutions (see [5]).
At the same time, all known efficient algorithms for each of
these problems fare very poorly, i.e., they stop finding solu-
tions at constraint densities much lower than those for which
we can prove that solutions exist. Adding insult to injury,
for each problem the best known algorithm asymptotically
fares no better than some extremely naive algorithm.

For example, it has been known for nearly twenty
years [10] that the following very simple algorithm will
find a satisfying assignment of a random k-CNF formula
with m = rn clauses for r = O(2k/k): if there is a unit
clause satisfy it; otherwise assign a random value to a ran-
dom unassigned variable. While it is known that random
k-CNF remain satisfiable for r = Θ(2k), no polynomial-
time algorithm is known to find satisfying assignments for
r = (2k/k) · ω(k) for some function ω(k)→∞.

Similarly, for all k ≥ 3, the following algorithm [18,
2] will k-color a random graph with average degree d ≤
k ln k: select a random vertex with fewest available colors
left and assign it a random available color. While it is known
that random graphs remain k-colorable for d ∼ 2 k ln k, no
polynomial-time algorithm is known to k-color a random
graph of average degree (1 + ε)k ln k for some fixed ε > 0
and arbitrarily large k. Equivalently, it is trivial to color a
random graph using twice as many colors as its chromatic
number, but no polynomial-time algorithm is known that
gets by with (2− ε)χ colors, for some fixed ε > 0.

Random k-SAT and random graph coloring are not
alone. In fact, for nearly every random CSP of interest, the
known results establish an analogous state of the art:

1. There is a trivial upper bound on the largest constraint
density for which solutions exist.

2. There is a non-constructive proof, usually via the sec-
ond moment method, that the bound from (1) is es-
sentially tight, i.e., that solutions do exist for densities
nearly as high as the trivial upper bound.
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3. A simple algorithm finds solutions up to a constraint
density much below the one from (2).

4. No polynomial-time algorithm is known to succeed for
a density asymptotically greater than that in (3).

In this paper we prove that this is not a coincidence.
Namely, for random graph coloring, random k-SAT, and
random hypergraph 2-coloring, we prove that the point
where all known algorithms stop is the point where the
geometry of the space of solutions undergoes a dramatic
change. This is known as a “dynamical” phase transition
in statistical physics and our results establish rigorously for
random CSPs a large part of the “1-step Replica Symmetry
Breaking” hypothesis [20]. Roughly speaking, this hypoth-
esis asserts that while the set of solutions for low densities
looks like a giant ball, at some critical point this ball shat-
ters into exponentially many pieces that are far apart from
one another and separated by huge “energy barriers”, like
an error-correcting code. Algorithms (even extremely sim-
ple ones) have no problem finding solutions in the “ball”
regime, but no algorithm is known to find solutions in the
“error-correcting code” regime.

We believe that the presence of dynamical phase transi-
tions in random CSPs is a very general phenomenon whose
qualitative characteristics should be problem-independent,
i.e., universal. The fact that we can establish the exact
same qualitative picture for a problem with binary con-
straints over k-ary variables (random graph k-coloring) and
a problem with k-ary constraints over binary variables (hy-
pergraph 2-colorability) lends support to this notion.

Perhaps the following is an intuitive model of how a dy-
namical phase transition comes about. In random graph col-
oring, rather than thinking of the number of available colors
as fixed and the constraint density (number of edges) as in-
creasing, imagine that we keep the constraint density fixed,
but we keep decreasing the number of available colors. If
we start with q available colors where q � χ, it is rea-
sonable to imagine that the set of valid q-colorings, viewed
as a subset of {1, 2, . . . , q}n, has a nice “round” shape, the
rounder the greater q is relative to χ. By the same token,
when we restrict our attention to the set of those q-colorings
that only use colors {1, 2, . . . , q−1}, we are taking a “slice’
of the set of q-colorings. With each slicing the connectiv-
ity of the set at hands deteriorates, until at some point the
set shatters. As an analogy, slicing the 2-dimensional unit
sphere through the origin yields a circle, but slicing the cir-
cle, yields a pair of points.

Having said the above, we wish to emphasize that deter-
mining the location of the dynamical phase transition of a
given CSP requires non-trivial, problem-specific ideas and
computations. In this paper we do this for the three prob-
lems mentioned above, allowing us to demonstrate that the
transition coincides with the demise of algorithms.

We conclude the introduction with a few words about
the technical foundation for our work. To prove the ex-
istence (and determine the location) of a dynamical phase
transition one needs to access the uniform measure over the
solutions of random CSP instances. A geometric way of
thinking about this is as follows. Given a CSP instance, say
a random k-CNF formula with m clauses over n variables,
consider the functionH on {0, 1}n that assigns to each truth
assignment the number of clauses it violates. In this manner,
H defines a “landscape” in which satisfying assignments
correspond to (valleys at) sea-level. Understanding statisti-
cal properties of the uniform measure over solutions entails
understanding “the view” one enjoys from the bottom of a
random such valley, a probabilistically formidable task.

As we discuss in Section 4, we establish the following: if
the number of solutions of a random CSP is sufficiently con-
centrated around its exponentially large expectation, then
the view from a random sea-level valley is “the same” as
the view from an “artificial” sea-level valley. That is, in
terms of our random k-CNF formula example, from the val-
ley created by first selecting a random σ ∈ {0, 1}n and then
forming a random k-CNF formula with m clauses chosen
uniformly among the clauses satisfied by σ, i.e., the view
from the planted satisfying assignment. This is a much eas-
ier view to understand and we believe that the “transfer”
theorems we establish in this paper will significantly aid in
the analysis of random CSPs in general.

2 Statement of Results

To present our results in a uniform manner we need to
introduce some common notions. Let V be a set of n vari-
ables, all with the same domainD, and let C be an arbitrary
set of constraints over the variables in V . A CSP instance
is a subset of C. We let dist(σ, τ) denote the Hamming dis-
tance between σ, τ ∈ Dn and we turn Dn into a graph by
saying that σ, τ are adjacent if dist(σ, τ) = 1. For a given
instance I , we let H = HI : Dn → N be the function
counting the number of constraints of I violated by each
σ ∈ Dn.

Definition 1 We say that σ ∈ Dn is a solution of an in-
stance I , if H(σ) = 0. We will denote by S(I) the set of all
solutions of an instance I . The clusters of an instance I are
the connected components of S(I). A region is a non-empty
union of clusters. The height of a path σ0, σ1, . . . , σt ∈ Dn

is maxiH(σi).

Remark 1 The term cluster comes from physics. Requiring
dist(σ, τ) = 1 to say that σ, τ are adjacent is somewhat
arbitrary (but conceptually simplest) and a number of our
results hold if one replaces 1 with o(n).

We will be interested in distributions of CSP instances
as the number of variables n grows. The set C = Cn will
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typically consist of all possible constraints of a certain type,
e.g., the set of all

(
n
k

)
possible hyperedges in the problem

of 2-coloring random k-uniform hypegraphs. We let In,m
denote the set of all CSP instances with preciselym distinct
constraints fromCn and we let In,m denote the uniform dis-
tribution on the set of all instances In,m. We will say that a
sequence of events En holds with high probability (w.h.p.)
if limn→∞ Pr[En] = 1 and with uniformly positive proba-
bility (w.u.p.p.) if lim infn→∞ Pr[En] > 0. As per standard
practice in the study of random structures, we will take the
liberty of writing In,m to also denote the underlying ran-
dom variable and, thus, write things like “The probability
that S(In,m)...”

2.1 Shattering

Definition 2 We say that the set of solutions of In,m shat-
ters if there exist constants β, γ, ζ, θ > 0 such that w.h.p.
S(In,m) can be partitioned into regions so that:

1. The number of regions is at least eβn.

2. Each region contains at most an e−γn fraction of all
solutions.

3. The Hamming distance between any two regions is at
least ζn.

4. Every path between vertices in distinct regions has
height at least θn.

Our first main result asserts that the space of solutions for
random graph coloring, random k-SAT, and random hyper-
graph 2-colorability shatters and that this shattering occurs
just above the largest density for which any polynomial-
time algorithm is known to find solutions for the corre-
sponding problem. Moreover, we prove that the space re-
mains shattered until, essentially, the CSP’s satisfiability
threshold. More precisely:

– A random graph with average degree d, i.e., m = dn/2,
is w.h.p. k-colorable for d ≤ (2−γk)k ln k, where γk → 0.
The best rigorously analyzed poly-time k-coloring algo-
rithm w.h.p. fails for d ≥ (1 + δk)k ln k, where δk → 0.

Theorem 1 There exists a sequence εk → 0, such that the
space of k-colorings of a random graph with average de-
gree d shatters for all

(1 + εk)k ln k ≤ d ≤ (2− εk)k ln k . (1)

– A random k-CNF formula with n variables and rn clauses
is w.h.p. satisfiable for r ≤ 2k ln 2− k. The best rigorously
analyzed poly-time satisfiability algorithm w.h.p. fails for
r > 2k+1/k. In [23], non-rigorous, but mathematically so-
phisticated evidence is given that a different algorithm suc-
ceeds for r = Θ((2k/k) ln k) but not higher.

Theorem 2 There exists a sequence εk → 0 such that the
space of satisfying assignments of a random k-CNF formula
with rn clauses shatters for all

(1 + εk)
2k

k
ln k ≤ r ≤ (1− εk)2k ln 2 . (2)

– A random k-uniform hypergraph with n variables and rn
edges is w.h.p. 2-colorable for r ≤ 2k−1 ln 2− 3

2 . The best
rigorously analyzed poly-time 2-coloring algorithm w.h.p.
fails for r > 2k/k. In [23], non-rigorous, but mathemat-
ically sophisticated evidence is given that a different algo-
rithm succeeds for r = Θ((2k/k) ln k), but not higher.

Theorem 3 There exists a sequence εk → 0 such that the
space of 2-colorings of a random k-uniform hypergraph
with rn edges shatters for all

(1 + εk)
2k−1

k
ln k ≤ r ≤ (1− εk)2k−1 ln 2 . (3)

Remark 2 As the notation in Theorems 1,2,3 is asymptotic
in k, the stated intervals may be empty for small values of k.
In this extended abstract we have not optimized the proofs
to deliver the smallest values of k for which the intervals
are non-empty. Quick calculations suggest k ≥ 6 for hy-
pergraph 2-colorability, k ≥ 8 for k-SAT, and k ≥ 20 for
k-coloring.

2.2 Rigidity

The regions mentioned in Theorems 1, 2 and 3 can
be thought of as forming an error-correcting code in the
solution-space of each problem. To make this precise we
need to introduce the following definition and formalize the
notion of “a random solution of a random instance”.

Definition 3 Given an instance I , a solution σ ∈ S(I) and
a variable v ∈ V , we say that v in (I, σ):

– Is f(n)-rigid, if every τ ∈ S(I) such that τ(v) 6= σ(v)
has dist(σ, τ) ≥ f(n).

– Is f(n)-loose, if for every j ∈ D, there exists τ ∈ S(I)
such that τ(v) = j and dist(σ, τ) ≤ f(n).

We will prove that in a typical solution, while before the
phase transition every variable is loose, after the phase tran-
sition nearly every variable is rigid. To formalize the notion
of a random/typical solution, recall that In,m denotes the set
of all instances with m constraints over n variables and let
Λ = Λn,m denote the set of all instance–solution pairs, i.e.,
Λn,m = {(I, σ) : I ∈ In,m, σ ∈ S(I)}. We let U = Un,m
be the probability distribution induced on Λn,m by the fol-
lowing experiment:
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Choose an instance I ∈ In,m uniformly at random.
If S(I) 6= ∅, select σ ∈ S(I) uniformly at random.

We will refer to instance-solution pairs generated according
to Un,m as uniform instance-solution pairs. We note that
although the definition of uniform pairs allows for S(I) to
be typically empty, i.e., to be in the typically unsatisfiable
regime, we will employ the definition for constraint densi-
ties such that w.h.p. S(I) contains exponentially many so-
lutions. Hence, our liberty in using the term a “typical”
solution. At the same time, we emphasize that Un,m is in
general not the uniform distribution over Λn,m.

Theorem 4 Let (I, σ) be a uniform instance-solution pair
where:

• I is a graph with dn/2 edges, where d is as in (1), and
σ is a k-coloring of I , or,

• I is a k-CNF formula with rn clauses, where r is as
in (2), and σ is a satisfying assignment of I , or,

• I is a k-uniform hypergraph with rn edges, where r is
as in (3), and σ is a 2-coloring of I .

W.h.p. the number of Ω(n)-rigid variables in (I, σ) is at
least γkn, for some sequence γk → 1.

Remark 3 Theorem 4 is tight since random instances as
above w.h.p. have Ω(n) variables that are not bound by any
constraint and hence can never be rigid.

The picture drawn by Theorem 4, whereby nearly all
variables are rigid in typical solutions above the dynami-
cal phase transition, is in sharp contrast with our results for
densities below the transition for graph coloring and hyper-
graph 2-colorability. While we believe that an analogous
picture holds for k-SAT, see Conjecture 1, for technical rea-
sons we cannot establish this presently. (We discuss the
general additional difficulties imposed by random k-SAT in
Section 4.)

Theorem 5 Let (I, σ) be a uniform instance-solution pair
where:

• I is a graph with dn/2 edges, where d ≤ (1−εk)k ln k,
and σ is a k-coloring of I , or,

• I is a k-uniform hypergraph with rn edges, where r ≤
(1− εk)(2k−1/k) ln k, and σ is a 2-coloring of I .

There exists a sequence εk → 0 such that w.h.p. every vari-
able in (I, σ) is o(n)-loose.

We note that in fact, for all d and r as in Theorem 5,
w.u.p.p. (I, σ) is such that setting the color of any vertex
to any color only requires changing the color of O(log n)
other vertices.

Conjecture 1 Let (I, σ) be a uniform instance-solution
pair where I is a k-CNF formula with rn clauses, where
r ≤ (1 − εk)(2k/k) ln k, and σ is a satisfying assignment
of I . There exists a sequence εk → 0 such that w.h.p. every
variable in (I, σ) is o(n)-loose.

3 Background and Related Work

3.1 Algorithms

Attempts for a “quick improvement” upon either of the
naive algorithms mentioned in the introduction for satisfi-
ability/graph coloring stumble upon the following general
fact. Given a CSP instance, consider the bipartite graph
in which every variable is adjacent to precisely those con-
straints in which it appears, known as the factor graph of the
instance. For random formulas/graphs, factor graphs are lo-
cally tree-like, i.e., for any arbitrarily large constant D, the
depth-D neighborhood of a random vertex is a tree w.h.p. In
other words, locally, random CSPs are trivial, e.g., random
graphs of any finite average degree are locally 2-colorable.
Moreover, as the constraint density is increased, the factor
graphs of random CSPs get closer and closer to being bireg-
ular, so that degree information is not useful either. Com-
bined, these two facts render all known algorithms impo-
tent, i.e., as the density is increased, their asymptotic per-
formance matches that of trivial algorithms.

In [22], Mézard, Parisi, and Zecchina proposed a new
satisfiability algorithm called Survey Propagation (SP)
which performs extremely well experimentally on instances
of random 3-SAT. This was very surprising at the time
and allowed for optimism that, perhaps, random k-SAT in-
stances might not be so hard. Later, SP was extended to
other problems, e.g., k-coloring [9] and Max k-SAT [8].
An experimental evaluation of SP for values of k even as
small as 5 or 6 is already somewhat problematic, but to the
extent it is reliable it strongly suggests that SP does not find
solutions for densities as high as those for which solutions
are known to exist. The problem seems to lie with the “dec-
imation” aspect of the algorithm, i.e., the process of repeat-
edly selecting (and setting permanently) the most “biased”
variables in the formula (we comment on this further be-
low). Perhaps more importantly, it can be shown that for
densities at least as high as 2k ln 2− k, if SP can succeed at
its main task (approximating the marginal probability dis-
tribution of the variables with respect to the uniform mea-
sure over an approximation of the cluster projections), then
so can a much simpler algorithm, namely Belief Propaga-
tion (BP), i.e., dynamic programming on trees (for approxi-
mating the marginal probability distribution of the variables
with respect to the uniform measure over satisfying assign-
ments).
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The trouble is that to use either BP or SP to find satis-
fying assignments one sets variables iteratively. So, even if
it is possible to compute approximately correct marginals
at the beginning of the execution (for the entire formula),
this can stop being the case after some variables are set.
Concretely, in [23], Montanari et al. showed that (even
within the relatively generous assumptions of statistical
physics computations) the following Gibbs-sampling algo-
rithm fails above density e(2k/k), i.e., step 2 below fails
to converge after only a small fraction of all variables have
been assigned a value:

1. Select a variable v at random.

2. Compute the marginal distribution of v using Belief
Propagation.

3. Set v to {0, 1} according to the computed marginal dis-
tribution; simplify the formula; go to step 1.

3.2 Relating the Uniform and the Planted Model

The idea of deterministically embedding a property in-
side a random structure is very old and, in general, the
process of doing this is referred to as “planting” the prop-
erty. In our case, we plant a solution σ in a random CSP
by only including constraints compatible with σ. Juels
and Peinado [19] were perhaps the first to explore the re-
lationship between the planted and the uniform model and
they did so for the clique problem in dense random graphs
Gn,1/2, i.e., where each edge appears independently with
probability 1/2. They showed that the distribution resulting
from first choosing G = Gn,1/2 and then planting a clique
of size (1 + ε) log2 n is very close to Gn,1/2 and suggested
this as a scheme to obtain a one-way-function. Since the
planted clique has size only (1 + ε) log2 n, the basic ar-
gument in [19] is closely related to subgraph counting. In
contrast, the objects under consideration in our work (k-
colorings, satisfying assignments, etc.) have an immediate
impact on the global structure of the combinatorial object
being considered, rather than just being local features, such
as a clique on O(log n) vertices.

Coja-Oghlan, Krivelevich, and Vilenchik [12, 13] proved
that for constraint densities well above the threshold for the
existence of solutions, the planted model for k-coloring and
k-SAT is equivalent to the uniform distribution conditional
on the (exponentially unlikely) existence of at least one so-
lution. In this conditional distribution as well as in the high-
density planted model, the geometry of the solution space is
very simple, as there is precisely one cluster of solutions, in
stark contrast with the regime we analyze.

3.3 Solution-space Geometry

In [7, 21] the first steps were made towards understand-
ing the solution-space geometry of random k-CNF formu-
las by proving the existence of shattering and the presence
of rigid variables for r = Θ(2k). This was a far cry from
the true r ∼ (2k/k) ln k threshold for the onset of both
phenomena, as we establish here. Besides the quantitative
aspect, there is also a fundamentally important difference
in the methods employed in [7, 21] vs. those employed
here. In those works, properties such as the existence of
frozen variables were shown to hold for all satisfying as-
signments and were correspondingly established by taking
a union bound over all satisfying assignments. It is not hard
to show that the derived results are best possible using those
methods and, in fact, there is good reason to believe that
the results are genuinely tight, i.e., that for densities o(2k)
the derived properties simply do not hold for all satisfying
assignments. Here, we instead establish a systematic con-
nection between the planted model and random solutions
of random instances. This argument allows us to analyze
“typical” solutions while allowing for the possibility that a
(relatively small, though exponential) number of “atypical”
solutions exist. Therefore, we are for the first time in a po-
sition to analyze the extremely complex energy landscape
of below-threshold instances of random CSPs, and to esti-
mate quantities that appeared completely out of reach prior
to this work.

4 Our Point of Departure: Symmetry, Ran-
domness and Inversion

As mentioned, the results in this paper are enabled by a
set of technical lemmas that allow one to reduce the study
of “random solutions of random CSP instances” to the study
of “planted CSP solutions”. The conceptual origin of these
lemmas can be traced to the following humble observation.

Let M be an arbitrary 0-1 matrix with the property that
all its rows have the same number of 1s and all its columns
have the same the number of 1s. A moment’s reflection
makes it clear that for such a matrix, both of the following
methods select a uniformly random 1 from the entire matrix
(and are therefore equivalent):

1. Select a uniformly random column and then a uni-
formly random 1 in that column.

2. Select a uniformly random row and then a uniformly
random 1 in that row.

An example of how we employ this fact for random CSPs
is as follows. Let F be the set of all k-CNF formulas with
n variables and m distinct clauses (chosen among all 2k

(
n
k

)
possible k-clauses). Say that σ ∈ {0, 1}n NAE-satisfies a
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formula F ∈ F if under σ, every clause of F has at least
one satisfied and at least one falsified literal. Let M be the
2n × |F| matrix where Mσ,F = 1 iff σ ∈ {0, 1}n NAE-
satisfies F . By the symmetry ofF , it is clear that all rows of
M have the same number of 1s. Imagine, for a moment, that
the same was true for all columns. Then, a uniformly ran-
dom solution of a uniformly random instance would be dis-
tributed exactly as a “planted” instance-solution pair: first
select σ ∈ {0, 1}n uniformly at random; then select m
distinct clauses uniformly at random among all 2k−1

(
n
k

)
clauses NAE-satisfied by σ.

Our contribution begins with the realization that exact
row- and column-balance is not necessary. Rather, it is
enough for the 1s in M to be “well-spread”. More pre-
cisely, it is enough that the marginal distribution induced
on the rows of M by selecting a uniformly random 1 from
the entire matrix to be “reasonably close to” uniform, and
that exactly the same holds for the columns of M . For ex-
ample, assume we can prove that Ω(|F|) columns of M
have Θ(f(n)) 1s, where f(n) is the average number of 1s
per column in the entire matrix. Indeed, this is precisely
the kind of property implied by the success of the second
moment method for random NAE-k-SAT [3]. Under this
assumption, proving that a property holds w.u.p.p. for a uni-
formly random solution of a uniformly random instance, re-
duces to proving that it holds w.h.p. for the planted solution
of a planted instance, a dramatically simpler task.

There is a geometric intuition behind our transfer theo-
rems and it is more conveniently described when every con-
straint is included independently with the same probability
p = m/

(
2k
(
n
k

))
. For all k ≥ 3 and m = rn, it was shown

in [3] that the resulting NAE-k-SAT instances w.u.p.p. have
exponentially many solutions for r ≤ 2k−1 ln 2−3/2. Con-
sider now the following way of generating planted NAE
k-SAT instances. First, select a formula F by including
each clause with probability p, exactly as above. Then, se-
lect σ ∈ {0, 1}n uniformly at random and remove from
F all constraints violated by σ. Call the resulting instance
F ′. Our results say that as long as q ≡ r(1 − 2−k+1) ≤
2k−1 ln 2 − 3/2, the instance F ′ is “nearly indistinguish-
able” from a uniform instance created by including each
clause with probability q. (We will make this statement pre-
cise shortly.)

To see how this happens, recall the function H : σ → N
counting the number of violated constraints under each as-
signment. Clearly, selecting F specifies such a function
HF , while selecting σ ∈ {0, 1}n and removing all con-
straints violated by σ amounts to modifying HF so that
HF (σ) = 0. One can imagine that such a modification
creates a gradient in the vicinity of σ, a “crater” with σ at
its bottom. What we prove is that as long asHF already had
an exponential number of craters and the number of craters
is concentrated, adding one more crater does not make a big

difference. Of course, if the density is increased further, the
opened crater becomes increasingly obvious, as it takes a
larger and larger cone to get from the typical values of HF

down to 0. This observation also relates to the ease with
which algorithms solve planted instances of high density.

To prove our transfer theorems we instantiate the above
idea for random graph k-coloring, random k-uniform hy-
pergraph 2-coloring, and random k-SAT. A crucial step for
this is deriving a lower bound on the number of solutions
of a random instance. For example, in the case of random
graph k-coloring, we prove that the number of k-colorings,
|S(In,m)|, for a random graph with n vertices and m edges
is “concentrated” around its expectation in the sense that
w.h.p.

n−1 | ln |S(In,m)| − ln E|S(In,m)| | = o(1) . (4)

To prove this, we use the upper bound on the second
moment E

[
|S(In,m)|2

]
from [4] to show that w.u.p.p.

|S(In,m)| = Ω(E|S(In,m)|). Then, we perform a sharp
threshold analysis using theorems of Friedgut [15], to prove
that (4) holds, in fact, with high probability. A similar ap-
proach applies to hypegraph 2-coloring.

The situation for random k-SAT is more involved. In-
deed, we can prove that the number of satisfying assign-
ments is not concentrated around its expectation in the sense
of (4). This problem is mirrored by the fact that the second
moment of the number of satisfying assignments exceeds
the square of the first moment by an exponential factor (for
any constraint density). Nonetheless, letting Fk(n,m) de-
note a uniformly random k-CNF formula with n variables
and m clauses, combining techniques from [6] with a sharp
threshold analysis, we can derive a lower bound on the
number of satisfying assignments that holds w.h.p., namely
n−1 ln |S(Fk(n,m))| ≥ n−1 ln E|S(Fk(n,m))| − φ(k),
where φ(k) → 0 exponentially with k. This estimates al-
lows us to approximate the uniform model by the planted
model sufficiently well in order to establish Theorems 2
and 4.

5 Proof sketches

In this section we give proof sketches of our results for
k-coloring to offer a feel of the transfer theorems and of
the style of the arguments one can employ given those the-
orems. The proofs for hypergraph 2-coloring are relatively
similar, as it is also a “symmetric” CSP and the second mo-
ment methods works on its number of solutions. For k-SAT,
though, a significant amount of additional work is needed,
as properties must be established with exponentially small
error probability to overcome the large deviations in the
number of satisfying assignments.
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5.1 The Transfer for Random Graph Coloring

We consider a fixed number ε > 0 and assume that
k ≥ k0 for some sufficiently large k0 = k0(ε). We de-
note {1, . . . , k} as [k]. We are interested in the probability
distribution Un,m on Λn,m resulting from first choosing a
random graph G = G(n,m) and then a random k-coloring
of G (if one exists). To analyze this distribution, we con-
sider the distribution Pn,m on Λn,m induced by following
expermient.

P1. Generate a uniformly random k-partition σ ∈ [k]n.

P2. Generate a graph G with m edges chosen uniformly at
random among the edges bicolored under σ.

P3. Output the pair (G, σ).

The distribution Pn,m is known as the planted model.

Theorem 6 Suppose that d = 2m/n ≤ (2−ε)k ln k. There
exists a function f(n) = o(n) such that the following is
true. LetD be any graph property such that G(n,m) hasD
with probability 1−o(1), and let E be any property of pairs
(G, σ) ∈ Λn,m. If for all sufficiently large n,

PrPn,m [(G, σ) has E|G has D] ≥ 1− exp(−f(n)), (5)

then PrUn,m [(G, σ) has E ] = 1− o(1).

5.2 Loose Variables Below the Transition

Suppose that d ≤ (1− ε)k ln k. Recall that a graph with
vertex set V is said to be ζ-choosable if for any assignment
of color lists of length at least ζ to the elements of V , there
is a proper coloring in which every vertex receives a color
from its list. To prove Theorem 5, we consider the property
E that all vertices are o(n)-loose and the following condi-
tion D:

For any set S ⊂ V of size |S| ≤ g(n) the sub-
graph induced on S is 3-choosable.

Here g(n) is some function such that f(n)� g(n) = o(n),
where f(n) is the function from Theorem 6. A standard
argument shows that a random graph G(n,m) with m =
O(n) satisfies D w.h.p.

By Theorem 6, we are thus left to establish (5). Let
σ ∈ [k]n be a uniformly random k-partition, and let G be a
random graph with m edges such that σ is a k-coloring of
G. Since σ is uniformly random, we may assume that the
color classes Vi = σ−1(i) satisfy |Vi| ∼ n/k. Let v0 ∈ V
be any vertex, and let l 6= σ(v0) be the “target color” for
v0. Our goal is to find a coloring τ such that τ(v0) = l and
dist(σ, τ) ≤ g(n).

If v0 has no neighbor in Vl, then we can just assign color
l to v0. Otherwise, we run the following process. In the
course of the process, every vertex is either awake, dead,
or asleep. Initially, all the neighbors of v0 in Vl are awake,
v0 is dead, and all other vertices are asleep. In each step of
the process, pick an awake vertex w arbitrarily and declare
it dead (if there is no awake vertex, the process terminates).
If there are at least four colors c1(w), . . . , c4(w) available
such that w has no asleep neighbor in Vci(w), then we do
nothing. Otherwise, we pick four colors c1(w), . . . , c4(w)
randomly and declare all asleep neighbors of w in Vcj(w)

awake for 1 ≤ j ≤ 4.

Lemma 1 With probability at least 1 − exp(−f(n)) there
are at most g(n) dead vertices when the process terminates.

Proof sketch. We relate the above process to a subcritical
branching process. To this end, we bound the expected “off-
spring” (i.e., number of new awake vertices) generated in
any step of the process. Suppose that in some step of the
process an awake vertexw is chosen. To bound the expected
offspring, we basically observe that when d < (1− ε)k ln k
it is very likely that a vertex w has four immediately avail-
able colors, and thus no offspring will be generated at all.
More precisely, the number of neighbors of w in any class
Vi with i 6= σ(w) is asymptotically Poisson with mean

2m
(k − 1)n

≤ (1− ε)k ln k
k − 1

.

Hence, the probability that w does not have a neighbor in
Vi is asymptotically equal to

πk = exp
(
− 2m

(k − 1)n

)
≥ kε/2−1

(for sufficiently large k). As there are k colors in total, the
expected number of colors i 6= σ(w) such that w has no
neighbor in Vi is asymptotically Poisson with mean (k −
1)πk ≥ kε/3. Consequently, the probability that w has at
least than four available colors is at least

1− Pr
[
Poisson(kε/3) < 4

]
≥ 1− exp(−kε/4), (6)

and in this case w does not produce any offspring at all. If
w has fewer than four available colors, then the number of
neighbors of w in a randomly chosen color class is stochas-
tically dominated by a Poisson distribution with mean k ln k
conditioned on being at least one. Hence, in this case we
can bound the expected number of newly awake vertices by
4 · 2k ln k. Thus, (6) entails that the expected number of
offspring vertices is at most 8k ln k · exp(−kε/4) < 1.

As a consequence, the total number of dead vertices at
the end of the process is dominated by the total number of
offspring generated by a branching process with rate at most
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8k ln k · exp(−kε/4) < 1. Therefore, standard tail bounds
for branching processes imply the assertion. 2

To obtain a new coloring τ in which v0 takes color l we
consider the set D of all dead vertices. We let τ(u) = σ(u)
for all u ∈ V \ D. Moreover, conditioning on the event
D, we can assign color l to v0 and a color from the list
{c1(w), . . . , c5(w)} \ {l} to each w ∈ D \ {v0} . Thus,
the new coloring τ differs from σ on at most |D| ≤ g(n) =
o(n) vertices.

5.3 Rigid Variables Above the Transition

Suppose that d ≥ (1 + ε)k ln k. To prove Theorem 4 for
coloring we apply Theorem 6 as follows. We let α, β > 0
be sufficiently small numbers and denote by E the following
property of a pair (G, σ) ∈ Λn,m:

There is a subgraph G∗ ⊂ G of size |V (G∗)| ≥
(1 − α)n such that for every vertex v of G∗ and
each color i 6= σ(v) there are at least β ln k vertices
w in G∗ that are adjacent to v such that σ(w) = i.

(7)

Also, we let D be the property that the maximum degree is
at most (lnn)2.

Lemma 2 Condition (5) holds for D and E as above.

Proof sketch. Let (G, σ) ∈ Λn,m be a random pair cho-
sen from the distribution Pn,m. We may assume that
|σ−1(i)| ∼ n/k for all i. To obtain the graph G∗, we per-
form a “stripping process”. As a first step, we obtain a sub-
graph H by removing from G all vertices that have fewer
than γ ln k neighbors in any color class other than their own.
If γ = γ(ε) is sufficiently small, then the expected number
of vertices removed in this way is less than nk−δ for some
fixed δ > 0, because for each vertex w the expected number
of neighbors in another color class is asymptotically Pois-
son with mean at least (1 + ε) ln k. Then, we keep remov-
ing vertices from H that have “a lot” of neighbors outside
of H . Given the eventD, we can show that with probabiltiy
1−exp(−Ω(n)) the final result of this process is a subgraph
G∗ that satisfies (7). 2

Furthermore, the following lemma follows from a stan-
dard “first moment” argument.

Lemma 3 W.h.p. the random graph G = Gn,m has the fol-
lowing property.

There is no set S of vertices of size |S| ≤ n/(k ln k)
such that S spans at least 1

2 |S|β ln k edges. (8)

To complete the proof of Theorem 4 for coloring, con-
sider a pair (G, σ) chosen from Un,m. By Lemma 2 and

Theorem 6 there is a subgraph G∗ as in (7) w.h.p. More-
over, by Lemma 3 we may assume thatG satisfies (8). Now,
assume for contradiction that G has a k-coloring τ 6= σ
such that the set U = {v ∈ G∗ : σ(v) 6= τ(v)} has size
|U | ≤ n/(k ln k). Let

U+
i = {v ∈ G∗ : τ(v) = i 6= σ(v)},

U−i = {v ∈ G∗ : σ(v) = i 6= τ(v)}

for 1 ≤ i ≤ k. Then

|U | =
k∑
i=1

|U+
i | =

k∑
i=1

|U−i |. (9)

Every vertex v ∈ G∗ \ σ−1(i) has at least β ln k neigh-
bors in G∗ ∩ σ−1(i). Hence, if v ∈ U+

i , then all of
these neighbors lie inside of U−i . We claim that this im-
plies that |U+

i | < |U
−
i |; for assume that U+

i ≥ U−i . Set
S = U+

i ∪ U
−
i . Then |S| ≤ |U | ≤ n/(k ln k), and S spans

at least |S|β2 ln k edges, in contradiction to (8). Thus, we
conclude that |U+

i | < |U
−
i | for all i, in contradiction to (9).

Hence, all the vertices in G∗ are n
k ln k -rigid.

5.4 Proof of Theorem 1

Theorem 1 concerns the “view” from a random coloring
σ ofG(n,m). Basically, our goal is to show that only a tiny
fraction of all possible colorings are “visible” from σ, i.e.,
σ lives in a small, isolated valley. To establish the theorem,
we need a way to measure how “close” two colorings σ, τ
are. The Hamming distance is inappropriate here because
two colorings σ, τ can be at Hamming distance n, although
τ simply results from permuting the color classes of σ, i.e.,
although σ and τ are essentially identical. Instead, we shall
use the following concept. Given two coloring σ, τ , we let
Mσ,τ = (M ij

σ,τ )1≤i,j≤k be the matrix with entries

M ij
σ,τ = n−1|σ−1(i) ∩ τ−1(j)|.

To measure how close τ is to σ we let

fσ(τ) = ‖Mσ,τ‖2F =
k∑

i,j=1

(M ij
σ,τ )2 ,

be the squared Frobenius norm of Mσ,τ . Observe that this
quantity reflects the probability that a single random edge is
monochromatic under both σ and τ , i.e., the correlation of
σ and τ , precisely as desired. Hence, fσ is a map from the
set [k]n of k-partitions to the interval

[
k−2, fσ(σ)

]
, where

fσ(σ) ≥ k−1. Thus, the larger fσ(τ), the more τ resembles
σ. Furthermore, for a fixed σ ∈ S(G) and a number λ > 0
we let

gσ,G,λ(x) = |{τ ∈ [k]n : fσ(τ) = x ∧H(τ) ≤ λn}|.
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In order to show that S(Gn,m) with m = dn/2 decom-
poses into exponentially many regions, we employ the fol-
lowing lemma.

Lemma 4 Suppose that d > (1+εk)k ln k. There are num-
bers k−2 < y1 < y2 < k−1 and λ, γ > 0 such that with
high probability a pair (G, σ) ∈ Λn,m chosen from the dis-
tributoin Un,m has the following two properties.

1. For all x ∈ [y1, y2] we have gσ,G,λ(x) = 0.

2. The number of colorings τ ∈ S(G) such that fσ(τ) >
y2 is at most exp(−γn) · |S(G)|.

Let G = Gn,m be a random graph and call σ ∈ S(G) good
if both (1) and (2) hold. Then Lemma 4 states that w.h.p.
a 1 − o(1)-fraction of all σ ∈ S(G) are good. Hence, to
decompose S(G) into regions, we proceed as follows. For
each σ ∈ S(G) we let Cσ = {τ ∈ S(G) : fσ(τ) > y2}.
Then starting with the set S = S(G) and removing it-
eratively some Cσ for a good σ ∈ S yields an exponen-
tial number of regions. Furthermore, each such region Cσ
is separated by a linear Hamming distance from the set
S(G) \ Cσ . This is because fσ is “continuous” with respect
to n−1×Hamming distance: for any ξ > 0 there is η > 0
such that for any two colorings τ, τ ′ with dist(τ, τ ′) < ηn
we have |fσ(τ) − fσ(τ ′)| < ξ. Thus, Theorem 1 follows
from Lemma 4.

Finally, by Theorem 6, to prove Lemma 4 it is sufficient
to show the following.

Lemma 5 Suppose that d > (1 + εk)k ln k. There are
k−2 < y1 < y2 < k−1 and λ, γ > 0 such that with proba-
bility at least 1−exp(−Ω(n)) a pair (G, σ) ∈ Λn,m chosen
from the distributoin Pn,m has the two properties stated in
Lemma 4.

The proof of Lemma 5 is based on the “first moment
method”. That is, for any k−2 < y < k−1 we compute
the expected number of assignments τ ∈ [k]n such that
fσ(τ) = y and H(τ) ≤ λn. This computation is feasible in
the planted model and yields similar expressions as encoun-
tered in [4] in the course of computing the second moment
of the number of k-colorings. Therefore, we can show that
the expected number of such assignments τ is exponentially
small for a regime y1 < y < y2, whence Lemma 5 follows
from Markov’s inequality.
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