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Abstract

Markov chains provide a flexible model for dependent random variables with applications in such disciplines as physics,
environmental science and economics. In the applied study of Markov chains, it may be of interest to assess whether the tran-
sition probability matrix changes during an observed realization of the process. If such changes occur, it would be of interest to
estimate the transitions where the changes take place and the probability transition matrix before and after each change. For the case
when the number of changes is known, standard likelihood theory is developed to address this problem. The bootstrap is used to aid
in the computation of p-values. When the number of changes is unknown, the AIC and BIC measures are used for model selection.
The proposed methods are studied empirically and are applied to example sets of data.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let {Xi}∞i=0 be a sequence of discrete random variables, each with finite support Sc. The set Sc can contain any finite
collection of distinct elements, but for simplicity this paper assumes that Sc = {1, 2, . . . , c} where c is a positive finite
integer. In the context of stochastic processes, the index i is generally a time index and the value of Xi is called the state
of the process at time i. Let {Pi}∞i=0 be a sequence of c × c matrices where Pi has (j, k)th element 0�Pi(j, k)�1 and

c∑
k=1

Pi(j, k) = 1 (1)

for each i ∈ N and j ∈ Sc. The j th row of Pi is the conditional probability distribution of Xi+1 given Xi = j . Hence
P(Xi+1 = k|Xi = j) = Pi(j, k) for all i ∈ N, j ∈ Sc and k ∈ Sc. The processes studied in this paper are assumed to
have the Markov property, which implies

P(Xi+1 = k|Xi = j, Xi−1 = xi−1, . . . , X0 = x0) = P(Xi+1 = k|Xi = j) = Pi(j, k)

for all sequences of constants {xm}i−1
m=0 where each xm ∈ Sc.
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If Pi = P for all i ∈ N, then the process {Xi}∞i=0 is known as a time homogeneous Markov chain with finite state
space Sc. Such processes are commonly used to model dependent processes observed in such disciplines as biology,
computer science, environmental science, geography, social science, physics and economics. See, for example, Clark
(1965), Fuh (1993), Geary (1978), Gottschau (1992), Turchin (1986) and Yang (1979). In the applied setting, the
transition probability matrix P is unknown and a finite realization X0, . . . , Xn of the process is observed in order to
estimate and test hypotheses about P . A large amount of research has been devoted to these problems. See Basawa and
Rao (1980) and Billingsley (1961a, b) for an overview of much of the relevant research.

A less restrictive model than the Markov chain model described above allows the transition probability matrix to
change during the observed realization. Therefore, in this model there is a sequence of transition probability matrices
T0, . . . , Tk and positive integers 0 = �0 < �1 < · · · < �k < �k+1 = n such that Pj = Ti for j = �i , . . . , (�i+1 − 1)

and i = 1, . . . , k. The points �1, . . . ,�k are known as change-points. In the applied setting such a model may be
reasonable when the researcher believes that outside interventions may have caused the behavior of the process to
change. The change-points �1, . . . ,�k may be known if the time of the interventions is known. In this situation it is
useful to estimate T1, . . . , Tk as well as test a null hypothesis of the form H0 : T0 = · · · = Tk versus the alternative
hypothesis H1 : Ti �= Tj for at least one i �= j . This allows the researcher to investigate whether the interventions
result in significant changes in the process behavior. In other cases the change-points, and perhaps the number of
change-points, may also be unknown. In such cases, the estimation of these additional parameters is also of great
importance.

Bayesian methods for solving the single change-point problem have been investigated by Maltsev and Silaev (1992),
Silaev (1997) andYakir (1994). Typically these approaches concentrated on optimal stopping strategies for the detection
of a single change in the transition probability matrix for real-time observations from an on-line process. This paper
emphasizes the detection of change-points for fixed sample sizes. A test for homogeneity for general discrete time
Markov sequences, where the sequence of parameters under the alternative hypothesis is a sequence of independent
and identically distributed random variables, has been studied by Ramanathan and Rajarshi (1997). In the current
paper it is assumed that the parameter changes are deterministic. If multiple samples are available, then the method
developed by Anderson and Goodman (1957), and Madansky (1963), can be implemented to detect if at least one
change-point occurs in a Markov chain. The methods of the current paper specifically focus on the problem of a single
observed realization and ultimately considers the problem of determining the number of change-points in an observed
sequence. Some methods in this paper rely on asymptotic likelihood theory. A general review of asymptotic results for
change-point problems is given by Csörgö and Horváth (1997).

This paper develops methods for detecting and estimating change-points in discrete-time Markov chains. Three
situations are addressed. A likelihood ratio test of the equality of the transition probability matrices is developed for the
case when the number and the location of the change-points are known. The p-value for this test is based on asymptotic �2

theory. When the number of change-points is known, but the locations are unknown, maximum likelihood estimation
is used to estimate the location of the change-points. A likelihood ratio test is developed to test the equality of the
transition probability matrices. In this case the p-values must be approximated using the bootstrap. When the number
of change-points is unknown, methods based on AIC and BIC are developed to estimate the number of change-points.
The paper is organized as follows. Section 2 develops the statistical methodology for the detection of change-points.
Section 3 provides empirical evidence that the proposed methods appear to have reasonable behavior. Section 4 applies
the proposed methodology to two examples of observed realizations from Markov chains. A general discussion of the
methodology is given in Section 5.

2. Change-point detection

Suppose X0, . . . , Xn is a realization of length n+1 from a Markov chain with state space Sc and transition probability
matrix P . Let

�ij =
n−1∑
k=0

�(Xk+1 = j, Xk = i)
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and

�i· =
n−1∑
k=0

�(Xk = i),

where � is the indicator function. Bartlett (1951) has shown that the maximum likelihood estimator of P is given by P̂

whose (i, j)th element is

P̂ (i, j) =
{

�ij /�i· if �i· > 0,

�ij if �i· = 0,
(2)

where �ij = �(i = j). The assignment of the elements in row i of P̂ are somewhat arbitrary when �i· = 0, and other
conventions have been suggested than what is used in Eq. (2). For example, another common convention is to set
P̂ (i, j)=0 for j =1, . . . , c when �i· =0. However, the estimates of the transition probability matrices must follow the
restriction of Eq. (1) in order to implement the bootstrap algorithms proposed in this paper. Hence, the estimate given
in Eq. (2) is used for the remainder of the paper. The properties of the estimate given in Eq. (2) are very closely related
to the multinomial distribution, which provides the basis for studying the theoretical properties of the estimator. In
particular, P̂ is consistent and asymptotically normal. For additional properties, see Bartlett (1951), Billingsley (1961a,
b) and Basawa and Rao (1980).

To motivate later development, consider the simplest case where the sequence X0, . . . , Xn has a single change-point
�1. If �1 is known, it can be shown that the maximum likelihood estimators of T0 and T1 are computed by applying
the Bartlett estimator of Eq. (2) to the sequences of observations X0, . . . , X�1

and X�1
, . . . , Xn, respectively. Let

�(a,b)
ij =

b−1∑
k=a

�(Xk+1 = j, Xk = i)

and

�(a,b)
i· =

b−1∑
k=a

�(Xk = i),

where a < b are non-negative integers that do not exceed n. Then the maximum likelihood estimator of T0 is given by
T̂0 whose (i, j)th element is

T̂0(i, j) =
{

�
(0,�1)

ij /�
(0,�1)

i· if �
(0,�1)

i· > 0,

�ij if �
(0,�1)

i· = 0.
(3)

Similarly, the maximum likelihood estimator of T1 is given by T̂1 whose (i, j)th element is

T̂1(i, j) =
{

�
(�1,n)

ij /�
(�1,n)

i· if �
(�1,n)

i· > 0,

�ij if �
(�1,n)

i· = 0.
(4)

To develop a test of H0 : T0 = T1 versus H1 : T0 �= T1 let � be a metric on the space of c × c transition probability
matrices. Then a size-� test of H0 : T0 = T1 rejects H0 when �(T̂0, T̂1) > ��, where �� is the solution of the equation

sup
T ∈T

P(�(T̂0, T̂1) > �|T0 = T1 = T ) = �

with respect to � and T is the collection of all c × c transition probability matrices. Some distance measures for
probability vectors were studied by Cressie and Read (1984). A convenient distance measure for this case is provided
by the log of the likelihood ratio test statistic for testing H0 : T0 = T1 versus H1 : T0 �= T1, which is given by

	 = −2(L(0, �1) + L(�1, n) − L(0, n)), (5)
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where

L(a, b) =
∑

(i,j)∈I(a,b)

�(a,b)
ij log(�(a,b)

ij /�(a,b)
i· ),

and the collection I(a, b) is understood to contain all indices (i, j) such that �(a,b)
ij > 0. See Billingsley (1961b,

Chapter 5). We assume that the distribution of the initial state of the Markov chain has all of its mass concentrated at
X0 =x0, the observed initial state. Even if this is not the case, the asymptotic likelihood theory is still valid as the initial
distribution adds only a single finite term to the likelihood functions, with Probability 1. See Billingsley (1961b, p. 4)

or Basawa and Rao (1980, p. 54). Standard asymptotic test theory can be used to show that 	
d→ �2

c(c−1) as n → ∞
and �1 → ∞ such that �1/n → v ∈ (0, 1). Hence, a level � test of H0 : T0 = T1 rejects the null hypothesis when
	 > �2

1−�;c(c−1)
.

The justification of the asymptotic results for this problem closely follows from the development in Billingsley
(1961b, Chapter 4) with some minor modifications. It is assumed that the transition probability matrices T0 and T1
correspond to Markov chains that have a single ergodic class and no transient states. For the sake of the asymptotic
analysis it is further assumed that �1 is always in the interior of the observed Markov chain as n → ∞. This restriction
makes it possible for asymptotic approximations to be applied to the observed sequences both before and after the
change-point. Therefore, it is assumed that �1/n → v as n → ∞ for some v ∈ (0, 1). See Billingsley (1961b,
Chapter 5) for further discussion of the assumptions required for this analysis. Under these assumptions, the likelihood
function for the change-point problem closely resembles the likelihood function used for testing the homogeneity of
two independent observed realizations from Markov chains. The difference turns out to be asymptotically negligible
and the results outlined in Billingsley (1961b, p. 20) follow. A crucial element of the proof is the asymptotic normality
established in Billingsley (1961b, Equation (4.3)). Because the random variables that occur after the change-point are
not independent of the random variables that occur before the change-point, the result does not follow as simply as in
the case of two independent realizations. However, simple arguments can be used to establish that the partial sums of
the likelihood function in the realization with a change-point are a Martingale, from which the asymptotic normality
can be established using Theorem 9.1 of Billingsley (1961b). The remainder of the asymptotic theory then follows.

When the change-point is unknown, the parameter �1 can be added to the likelihood function as an unknown param-
eter. The maximum likelihood estimator for �1 will generally not exist in closed form, but can be found algorithmically
as

�̂1 = arg max{�1 ∈ {1, . . . , n − 1} : L(0, �1) + L(�1, n)}, (6)

where L(0, �1)+L(�1, n) is the maximum observed likelihood, conditional on �1. This estimator is studied empirically
in Section 3. When �1 is unknown, the maximum likelihood estimator of T0 is given by T̃0 whose (i, j)th element is

T̃0(i, j) =
{

�
(0,�̂1)

ij /�
(0,�̂1)

i· if �
(0,�̂1)

i· > 0,

�ij if �
(0,�̂1)

i· = 0,

and the maximum likelihood estimator of T1 is given by T̃1 whose (i, j)th element is

T̃1(i, j) =
{

�
(�̂1,n)

ij /�
(�̂1,n)

i· if �
(�̂1,n)

i· > 0,

�ij if �
(�̂1,n)

i· = 0.

To test the null hypothesis H0 : T0 = T1 versus the alternative hypothesis H1 : T0 �= T1 the likelihood ratio statistic

	̃ = −2(L(0, �̂1) + L(�̂1, n) − L(0, n)) (7)

is used. A size-� test of H0 : T0 = T1 rejects H0 when 	̃ > 
̃�, where 
̃� is the solution to the equation

sup
T ∈T

P(	̃ > 
̃|T0 = T1 = T ) = �

with respect to 
̃. Unfortunately, specification of 
̃� is more difficult in this case because the standard asymptotic theory
for maximum likelihood estimators is not valid for parameters that are restricted to be integers. See, for example,
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Dahiya (1986). In particular, the martingale argument used to establish the asymptotic �2 results for the case when the
change-point is known is no longer valid for the case when the change-point is unknown. In this case it is convenient
to estimate 
̃� using the bootstrap methodology of Efron (1979).

To motivate the bootstrap method, consider the case where the transition probability matrix under the null hypothesis
is known. In this case, a size-� test of H0 : T0 =T1 =T rejects H0 when 	̃ > 	̄�, where 
̄� is the solution to the equation

P(	̃ > 
̄|T0 = T1 = T ) = �

with respect to 
̄. The value 
̄� may still be difficult to obtain analytically, but could be approximated using a simulation
methodology as follows. Simulate b realizations of length n from a Markov chain with transition probability matrix
T and initial state x0, the observed initial state in the observed sample realization. For each simulated realization,
compute the test statistic given in Eq. (7). Denote these as 	̃∗

1, . . . , 	̃
∗
b. Then 
̄� can the be approximated by the 1 − �

sample percentile of 	̃∗
1, . . . , 	̃

∗
b. Hence 
̄� ≈ 	̃

∗
([(1−�)b]) where [x] denotes the largest integer less than or equal to x.

A p-value for the test can also be approximated with

p = 1

b + 1

[
1 +

b∑
i=1

�(	̃∗
i �	̃)

]
. (8)

See Davison and Hinkley (1997, Section 4.4). In the case where the transition probability matrix T is unknown,
the bootstrap methodology uses the same simulation algorithm described above, but uses the estimated transition
probability matrix T̂ given in Eq. (2) in place of the known transition probability matrix T. This general methodol-
ogy has been studied theoretically by Athreya and Fuh (1992) who obtained conditions under which the bootstrap
method is asymptotically valid. Additional methods for implementing the bootstrap for Markov chains were studied by
Fuh (1993). This bootstrap test is compared empirically to the case where the change-point is known in Section 3.

Estimation and testing methods for the case when there are a known number of change-points extend readily
from the methods for a single change-point. Suppose that the observed realization X0, . . . , Xn has k change-points
�1 < · · · < �k . As before, define �0 = 0 and �k+1 = n. If �1 < · · · < �k are known, it can be shown that the maximum
likelihood estimator of Tm is computed by applying the Bartlett estimator of Eq. (2) to the sequence of observations
X�m

, . . . , X�m+1
. Hence, the maximum likelihood estimator of Tm is given by T̂m whose (i, j)th element is

T̂m(i, j) =
{

�
(�m,�m+1)

ij /�
(�m,�m+1)

i· if �
(�m,�m+1)

i· > 0,

�ij if �
(�m,�m+1)

i· = 0

for m = 0, . . . , k.
To test H0 : T0 = T1 = · · · = Tk versus H1 : Ti �= Tj for some i �= j , the test statistic is again based on the log of

the likelihood ratio test statistic, given by

� = −2

(
k∑

m=0

L(�m, �m+1) − L(0, n)

)
.

Standard asymptotic test theory can be used to show that �
d→ �2

c(c−1)k as n → ∞ and �i → ∞ such that |�i −�i−1| →
∞ for i=1, . . . , k+1. Hence, a level � test of H0 : T0 =T1 =· · ·=Tk rejects the null hypothesis when � > �2

1−�;c(c−1)k
.

When the change-points are unknown, the parameters �1, . . . ,�k are added to the likelihood function as unknown
parameters. The maximum likelihood estimators for �1, . . . ,�k will generally not exist in closed form, but can be
found algorithmically as

(�̂1 · · · �̂k)
′ = arg max

{
�1 < �2 < · · · < �k ∈ {1, . . . , n − 1} :

k∑
m=0

L(�m, �m+1)

}
, (9)

where

k∑
m=0

L(�m, �m+1) (10)
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is the maximum observed likelihood, conditional on �1, . . . ,�k . Hence, when �1, . . . ,�k are unknown, the maximum
likelihood estimator of Tm is given by T̃m whose (i, j)th element is

T̃m(i, j) =
{

�
(�̂m,�̂m+1)

ij /�
(�̂m,�̂m+1)

i· if �
(�̂m,�̂m+1)

i· > 0,

�ij if �
(�̂m,�̂m+1)

i· = 0
(11)

for m = 0, . . . , k.
The test of H0 : T1 = · · · = Tk versus H1 : Ti �= Tj for some i �= j for the case when �1, . . . ,�k are unknown is

developed in the same manner as with a single unknown change-point. The likelihood ratio test statistic is given by

�̃ = −2

(
k∑

m=0

L(�̂m, �̂m+1) − L(0, n)

)
, (12)

where a size � test will reject H0 when �̃ > �̃�. As with the case of a single change-point, the value �̃� is estimated using
the bootstrap as follows. Simulate b realizations of length n from a Markov chain with transition probability matrix
T̂ and initial state x0, the observed initial state from the observed sample realization. For each simulated realization,
compute the test statistic given in Eq. (12). Denote these as �̃∗

1, . . . , �̃
∗
b. Then �̃� can be approximated by the 1 − �

sample percentile of �̃∗
1, . . . , �̃

∗
b. The p-value for the test can be approximated using the same method as in Eq. (8).

Further complications occur when the number of change-points k is also unknown. The most straightforward approach
to solving this problem is to treat the parameter k as another unknown parameter in the likelihood function. However,
since k controls the number of parameters fit to the observed data, and hence the dimension of the parameter space,
it is reasonable to penalize models with more parameters to prevent over-fitting of the data. Otherwise, reasonable
parsimonious models may be overlooked. Therefore measures such as AIC (Akaike, 1974) and BIC (Schwarz, 1978)
are suggested for this purpose. The AIC objective function is given by

AIC(k) = −2
k∑

m=1

L(�̂m, �̂m+1) + 2c(c − 1)(k + 1),

where �̂m is the maximum likelihood estimate of �m conditional on k as given in Eq. (9). The AIC estimate of k is
given by

k̂A = arg min{k ∈ {0, . . . , n} : AIC(k)}.
Similarly, the BIC objective function is given by

BIC(k) = −2
k∑

m=1

L(�̂m, �̂m+1) + ln(n)c(c − 1)(k + 1),

so that the BIC estimate of k is given by

k̂B = arg min{k ∈ {0, . . . , n} : BIC(k)}.
The criteria are very similar with the main difference being that the BIC objective function uses a greater penalty for
adding additional parameters to the model. These estimates are studied empirically in Section 3. Once the value of
k is estimated using either the AIC or BIC objective functions, estimates of the change-points and the corresponding
transition probability matrices can be computed using the methods given in Eqs. (9) and (11), using the value of k̂ in
place of k.

3. Empirical studies

In this section, the estimators and the tests developed in Section 2 are investigated empirically using computer based
simulations. In the first study, the performance of the maximum likelihood estimator for a single change-point given
in Eq. (6) is considered. To study this estimator, 1000 realizations from a Markov chain with change-point �1 and
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Fig. 1. Estimated relative mean absolute deviation of the estimator of a single change-point for q1 = 0.20 (solid line), q1 = 0.15 (dashed line),
q1 = 0.10 (dotted line) and q1 = 0.05 (dot-dash line).

probability transition matrices T0 and T1 are simulated. Realizations of length n = 100, 200, . . . , 1000 are considered.
The change-point is located at n/2. Note that this is the best possible situation, as moving the change-point near either
end of the observed realization essentially decreases the sample size. To simplify the study, the c × c probability
transition matrices used to simulate the realizations all have the same general form with (i, j)th element

T (i, j) =
{

1 − (c − 1)q if i = j,

q if i �= j,
(13)

where 0 < q < (c − 1)−1 is a specified parameter. Denote the value of q used for the transition probability matrix Ti

as qi . For this study c = 3 is used and the transition probability matrix T0 has q0 held at 0.3 throughout the simulation
while the values 0.05, 0.10, . . . , 0.20 are used for the value of q1 in the transition probability matrix T1. For each
combination of simulation parameters discussed above, the change-point estimator is computed on each of the 1000
simulated realizations. The absolute difference between the estimated change-point and the true location of the change-
point is then averaged over the 1000 simulated realizations to estimate E|�̂1 − �1|. Because the parameter space of
the change-point increases with n, the mean absolute deviation estimates are reported as a percentage of the realization
length n to provide a measure of performance relative to the size of the parameter space. That is

relative mean absolute deviation =
̂

E|�̂1 − �1|
n

× 100%.

It has been suggested by Dahiya (1986) that the probability of correctly estimating the parameter value is a better
measure of estimator performance in the case of a discrete parameter space. This measure is not used in the current
investigation because the necessary conditions under which this probability is related to the mean square error of the
estimator may not hold for all of the cases studied.

The results of the simulation are presented in Fig. 1. One can observe from Fig. 1 that the relative mean absolute
deviation of the change-point estimator decreases as the sample size increases and as the difference between T0 and
T1 becomes larger. This indicates that the asymptotic behavior of the change-point estimator appears to be reasonable.
Note that if we used an estimator of the change-point that simply randomly picked one of the time points between
0 and n as the estimate of the change-point, independent of the data, then we would expect a relative mean absolute
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Fig. 2. Estimated relative mean absolute deviation of the estimators of two change-points for the smaller change-point with q0 = 0.3, q1 = 0.2 and
q2 = 0.1 (solid line), the larger change-point with q0 = 0.3, q1 = 0.2 and q2 = 0.1 (dashed line), the smaller change-point with q0 = 0.5, q1 = 0.3
and q2 = 0.1 (dotted line), the larger change-point with q0 = 0.5, q1 = 0.3 and q2 = 0.1 (dot-dash line).

deviation of 25%. This result can aid in determining which of the results in Fig. 1 show that the proposed estimator is
essentially not useful. For example, when q2 = 0.20 it is apparent that a sample size of at least 200 is required before
that method produces a meaningful estimator.

This study also considered processes with two change-points, located at n/4 and n/2 with corresponding transition
probability matrices T0, T1 and T2. Two sets of transition probability matrices are considered: q0 = 0.3, q1 = 0.2 and
q2 = 0.1 and q0 = 0.5, q1 = 0.3 and q2 = 0.1. The results of the simulation are presented in Fig. 2. The same general
behavior is observed as in the case of a single-change-point except that the estimated relative mean absolute deviations
are smaller than in the single change-point case. This is due to the fact that the two change-points are being fit within
the same parameter space and there is consequently less room for variation. One can also note that the estimates of
the change-point located at n/4 have lower relative mean absolute deviations than the estimates of the change-point
located at n/2. Again, there is less room in the parameter space for the lower change-point to be fit in below the upper
change-point.

The empirical power of the tests for the null hypothesis H0 : T0 = T1 versus the alternative hypothesis H1 : T0 �= T1
under both the conditions where �1 is known and unknown are also studied. The parameters used are the same as
those used in the study of the change-point estimator, except that the condition q0 = q1 is added so that the achieved
significance level of the tests can be studied. The observed empirical power for the test when �1 is known is given in
Fig. 3 and the observed power for the test when �1 is unknown is given in Fig. 5. One can observe from Figs. 3 and 5
that the power functions for both tests behave in a reasonable manner. When the null hypothesis is true (q1 = 0.3), the
number of rejections is close to what would be expected for a significance level of � = 0.10. When the null hypothesis
is not true, the power of both tests increases as the sample size and the difference between the null and alternative
hypothesis, given by |q0 − q1|, increases. One can also observe that the test for the case when the location of the
change-point is unknown is less powerful than for the case when the change-point is known. This difference decreases
as the sample size and |q0 − q1| increase.

This study also included two change-points, located at n/4 and n/2 with corresponding transition probability matrices
T0, T1 and T2. Four sets of transition probability matrices are considered: q0 = q1 = q2 = 0.10, q0 = q1 = 0.10 and
q2 =0.15, q0 =0.10, q1 =0.15 and q2 =0.20, and q0 =0.10, q1 =0.20 and q2 =0.30. The observed empirical power
for the test when �0 and �1 are known is given in Fig. 4 , and the observed power for the test when �0 and �1 are
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Fig. 3. The observed number of rejections in 1000 simulated realizations for the test of H0 : T0 = T1 when �1 is known and q1 = 0.30 (solid line),
q1 = 0.25 (dashed line), q1 = 0.20 (dotted line) and q1 = 0.15 (dot-dash line). The specified significance level is � = 0.10.
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Fig. 4. The observed number of rejections in 1000 simulated realizations for the test of H0 : T0 = T1 = T2 when �1 and �2 are known and
q0 = q1 = q2 = 0.10 (solid line), q0 = q1 = 0.10 and q2 = 0.15 (dashed line), q0 = 0.10, q1 = 0.15 and q2 = 0.20 (dotted line) and q0 = 0.10,
q1 = 0.20 and q2 = 0.30 (dot-dash line). The specified significance level is � = 0.10.

unknown is given in Fig. 6. The same general trends as with the single change-point case are observed in these results
with the exception that the achieved significance level is larger than would be expected when � = 0.10 for smaller
sample sizes (Figs. 5 and 6).
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Fig. 5. The observed number of rejections in 1000 simulated realizations for the test of H0 : T0 = T1 when �1 is unknown and q1 = 0.30 (solid
line), q1 = 0.25 (dashed line), q1 = 0.20 (dotted line) and q1 = 0.15 (dot-dash line). The specified significance level is � = 0.10.
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Fig. 6. The observed number of rejections in 1000 simulated realizations for the test of H0 : T0 = T1 = T2 when �1 and �2 are unknown and
q0 = q1 = q2 = 0.10 (solid line), q0 = q1 = 0.10 and q2 = 0.15 (dashed line), q0 = 0.10, q1 = 0.15 and q2 = 0.20 (dotted line) and q0 = 0.10,
q1 = 0.20 and q2 = 0.30 (dot-dash line). The specified significance level is � = 0.10.

The use of the AIC and BIC methods for estimating the number of change-points is also investigated. As in the
previous studies, realizations from a Markov chain with c = 3 and a single change point located at n/2 are simulated.
Two cases are considered. The first case uses n = 200, q0 = 0.3 and q1 = 0.1, and the second case uses n = 300,
q0 =0.3 and q1 =0.05. For each case, 50 realizations are simulated. The AIC and BIC criteria are then used to estimate
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Table 1
Frequency for each of the estimated values of k from 50 simulated realizations

Model Method Estimated k

0 1 2 3 or more

n = 200, q0 = 0.30, q1 = 0.10 AIC 0 3 6 41
n = 200, q0 = 0.30, q1 = 0.10 BIC 13 37 0 0

n = 300, q0 = 0.30, q1 = 0.05 AIC 0 0 2 48
n = 300, q0 = 0.30, q1 = 0.05 BIC 0 50 0 0

The true value of k in each case is 1.

the value of k. Because of the computational cost of the estimation algorithms, only the values k̂ ∈ {0, 1, 2, 3} are
considered. Since values larger than k = 3 are not considered, when k̂ = 3 the result is classified as k̂�3. The results
of the simulations are given in Table 1. One can observe from Table 1 that the BIC method is clearly better suited for
the problems studied here, while the AIC criterion appears to over-fit the model in almost every case. In fact, as the
sample size and the difference between q0 and q1 increases, the performance of the AIC method becomes worse. This
indicates that the AIC method produces a possibly inconsistent estimator of k. The estimate of k based on the BIC
method becomes more reliable as the sample size and the difference between q0 and q1 increase.

4. Examples

4.1. Industrial machine usage

Consider an industrial machine that has three states of usage: not in use (State 1), normal use (State 2) and heavy
use (State 3). Suppose that the usage state of the machine is observed once an hour, and that the sequence of hourly
state observations follows a discrete time irreducible ergodic Markov chain. The management of the manufacturing
plant that utilizes the machine is interested in avoiding State 3, which increases the maintenance and repair costs
of the machine. A new work flow policy is proposed by the management at the plant. In order to test whether the
new work flow policy is effective, the policy is implemented halfway through an observed 60 h manufacturing cycle.
Table 2 presents a simulated sequence of hourly state observations from such a process. The observation at hour 0
indicates the initial state of the machine.

The change in work flow policy is implemented mid-cycle so that transition from the 30th to the 31st observation
is the first transition observed under the new policy. Of interest is evaluating the transition probability matrix before,
and after, the work flow policy change and testing whether the difference between the estimated transition probability
matrices is statistically significant. The maximum likelihood estimators of T0 and T1 calculated from the observed
sequence in Table 2 are

T̂0 =
[0.36 0.21 0.43

0.67 0.33 0.00
0.40 0.10 0.50

]

and

T̂1 =
[0.17 0.66 0.17

0.18 0.44 0.38
0.33 0.56 0.11

]
.

Both estimated transition probability matrices correspond to irreducible ergodic Markov chains so that the limiting
probabilities of each of the states are easy to compute. For a Markov chain with transition probability matrix given by
T0, the limiting probabilities of States 1, 2 and 3 are 0.43, 0.19 and 0.22, respectively. Similarly, for a Markov chain
with transition probability matrix given by T1, the limiting probabilities of States 1, 2 and 3 are 0.22, 0.52 and 0.26,
respectively. It appears that the new work flow policy is successful in that the proportion of time in States 1 and 3
is reduced, providing more efficient use of the machine and lower maintenance costs. To determine if the difference
between T̂0 and T̂1 is significant, we use the likelihood statistics given in Eq. (5), where the change-point is known to
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Table 2
The initial state (hour 0) and 60 hourly observed state observations for the machine usage process described in the example

Hour 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
State 1 2 2 1 3 3 2 2 1 1 3 3 3 1 3 1

Hour 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
State 3 1 1 1 2 1 1 1 3 3 3 1 2 1 3

Hour 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
State 2 1 2 3 1 3 2 2 2 2 2 1 2 2 2

Hour 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
State 3 2 2 3 3 2 3 1 1 2 1 2 3 2 3

The new work flow policy is implemented at hour 30, so that the first transition under the new policy is from hour 30 to hour 31.
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Fig. 7. Seasonally adjusted monthly unemployment rate for Texas between January 1992 and August 2004. The vertical dashed lines indicate the
locations of the estimated change-points in the series.

be 30. Analysis of the observed sequence in Table 2 yields 	 = 16.3247, a �2-statistic with 6 degrees of freedom. The
corresponding p-value for the test of equality between T0 and T1 is 0.01211. Therefore, the change in work flow policy
has a significant effect on machine use at the 5% significance level.

4.2. Texas unemployment data

As an example we consider the monthly data on state unemployment rates provided by the US Department of Labor.
Specifically, we consider the unemployment rate for the state of Texas between January 1992 and August 2004. The
data are seasonally adjusted and are readily available at the Department of Labor website (http://stats.bls.gov). A plot
of the observed unemployment rate is given in Fig. 7. Let Ri be the observed unemployment rate for the ith month for
i = 0, . . . , n + 1. Define a simple two-state stochastic process from this observed process as Xi = �(Ri < Ri+1) + 1
for i = 1, . . . , n. We will assume that this series can be modeled using a Markov chain with possible change-points.
The results of the empirical studies of Section 3 tend to indicate that the BIC method is the more appropriate for

http://stats.bls.gov
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Table 3
Value of BIC for k = 0, 1, . . . , 5 estimated change-points in the Texas unemployment rate series

k 0 1 2 3 4 5

BIC(k) 1.34638 1.30543 1.22506 1.24246 1.27579 1.62787

estimating the number of change-points in this model. Therefore the BIC method is computed for fitting k=0, 1, . . . , 5
change-points for the series. The values of the BIC are given in Table 3. One can clearly observe from Table 3 that
the BIC measure is minimized for the model that contains two change-points. The corresponding maximum likelihood
estimates of the change-points are �̂1 = 106 and �̂2 = 135. These months correspond to December 2000 and May
2003. The locations of the beginning points of these transitions are plotted in Fig. 7. One can observe from the figure
that the behavior of the series changes near both of these points. The estimated transition probability matrices are

T̂0 =
[

0.7333 0.2667
0.6774 0.3226

]
,

T̂1 =
[

0.0000 1.0000
0.0769 0.9231

]

and

T̂2 =
[

0.7273 0.2727
1.0000 0.0000

]
.

The estimates of the transition probability matrices indicate that while the behavior of the series is more erratic prior
to the first change-point, one can observe that between the first and second change-points the series has a clear affinity
for State 2, where the rate increases from the previous month. After the second change-point there is a clear affinity
for State 1, where the rate decreases from the previous month. The general behavior is clearly indicated in the original
series given in Fig. 7.

5. Discussion

This paper presents an array of methods that are designed to detect and estimate change-points in observed realizations
from Markov chains. As was indicated, if the locations of the change-points are known, then the testing theory follows
directly from the standard likelihood and asymptotic theory that has been previously developed for Markov chains.
In the case where the locations of the change-points are unknown, the likelihood ratio is still used for testing, but the
asymptotic theory does not hold. Therefore, the bootstrap is used to estimate p-values in this case. Empirical evidence
from a small simulation study reveals that the bootstrap has the potential to be an effective tool for this problem. In the
most difficult case where the number and location of the change-points are unknown, the AIC and BIC measures were
suggested to aid with model selection. A small simulation study revealed that the AIC method is apparently unsuited
for this purpose, but that the BIC method is potentially a useful method.

While the results of this work are encouraging, there are many potential avenues for additional research. In the case
where the number, but not the location, of the change-points is known, it would be helpful to theoretically investigate
the asymptotic null distribution of the likelihood ratio statistic. A comparison in the performance of the test based on
using the asymptotic distribution and the bootstrap method would then be possible. In the case where the number of
change-points is not known, it would be helpful to investigate the possibility of fine-tuning the penalty term in the BIC
measure in order to provide the most efficient estimate of k. Additionally, other theoretical properties of the estimate
of k, such as the bias and mean squared error, need to be investigated as well.

Estimation of multiple change-points in a long observed realization can be computationally burdensome. Note that

for a series of length n + 1, there are
(

n−1
k

)
possible locations for the k change-points �1, . . . ,�k . For example,

if n = 500 and k = 5, then the function given in Eq. (10) must be evaluated more than 252 billion times. Further,
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to evaluate AIC(k) or BIC(k) for k ∈ {0, . . . , v}, the function given in Eq. (10) must be evaluated

v∑
k=0

(
n − 1

k

)

times. Therefore, to solve large problems using these methods, the development of computational methods that would
ease this burden would be important.

Finally, it should be noted that the methodology studied in this paper can be easily modified to work with the case
where there are several independent realizations instead of just a single observed realization. However, in this case it
would be essential to assume that the sequence of probability transition matrices for the Markov chain associated with
each observed realization is the same. Another possible generalization of this methodology would be to the case where
Sc is countable.
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