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Introduction

Most problems of process design, process control, pro-
cess operations, and molecule design are determined
by the optimal solutions; however, those problems
are mainly characterized by the existence of multiple
minima and maxima, as well as first-, second-, and
higher-order saddle points. During the last decade we

have experienced a rapid development of new meth-
ods for deterministic global optimization as well as the
application of available global optimization algorithms
in important engineering fields [1,2,9,10,11,12,13,14].
Recently, in order to locate the global solutions to the
nonconvex phase stability analysis problems [3,4,5],
a quadratic underestimation function based branch-
and-bound algorithm, i. e., QBB, was developed for
twice-differentiable nonlinear programs (NLPs) in
terms of the simplicial partition of the constrained re-
gion [6,7].

Formulation

The nonconvex optimization problem considered in
this section can be formulated as

(P)

ˇ̌
ˇ̌
ˇ̌
ˇ

min
x

f (x)

subject to gi (x) � 0 i D 1 ; : : : ; m ;

x 2 S0 � <n ;

where f and gi belong to C2, the set of twice-
differentiable functions, and S0 is a simplex defined by

S0 D

(
x 2 <n : x D

nC1X
iD1

�iVi ; �i � 0;
nC1X
iD1

�i D 1

)
;

where Vi 2 V � <n ; i D 1; 2; : : : ; nC 1 are the
n C 1 vertices of the simplex S0, and V is the set of
its vertices. Let Dg be a subset of<n defined by

Dg D fx 2 <n : gi(x) � 0 ; i D 1; 2; : : : ; mg :

In general, the set Dg is nonconvex and even dis-
connected. We assume throughout this section that
problem (P) has an optimal solution, unless otherwise
stated. For any nonconvex optimization problem, i. e.,
(P), the QBB algorithm proposed in this section belongs
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to a branch-and-bound scheme. During each iteration
of this framework, a branching step and a bounding
step must be finished simultaneously.

Simplicial Partition

For the branching procedure, the simplex S0 will be di-
vided into refined subregions by using simplicial parti-
tion. For such kind of branching, it is a simple matter to
check that for every i 2 I, where I is the vertex set of S0,
the points V1, . . . ,Vi-1,U,Vi+1 , . . . ,Vn+1 are vertices of
a simplex Si � S; S is the current simplex, and that

(int Si) \
�
int S j

�
D � 8 j ¤ i ; [

i2I
Si D S :

Then, the simplexes Si, i 2 I, form a subdivision of the
simplex S via U. Each Si will be referred to as a sub-
simplex of S. An important special case is the bisection
where U is a point of the longest edge of the simplex S,
for example, U 2 [Vm ;Vn], i. e.

kVm � Vnk D max
i< j

i; jD1; ::: nC1

˚

Vi � V j

� ;

where k�k denotes any given norm in <n, and U D
aVm C (1 � a)Vn with 0 < a � 1/2. Adjiman et al. [9]
proved that this simplicial bisection is exhaustive since
ı (Sk)! 0 as k! C1.

Quadratic Underestimation Function
for General Non-convex Structures

In the bounding step of a branch-and-bound algo-
rithm, a lower bound is always obtained by construct-
ing a valid convex underestimation problem for the
original one appearing in the problem (P), and solving
the relaxed convex NLP to global optimality. For the
current simplex given by

S D

(
x 2 <n : x D

nC1X
iD1

�iVi ; �i � 0;
nC1X
iD1

�i D 1

)
;

(1)

where Vi 2 V � <n ; i D 1; 2; : : : ; n C 1 are the
n C 1 vertices of the current simplex S, and V is the set
of these vertices. Then, we intend to compute a lower
bound �(S) of the objective function f on S \ Dg . In
other words, we compute a lower bound for the optimal

value of the problem

(P(S))

ˇ̌
ˇ̌
ˇ̌
ˇ

min
x

f (x)

subject to gi (x) � 0 i D 1; : : : ; m ;

x 2 S � <n :

As mentioned above, f and gi are generic nonconvex
functions belonging to C2, then the main idea for com-
puting a lower bound �(S) is to construct from prob-
lem (P(S)) a convex problem by replacing all those non-
convex functions with their respective convex under-
estimation functions, then solving the resulting relaxed
convex problem. In order to achieve this, we see the fol-
lowing definition:

Definition 1 Given any nonconvex function
f (x) : S ! <; x 2 S � <n belonging to C2, the
following quadratic function is defined by

F(x) D
nX

iD1

aix2i C
nX

iD1

bixi C c ; (2)

where x 2 S � <n and F(x) D f (x) holds at all ver-
tices of S. The ai’s are nonnegative scalars and are large
enough such that F(x) � f (x); 8x 2 S.

It is trivial to see that F(x) is convex since all quadratic
coefficients, i. e., ai’s , are nonnegative. Theorem 2.2.1
in [7] ensures that F(x) defined by Definition 1 is a con-
vex underestimator of f (x) if the difference function be-
tween them, i. e., D(x) D F(x) � f (x), is a convex func-
tion. It is well known that D(x) is convex if and only
if its Hessian matrix HD(x) is positive semidefinite in
the current simplex. A useful convexity condition is de-
rived by noting thatHD(x) is related directly to the Hes-
sian matrix Hf (x) of f (x), x 2 S by the following equa-
tion:

HD(x) D 2� �H f (x) ;

where � is a diagonal matrix whose diagonal elements
are ai’s defined in Definition 1. Analogous to the “di-
agonal shift matrix” defined in [9], � here is referred
to as the diagonal underestimation matrix, since these
parameters guarantee that F(x) defined by Eq. 2 is a rig-
orous underestimator of the generic nonconvex func-
tion f (x). D(x), as defined, is convex if and only if
2� � Hf (x) D 2diag(ai) � Hf (x) is positive semidefi-
nite for all x 2 S.
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In order to simplify the parameter calculation, the
underestimator F(x) is reformulated by using a single
nonnegative a value, as follows:

F(x) D a
nX

iD1

x2i C
nX

iD1

bi xi C c : (3)

Then, all diagonal elements of the diagonal underes-
timation matrix � are therefore equal to the uniform
quadratic coefficient a defined by Eq. 3. Some interval
arithmetic approaches are provided in [5,7] to estimate
the quadratic coefficients with theoretical guarantee in
the current simplex.

After the quadratic coefficients have been identified,
the linear and constant coefficients of F(x) defined by
Eqs. 2 or 3, i. e., bi’s and c, can be given by the quadratic
coefficients ai’s and the current simplex. In view of Def-
inition 1, we know F(x) D f (x) holds at all vertices of S,
so the following linear equation group can be obtained
as

VkT�VkCbTVkC c D f
�
Vk
�

k D 1; : : : ; nC1 ;

where � 2 <n�n is the diagonal underestimation ma-
trix whose diagonal elements are the quadratic term co-
efficients, ai’s defined in Eqs. 2 or 3. b 2 <n is the lin-
ear coefficient vector whose elements are bi’s defined in
Eqs. 2 or 3, and c is a scalar:

bTVkC c D f
�
Vk
�
�VkT�V k D 1; : : : ; nC 1 :

The vector b 2 <n is augmented as (b; c) 2 <nC1,
in order to include the scalar c. In the same way,
the matrix V 2 <(nC1)�n is augmented as (V; 1) 2
<(nC1)�(nC1), where 1 is a column unity matrix of <n .
(V; 1) 2 <(nC1)�(nC1) is a regular square matrix since
V 2 <(nC1)�n is the coordinate matrix of the simplex
which is linearly independent. Then we have

(b; c)T D (V; 1)�1
�
f (V) � VT�V

�
;

where [ f (V)� VT�V] 2 <nC1 is a column vector for
the nC 1 vertices of the current simplex. By virtue of
this equation, it is obvious that the linear and con-
stant coefficients defined by Eqs. 2 or 3 are determined
uniquely by the quadratic coefficients and the current
simplex.

By replacing all the nonconvex functions in prob-
lem (P(S)) with their corresponding quadratic function

based convex underestimators described by Eq. 3, we
have the following relaxed convex programming prob-
lem (QP(S)):

(QP(S))

ˇ̌
ˇ̌
ˇ̌
ˇ

min
x

F(x)

subject to Gi(x) � 0 i D 1; : : : ; m ;

x 2 S � <n ;

where

F(x) D
nX

iD1

a f
i x

2
i C

nX
iD1

b f
i xi C c f ;

G j(x) D
nX

iD1

ag j
i x

2
i C

nX
iD1

bg j
i xi C cg j

j D 1; 2; : : : ; m :

Let DG be a subset of<n defined by

DG D fx 2 <n : Gi (x) � 0 ; i D 1; 2; : : : ; mg :

Obviously, the set DG is convex and compact. It should
be noted that only additional mC 1 quadratic parame-
ters, i. e., af and agi for i D 1; 2; : : : ; m, are introduced
during the above transformation process if the uniform
underestimation function is used, since all other lin-
ear and constant coefficients can be calculated by those
quadratic parameters and the current simplex.

QBB Underestimators for Special Structures

For the concave function structure, denoted by
f CA(x), whose eigenvalues are all nonpositive, i. e.,
�i; x2S(x) � 0. Then, the quadratic coefficient of its un-
derestimator defined by Eq. 2 is zero, so the valid
lower bound of the concave function structure over
the current simplex is a linear function. In fact, the
valid bound constructed by Eq. 2 is equivalent to the
convex envelope of the concave function over a sim-
plex [7]. Let S be a simplex generated by the ver-
tices V1,V2, . . . ,Vn+1, i. e., S D fx 2 <n : x DPnC1

iD1 �iVi ; �i � 0;
PnC1

iD1 �i D 1g, and let f CA(x) be
a concave function defined on S. Then the con-
vex envelope of f CA(x) over S is the affine function
LCA(x) D bTxC c that is uniquely determined by the
system of linear equations f CA(Vi) D bTVi C c for
i D 1; : : : ; n C 1.

For the general quadratic function presented by

f (x) D xTQxC qTx



3114 Q QBB Global Optimization Method

(note H f (x) D Q), we have the diagonal underestima-
tion matrix, �, constructed on the basis of interval
arithmetic [7], as

a D max
i

�
0;

1
2
�
Q
i

	

for the uniform case, and for the nonuniform case, we
get

ai D max

8<
:0;

1
2

�
Qi i C

X
j¤i

ˇ̌
Qi j
ˇ̌�
9=
; :

Then, we have the quadratic underestimation function
as

F(x) D xT�xC bTxC c ;

where the linear and constant coefficients, i. e., (b, c),
can be determined uniquely by the quadratic coeffi-
cients calculated above and the current simplex.

Properties of the QBB Underestimator

For construction of the QBB underestimator, only
quadratic coefficients need to be calculated since the
linear and constant ones defined by Eqs. 2 or 3 can be
determined uniquely by the quadratic coefficients and
the current simplex. Another important property of the
QBB algorithm is that the quadratic function based un-
derestimator is always convex throughout the problem
space. A potential benefit of this property is that it al-
lows the convex solver applied to get the solution to the
underestimator to have a feasible or an infeasible con-
vergence path. Geometrically speaking, the QBB uses
a convex quadratic function to approximate the convex
part of a general nonconvex function directly, which
can bypass the concave parts and avoid the overestima-
tion for them.

Function Decomposition

It should be noted that the relaxed convex pro-
gramming problem (QP(S)) can contain not only the
quadratic underestimation functions for the generic
nonconvex terms, but also the convex function
terms which are not necessarily transformed into the
quadratic underestimators. Then, the final underesti-
mation strategy of the relaxed problem (QP(S)) can

be slightly decomposed into the following convex pro-
gramming formulation, as

(QP(S)0)

ˇ̌
ˇ̌
ˇ̌
ˇ

min
x

F 0(x)

subject to G0i (x) � 0 i D 1; : : : ; m ;

x 2 S � <n ;

where

F 0(x) D f L(x)C f C(x)C LCA
f (x)C FNC(x) ;

G0i (x) D gLi (x)C gCi (x)C LCA
gi (x)C GNC

i (x)

i D 1; 2; : : : ; m ;

and f L(x), f C(x),Lf CA(x), giL(x), giC(x), and LCA
gi (x)

represent the linear terms, convex terms, and the lin-
ear underestimation functions for the concave terms in
the objective function and the constraints, respectively.
FNC(x) and Gi

NC(x) represent the quadratic convex
underestimation functions for the generic nonconvex
terms. Comparedwith the relaxed problem (QP(S)), the
relaxed problem (QP(S)0) contains not only quadratic
function terms, but also the generic convex terms of the
original problem.

Algorithmic Procedure of QBB

At the start of this section, problem (P) is formulated
over an initial simplex S0 which can be easily obtained
by using an outer approximation approach. Now, we
are in a position to present the proposed algorithm for
solving problem (P) by using the basic operations de-
scribed in previous sections.

Step 1 – Initialization. A convergence tolerance, "c,
and a feasibility tolerance, "f , are selected and the itera-
tion counter k is set to be zero. The global lower and up-
per bounds �0 and �0 of the global minimum of prob-
lem (P) are initialized and an initial current point xk, c is
randomly selected.

Step 2 – Local solution of problem (P) and up-
date of upper bound. The nonconvex and nonlin-
ear optimization problem (P) is solved locally within
the current simplex S. If the solution f klocal of problem
(P) is "f -feasible, the upper bound � k is updated as
�k D min(�k; f klocal).

Step 3 – Partitioning of the simplex. The current
simplex, Sk , is partitioned into the following two sim-



QBB Global Optimization Method Q 3115

plexes ( r D 1; 2 ):

Sk; 1 D
�
Vk; 0; : : : ; Vk;m ; : : : ;

Vk;m C Vk; l

2
; Vk; n

�
;

Sk; 2 D
�
Vk; 0; : : : ;

Vk;m C Vk; l

2
; : : : ; Vk; l ; Vk;n

�
;

where, k,m and k, l correspond to the vertices with
the longest edge in the current simplex, i. e., (k; m);
(k; l) D argmaxi< j

˚

Vk; j � Vk; i


�.

Step 4 – Update of ark; f ; b
r
k; f ; c

r
k; f and ark; g i ;

brk; g i ; c
r
k; g i inside both subsimplexes r D 1; 2. The

nonnegative parameters ark; f and ark; g i of the general
nonconvex terms in the objective function and the
constraints are updated inside both simplexes r D 1; 2
according to the methods presented in former sections,
and the corresponding linear and constant coefficients,
i. e., brk; f ; c

r
k; f and brk; g i ; c

r
k; g i , are renewed accord-

ingly.
Step 5 – Solutions inside both subsimplexes

r D 1; 2. The convex programming problem (QP(S)0)
is solved inside both subsimplexes (r D 1; 2) by using
some nonlinear programming solver. If a solution Fk; r

sol
is feasible and less than the current upper bound, � k,
then it is stored along with the solution point xk; rsol .

Step 6 – Update iteration counter k and lower
bound �k. The iteration counter increases by 1,

k k C 1 ;

and the lower bound �k is updated to the minimum so-
lution over the stored ones from the previous iterations.
Furthermore, the selected solution is erased from the
stored set:

�k D Fk0; r0
sol ;

where, Fk0; r0
sol D min

r; I
fFI; r

sol ; r D 1; 2; I D 1; : : : ;

k � 1g. If the set I is empty, set �k D �k and go to step
8.

Step 7 –Update the current point xk; c and the cur-
rent simplex Sk. The current point is selected to be the
solution point of the previously found minimum solu-
tion in step 6,

xk; c D xI
0; r0
sol ;

and the current simplex becomes the subsimplex con-
taining the previously found solution,

Sk D

 
Vk0; 0; : : : ; Vk0;m ; : : : ;

Vk0;m CVk0; l

2
; : : : ;

Vk0; n
�
; if r0 D 1 ;

Sk D

 
Vk0; 0; : : : ;

Vk0;m C Vk0; l

2
; : : : ;

Vk0; l ; : : : ; Vk0; n
�
; otherwise:

Step 8 – Check for convergence. If (�k � �k) > "c ,
then return to step 2. Otherwise, "c-convergence has
been reached. The global minimum solution and the so-
lution point are given as

f �  f c; k
00

;

x�  xc; k
00

;

where, k00 D argI
˚
f c; I D �k

�
; I D 1; : : : ; k.

Conclusion

The QBB algorithm is guaranteed to identify the global
optimum solution of problems belonging to the broad
class of twice-differentiable NLPs. For any such prob-
lem, the ability to generate progressively tighter con-
vex lower bounding problems in a branch-and-bound
framework guarantees the convergence of this algo-
rithm to within " of the global optimum solution un-
der the exhaustive simplicial partition of the initial sim-
plex. Different methods [7] have been developed for
the construction of the convex valid underestimators
for special function structures and the generic noncon-
vex function structures, where the maximal eigenvalue
analysis of the interval Hessian matrix provides the rig-
orous guarantee for the QBB algorithm to converge to
the global solution.
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QR factorization is a process of reducing a square (rect-
angular) matrix into upper triangular (upper trape-
zoidal) form by applying a series of elementary orthog-
onal transformations.

Properties of Orthogonal Transforms

Orthogonal transforms are where the transformation
matrices are orthogonal. Orthogonal matrices are
square matrices where each column is a unit vector and
each column is mutually orthogonal to every other col-
umn. This implies that Q 2 Rn × n is orthogonal if and
only if Q | Q = QQ| = I (i. e. the transpose of an or-
thogonal matrix is its inverse). Orthogonal transforma-
tions are invariant under the 2-norm; i. e. k Qx k2 = k
x k2. More details can be found in [8]. There are two
popular orthogonal transformations: Householder and
Givens.

Householder Transformations

These are named after A.S. Householder, who popu-
larized their use in matrix computations. However, the
properties of these matrices have been known for quite
some time. For any nonzero v 2 Rn, a matrix H of the
form

H D I � 2
vv>

v>v

is called Householder transformation. It is easy to ver-
ify that H is symmetric, and orthogonal (which also
means that it is its own inverse). Identity matrices are
not Householder matrices. Geometrically, Householder
matrices merely rotate a given vector in n-dimensions
(without stretching or shrinking). Given any two vec-
tors x and y such that k x k2 = k y k2, there exists
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a Householder transformation H such that Hx = y (it is
easy to verify that v = y� x satisfies this equation). Note
that v completely characterizesH (in the sense that even
though H is an n × nmatrix, v is enough to reconstruct
H, and to apply H). Also, scaling v by a scalar factor ˛
will not change the transformation H.

QR Factorization
Using Householder Transformations

Since Householder transformations rotate vectors in n-
dimensions, they can be used to introduce zeroes se-
lectively. Specifically, given any vector x 6D 0 2 Rn, one
can construct a Householder matrix H such that Hx is
a multiple of e1 (the first column of the identity matrix),
i. e. make everything except the first row ofHx zero. Ge-
ometrically, this amounts rotating the vector such that
it is parallel to the principal axis. It is easy to see that
such H has the form H = I � 2vv| v| v where v = x ˙
˛ e1 and ˛ = k x k2. In order to avoid subtracting close
numbers (while dealing with floating point arithmetic),
v is often chosen as v = x + sign(�1) ˛ e1, where �1 is the
first element of x.

The following function House will compute the vec-
tor v, given x, that characterizes H so that H = I �
2vv|/v|v and that Hx = � ˛ e1. Also, v is scaled such
that v(1) = 1, as the scaling does not affect H (using
a notation similar to MATLAB [5]).

To apply H to a vector y, note that

Hy D
�
I � 2

vv>

v>v

�
y D y�2

v(v>y)
v>v

D y�2
v>y
v>v

v ;

and hence, one can computeHywithout explicitly com-
putingH. The same idea can be extended to applyingH
to a set of columns C 2 Rn × k. Let us call that function
row. House(v, C).

function: v = House(x)
n = length(x);
v(1) = x(1) + sign(x(1)) � norm(x; 2);
v(2 : n) = x(2 : n)/v(1);
v(1) = 1;

end;

SupposeH1 = House(x) with x taken as the first col-
umn of a matrix A 2 Rm × n. Then H1A will have zeros
on the first column below the first row. Then one can

find H2
0 = House(A(2 : m, 2)) such that everything be-

low the second row of the second column is zeroed. Ef-
fectively, applying H2

0 to the lower (m � 1) × (n � 1)
matrix is the same as applying

H2 D

� 1 m � 1
1 1 0
m � 1 0 H02

�

to A. Note that H2 does not affect the first row and col-
umn of H1A. If this process is continued by applying
a sequence of Householder transformations to A, it is
reduced to an upper-trapezoidal matrix R; i. e.

Hn�1Hn�2 � � �H1A D R : (1)

Since each Hi is orthogonal, the product Q| = Hn� 1

Hn� 2 � � � H1 is also orthogonal. Then rearranging the
equation,

A D QR ; (2)

where Q is orthogonal and R is upper-trapezoidal. This
form of factorization is called QR factorization (or or-
thogonal factorization). The following algorithm com-
putes the QR factorization of a matrix A.

function: QR(A;m; n)
for i = 1 : min(m; n),
v = House(A(i : m; i));
A(i + 1 : m; i) = v(2 : m � i + 1);
A(i+1 : m; i+1 : n) = row.House(v;A(+1 : m;

i + 1 : n));
end;

end;

In the above algorithm, the essential components of
the Householder vectors are stored right where the ze-
ros are going to be introduced. Here are the different
parts of a matrix A after the algorithm is applied (su-
perscripts indicate how many times an entry has been
modified):
0
BBBBB@

a111 a112 a113 � � � a11n
v21 a222 a223 � � � a22n
v31 v32 a333 � � � a33n
:::

:::
:::

: : :
:::

vm1 vm2 vm3 � � � vmn

1
CCCCCA
:
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vij is the ith component of vector v produced by the
above algorithm during the jth iteration. Note that the
matrix Q is available in in the lower triangular portion
of the matrix in a factored form.

Givens Rotations

These rotations are named after W. Givens; they are
also referred to as Jacobi iterations. C.G. Jacobi devised
a symmetric eigenvalue algorithm based on these trans-
formations in 1846. Consider the following 2 × 2matrix
of the form

G(�) D
�

cos � sin �
� sin � cos �

�

applied to a vector x 2 R2. It is easy to see that G|x
is a mere rotation of x by an angle of � in counter-
clockwise direction. Such transformations are called ro-
tations and as such are orthogonal. A straightforward
extension that applies to an n-vector is given by matri-
ces of the following form

G(i; j; �) D

0
BBBBBBBBBBB@

i j
1 � � � 0 � � � 0 � � � 0
:::

: : :
:::

:::
:::

i 0 � � � c � � � s � � � 0
:::

:::
: : :

:::
:::

j 0 � � � �s � � � c � � � 0
:::

:::
:::

: : :
:::

0 � � � 0 � � � 0 � � � 1

1
CCCCCCCCCCCA

with c2 + s2 = 1. Here G|(i, j, �) x is a rotation of x 2
Rn by an angle � in counterclockwise direction in the
(i, j)-plane. It is easy to verify that G|(i, j, �) only mod-
ifies the rows i, j of the vector that is applied to and the
remaining entries are unaffected; i. e.

G>(i; j; �)x D

8̂
<̂
ˆ̂:

cxi � sx j ith component;
sxi C cx j jth component;
unchanged otherwise:

Given any vector x 2 Rn, G|(i, j, �) can be constructed
such that only the rows i, j are affected and that xj is
zeroed. Solving the following equations

sxi C cx j D 0 and c2 C s2 D 1

will yield

c D
xiq

x2i C x2j
; s D

�x jq
x2i C x2j

: (3)

Let G(k)
i j denote the application of a Givens rotation

that uses rows i and j and zeros Ajk entry. The first col-
umn below the first row can be zeroed using a sequence
of Givens rotations such as

Q1 D G(1)
1m � � �G

(1)
12 :

Similarly, the second column can be zeroed below the
diagonal by

Q2 D G(2)
2m � � �G

(2)
23 :

Repeating this process for each column, A is reduced to
upper-trapezoidal form, as in

Qn � � �Q1A D R :

The beauty about using Givens rotations is that there
are various ways of applying these rotations and yet get-
ting the same final QR factorization. In fact, this fact can
be exploited in parallel processing very effectively. De-
tailed parallel QR factorization algorithms can be found
in [6,7] and [3].

Fast Givens Transformations

Fast Givens Transformations involve half the number of
multiplications compared to Givens rotations and they
can be used to zero without an explicit square root com-
putation. They are also referred to as square-root-free
Givens transformations. Details can be found in [1,2,4].

Finally, it can be shown that if A has full rank, then
it has a unique QR factorization if wemake the diagonal
elements of R positive [8].

See also

� ABS Algorithms for Linear Equations and Linear
Least Squares

� Cholesky Factorization
� Interval Linear Systems
� Large Scale Trust Region Problems
� Large Scale Unconstrained Optimization
� Linear Programming
� Orthogonal Triangularization
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� Overdetermined Systems of Linear Equations
� Solving Large Scale and Sparse Semidefinite

Programs
� Symmetric Systems of Linear Equations

References
1. Anda AA, Park H (1994) Fast plane rotations with dynamic

scaling. SIAM J Matrix Anal Appl 15:162–174
2. Gentleman WM (1973) Least squares computations by

Givens rotations without square roots. J Inst Math Appl
12:329–336

3. Golub GH, Van Loan CF (1997) Matrix computations. third
Johns Hopkins Univ. Press, Baltimore

4. Hammarling S (1974) A note onmodifications to the Givens
plane rotation. J Inst Math Appl 13:215–218

5. Hanselman D, Littlefield B (1997) The student edition of
MATLAB 5 user’s guide. MathWorks, Orchard Hill Place

6. Pothen A, Jha S, Vemulapati U (1987) Orthogonal factoriza-
tion on the hypercube. In: Heath MT (ed) Hypercube Multi-
processors 1987. SIAM, Philadelphia, pp 587–596

7. Sameh AH, Kuck DJ (1978) On stable parallel linear system
solvers. J ACM 25(1):81–91

8. Stewart GW (1973) Introduction to matrix computations.
Acad. Press, New York

Quadratic Assignment Problem
QAP

LEONIDAS PITSOULIS1, PANOS M. PARDALOS2

1 Princeton University, Princeton, USA
2 Center for Applied Optim. Department Industrial
and Systems Engineering, University Florida,
Gainesville, USA

MSC2000: 90C08, 90C11, 90C27, 90C57, 90C59

Article Outline

Keywords
Formulations
Linearizations

Lawler’s Linearization
Kaufman–Broeckx Linearization
Frieze–Yadegar Linearization
Adams–Johnson Linearization

Complexity Issues
Computational Complexity
PLS-Complexity
Asymptotic Behavior
Polynomially Solvable Cases

Lower Bounds
Gilmore–Lawler Type Lower Bounds
Variance Reduction Lower Bounds
Eigenvalue Based Lower Bounds
Bounds Based on Semidefinite Relaxations

Exact Solution Methods
Branch and Bound
Traditional Cutting Plane Methods
Polyhedral Cutting Planes

Heuristics
ConstructionMethods
Limited Enumeration Methods
Improvement Methods
Tabu Search
Simulated Annealing
Genetic Algorithms
Greedy Randomized Adaptive Search Procedure
Ant Systems

Related Problems
Biquadratic Assignment Problem
Multidimensional Assignment Problems
Bottleneck QAP
Other ProblemsWhich Can Be Formulated As QAPs

QAP Problem Generators
Surveys and Books
See also
References

Keywords

Combinatorial optimization; Quadratic assignment
problem; Nonlinear assignment problems; Facility
location

The quadratic assignment problem (QAP) is a combi-
natorial optimization problem, that although there is
a substantial amount of research devoted to it, it is still,
up to this date, not well solvable in the sense that no ex-
act algorithm can solve problems of size n > 20 in rea-
sonable computational time. The QAP can be viewed
as a natural extension of the linear assignment problem
(LAP; cf. also � Assignment and matching). Let Sn de-
note the set of all permutations �:N ! N, where N =
{1, . . . , n} 2 Z+. Given a cost matrix C = (cij) 2 Rn × n we
can formulate the LAP using permutations as:

min
�2Sn

nX
iD1

nX
jD1

c�(i)�( j) D min
�2Sn

nX
iD1

ci�(i) : (1)
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The general formulation of the QAP as introduced by
E.L. Lawler in [88] is obtained by increasing the dimen-
sion of the cost array C:

min
�2Sn

nX
iD1

nX
jD1

nX
kD1

nX
lD1

c�(i)�( j)�(k)�(l )

D min
�2Sn

nX
iD1

nX
jD1

ci j�(i)�( j) : (2)

Formulation (2) will be referred to as the general QAP,
while an instance will be denoted by QAP(C). The most
widely used formulation of the QAP, and its first ap-
pearance in the literature, is that of T.C. Koopmans
and M.J. Beckmann [85] which is a special case of (2).
Used as a mathematical model for the location of a set
of indivisible economical activities, the formulation of
Koopmans and Beckmann involves three n × n input
matrices with real elements F = (f ij), D = (dkl) and
B = (bik), where f ij is the flow between the facility i
and facility j, dkl is the distance between the location
k and location l, and bik is the cost of placing facility
i at location k. The objective is to assign each facility
to a location such that the total cost is minimized. The
Koopmans–Beckmann QAP formulation is given as fol-
lows:

min
�2Sn

nX
iD1

nX
jD1

fi jd�(i)�( j) C
nX

iD1

bi�(i) : (3)

In the context of facility location (cf. also � Facilities
layout problems) the matrices F and D are symmet-
ric with zeros in the diagonal, and all the matrices are
nonnegative. An instance of a QAP with input matri-
ces F, D and B will be denoted by QAP(F, D, B), while
we will denote an instance by QAP(F, D), if there is
no linear term (i. e., B = 0). It can be seen that (3) is
a special case of (2) by setting cijkl = f ijdkl for all i, j, k,
l with i 6D j or k 6D l and cikik = f iidkk + bik, otherwise.
In terms of computational complexity (cf. also� Com-
plexity theory;� Computational complexity theory), S.
Sahni and T. Gonzalez [129] have shown that the QAP
is NP-hard and that even finding an approximate solu-
tion within some constant factor from the optimal so-
lution cannot be done in polynomial time unless P =
NP.

Formulations

The QAP can be formulated as the following 0-1 integer
programming problem with quadratic objective func-
tion (hence the name ‘quadratic assignment problem’):

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
nX

i; jD1
i ¤ k

nX
k;lD1
j ¤ l

ci jk l xik x jl C

nX
i; jD1

ci ji jxi j

s.t.
nX

iD1

xi j D 1; j D 1; : : : ; n;

nX
jD1

xi j D 1; i D 1; : : : ; n;

xi j 2 f0; 1g; i; j D 1; : : : ; n:

(4)

The above formulation is a direct consequence of for-
mulation (2), where the constraints imposed by the per-
mutations are expressed algebraically. A QAP in Koop-
mans–Beckmann form can be formulated in a more
compact way using the inner product between two ma-
trices:

(
min

˝
F; XDX>

˛
C hB; Xi

s.t. X 2 Xn ;
(5)

where Xn is the set of all permutation matrices X = (xij)
such that their elements satisfy the constraints in (4).
In the objective function of (4), let the coefficients cijkl
be the entries of an n2 × n2 matrix S, such that cijkl is
on row (i � 1) n + k and column (j � 1)n + l. Now let
Q := S � ˛I, where I is the (n2 × n2) unit matrix and
˛ is greater than the row norm kSk1 of matrix S. The
subtraction of a constant from the entries on the main
diagonal of S does not change the optimal solutions of
the corresponding QAP, it simply adds a constant to the
objective function. Hence we can consider a QAP with
coefficient array Q instead of S. Let x = (x11, . . . , x1n,
x21, . . . , xnn)| = (x1, . . . , xnn)|. Then we can rewrite the
objective function of the QAP with array of coefficients
Q as a quadratic form x| Qx, where it can be shown
that Q is symmetric and negative definite. Therefore
we have a quadratic concave minimization problem (cf.
also � Concave programming) and can formulate the
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QAP as:
8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min x>Qx

s.t.
nX

iD1

xi j D 1; j D 1; : : : ; n;

nX
jD1

xi j D 1; i D 1; : : : ; n;

xi j � 0; i; j D 1; : : : ; n;

(6)

The above formulation was introduced in [14], and
was used to derive cutting plane procedures (cf. also
� Integer programming: Cutting plane algorithms). By
adding the term ˛ I to the matrix Q instead of subtract-
ing it, we could always assume that the objective func-
tion of the QAP is convex. This leads to the formulation
of the QAP as a quadratic convex minimization prob-
lem. The QAP can also be formulated using the trace of
a matrix as:(

min tr(FXD> C B)X>

s.t. X 2 Xn:
(7)

The trace formulation of the QAP first appeared in [47],
and was used in [51] to introduce eigenvalue lower
bounding techniques for symmetric QAPs.

Let vec(X) 2 Rn2 be the vector formed by the
columns of a permutation matrix X. The QAP can be
formulated using the Kronecker product as

8̂
<̂
ˆ̂:

min vec(X)>(F ˝ D) vec(X)
C vec(B)> vec(X)

s.t. X 2 Xn :

(8)

Using the Kronecker product, Lawler [88] provided an
alternative formulation for the QAP as an n2 × n2 LAP.
An n2 × n2 matrix C is constructed from the n4 costs
cijkl, such that the (ijkl)th element corresponds to the
((i � 1) n + k, (j � 1) n + l)th element of C. The QAP
then is equivalent to an LAP of dimension n2 with C as
the cost matrix, and with the additional constraint that
the n2 × n2 permutation matrix which defines a feasible
solution, must be the Kronecker product of two permu-
tation matrices of dimension n. In other words the QAP
is equivalent to

8̂
<̂
ˆ̂:

min hC;Yi
s.t. Y D X ˝ X;

X 2 Xn :

(9)

The resulting LAP however cannot be solved efficiently
(i. e., in O(n6) time) because Y , although it is an n2 ×
n2 permutation matrix, is constrained to have a special
structure.

Linearizations

Linearization is a technique which involves the elimi-
nation of the nonlinear term in a given objective func-
tion, in order to make it linear, through the intro-
duction of new variables and new linear (binary) con-
straints. The objective is to transform a 0–1 nonlinear
integer program into a provably equivalent 0–1 linear
integer program, such that existing methods for lin-
ear integer programs will provide a relaxed problem
where lower bounds may be computed. Though there
are several ways to linearize a given nonlinear inte-
ger program, it is desirable to have a linearization that
will introduce the least amount of new variables and
constraints. Moreover, the ‘tightness’ of the relaxation
of the resulting linear integer program is very impor-
tant.

The first attempt to devise solution techniques for
solving the QAP had to do with the elimination of the
quadratic term in the objective function of (4), in order
to transform the problem into a 0–1 linear program.
Four such linearizations of the QAP will be presented
in this section. The first is due to Lawler [88], which is
the first linearization suggested for the QAP, and the
second by Kaufman and F. Broeckx [80] which is the
smallest with regard to the number of new variables
and constraints introduced. The third is a more recent
(1983) one that is due to A.M. Frieze and J. Yadegar
[56], which unifies most of the previous linearizations
for the QAP, and is closely related to the fourth lin-
earization presented in this section due to W.P. Adams
and T.A. Johnson [2].

Lawler’s Linearization

Lawler [88] replaces the quadratic terms xijxkl in the ob-
jective function of (4), with n4 variables

yi jk l :D xi jxk l ; i; j; k; l D 1; : : : ; n ;

which results in a 0–1 linear program of n4 + n2 binary
variables and n4 + 2n2 + 1 constraints. More specifically,
it is proved in [88] that the QAP is equivalent to the
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following 0–1 linear program8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
nX

i; jD1

nX
k;lD1

ci jk l yi jk l

s.t. (xi j) 2 Xn;
nX

i; jD1

nX
k;lD1

yi jk l D n2;

xi j C xkl � 2yi jk l � 0;
yi jk l 2 f0; 1g;
for i; j; k; l D 1; : : : ; n:

Kaufman–Broeckx Linearization

Rearranging terms in the objective function (4) we ob-
tain

nX
i; jD1

xi j
nX

k;lD1

ci jk l xk l :

Kaufman and Broeckx [80] defined n2 new real vari-
ables

wi j :D xi j
nX

k;lD1

ci jk l xk l ; i; j D 1; : : : ; n ;

resulting in an equivalent linear objective function
nX

i; jD1

wi j :

Introducing n2 constants aij :=
Pn

k;lD1cijkl for i, j = 1,
. . . , n, the QAP becomes equivalent to the following
mixed 0–1 linear program:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
nX

i; jD1

wi j

s.t. (xi j) 2 Xn;

ai jxi j C
nX

k;lD1

ci jk l xk l � wi j � ai j;

wi j � 0;
i; j D 1; : : : ; n:

The above formulation employs n2 new real variables,
n2 binary variables and n2 + 2n constraints. The ele-
ments cijkl are all assumed to be nonnegative, which is
a valid assumption since the addition of a constant to
each element will not affect the optimal solution. The
proof of equivalence of the QAP to the above linear in-
teger program can be found in [80].

Frieze–Yadegar Linearization

In [56] the products of the binary variables are re-
placed by continuous variables (i. e. yijkl := xijxkl), and
the QAP(C) is proved to be equivalent to the following
mixed 0–1 linear program:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
nX

i; jD1

nX
k;lD1

ci jk l yi jk l

s.t. (xi j) 2 Xn;
nX

iD1

yi jk l D xkl ;

8 j; k; l ;
nX

jD1

yi jk l D xkl ;

8i; k; l ;
nX

kD1

yi jk l D xi j;

8i; j; l ;
nX

lD1

yi jk l D xi j;

8i; j; k;
yi ji j D xi j;

8i; j;
0 � yi jk l � 1;

8i; j; k; l ;

(10)

where i, j, k, l = 1, . . . , n. The above program has n4 new
real variables, n2 binary variables, and n4 + 4n3 + n2 +
2n constraints. Note that the constraint yijij = xij is re-
dundant since it follows from the definition of the yijkl
variables. Frieze and Yadegar considered a Lagrangian
relaxation of the above 0–1 linear program, and estab-
lished a relationship between the lower bounds derived
by the solution of the relaxation, and the lower bounds
derived from decomposition techniques applied to the
Gilmore–Lawler bound for the QAP.

Adams–Johnson Linearization

Adams and Johnson presented in [2] a new 0–1 linear
integer formulation for the QAP, which resembles the
one of Frieze and Yadegar described previously. It is
based on the general linearization technique for general
0–1 polynomial programs introduced by Adams and
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H.D. Sherali [3,4]. The QAP(C) is proved to be equiva-
lent to the following mixed 0–1 linear program:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
nX

i; jD1

nX
k;lD1

ci jk l yi jk l

s.t. (xi j) 2 Xn ;
nX

iD1

yi jk l D xkl ; 8 j; k; l ;

nX
jD1

yi jk l D xkl ; 8i; k; l ;

yi jk l D ykl i j; 8i; j; k; l ;
yi jk l � 0; 8i; j; k; l ;

(11)

where i, j, k, l = 1, . . . , n, and each yijkl represents the
product xijxkl. The above formulation contains n2 bi-
nary variables xij, n4 continuous variables yijkl, and n4 +
2n3 + 2n constraints excluding the nonnegativity con-
straints on the continuous variables. Although as noted
in [3] a significant smaller formulation in terms of both
the number of variables and constraints could be ob-
tained, the structure of the relaxation of the above for-
mulation is favorable for solving it. As noted in [2], the
constraint set of the above relaxation describes a solu-
tion matrix Y which is the Kronecker product of two
permutation matrices (i. e. Y = X ˝ X where X 2 Xn),
showing clearly the equivalence of the above formula-
tion with the QAP as formulated in (9). The theoretical
strength of the above linearization of the QAP lies on
the fact that, as shown in [2] and [73], the constraints of
the relaxations derived from all previous linearizations,
can be expressed as a linear combination of the con-
straints of the continuous relaxation of the above lin-
earization. Moreover, many of the previously published
lower-bounding techniques, can be explained based on
the dual-space of this relaxation.

Complexity Issues

The first two parts of this section bring evidence to the
fact that the QAP is a ‘very hard’ problem from the
theoretical point of view. Not only the QAP cannot be
solved to optimality efficiently but it even cannot be ap-
proximated efficiently within some constant approxi-
mation ratio. Furthermore, finding local optima is not
a trivial task even for simply structured neighborhoods
like the 2-opt neighborhood. The asymptotic behavior

of the QAP and polynomially solvable special cases of
the QAP are mentioned in the last two parts of this sec-
tion.

Computational Complexity

Two early results obtained by Sahni and Gonzalez [129]
in 1976 settled the complexity of solving and approxi-
mating the QAP. It was shown that the QAP isNP-hard
and that even finding an �-approximate solution for the
QAP is a hard problem, in the sense that the existence
of a polynomial �-approximation algorithm implies P =
NP.

Theorem 1 [129] The quadratic assignment problem is
strongly NP-hard. For an arbitrary � > 0, the existence
of a polynomial time �-approximation algorithm for the
QAP implies P = NP.

The proof is done by a reduction from the Hamiltonian
cycle problem [58].

M. Queyranne [121] derives an even stronger result
which further confirms the widely spread belief on the
inherent difficulty of the QAP in comparison with other
difficult combinatorial optimization problems. It is well
known and very easy to see that the traveling salesman
problem (TSP) is a special case of the QAP. The TSP
on n cities can be formulated as a QAP(F, D) where
F is the distance matrix of the TSP instance and D is
the adjacency matrix of a Hamiltonian cycle on n ver-
tices. In the case that the distance matrix is symmetric
and satisfies the triangle inequality, the TSP is approx-
imable in polynomial time within 3/2 as shown in [37].
Queyranne [121] showed that, unless P = NP, QAP(A,
B) is not approximable in polynomial time within some
finite approximation ratio, even if A is the distance ma-
trix of some set of points on a line and B is a symmetric
block diagonal matrix.

A more recent result of S. Arora, Frieze and H. Ka-
plan [6] answers partially one of the open questions
stated by Queyranne [121]. What happens if matrix A
is the distance matrix of n points which are regularly
spaced on a line, that is, points with abscissae given by
xp = p, p = 1, . . . , n? This special case of the QAP is
termed linear arrangement problem and is a well stud-
ied NP-hard problem. In the linear arrangement prob-
lem the matrix B is not restricted to have the block di-
agonal structure mentioned above, but is simply a sym-
metric 0–1 matrix. Arora, Frieze and Kaplan [6] give
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a polynomial time approximation scheme (PTAS) for
the linear arrangement problem in the case that the 0–1
matrix B is dense, that is, the number of ‘1’ entries in
B is in ˝(n2), where n is the size of the problem. They
show that for each � > 0 there exists an �-approximation
algorithm for the dense linear arrangement problem
with time complexity depending polynomially on n and
exponentially on 1/�, hence polynomial for each fixed
� > 0.

PLS-Complexity

Assume that an optimization problem P is given by
specifying a ground set E, a set F � 2E of feasible so-
lutions and an objective function f : F! R. A globally
optimal solution S� 2 F of the problem P is defined as:

f (S�) :D min
S2F

f (S) :

For any given S 2 F denote the neighborhood of S by
N(S)� F. The neighborhood of S consists of other fea-
sible solutions which are topologically ‘close’ to S. A lo-
cally optimal solution or a local minimum S 2 F of the
problem P, given the neighborhood N is defined as:

f (S) D min
S2N (S)

f (S) :

Recently (as of 1999) it has been shown that even
finding a locally optimal solution for the QAP can be
prohibitively hard, that is, even local search is hard
in the case of the QAP. Consider the following ques-
tion ‘How easy it is to find a locally optimal solution
for the QAP?’ Since local optimality is defined through
a specific neighborhood structure, the answer depends
on the involved neighborhood structure. If the neigh-
borhood N is replaced by new neighborhood N0, one
would generally expect changes in the local optimal-
ity status of a solution. The theoretical basis for fac-
ing this kind of problems was introduced by D.S. John-
son, C.H. Papadimitriou and Yannakakis [72]. They de-
fine the so-called polynomial time local search problems,
shortly PLS problems. A pair (P, N), where P is a (com-
binatorial) optimization problem and N is an associ-
ated well defined neighborhood structure, defines a lo-
cal search problem in which the objective is to find a lo-
cally optimal solution of P with respect to the neigh-
borhood structure N. Without going into technical de-
tails a problem in the PLS class is a local search problem

for which local optimality can be checked in polyno-
mial time. In analogy with decision problems, there ex-
ist complete problems in the class of PLS problems. The
PLS-complete problems, are – in the usual complexity
sense – the most difficult among the PLS problems.

K.A. Murthy, Pardalos and Y. Li [103] introduce
a neighborhood structure for the QAP which is sim-
ilar to the neighborhood structure proposed by B.W.
Kernighan and S. Lin [81] for the graph partitioning
problem. For this reason we will call it a K-L type neigh-
borhood structure for the QAP. Murthy, Pardalos and Li
[103] show that the corresponding local search prob-
lem is PLS-complete. Consider a permutation �0 2 Sn.
A swap of �0 is a permutation � 2 Sn obtained from
�0 by applying a transposition (i, j) to it, � = �0ı (i, j).
A transposition (i, j) is defined as a permutation which
maps i to j, j to i, and k to k for all k 62 {i, j}. A greedy
swap of permutation �0 is a swap � which maximizes
Z(F, D, �0) � Z(F, D, �) over all swaps � of �0, where
Z(F, D, �) is the objective function value of QAP(F, D)
with permutation � (see formulation (3)). Let �0, . . . ,
� l be a sequence of permutations in Sn, each of them
being a greedy swap of the preceding one. Such a se-
quence is called monotone if for all k = 0, . . . , l, in the
pair (�k, �k + 1) where �k = �k� 1 ı (ik, jk) and �k + 1

= �k ı (ik + 1, jk + 1), we have {ik, jk} \ {ik + 1, jk + 1} =
;. The neighborhood of �0 consists of all permutations
which occur in the (unique) maximal monotone se-
quence of greedy swaps starting with permutation �0.
Let us denote this neighborhood structure for the QAP
by NK � L. It is not difficult to see that, given a QAP(F,
D) of size n and a permutation � 2 Sn, the cardinal-
ity of NK � L(�) does not exceed bn/2c + 1. It is eas-
ily seen that the local search problem (QAP, NK � L) is
a PLS problem. This result can be found in [112], where
the authors show that the graph partitioning problem
with the neighborhood structure defined in [81] is PLS-
reducible to (QAP, NK � L).

Theorem 1 [112] The local search problem (QAP,
NK � L), where NK � L is the Kernighan–Lin type neigh-
borhood structure for the QAP, is PLS-complete.

The PLS-completeness of (QAP,NK � L) implies that, in
the worst case, a general local search algorithm as de-
scribed above involving the Kernighan–Lin type neigh-
borhood finds a local minimum only after a time which
is exponential on the problem size. Numerical results,



Quadratic Assignment Problem Q 3125

however, show that such local search algorithms per-
form quite well when applied to QAP test instances, as
reported in [103].

Another simple and frequently used neighborhood
structure is the so-called pair-exchange (or 2-opt)
neighborhood N2. The pair-exchange neighborhood of
a permutation �0 2 Sn consists of all permutations � 2
Sn obtained from �0 by applying some transposition (i,
j) to it. Specifically,

N2(�) :D f� ı (i; j) : i; j D 1; : : : ; n; i ¤ jg :

It can also be shown that (QAP, N2) is PLS-complete.
A.A. Schräffer and Yannakakis [130] have proven that
the graph partitioning problem with a neighborhood
structure analogous to N2 is PLS-complete. A similar
PLS-reduction as in [112] implies that the local search
problem (QAP, N2) is PLS-complete.

Finally, let us mention that no local criteria are
known for deciding how good a locally optimal solu-
tion is as compared to a global one. From the complex-
ity point of view, deciding whether a given local opti-
mum is a globally optimal solution to a given instance
of the QAP is a hard problem, see [108].

Asymptotic Behavior

Under certain probabilistic conditions on the coeffi-
cient matrices of the QAP, the ratio between its ‘best’
and ‘worst’ values of the objective function approaches
1, as the size of the problem approaches infinity. R.E.
Burkard and U. Fincke [29] identify a common com-
binatorial property of a number of problems which,
under certain probabilistic conditions on the problem
data, behave as described above.

In an early work Burkard and Fincke [28] investi-
gate the relative difference between the worst and the
best values of the objective function for the Koopmans–
Beckmann QAP. They first consider the case where the
coefficient matrix D is the matrix of pairwise distances
of points chosen independently and uniformly from the
unit square in the plane. Then the general case where
entries of the flow and distance matrices F and D are
independent random variables taken from a uniform
distribution on [0, 1] is considered. In both cases it is
shown that the relative difference mentioned above ap-
proaches 0 with probability tending to 1 as the size of
the problem tends to infinity.

Later Burkard and Fincke [29] consider the ratio be-
tween the objective function values corresponding to
an optimal (or best) and a worst solution of a generic
combinatorial optimization problem. They find that for
each � > 0, the ratio between the best and the worst val-
ues of the objective function lies on (1 � �, 1 + �), with
probability tending to 1, as the size of the problem ap-
proaches infinity. Under additional combinatorial con-
ditions, W. Szpankowski [132] strengthens this result
and improves the range of the convergence to almost
surely. In the almost sure convergence the probability
that the above mentioned ratio tends to 1 is equal to 1.
The asymptotic behavior of the QAP can be stated in
the following theorem:

Theorem 3 Consider a sequence of problems QAP(A(n),
B(n)) for n 2 N, with n × n coefficient matrices A(n) =
(a(n)i j ) and B

(n) = (b(n)i j ). Assume that a(n)i j and b(n)i j , n 2 N,
1 � i, j � n, are independently distributed random vari-
ables on [0, M], where M is a positive constant. More-
over, assume that the entries a(n)i j , n 2 N, 1 � i, j � n,
have the same distribution, and the entries b(n)i j , n 2 N,
1 � i, j � n, have also the same distribution, which does
not necessarily coincide with that of a(n)i j . Furthermore,
assume that these variables have finite expected values,
variances and third moments. Let �(n)

opt and �(n)
wor denote

an optimal and a worst solution of QAP(A(n), B(n)), re-
spectively, that is,

Z
�
A(n); B(n); �

(n)
opt

�
D min
�2Sn

Z
�
A(n); B(n); �

�
;

and

Z
�
A(n); B(n); �(n)

wor

�
D max

�2Sn
Z
�
A(n); B(n); �

�
:

Then the following equality holds almost surely:

lim
n!1

Z
�
A(n); B(n); �

(n)
opt

�

Z
�
A(n); B(n); �

(n)
wor

� D 1 :

The above result suggests that the value of the objective
function of the problem QAP(A(n), B(n)) (correspond-
ing to an arbitrary feasible solution) gets somehow close
to its expected value n2E(A)E(B), as the size of the prob-
lem increases, where E(A) and E(B) are the expected
values of a(n)i j and b(n)i j , n 2 N, 1 � i, j � n, respectively.
J.C.B. Frenk, M. van Houweninge, and A.G. Rinnooy
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Kan [54] andW.T. Rhee [126,127] provide different an-
alytical evaluations for this ‘getting close’, by imposing
different probabilistic conditions on the data.

Results on the asymptotic behavior of the QAP have
been exploited by M.E. Dyer, Frieze, and C.J.H. McDi-
armid [46] to analyze the performance of branch and
bound algorithms for QAPs with randomly generated
coefficients as described above. They have shown that
for such QAPs the optimal value of the continuous
relaxation of Frieze–Yadegar linearization as stated in
(10), is in O(n) with probability tending to 1 as the size
n of the QAP tends to infinity. Hence the gap between
the optimal value of this continuous relaxation and the
optimal value of the QAP grows like O(n) with proba-
bility tending to 1 as n tends to infinity.

Polynomially Solvable Cases

Since the QAP is NP-hard, restricted versions which
can be solved in polynomial time are an interesting as-
pect of the problem. A basic question arising with re-
spect to polynomially solvable versions is the identifica-
tion of those versions and the investigation of the bor-
der line between hard and easy versions of the prob-
lem. There are two ways to approach this topic: first,
find structural conditions to be imposed on the coef-
ficient matrices of the QAP so as to obtain polynomi-
ally solvable versions, and secondly, investigate other
combinatorial optimization or graph-theoretical prob-
lems which can be formulated as QAPs, and embed the
polynomially solvable versions of the former into spe-
cial cases of the later. These two approaches yield two
groups of restricted QAPs which are briefly reviewed in
this section. For a detailed information on this topic, see
[35].

Most of the restricted versions of the QAP with spe-
cially structured matrices involve Monge matrices or
other matrices having analogous properties. A matrix
A = (aij) is a Monge matrix if and only if the following
Monge inequalities are fulfilled for each 4-tuples of in-
dices i, j, k, l, i < k, j < l:

ai j C akl � ai l C ak j :

A matrix A = (aij) is an anti-Monge matrix if and only
if the following anti-Monge inequalities are fulfilled for
each 4-tuples of indices i, j, k, l, i < k, j < l:

ai j C akl � ai l C ak j :

A simple example of Monge and anti-Monge matrices
are the sum matrices; the entries of a sum matrix ma-
trix A = (aij) are given as aij = ˛i + ˇj, where (˛i) and
(ˇj) are the generating row and column vector, respec-
tively. A product matrix A is defined in an analogous
way: its entries are given as aij = ˛iˇj, where (˛i), (ˇj)
are the generating vectors. If the row generating vector
(˛i) and the column generating vectors (ˇi) are sorted
nondecreasingly, then the product matrix (˛iˇj) is an
anti-Monge matrix.

In contrast with the traveling salesman problem, it
turns out that the QAP with both coefficient matrices
being Monge or anti-Monge is NP-hard, whereas the
complexity of a QAP with one coefficient matrix be-
ing Monge and the other one being anti-Monge is still
open, see [23] and [35]. However, some polynomially
solvable special cases can be obtained by imposing ad-
ditional conditions on the coefficient matrices. These
special cases involve very simple matrices like prod-
uct matrices or so-called chess-board matrices. A ma-
trix A = (aij) is a chess-board matrix if its entries are
given by aij = (�1)i + j. These QAPs can either be for-
mulated as equivalent LAPs, or they are constant per-
mutation QAPs (see [23,35]), that is, their optimal so-
lution can be given before hand, without knowing the
entries of their coefficient matrices. A few other ver-
sions of the QAP involving Monge and anti-Monge
matrices with additional structural properties can be
solved by dynamic programming. Other restricted ver-
sions of the QAP involve matrices with a specific di-
agonal structure such as circulant and Toeplitz ma-
trices. An n × n matrix A = (aij) is called a Toeplitz
matrix if there exist numbers c� n + 1, . . . , c� 1, c0, c1,
. . . , cn� 1 such that aij = cj� i, for all i, j. A matrix
A is called a circulant matrix if it is a Toeplitz ma-
trix and the generating numbers ci fulfill the condi-
tions ci = cn� i, for 0 � i � n � 1. In other words,
a Toeplitz matrix has constant entries along lines par-
allel to the diagonal, whereas a circulant is given by
its first row and the entries of the i � th row re-
sembles the first row shifted by i � 1 places to the
right.

In general versions of the QAP with one anti-
Monge (Monge) matrix and one Toeplitz (circulant)
matrix, remain NP-hard unless additional conditions,
such as monotonicity, are imposed on the coefficient
matrices. A well studied problem is the so called anti-
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Monge–Toeplitz QAP where the rows and columns
of the anti-Monge matrix are nondecreasing, investi-
gated in [26]. It has been shown that this problem is
NP-hard and contains as a special case the so-called
turbine balancing problem (TBP) introduced in [99]
and formulated as a QAP in [87]. In the TBP we are
given a number of blades to be welded in regular spac-
ing around the cylinder of the turbine. Due to inac-
curacies in the manufacturing process the weights of
the blades differ slightly and consequently the gravity
center of the system does not lie on the rotation axis
of the cylinder, leading to instabilities. In an effort to
make the system as stable as possible, it is desirable
to locate the blades so as to minimize the distance be-
tween the center of gravity and the rotation axis. The
mathematical formulation of this problem leads to an
NP-hard anti-Monge–Toeplitz QAP. (For more details
and for a proof of NP-hardness see [26].) It is prob-
ably interesting that the maximization version of this
problem is polynomially solvable. Further polynomi-
ally solvable special cases of the anti-Monge–Toeplitz
QAP arise if additional constraints such as benevo-
lence or k-benevolence are imposed on the Toeplitz
matrix. These conditions are expressed in terms of
properties of the generating function of these matri-
ces, see [26]. The polynomially solvable QAPs with
one anti-Monge (Monge) matrix and the other one
Toeplitz (circulant) matrix described above, are all con-
stant permutation QAPs. The techniques used to prove
this fact and to identify the optimal permutation is
called reduction to extremal rays. This technique ex-
ploits two facts: first, the involved matrix classes form
cones, and secondly, the objective function of the QAP
is linear with respect to each of the coefficient matri-
ces. These two facts allow us to restrict the investi-
gations to instances of the QAP with 0–1 coefficient
matrices which are extremal rays of the above men-
tioned cones. Such instances can then be handled by el-
ementary means (exchange arguments, bounding tech-
niques) more easily that the general given QAP. The
identification of polynomially solvable special cases of
the QAP which are not constant permutation QAPs
and can be solved algorithmically remains a challeng-
ing open question.

Another class of matrices similar to the Monge ma-
trices are the Kalmanson matrices. A matrix A = (aij) is
a Kalmanson matrix if it is symmetric and its elements

satisfy the following inequalities for all indices i, j, k, l, i
< j < k < l:

ai j C akl � aik C ajl ; ai l C ajk � aik C ajl :

For more information on Monge, anti-Monge and
Kalmanson matrices, and their properties, see [32].
The Koopmans–Beckmann QAP with one coefficient
matrix being a Kalmanson matrix and the other one
a Toeplitz matrix, has been investigated in [44]. The
computational complexity of this problem is an open
question, but analogously as in the case of the anti-
Monge–Toeplitz QAP, polynomially solvable versions
of the problem are obtained by imposing additional
constraints to the Toeplitz matrix.

Further polynomially solvable cases arise as QAP
formulations of other problems, like the linear ar-
rangement problem, minimum feedback arc set prob-
lem, packing problems in graphs and subgraph iso-
morphism, see [23,35]. Polynomially solvable versions
of these problems lead to polynomially solvable cases
of the QAP. The coefficient matrices of these QAPs
are the (weighted) adjacency matrices of the underly-
ing graphs, and the special structure of these matrices
is imposed by properties of these graphs. The meth-
ods used to solve these QAPs range from graph the-
oretical algorithms (in the case of the linear arrange-
ment problem and the feedback arc set problem), to dy-
namic programming (in the case of subgraph isomor-
phism).

Lower Bounds

Lower bounding techniques are primarily used with
implicit enumeration algorithms, such as branch and
bound, to perform a limited search of the feasible re-
gion of a minimization problem, until an optimal so-
lution is found. A more limited use of lower bound-
ing techniques, is also for evaluating the performance of
heuristic algorithms, by providing a relative measure of
proximity of the suboptimal solution to the optimum.
In comparing lower bounding techniques, the follow-
ing criteria should be taken into consideration:
� complexity of computing the lower bound;
� tightness of the lower bound (i. e. closest to the op-

timum solution);
� efficiency in computing lower bounds for subsets of

the primal feasible set.
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Since there is no clear ranking of the performance of
the lower bounds that will be discussed below, all of the
above criteria should be kept in mind while reading the
following paragraphs. Considering the asymptotic be-
havior of the QAP, it should be fair to assume that the
tightness of the lower bound probably dominates all of
the above criteria. That is, if there is a large number of
feasible solutions close to the optimum, then a lower
bound which is not tight enough, will fail to eliminate
a large number of subproblems in the branching pro-
cess.

Gilmore–Lawler Type Lower Bounds

Based on the formulation of the general QAP as a LAP
of dimension n2 stated in formulation (9), Lawler [88]
derived lower bounds for the QAP, by constructing
a solution matrix Y in the process of solving a series of
LAPs. If the resulting matrix Y is a permutation matrix,
then the objective function value is optimal, otherwise
it is bounded from below by hC, Yi. Specifically, con-
sider an instance of QAP(C), where the matrix C is par-
titioned into n2 minors, C(i, j) = (cijkl)n × n for i, j = 1, . . . ,
n. Each minor C(i, j) essentially contains the costs asso-
ciated with the assignment xij = 1. Partition the solution
matrix Y also into n2 minors, Y (i, j) = (yijkl)n × n for i, j =
1, . . . , n, whose actual values are to be determined in the
process. Solve the n2 LAPs associated with each minor
C(i, j),

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

li j D min
nX

kD1

nX
lD1

ci jk l yi jk l

s.t.
nX

kD1

yi jk l D 1; l D 1; : : : ; n;

nX
lD1

yi jk l D 1; k D 1; : : : ; n;

yi ji j D 1;
yi jk l 2 f0; 1g; i; j D 1; : : : ; n:

(12)

Observe that the last constraint essentially reduces the
problem into an LAP of dimension (n� 1), obtained by
deleting the ith row and jth column of the matrix C(i, j).
Denote the solution matrix for each of the above LAPs
by Y (i, j). Using the values lij from above, solve the LAP
to obtain the Gilmore–Lawler lower bound for general

QAPs:
8̂
<̂
ˆ̂:
GLB(C) D min

nX
iD1

nX
jD1

li j xi j

s.t. (xi j) 2 Xn ;

(13)

and denote its solution matrix by X� = (x�i j). If

1
n

X
i j

x�i jY
(i j) 2 Xn ;

then Y� = (x�i j Y
(ij))n2�n2 is a Kronecker product of two

permutation matrices of dimension n, and then it is also
an optimal solution. Otherwise the optimal solution to
the QAP is bounded below by GLB(C) = hC, Y�i. Con-
sidering that each LAP can be solved in O(n3) time, the
above lower bound for the general QAP of dimension n
can be computed in O(n5) time.

For the more special Koopmans–Beckmann for-
mulation of the QAP (cf. formulation (3)) where the
quadratic costs are derived by the pairwise product of
two matrices F and D, the structure of the problem can
be used to reduce the computational effort. Before we
proceed, let us make some definitions. For vectors a, b2
Rn, define the following extremal variations of the usual
inner product between vectors, by imposing an order-
ing in the elements of the vectors:

ha; bi� :D
nX

iD1

aibi ; (14)

where ai � ai + 1, bi � bi + 1, 8i, and

ha; biC :D
nX

iD1

aibi ; (15)

where ai � ai + 1, bi � bi + 1, 8i. The following is a well
known result:

Proposition 4 [69] For a, b 2 Rn the following inequal-
ities hold for any � 2 Sn:

ha; bi� �
nX

iD1

aib�(i) � ha; biC :

Consider an instance QAP(F, D, B), and recall that this
can be transformed into an instance of QAP(C) by as-
signing the values

ci jk l D

(
fi kd jl ; for i ¤ k; j ¤ l ;
fi id j j C bi j; for i D k; j D l :
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Each minor C(i, j) in the partitioned matrix C, is now
C(i, j) = f (i �) d>( j�), where f (i �) and d(j �) is the ith and jth
row of matrix F and D respectively. Therefore, using
the result of Proposition 4, instead of solving n2 LAPs
we can easily compute the values lij as

li j D fi id j j C bi j C
Dbf (i �);bd( j�)

E�
; (16)

where the vectors bf (i �);bd( j�) 2 Rn�1 are obtained by
removing the ith and jth element of the vectors f (i �)
and d(j �) respectively. Finally by solving the resulting
LAP as in (12), we obtain the Gilmore–Lawler lower
bound for the Koopmans–Beckmann QAPs, denoted
by GLB(F, D), in O(n3) time. Its name is due to the fact
that Lawler [88] and P.C. Gilmore [60] independently
derived this lower bound, while the first author consid-
ered the case for general QAPs also. The simplicity of
the Gilmore–Lawler lower bound makes it one of the
most efficient to compute, although it deteriorates fast
as n increases. The quality of the lower bound can be
improved if the contribution of the quadratic term in
the objective function is made to be smaller than that
of the linear term. Consider the formulation of the gen-
eral QAP where the linear and the quadratic terms are
separated for clarity. By the above discussion the lower
bound will be the solution to the LAP
8̂
<̂
ˆ̂:
min

nX
iD1

nX
jD1

(li j C ci ji j)xi j

s.t. (xi j) 2 Xn :

We want to decompose the cost coefficients in the
quadratic term of (4) and transfer some of their value
into the linear term such that cijij� lij, which will result
in a tighter lower bound since the LAP can be solved
exactly. This procedure known as reduction was intro-
duced in [41], and it has been investigated by many
researchers (see [18,47,56,128]). The general idea is to
decompose each quadratic cost coefficient into several
terms, which in turn will end up being linear cost co-
efficients and will be moved in the linear term of the
objective function. Consider the following general de-
composition for each quadratic cost coefficient in the
objective function in (4):
D1) ci jk l D ci jk l C ei jk C gi jl C hik l C t jk l , i 6D k, j 6D

l.

Here e, g, h, t 2 Rn3 . Substituting the above and sep-
arating terms, the objective function in (4) becomes

nX
i D 1
i ¤ k

nX
j D 1
j ¤ l

nX
k;lD1

ci jk l xi jxk l

C

nX
i D 1
i ¤ k

nX
j D 1
j ¤ l

nX
k;lD1

(ei jk C gi jl C hik l C t jk l )xi jxk l

C

nX
i; jD1

ci ji jxi j :

Consider now the term associated with the eijk:

nX
i; jD1

nX
k D 1
k ¤ i

nX
l D 1
l ¤ j

ei jk xi jxk l

D

nX
i; jD1

xi j

2
6664

nX
k D 1
k ¤ i

ei jk

0
BBB@

nX
l D 1
l ¤ j

xk l

1
CCCA

3
7775 :

We can add the term
nX

k D 1
k ¤ i

ei jk

to the (i, j)th element of the LAP that composes the
linear term of the objective function, since xij = 1
) xkj = 0)

P
l 6D j xkl = 1, 8k. Using similar argu-

ments for the vectors g, h and t, their costs become
linear and the objective function with decomposed
quadratic costs become

nX
i D 1
i ¤ k

nX
j D 1
j ¤ l

nX
kD1

nX
lD1

ci jk l xi jxk l C
nX

iD1

nX
jD1

bci jxi j ;

where

bci j D ci ji j C
nX

k D 1
k ¤ i

ei jk

C

nX
l D 1
l ¤ j

gi jl C
nX

k D 1
k ¤ i

hki j C

nX
l D 1
l ¤ j

tl i j :
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Therefore we can apply the Gilmore–Lawler bound
in the quadratic term of the decomposed objective
function, whereas we can get an exact solution to the
LAP that composes the linear term, and the sum of
these two values will constitute a lower bound for
the QAP. In the case of the Koopmans–Beckmann
formulation of the QAP were we have two matrices
F and D, the general decomposition scheme is:

D2)
(
fi j D f i j C �i C � j; i ¤ j;
dkl D dkl C �k C pl ; k ¤ l :

Here �, �, �, p 2 Rn. Substituting to the product f ijdkl
it is easily seen that D2) reduces to the general decom-
position D1) with vectors e, g, h, t 2 Rn3 . Frieze and
Yadegar [56] showed that the inclusion of the vectors
h and t in D1) does not affect the value of the lower
bound, and therefore are redundant (similarly the vec-
tors � and p for the Koopmans–Beckmann QAP are
redundant in D2)). The same authors in [56] derived
lower bounds for the QAP based on a Lagrangian re-
laxation (cf. also � Integer programming: Lagrangian
relaxation). Specifically, consider the Lagrangian relax-
ation of the 0–1 linear programming formulation of
the QAP (see (10)), where the second and third con-
straints are included in the objective function, using as
Lagrangian multipliers the elements of the vectors e and
g. The Lagrangian function is thus defined as

L(e; g) :D8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
X
i jk l

ci jk l yi jk l

C
X
jk l

e jk l

 
xkl �

X
i

yi jk l

!

C
X
i k l

gik l

0
@xkl �

X
j

yi jk l

1
A

D
X
i jk l

(ci jk l � e jk l � gik l )yi jk l

C
X
i j

 X
k

eki j C
X
l

gl i j

!
xi j

s.t. first constraint in (10);
fourth constraint in (10)
: : :

last constraint in (10):

The authors prove in [56] that for any choice of e and
g, the solution to the above minimization problem will
equal the value of the Gilmore–Lawler lower bound as
applied to the QAP, with decomposed quadratic cost
coefficients, as dictated by using the vectors e and g
only in D1). Therefore, maxe, g L (e, g) constitutes an
upper bound on the lower bounds for the QAP, ob-
tained by using the Gilmore–Lawler bound with de-
composed quadratic cost coefficients. Using subgradi-
ent algorithms (cf. also � Nondifferentiable optimiza-
tion: Subgradient optimization methods) the authors
derive near optimal solutions for maxe, g L (e, g) re-
sulting in two lower bounds, denoted by FY1 and FY2,
corresponding to the two different solution approaches
proposed. As suggested by the experimental results in
[56], these bounds seem to be sharper than previously
reported Gilmore–Lawler based lower bounds using re-
duction techniques. Almost all of the other approaches
for obtaining lower bounds for the QAP with reduction
techniques, are special cases of the general decomposi-
tion scheme D2) (see [18,47,128]).

Variance Reduction Lower Bounds

The variance reduction lower bounds were intro-
duced in [93]. Consider an instance of the Koopmans–
Beckmann formulation of the QAP, with inputmatrices
F = (f ij), D = (dij) 2 Rn × n. Now partition both matrices
into a sum of two matrices, F = F1 + F2 and D = D1 +
D2, were F1 = (f (1)i j ), F2 = (f (2)i j ) and D1 = (d(1)i j ), D2 =
(d(2)i j ). Construct an n × nmatrix L = (lij), by solving the
following n2 LAPs:

li j D min
� 2 Sn
�(i) D j

nX
kD1

f (1)i k d
(1)
j�(k) C f (1)ki d�(k) j

C fkid(2)�(k) j � f (2)ki d
(2)
�(k) j (17)

It is proved in [93] that the solution of the LAP with
cost matrix L as constructed above, constitutes a lower
bound for QAP(F, D). The problem of concern now,
is to find a way to partition the matrices F and D such
that the resulting lower bound is maximized. Observe
that when F1 = F and D1 = D (i. e. no partitioning), we
essentially derive the GLB(F, D).

Let M 2 Rm × n, and denote its rows and columns
respectively asm(i �), andm(�, j), i, j = 1, . . . , n. Think ofM
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as a data set of mn elements mij, and define an average
� (M) and a variance V(M) as,

�(M) :D
1
mn

mX
iD1

nX
jD1

mi j ;

V(M) :D
mX
iD1

nX
jD1

(�(M)� mi j)2 :

Also define the total variance,

T(M; �) :D �
mX
iD1

V(m(i �))C (1 � �)V(M) ;

where � 2 [0, 1]. The term V(m(i �)) stands for the vari-
ance ofm(i �), treated as a 1 × nmatrix. The authors ob-
served that, as the variances of the matrices F and D
decrease, the GLB(F, D) increases, while it is optimal if
the variances of the rows of the matrices are zero. The
partition scheme considered is of the form, F1 = F +	F ,
F2 = �	F , and D1 = D +	D, D2 = �	D. Considering
only the matrix F, the problem is to find a matrix 	F ,
such that the variances of F1 and F2 and the sum of the
variances of the rows for each F1 and F2 are minimized.
We will only describe how 	F is obtained since 	D is
obtained in the same way. The problem of minimizing
the variances can be stated mathematically as

min �T(F C	F ; �)C (1 � �)T(�	>F ; �) ; (18)

where 	F 2 Rn × n and � 2 [0, 1] is a parameter. Two
approximate solutions were proposed in [93], corre-
sponding to the two reduction schemes
R1) ıij = �(f nn � f ij) + ınn,
R2) ıij = �(�(f (�, n)) � �(f (�, j)).
Here i, j = 1, . . . , n, 	F = (ıij), and with ınn being free
to take any value (it was given a value of zero in the
experiments conducted in [93]). In obtaining R2), the
problem of minimizing the variances such that the ma-
trix	F is constrained to have constant columns, is con-
sidered. The matrix	D is constructed in the same way.
Based on the two reductions schemes above, the result-
ing lower bounds from the solution of (17) are denoted
by LB1(�), and LB2(�). The above procedure for com-
puting	F ,	D has O(n2) computational complexity.

After the partitioning of the matrices F and D, the
solution to the LAP with cost matrix L = (lij), were lij are
defined in (17), will yield LB1(�) or LB2(�) according to

what reduction scheme used. If LB2(�) is used, the fact
that the matrices F2 and D2 have constant columns can
be exploited to compute the lij, i, j = 1, . . . , n, efficiently
as

li j D
Dbf (1)(i �);

bd(1)
( j�)

E�
C f (2)1i

nX

k D 1
k ¤ j

dk j

C d(2)1 j

nX

k D 1
k ¤ i

fk j � (n � 1) f (2)1i d
(2)
1 j C fi id j j ;

where bf (1)(i �);
bd(1)
( j�) 2 Rn�1 are the ith and jth row of F1

and D1 respectively, with the ith and jth elements re-
moved from each, and h�, �i� is defined in (14). In the
case that LB1(�) is used, the direct approach would be
to solve the n2 LAPs defined in (17), which will require
O(n5) computational effort. A different approach is to
calculate lower bounds for the values lij, i, j = 1, . . . , n,
as follows:

li j D
Dbf (1)(i �);

bd(1)
( j�)

E�
C
Dbf (2)(�;i);

bd(�; j)

E�

C
Dbf (�;i);bd(2)

(�; j)

E�
C
Dbf (2)(�;i);

bd(2)
(�; j)

EC
;

where each vector in the above extremal inner products,
is of dimension n� 1, and corresponds to the ith row or
column of the indicated matrix, upon removal of the ith
element. Similarly as before the extremal inner prod-
ucts h�, �i� and h�, �i+ are defined in (14) and (15). Using
the above approach would require O(n3) time to com-
pute lower bounds for the lij, i, j = 1, . . . , n, thus the
total computational complexity of the variance reduc-
tion lower bounds isO(n3). It is worth noting that there
is also a closed form solution to problem (18) given in
[71] which is

ıi j D ��
1 � �
1 � ��

�( f(i �))

C
�(1 � �)C ��2(1 � �) � �2�2(1 � �)

(1 � ��)(1 � �C ��)
�(F)

�
��(1� �)
1 � �C ��

�( f(� j)) � � fi j ;

for i, j = 1, . . . , n. However it was reported in [93]
that using the above closed form in the computation
of the lower bounds, poses implementation obstacles.
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The experimental results conducted in [93], also sug-
gest that the settings of � = 0.5 for LB1(�), and � = 1 for
LB2(�) as best choices. Finally, these lower bounds per-
form well on QAPs with input matrices that have high
variances, but their performance reduces to that of the
Gilmore–Lawler bounds when the variance of the ma-
trices is small.

Eigenvalue Based Lower Bounds

These bounds were introduced in [50,51], and are ap-
plied to the Koopmans–Beckmann formulation of the
QAP. This approach utilizes known results on per-
mutation matrices and eigenvalues, and exploits the
special structure of QAP(F, D). Upon the introduc-
tion of the method in [50,51], many improvements
and generalizations have appeared (see for example
[65,66,67,68,123,124]). There is a resemblance with the
Gilmore–Lawler based lower bounds, in the sense that,
based upon a general lower bound, reduction tech-
niques are applied to the quadratic terms of the ob-
jective function in order to improve its quality. The
reduction techniques that applied to eigenvalue based
lower bounds however, yield a significant improve-
ment, which is not really the case with the Gilmore–
Lawler bounds under certain reductions.

Considering the trace formulation of the QAP in
(7), with F and D being real symmetric matrices, there-
fore with all their eigenvalues being real, the following
result can be stated for the quadratic term [51]:

Theorem 5 [51] Let F, D 2 Rn × n be symmetric matri-
ces, and denote by � = (�1, . . . , �n)| and x1, . . . , xn the
eigenvalues and eigenvectors of F, and by � = (�1, . . . ,
�n)| and y1, . . . , yn the the eigenvalues and eigenvectors
of D. Then the following two relations are true for all X
2 Xn,
i) tr FXDX| =

Pn
iD1

Pn
jD1 �i�jhxi, Xyj}2 = �|S(X)�.

Here S(X) = (hxi, Xyji2) is a doubly stochastic matrix,
ii) h�, �i� � tr FXDX| � h�, �i+.

Using Theorem 5ii) a lower bound for QAP(F,D) based
on the eigenvalues of F and D is then

EVB D h�;�i� C min
X2Xn

tr BX> ;

where the second term is an ordinary LAP that can be
solved exactly. Observe that in Theorem 5, the smaller

the interval [h�, �i�, h�, �i+] is, the closest h�, �i�

is to tr FXDX|. A possible way of making the interval
smaller, is to decompose the matrices F and D such that
some of their value will be transfered in the linear term,
and the eigenvalues of the resulting matrices that com-
pose the quadratic term, are as uniform in value as pos-
sible. Define the spread of the matrix F as

spread(F) :D max
˚ˇ̌
�i � � j

ˇ̌
: i; j D 1; : : : ; n

�
:

Based on the above discussion, we want to minimize
the spreads of the matrices that compose the quadratic
term. There is no simple closed form for expressing
spread(F) in terms of f ij, however we can minimize in-
stead a formula for the upper bound given in [98]:

spread(F) � m(F) D

2
42

nX
iD1

nX
jD1

f 2i j �
2
n
(tr F)2

3
5

1
2

:

(19)

The decomposition scheme that the authors use in [51],
is the following:

fi j D f i j C ei C e j C ri j ; (20)

dkl D dkl C gk C gl C sk l ; (21)

where rij = sij = 0, for i 6D j.
Consider the decomposition for matrix F and let

F̄ D ( f i j). Minimizing the function f (e; r) D m(F)
obtained by substituting the values of f i j in (19), the
following values are obtained [51]:

z D
1

2(n � 1)

0
@

nX
iD1

nX
jD1

fi j � tr F

1
A ; (22)

ei D
1

n � 2

0
@

nX
jD1

fi j � fi i � z

1
A ; (23)

ri i D fi i � 2ei ; (24)

for i = 1, . . . , n. Analogously we obtain the values for g
and s for the decomposition of D. Replacing F and D in
(7) we obtain

tr(FXDC B)X> D tr(FXDC B)X> ;
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where bi j D bi j C fi id j j C 2ei
Pn

kD1
k¤ j

d jk , and matrices

F and D have respective eigenvalues � D (�1; : : : ; �n)
and � D (�1; : : : ; �n). The corresponding eigenvalue
lower bound is then

EVB1 D
D
�;�

E�
C min

X2Xn
tr BX> :

If we restrict ourselves only to pure quadratic (f ii =
dii = 0, 8i, B = 0) symmetric QAPs, the matrix B in the
above decomposition becomes B D cw>, where c D
2(e1; : : : ; en)> and w = (

P
jd1j, . . . ,

P
jdnj)|. Therefore

minX2Xn tr BX> D hc;wi
�, and

EVB1 D
D
�;�

E�
Chc;wi� � min

X2Xn
tr(FXDCB)X> :

We can however obtain further improvement as sug-
gested by F. Rendl [123], who examined the linear term
hc, wi�, and proposed a method where EVB1 is itera-
tively improved, until some specified number of itera-
tions is reached, or we have satisfied an optimality con-
dition. More specifically, let Sk := {X1, . . . , Xk} � Xn,
and

L(Xi) :D min fhc; Xiwi : Xi 2 Xn n Si�1g ;

so for any integer k � 1, L(X1) � L(X2) � � � � � L(Xk).
In other words the set Sk contains the k first solu-
tions (permutation matrices) of the problem minX2Xn

hc, Xiwi, where the first solution X13 L(X1) = hc, wi�.
Let

QAP(F;D; Xi ) D tr(FXiDC B)X>i ;

and also define the following

Z(k) :D min
˚
QAP(F;D; Xi) : i D 1; : : : ; k

�
:

The following inequalities [123] result:

Z(1) � � � � � Z(k) �
D
�;�

E�

C L(Xk) � � � � �
D
�;�

E�
C L(X1) ;

where if Z(i) D
D
�;�

E�
C L(Xi) for some i, then Xi

is the optimal solution to the problem. So essentially,
we try to close or reduce the gap between the optimal
solution of the QAP and the lower bound EVB1, by

increasing the value of the linear term hc, wi� in the
bound in k steps, where k is specified as a parameter.
The generation of the set Sk or ranking as it is called,
is a special case of the problem of ranking the k first
solutions of an assignment problem with cost matrix
(ciwj) where, as shown in [104], has time complexity
O(kn3). Rendl [123] presents an O(n log n + (n + log
k)k) for this special case. There are two issues regard-
ing the effectiveness of the above ranking procedure, in
improving the lower bound, addressed in [123]. First,
observe that if the vectors c and w have m � n equal
elements, then there are at least m! permutation matri-
ces {Xi} such that the values hc, Xiwi are equal. This in
turn, implies that there will be none or small improve-
ment in the lower bound while generating Sk for quite
some number of iterations. As dictated by the decom-
position in (22), (23), c and w will have equal elements
if the row sums of F and D are equal. One condition
then for applying the ranking procedure, is that most of
the row sums of F and D are not equal. Secondly, Rendl
[123] also defines a ratio called the degree of linearity
based on the ranges of the quadratic and linear terms
that compose the lower bound

L :D

D
�;�

EC
�
D
�;�

E�

hc;wiC � hc;wi�
:

The influence of the linear term on the lower bound
then is inversely proportional to the value of L. A small
value of L suggests that the ranking procedure would be
beneficial for the improvement of EVB1 for symmetric,
pure quadratic QAPs. For large values of L, we can ex-
pect that the quadratic term dominates the linear term
in the objective function, and [51] suggest the follow-
ing improvement on EVB1. Considering Theorem 5i)
as applied to the reduced matrices F and D, denote the
elements of the matrix S(X) by sij = hxi, Xyji2. We can
apply the bounds lij � sij � uij where

ui j D maxf(
˝
xi ; y j

˛�)2; (˝xi ; y j
˛C)2g;

li j D

(
0 if

˝
xi ; y j

˛�
;
˝
xi ; y j

˛C differ in sign;
minf(

˝
xi ; y j

˛�)2; (˝xi ; y j
˛C)2g otherwise:

Recalling the fact that the sij are the elements of a dou-
bly stochastic matrix, we can then form the capacitated
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transportation problem

CTP�

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
nX

iD1

nX
jD1

�i� j si j

s.t.
nX

iD1

si j D 1; j D 1; : : : ; n;

nX
jD1

si j D 1; i D 1; : : : ; n;

li j � si j � ui j:

The new lower bound then would be

EVB2 D CTP� C hc;wi� :

A more generalized approach to eigenvalue based
lower bounding techniques, was employed in [66], that
led to new lower bounds. Consider the following sets of
n × n matrices, where I 2 Rn × n is the identity matrix,
and u := (1, . . . , 1)| 2 Rn is the vector of ones,

O :D
˚
X : X>X D I

�
;

E :D
˚
X : Xu D X>u D u

�
;

N :D fX : X � 0g :

It is a well known result that Xn =O \ E\N, while the
set of doubly stochastic matrices˝ = E\N. Moreover,
by Birkhoff’s theorem [15] we know that ˝ is a convex
polyhedron with a vertex set Xn, that is, ˝ = conv{X :
X 2 Xn}. Considering the above characterization of Xn,
we can see that any solution to a relaxation of the QAP
obtained from excluding one or two of the matrix sets
O, E and N, will yield a lower bound. Naturally the re-
laxation, and therefore the lower bound, will be tighter
if only one of the matrix sets is excluded. In relation to
Theorem 5, Rendl and Wolkowicz [124] showed that

min
X2O

tr FXDX> D tr F�F�
>
DD�D�

>
F D h�;�i

� ;

max
X2O

tr FXDX> D tr F�F�
>
DD�D�

>
F D h�;�i

C ;

where�F ,�D are the matrices with columns the eigen-
vectors of F andD respectively, in the order specified by
the minimal (maximal) inner product of the eigenval-
ues. In other words, the lower bound on the quadratic
part of the QAP as obtained from the EVB, is derived
by relaxing the feasible set to that of orthogonal ma-
trices. In [124] a new lower bound is derived, similar
to EVB2 but using a different approach to decompose

the matrices F and D. More specifically, denote the de-
composition scheme in (20) and (21) by the vector d :=
(e|, g|, r|, s|) 2 R4n, where r = (r11, . . . , rnn)| and s =
(s11, . . . , snn)|, and consider EVB1 as a function of d.
Maximizing this function with respect to d will result
in a lower bound with the best possible decomposition
that involves both the linear and quadratic terms. This
leads to a nonlinear, nonsmooth, nonconcave function
which is hard to solve, and a steepest ascent algorithm
is proposed for maximizing it in [124]. The new bound,
denoted EVB3, produces some of the best lower bounds
for the QAP, with the expense however of high compu-
tational requirements.

All of the above discussed lower bounds, relax the
set of permutation matrices to O. A tighter relaxation
was proposed in [67], where the set of permutation ma-
trices was relaxed to O \ E, by incorporating E in the
objective function, by exploiting the fact that the vec-
tor of ones u is both a left and right eigenvector with
eigenvalue 1, for any X 2 Xn. More specifically define

P :D [u/kuk
:::V] ;

where V| u = 0, V| V = In� 1. therefore V is an or-
thonormal basis for {u}?, whileQ := VV| is the orthog-
onal projection on {u}?. The following characterization
of the permutation matrices is given in [67]

Lemma 6 [67] Let X 2 Rn × n and Y 2 Rn� 1 × n � 1. If

X D P
�
1 0
0 Y

�
P> ; (25)

then

X 2E ;

X 2N , VYV> � �
uu>

kuk

2

;

X 2O, Y 2 On�1 :

Conversely if X 2 E then there exists a Y such that (25)
holds.

Note that the above characterization of the permuta-
tion matrices, preserves the orthogonality and the trace
structure of the problem. Substituting X = � uu|/ kuk2

+ VYV| as suggested by (25), in the trace formula-
tion of the QAP in (7), we have an equivalent projected
problem (PQAP) of dimension n � 1 on the variable
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matrix Y . The new lower bound IVB is obtained by re-
laxing Y to On� 1, therefore deriving a lower bound for
the quadratic part of PQAP, while the linear part can
be solved exactly as an LAP. Decompositions for im-
proving the IVB are also considered in [67], where it is
shown that the quadratic term in the projected problem
is unaffected by e and g in the decomposition scheme
in (20), (21). Obtaining a lower bound by considering
both the quadratic and linear term is also considered
in [78].

The symmetry assumption on the QAP is required
by any of the eigenvalue based lower bounding tech-
niques described above. Hadley, Rendl and Wolkowicz
[68] show that any real QAP can be transformed into an
equivalent QAP where the matrices F andD are Hermi-
tian, which allows the application of eigenvalue based
bounds.

Bounds Based on Semidefinite Relaxations

Recently (as of 1999), semidefinite programming (SDP)
relaxations for the QAP were considered [76,77,137].
The SDP relaxations considered in these papers are
solved by interior point methods or cutting planemeth-
ods (cf. also � Linear programming: Interior point
methods;� Extended cutting plane algorithm), and the
obtained solutions are valid lower bounds for the QAP.
In terms of quality the bounds obtained in this way are
competitive with the best existing lower bounds for the
QAP. For many test instances from QAPLIB [31] such
as some instances of Hadley [26], Roucairol [128], Nu-
gent et al. [105], and Taillard [133], they are the best ex-
isting bounds. However, due to prohibitively high com-
putation time requirements, the use of such approaches
as basic bounding procedures within branch and bound
algorithms is up to now not feasible. See [77,78] for
a detailed description of SDP approaches to the QAP
and illustrate the idea by describing just one semidefi-
nite programming relaxation for the QAP.

The set of n × n permutation matrices Xn is the in-
tersection of the set of n × n 0–1 matrices, denoted by
Zn, and the set En of n × n matrices with row and col-
umn sums equal to 1. Moreover, Xn is also the inter-
section of Zn with the set of n × n orthogonal matrices,
denoted by On. Hence

Xn D Zn \ En D Zn \ On :

Recall that

On D
˚
X 2 Rn�n : XX> D X>X D I

�

and

En D
˚
X 2 Rn�n : Xu D X>u D u

�
;

where I is the n × n identity matrix and u is the n-
dimensional vector of all ones. Then, the trace formu-
lation of the QAP (7) with the additional linear term

�2
nX

iD1

nX
jD1

bi jxi j;

can be represented equivalently as follows:

QAPE

8̂
ˆ̂̂<
ˆ̂̂̂
:

min tr(FXDX> � 2BX>)
s.t. XX> D X>X D I;

Xu D X>u D u;
x2i j � xi j D 0:

In order to obtain a semidefinite relaxation for the QAP
from the formulation QAPE above, we introduce first
an n2-dimensional vector vec(X). vec(X) is obtained as
a columnwise ordering of the entries of matrix X. Then
the vector vec(X) is lifted into the space of (n2 + 1) × (n2

+ 1) matrices by introducing a matrix YX ,

YX D

�
x0 vec(X)>

vec(X) vec(X) vec(X)>

�
:

Thus, YX has some entry x0 in the left-upper corner fol-
lowed by the vector vec(X) in its first row (column). The
remaining terms are those of the matrix vec(X) vec(X)|

sitting on the right lower n2 × n2 block of YX . Secondly,
the coefficients of the problem are collected in an (n2 +
1) × (n2 + 1) matrix K given as

K D
�

0 � vec(B)>

vec(B) D˝ F

�
;

where the operator vec is defined as above and D˝ F is
the Kronecker product of D and F.

It is easy to see that with these notations the objec-
tive function of QAPE equals tr(KYX). By setting y00
:= x0 = 1 as done in [77], one obtains two additional
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constraints to be fulfilled by the matrix YX : YX is pos-
itive semidefinite and matrix YX is a rank-one matrix.
Whereas the semidefiniteness and the equality y00 = 1
can be immediately included in an SDP relaxation, the
rank-one condition is hard to handle and is discarded
in an SDP relaxation. In order to assure that the rank-
one positive semidefinite matrix YX is obtained by an n
× n permutation matrix as described above, other con-
straints should be imposed to YX . Such conditions can
be formulated as valid constraints of an SDP formula-
tion for the QAP by means of some new operators, act-
ing on matrices or vectors as introduced below. Given
a matrix A 2 Rn × n, the operator diag(A) 2 Rn produces
a vector containing the diagonal entries of matrix A
in their natural order, that is, from top-left to bottom-
right. The adjoint operator Diag acts on a vector V 2
Rn and produces a matrix Diag(V) 2 Rn × n with off-
diagonal entries equal to 0 and the components of V on
the main diagonal. For some matrix Y 2 R(n2C1)�(n2C1),
operator arrow(Y) 2 R(n2C1), is defined as arrow(Y) :=
diag(Y) � (0, Y0;1:n2 ), where (0, Y (0;1:n2)) is an n2 + 1-
dimensional vector with first entry equal to 0 and other
entries coinciding with the entries of Y lying on the 0th
row and in columns between 1 and n2, in their natural
order. The adjoint operator Arrow acts on an n2 + 1-
dimensional vectorW and produces an (n2 + 1) × (n2 +
1) matrix Arrow(W)

Arrow(W) D
�

w0
1
2W
>
1:n2

1
2W(1:n2) Diag(W1:n2 )

�
;

where W(1:n2) is the n2-dimensional vector obtained
fromW by removing its first entry w0. Furthermore, we
are going to consider an (n2 + 1) × (n2 + 1) matrix Y as
composed of its first row Y (0�), of its first column Y (�, 0),
and of n2 submatrices of size n × n each, which are ar-
ranged in an n × n array of n × nmatrices and produce
its remaining n2 × n2 block (this is similar to the struc-
ture of a Kronecker product of two n × nmatrices. The
entry y˛ˇ , 1� ˛, ˇ � n2, will be also denoted by y(ij)(kl) ,
with 1 � i, j, k, l � n, where ˛ = (i � 1) n + j and ˇ = (k
� 1) n + l. Hence, y(ij)(kl) is the element with coordinates
(j, l) within the n × n block with coordinates (i, k).

With these formal conventions let us define the
so-called block-0-diagonal and off-0-diagonal operators,
acting on an (n2 + 1) × (n2 + 1) matrix Y , and denoted
by b0 diag and o0 diag, respectively. b0 diag(Y) and o0

diag(Y) are n × nmatrices given as follows:

b0 diag(Y) D
nX

kD1

Y(k�)(k�) ;

o0 diag(Y) D
nX

kD1

Y(�;k);(�;k) ;

where, for 1� k� n, Y (k �)(k �) is the kth n × nmatrix on
the diagonal of the n × n array of matrices, defined as
described above. Analogously, Y (�, k), (�, k) is an n × nma-
trix consisting of the diagonal elements sitting on the
position (k, k) of the n × n matrices (n2 matrices al-
together) which form the n2 × n2 lower right block of
matrix Y . The corresponding adjoint operators B0 Diag
and O0 Diag act on an n × n matrix S and produce (n2

+ 1) × (n2 + 1) matrices as follows:

B0 Diag D
�
0 0
0 I ˝ S

�
;

O0 Diag D
�
0 0
0 S ˝ I

�
:

Finally, let us denote by e0 the n2 + 1-dimensional unit
vector with first component equal to 1 and all other
components equal to 0, and let R be the (n2 + 1) × (n2 +
1) matrix given by

R D
�

n �u> ˝ u>

�u ˝ u I ˝ E

�

C

�
n �u> ˝ u>

�u˝ u E ˝ I

�
;

where E is the n × n matrix of all ones. With these no-
tations, a semidefinite relaxation for QAPE is given as
follows

QAPR0

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min tr(KY)
s.t. b0 diag(Y) D I;

o0 diag(Y) D I;
arrow(Y) D e0;
tr(RY) D 0;
Y � 0;

where 4 is the so-called Löwner partial order, that is,
A 4 B if and only if B � A < 0, that is B � A is pos-
itive semidefinite. In [77] it was shown that an equiv-
alent formulation for the considered QAP is obtained
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from QAPR0 by imposing one additional condition on
the matrix Y , namely, the rank-one condition.

Exact SolutionMethods

Several exact solution approaches for solving the QAP
will be presented in this section. Specifically the ex-
act algorithms that have been used for the QAP are
dynamic programming, cutting plane algorithms, and
branch and bound which appears to be the most suc-
cessful one.

Branch and Bound

Branch and bound algorithms appear to be the most ef-
ficient exact algorithms for solving the QAP. For the
QAP there are three types of branch and bound algo-
rithms, namely:
� Single assignment algorithms ([60,88]).
� Pair assignment algorithms ([59,86,105]).
� Relative positioning algorithm ([97]).
All of the above algorithms work by iterative construct-
ing an optimal permutation starting from an empty
permutation. The single assignment algorithms seem to
be themost efficient and the pair assignment algorithms
do not have favorable computational results.

We will now describe a recent branch and bound
algorithm for the QAP, that was proposed in [111]. In
the description that follows we will consider the Koop-
mans–Beckmann formulation of the QAP. First let us
define the necessary notation used in describing the
branch and bound algorithm. A partial permutation for
the set of integers Sn = {1, . . . , n} is denoted by

�k :D
�

1 2 � � � k
�k(1) �k(2) � � � �k(k)

�

where k� n. From now wewill write �k = (�k(1), �k(2),
. . . , �k(k)) for short. An assignment of a facility i to a lo-
cation jwill be denoted by i! j, while if imust never be
assigned to j we will write i¹ j. Note that �k is essen-
tially a partial assignment of facilities to locations. If we
want to add an extra assignment to some �k, say k+ 1!
j, we will write �k + 1 = �k [ k + 1! j, thereby �k + 1(i)
= �k(i) for i = 1, . . . , k, and �k + 1(k + 1) = j. Given some
�k let its range be Qk := {�k(i) : i = 1, . . . , k}, and define
the sets of nonpermissible assignments to be Ek + 1 := {j
2 Sn \ Qk : k + 1¹ j}. Given an instance QAP(F, D, B),

a pair of �k and Ek + 1 completely defines a subproblem
Pi as

Pi

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
�2Sn

nX
i

nX
j

f i jd�(i)�( j) C
nX
i

bi�(i)

s.t. �(i) D �k(i); i D 1; : : : ; k;
�(kC 1) … EkC1:

The original problem P0 is obtained for an empty par-
tial permutation �0 and E1 = ;. For each Pi a lower
bound g(Pi) can be computed, using any of the lower
bounds described previously, and let the optimal solu-
tion to Pi be denoted by f (Pi). In the branch and bound
algorithm, a forest of n binary trees is constructed,
where each node of the tree corresponds to a partial
subproblem Pi. The branching process is as follows.
Given a node Pi (i. e. a subproblem) defined by some
�k and Ek + 1, two descendant nodes are created, the left
child Pl

i and the right child Pr
i . For P

l
i we set �

l
kC1 = �k

[ k + 1! j for some j 62 Ek and El
kC2 = ;, while for P

r
i

we set �r
k = �k and Er

kC1 = Ek + 1 [ j. A node which has
�k with k = n � 1 cannot decomposed further, and it is
called a terminal node. Immediately we can identify the
following properties
� g(Pi) � f (Pi) for any node Pi,
� g(Pi) = f (Pi) if Pi is a terminal node,
� g(Pj)� g(Pi) if Pj has descended from Pi.
A node defined by some �k and Ek + 1 will have two ter-
minal nodes as children if k = n � 2. Moreover, for any
node |Ek + 1| + k � n � 1, while if equality holds then
there is only one j 62 Ek + 1 and only one left child is gen-
erated with �k + 1 = �k [ k + 1! j and Ek + 2 = ;.

The branch and bound algorithm in [111] starts by
computing an upper bound solution to the original sub-
problem P0 by means of a heuristic (cf. also � Heuris-
tic search). Let the corresponding permutation be � =
(�(1), �(2), . . . , �(n)). Note that during the process of
the algorithm the upper bound is continuously updated
whenever a better feasible solution is found. Then n
nodes are created, where for each Pi for i = 1, . . . , n,
we set �1 = �0 [ 1! �(i). E2 = ;, and g(P}i) = 0. Then
the following steps are performed at each iteration
1) Selection: Here we choose which node to examine

next, and we choose the node with the maximum
g(Pi).

2) Branching: Given the chosen node Pi from step
1, we create two new nodes Pl

i and Pr
i , based on
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the branching scheme described previously. We set
g(Pr

i ) = g(Pi) and we compute g(Pl
i).

3) Elimination: If g(Pl
i ) is less than or equal to the cur-

rent upper bound, then the node Pl
i is pruned, that

is, marked not to be considered in step 1) in the fu-
ture.

4) Termination: The algorithm stops if, and only if,
there are no more nodes to be considered in step 1).

The authors in [111] applied the above described
branch and bound algorithm for the QAP in con-
junction with the variance reduction lower bounds de-
scribed previously.

Traditional Cutting Plane Methods

Traditional cutting plane algorithms for the QAP have
been developed by a different authors, [7,8,9,13,14], and
[80]. These algorithms make use of mixed integer linear
programming (MILP) formulations for the QAP which
are suitable for Benders decomposition. In the vein
of Benders, the MILP formulation is decomposed into
a master problem and a subproblem, called also slave
problem, where the master problem contains the orig-
inal assignment variables and constraints. For a fixed
assignment the slave problem is usually a linear pro-
gram and hence, solvable in polynomial time. The mas-
ter problem is a linear program formulated in terms of
the original assignment variables and of the dual vari-
ables of the slave problem, and is solvable in polyno-
mial time for fixed values of those dual variables. The
algorithms work typically as follows. First, a heuristic
is applied to generate a starting assignment. Then the
slave problem is solved for fixed values of the assign-
ment variables implied by that assignment, and optimal
values of the primal and dual variables are computed. If
the dual solution of the slave problem satisfies all con-
straints of the master problem, we have an optimal so-
lution for the original MILP formulation of the QAP.
Otherwise, at least one of the constraints of the mas-
ter problem is violated. In this case, the master prob-
lem is solved with fixed values for the dual variables of
the slave problem and the obtained solution is given as
input to the slave problem. The procedure is then re-
peated until the solution of the slave problem fulfills all
constraints of the master problem.

Clearly any solution of the master problem obtained
by fixing the dual variables of the slave problem to some

feasible values, is a lower bound for the considered
QAP. On the other side, the objective function value
of the QAP corresponding to any feasible setting of the
assignment variables is an upper bound. The algorithm
terminates when the lower and the upper bounds co-
incide. Generally, the time needed for the upper and
the lower bounds to converge to a common value is too
large, and hence these methods may solve to optimal-
ity only very small QAPs. However, heuristics derived
from cutting plane approaches produce good subopti-
mal solutions in early stages of the search, see for exam-
ple, [21] and [14].

Polyhedral Cutting Planes

Similarly to traditional cutting plane methods also
polyhedral cutting planes or branch and cut algorithms
(cf. also � Integer programming: Branch and cut al-
gorithms) make use of an LP or MILP relaxation of
the combinatorial optimization problem to be solved,
in our case the QAP. Additionally, polyhedral cutting
plane methods make use of a class of (nontrivial) valid
or facet defining inequalities known to be fulfilled by all
feasible solutions of the original problem. If the solu-
tion of the relaxation is feasible for the original prob-
lem, we are done. Otherwise, some of the above men-
tioned valid inequalities are probably violated. In this
case a ‘cut’ is performed, that is, one or more of the
violated inequalities are added to the LP or MILP re-
laxation of our problem. The latter is resolved and the
whole process is repeated. In the case that none of the
valid inequalities is violated, but some integrality con-
straint is violated, the algorithm performs a branch-
ing step by fixing (feasible) integer values for the cor-
responding variable. The branching steps produce the
search tree like in branch and bound algorithms. Each
node of this tree is processed as described above by per-
forming cuts and then by branching it, if necessary.
Clearly, related elements of branch and bound algo-
rithms like upper bounds, selection and branching rules
play a role in branch and cut algorithms. Hence, such
an approach combines elements of cutting plane and
branch and bound methods. The main advantage of
polyhedral cutting plane algorithms with respect to tra-
ditional cutting planes relies on the use of cuts which
are valid for the whole polytope of the feasible solutions,
and possibly facet defining. Traditional cutting planes
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instead rely frequently on cuts which are not valid for
the whole polytope of the feasible solutions. In this case
the whole computation has to be done from scratch for
different variable fixings. This requires additional run-
ning time and additional amounts of memory. Another
and not less important drawback of traditional cutting
plane algorithms is due to the ‘weakness’ of the cuts
they involve. In contrast with cuts produced by facet
defining inequalities, the weak cuts cannot avoid the
slow convergence.

Polyhedral cutting plane methods for the QAP are
not yet backed by a strong theory. However, some ef-
forts to design branch and cut algorithms for the QAP
have been made in [106] and [75]. M.W. Padberg and
M.P. Rijal [106] have tested their algorithm on sparse
QAP instances. The numerical results are encouraging,
although the developed software is of preliminary na-
ture, as claimed by the authors. V. Kaibel [75] has used
branch and cut to compute lower bounds for QAP in-
stances. His results are promising especially in the case
where box inequalities are involved.

Heuristics

There is a large amount of research directed toward
heuristic algorithms for solving the QAP. This is par-
tially due to the fact that, although substantial improve-
ments have been done in the development of exact al-
gorithms for the QAP, problems of dimension n > 20
are still not practical to solve because of very high com-
puter time requirements. The following types of heuris-
tic algorithmic approaches have been applied towards
the QAP:
� construction methods (CM);
� limited enumeration methods (LEM);
� improvement methods (IM);
� tabu search (TS);
� simulated annealing (SA);
� genetic algorithms (GA);
� greedy randomized adaptive search procedures

(GRASP);
� ant systems (AS).

ConstructionMethods

Construction methods were introduced in [60]. They
are iterative approaches which usually start with an
empty permutation, and iteratively complete a partial

permutation into a solution of the QAP by assigning
some facility which has not been assigned yet to some
free location.

PROCEDURE construction(
0 ; � )

 = fg;
DO i = 1; : : : ; n � 1!

IF (i; j) … � !
j = heur(i);
update(
i ; (i; j));
� = � [ (i; j);

FI;

 = 
i ;

OD;
RETURN(
)

END construction;

Pseudocode for construction method

A generic construction method is presented in pseu-
docode under the name PROCEDURE construction
(�0, � ). Here �0, �1, . . . , �n� 1 are partial permuta-
tions, and heur(i) is some heuristic procedure that as-
signs facility i to some location j, and returns j. � is
the set of already assigned pairs of facilities to loca-
tions. The procedure update constructs a permutation
� i by adding the assignment (i, j) to � i� 1. The heuris-
tic heur(i) employed by update could be any heuristic
which chooses a location j for facility i, (i, j) 62 � , in
a greedy fashion or by applying local search. One of the
oldest heuristics used in practice, the CRAFT heuris-
tic, developed in [17], is a construction method. An-
other construction method which yields good results
has been proposed in [100].

Limited Enumeration Methods

It has been observed that often enumeration methods
(e. g. branch and bound algorithms) find good solu-
tions in early stages of the search, and then employ a lot
of time to marginally improve that solution or prove
its optimality. Based on this observation, limited enu-
meration methods impose a limit on the enumeration
process, which can be either a maximum number of it-
erations or time limit, to produce a heuristic solution.
Another strategy which serves the same goal is to ma-
nipulate the lower bound. This can be done by increas-
ing the lower bound if no improvement in the solution
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is achieved during a large number of iterations, and
would yield deeper cuts in the search tree to speed up
the process. Clearly, such an approach may cut off the
optimal solution and hence should be used carefully,
possibly in conjunction with certain heuristics that per-
form elaborate searches in the feasible space.

Improvement Methods
These methods are otherwise called local search algo-
rithms. For a comprehensive discussion of theoretical
and practical aspects of local search in combinatorial
optimization, see [1].

Basic ingredients of improvement methods are the
neighborhood and the order in which the neighbor-
hood is searched. A frequently used neighborhood for
the QAP is the k-exchange neighborhood which we will
define as follows. Let the difference between two per-
mutations � and  be ı(�,  ) := {i : �(i) 6D  (i)}, and
define the distance between the two permutations to
be d(�,  ) := |ı(�,  )|. The k-exchange neighborhood
Nk(�) for a permutation � 2 Sn is

Nk(�) :D f : d(�; ) � k; 2 � k � ng :

The size of the neighborhood used in the k-exchange
local search is (nk) = n!/k!(n� k)!. For the QAP the most
frequently used values for k are 2 and 3, withN2(�) pro-
ducing better empirical results.

Another important ingredient of improvement
methods is the order in which the neighborhood is
scanned. This order can be either fixed previously or
chosen at random. Given a neighborhood structure and
a scanning order, a rule for the update of the current
solution (from the current iteration to the subsequent
one) should be chosen. The following update rules are
frequently used:
� first improvement;
� best improvement;
� Heider’s rule [70].
In the case of first improvement the current solution
is updated as soon as the first improving neighbor solu-
tion is found. Best improvement scans the whole neigh-
borhood and chooses the best improving neighbor so-
lution (if such a solution exists at all). Heider’s rule
starts by scanning the neighborhood of the initial solu-
tion in a prespecified cyclic order. The current solution
is updated as soon as an improving neighbor solution
is found. The scanning of the neighborhood of the new

solution starts there where the scanning of the previous
one was interrupted (in the prespecified cyclic order).

Tabu Search
Tabu search was introduced in [62,63] as a technique to
overcome local optimality. See [61] for a comprehen-
sive introduction to tabu search algorithms.

Different implementations of tabu search have been
proposed for the QAP, for example, a tabu search with
fixed tabu list ([131]), the robust tabu search ([133]),
where the size of the tabu list is randomly chosen be-
tween a maximum and a minimum value, and the reac-
tive tabu search ([12]) which involves a mechanism for
adopting the size of the tabu list. Reactive tabu search
aims at improving the robustness of the algorithm. The
algorithm notices when a cycle occurs, and increases
the tabu list size according to the length of the detected
cycle. The numerical results show that generally the re-
active tabu search outperforms other tabu search al-
gorithms for the QAP (see [12]). More recently, also
parallel implementations of tabu search have been pro-
posed, see for example, [36]. Tabu search algorithms al-
low a natural parallel implementation by dividing the
burden of the search in the neighborhood among sev-
eral processors.

Simulated Annealing
Simulated annealing exploits the analogy between com-
binatorial optimization problems and problems from
statistical mechanics. S. Kirkpatrick, C.D. Gelatt and
M.P. Vecchi [82] and V. Černý [135] were among the
first authors who recognized this analogy, and showed
how the Metropolis algorithm (see [96]) used to sim-
ulate the behavior of a physical many-particle system
can be applied as a heuristic for the traveling salesman
problem.

Burkard and Rendl [33] showed that a simulated
cooling process yields a general heuristic which can be
applied to any combinatorial optimization problem, as
soon as a neighborhood structure has been introduced
in the set of its feasible solutions. In particular, they
applied simulated annealing to the QAP. Other simu-
lated annealing (SA) algorithms for the QAP have been
proposed by different authors, see for example, [136]
and [40]. All these algorithms employ the 2-exchange
neighborhood. They differ on the way the cooling pro-
cess or the thermal equilibrium is implemented. The
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numerical experiments show that the performance of
SA algorithms strongly depends on the values of the
control parameters, and especially on the choice of the
cooling schedule.

Genetic Algorithms
The so-called genetic algorithms (GA) are a nature in-
spired approach for combinatorial optimization prob-
lems. The basic idea is to adapt the evolutionary mech-
anisms acting in the selection process in nature to com-
binatorial optimization problems. The first genetic al-
gorithm for optimization problems was proposed by
Holland [53] in 1975. For a good coverage of theoret-
ical and practical issues on genetic algorithms, see [43]
and [64].

A number of authors have proposed genetic algo-
rithms for the QAP. Standard algorithms, like the one
developed in [134], have difficulties to generate the best
known solutions even for QAPs of small or moder-
ate size. Hybrid approaches, such as combinations of
GA techniques with tabu search as the one developed
in [52] seem to be more promising. More recently an-
other hybrid algorithm, the so-called greedy genetic al-
gorithm proposed in [5], produced very good results on
large scale QAPs from QAPLIB [31].

Greedy Randomized Adaptive Search Procedure
The greedy randomized adaptive search procedure
(GRASP) was introduced in [48] and has been ap-
plied successfully to different hard combinatorial opti-
mization problems [49,83,84,125] and among them to
the QAP [94,109,110] and the BiQAP [95]. See [48]
for a survey and tutorial on GRASP, and to [117] for
a comprehensive presentation of the implementation of
GRASP to the QAP and related problems.

GRASP is a combination of greedy elements with
random search elements in a two phase heuristic. It
consists of a construction phase and a local improve-
ment phase. In the construction phase good solu-
tions from the available feasible space are constructed,
whereas in the local improvement phase the neigh-
borhood of the solution constructed in the first phase
is searched for possible improvements. A pseudocode
of GRASP is shown below. The input parameters are
the size RCLsize of the restricted candidate list (RCL),
a maximum number of iterations, and a random seed.
RCL contains the candidates upon which the sampling

related to the construction of a solution in the first
phase will be performed.

PROCEDURE
GRASP(RCLSize,MaxIter,RandomSeed)

InputInstance();
DO k = 1; : : : ;MaxIter!

ConstructSolution(RCLSize,RandomSeed);
LocalSearch(BestSolutionFound);
UpdateSolution(BestSolutionFound);

OD;
RETURN BestSolutionFound

END GRASP;

Pseudocode for generic GRASP

Ant Systems
Ant systems (AS) is a recently developed heuristic for
combinatorial optimization problems which tries to
imitate the behavior of an ant colony in search for food.
AS was originally introduced in [45] and [38] and has
already produced good results for well known problems
like the traveling salesman problem (TSP) and the QAP
[39,57]. Numerical results in [39,57] show that ant sys-
tems are competitive heuristics especially for real life
instances of the QAP with a few very good solutions
clustered together. For randomly generated instances
which have many good solutions distributed somehow
uniformly in the search space, AS are outperformed
by other heuristics, that is, genetic algorithms or tabu
search approaches.

Related Problems

Generalizations of the QAP appeared almost as soon as
the problem itself. Specifically, Lawler [88] addressed
the issue of extending to cubic, quartic, and N-adic as-
signments problems in general, in the same fashion as
the LAP was extended to QAP in formulation (1). For
the cubic assignment problem for example, we have n6

cost coefficients cijklmp where i, j, k, l,m, p = 1, . . . , n, and
the problem is then defined to be
8̂
<̂
ˆ̂:
min

nX
i; jD1

nX
k;lD1

nX
m;pD1

ci jk lmpxi jxk l xmp

s.t (xi j) 2 Xn :

As it is noted [88], we can construct an n3 × n3 matrix
S containing the cost coefficients, such that the cubic
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assignment problem is equivalent to the LAP

8̂
<̂
ˆ̂:

min hS;Yi
s.t. Y D X ˝ X ˝ X;

X 2 Xn :

In an analogous way the LAP can be extended to anyN-
adic assignment problem, by considering the solution
matrix Y to be the Kronecker Nth power of a permu-
tation matrix in Xn. In this section several generaliza-
tions and related problems of the QAP are presented,
for which real applications have been found that initi-
ated an interest in analyzing them and proposing solu-
tion techniques.

Biquadratic Assignment Problem

A generalization of the QAP is the biquadratic assign-
ment problem (BiQAP), which is essentially a quar-
tic assignment problem with cost coefficients formed
by the products of two four-dimensional arrays. More
specifically, consider two n4 × n4 arrays F = (f ijkl) andD
= (dmpst). The BiQAP can then be stated as:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
nX

i; j;k;lD1

nX
m;p;s;tD1

fi jk l dmpst ximx jpxksxl t

s.t.
nX

iD1

xi j D 1; j D 1; : : : ; n;

nX
jD1

xi j D 1; i D 1; : : : ; n;

xi j 2 f0; 1g; i; j D 1; : : : ; n:

The major application of the BiQAP arises in very large
scale integrated (VLSI) circuit design. A detailed de-
scription of the mathematical modeling of the VLSI
problem to a BiQAP can be found in [24]. Determin-
istic improvement methods and variants of simulated
annealing and tabu search have been developed for
the BiQAP in [22]. Computational experiments on test
problems of size up to n = 32, with known optimal so-
lutions (a test problem generator is presented in [24]),
suggest that one version of simulated annealing is best
among those tested. The GRASP heuristic has also been
applied to the BiQAP in [95], and produced the optimal
solution for all the test problems generated in [24].

Multidimensional Assignment Problems

A close relative to the class ofM-adic assignment prob-
lems is that of the multidimensional assignment prob-
lems (MAPs), often referred to as multi-index assign-
ment problems, that also arise as natural extensions
from the LAP. The general formulation of the MAP is
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
M1X
i1D1

� � �

MNX
iND1

ci1���iN xi1���iN

s.t.
M2X
i2D1

� � �

MNX
iND1

xi1���iN D 1;

for i1 D 1; : : : ;M1;
M1X
i1D1

� � �

Mk�1X
ik�1D1

MkC1X
ikC1D1

� � �

MNX
iND1

xi1���iN D 1;

for ik D 1; : : : ;Mk ; k D 2; : : : ;N � 1;
M1X
i1D1

� � �

MN�1X
iN�1D1

xi1���iN D 1;

for iN D 1; : : : ;MN ;

xi1���iN 2 f0; 1g
for all i1 � � � iN ;

with nN cost coefficients ci1���iN . A feasible solution to
the above problem will be an N-dimensional permu-
tation array. Multidimensional assignment problems
in their general form have found many applications
as a means of solving the data association problem.
More specifically, the central problem in any mul-
titarget tracking and multisensor surveillance is the
data association problem of partitioning the observa-
tions into tracks and false alarms. General classes of
these problems can be formulated as multidimensional
assignment problems. For a detailed description on
the application of MAPs for multiple target tracking
applications, as well as for solution approaches, see
[101,102,118].

Various applications are also contributed to special
cases of the MAP. Specifically, the five-dimensional as-
signment problem has been successfully used for track-
ing elementary particles. By solving a five-dimensional
assignment problem, physicists reconstruct tracks gen-
erated by charged elementary particles produced by
the large electron-positron collider (LEP) at CERN in-
stitute [119]. The 3-index assignment problem is also
a special case of the MAP.
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Bottleneck QAP

In the bottleneck quadratic assignment problem (BQAP)
of size n we are given an n × n flow matrix F and an n ×
n distance matrix D, and wish to find a permutation �
2 Sn which minimizes the objective function

max
˚
fi jd�(i)�( j) : 1 � i; j � n

�
:

A more general BQAP analogous to the QAP in (2) is
obtained if the coefficients of the problem are of the
form cijkl, 1� i, j, k, l � n:

min
�2Sn

max
1�i; j�n

ci j�(i)�( j) :

Besides the application in backboard wiring mentioned
above, the BQAP has many other applications. Basi-
cally, all QAP applications give raise to applications of
the BQAP because it often makes sense to minimize the
largest cost instead of the overall cost incurred by some
decision. A well studied problem in graph theory which
can be modeled as a BQAP is the bandwidth problem.
In the bandwidth problem we are given an undirected
graph G = (V , E) with vertex set V and edge set E, and
seek a labeling of the vertices of G by the numbers 1,
. . . , n, where |V| = n, such that the minimum absolute
value of differences of labels of vertices which are con-
nected by an edge is minimized. In other words, we seek
a labeling of vertices such that the maximum distance
of 1-entries of the resulting adjacency matrix from the
diagonal is minimized, that is, the bandwidth of the ad-
jacency matrix is minimized. It is easy to see that this
problem can be modeled as a special BQAP with flow
matrix equal to the adjacency matrix of G for some ar-
bitrary labeling of vertices, and distance matrix D = (ji
� jj).

The BQAP is NP-hard since it contains the bottle-
neck TSP as a special case. Some enumeration algo-
rithms to solve BQAP to optimality have been proposed
in [19]. These algorithms employ a Gilmore–Lawler-
like bound for the BQAP which involves in turn the
solution of bottleneck linear assignment problems. The
algorithm for the general BQAP involves also a thresh-
old procedure useful to reduce to 0 as many coefficients
as possible. Burkard and Fincke [27] investigated the
asymptotic behavior of the BQAP and proved results
analogous to those obtained for the QAP: If the coef-
ficients are independent random variables taken from

a uniform distribution on [0, 1], then the relative dif-
ference between the worst and the best value of the ob-
jective function approaches 0 with probability tending
to 0 as the size of the problem approaches infinity.

The BQAP and the QAP are special cases of a more
general quadratic assignment problem which can be
called the algebraic QAP (in analogy to the algebraic
linear assignment problem (LAP) introduced in [30]).
If (H, 
,�) is a totally ordered commutative semigroup
with composition 
 and order relation �, the algebraic
QAP with cost coefficients cijkl 2 H is formulated as

min
�2Sn

c11�(1)�(1) 
 : : : 
 c1n�(1)�(n) 
 : : : 
 cnn�(n)�(n) :

The study of the bottleneck QAP and more generally
the algebraic QAP was the starting point for the inves-
tigation of a number of algebraic combinatorial opti-
mization problem with coefficients taken from linearly
ordered semimodules, that is, linear assignment and
transportation problems, flow problems, and other. See
[34] for a detailed discussion on this topic.

Other ProblemsWhich Can Be Formulated As QAPs

There are a number of other well known combinato-
rial optimization problems which can be formulated as
QAPswith specific coefficient matrices. Of course, since
QAP is not a well tractable problem, it does not make
sense to use algorithms developed for the QAP to solve
these other problems. All known solution methods for
the QAP are far inferior compared to any of the special-
ized algorithms developed for solving these problems.
However, the relationship between the QAP and these
problems might be of benefit for a better understanding
of the QAP and its inherent complexity.

Two well studied NP-hard combinatorial optimiza-
tion problems which are special cases of the QAP, are
the graph partitioning problem (GPP) and the maxi-
mum clique problem (MCP). In GPP we are given an
(edge) weighted graph G = (V , E) with n vertices and
a number k which divides n. We want to partition the
set V into k sets of equal cardinality such that the total
weight of the edges cut by the partition is minimized.
This problem can be formulated as a QAPwith distance
matrix D equal to the weighted adjacency matrix of G,
and flow matrix F obtained by multiplying with �1 the
adjacency matrix of the union of k disjoint complete
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subgraphs with n/k vertices each. For more informa-
tions on graph partitioning problems, see [90]. In the
maximum clique problem we are again given a graphG
= (V , E) with n vertices and wish to find the maximum
k � n such that there exists a subset V1 � V with |V1|
= k, which induces a clique in G, that is, all vertices of
V1 are connected by edges of G. In this case consider
a QAP with distance matrix D equal to the adjacency
matrix of G and flow matrix F given as adjacency ma-
trix of a graph consisting of a clique of size k and n �
k isolated vertices, multiplied by �1. A clique of size k
in G exists only if the optimal value of the correspond-
ing QAP is �k2. For a review on the maximum clique
problem, see [114].

The traveling salesman problem (TSP) is another
well known combinatorial optimization problemwhich
is NP-hard, and much research has been devoted to
finding efficient algorithms that will provide near-
optimal solutions. In the TSP we are given a set of
cities and the distances between them, and our task is
to find the optimal tour that will visit each city once
and will minimize the total distance traveled. In formu-
lating the TSP as a QAP the distance matrix D is the
corresponding distance matrix of the TSP, and the flow
matrix F is the adjacency matrix of a complete cycle of
length n. Without loss of generality the distance matrix
D is considered to be symmetric. A complete cycle or
tour is then defined by a permutation �. The traveling
salesman problem (TSP) is a notorious NP-hard com-
binatorial optimization problem. Among the abound-
ing literature on the TSP, [89] is a comprehensive ref-
erence.

In the linear arrangement problem we are given
a graph G = (V , E) and wish to place its vertices at the
points 1, . . . , n on the line so as to minimize the sum
of pairwise distances between vertices of G which are
joined by some edge. If we consider the more general
version of weighted graphs than we obtain the back-
board wiring problem. This is an NP-hard problem as
mentioned in [58]. It can be formulated as a QAP with
distance matrix the (weighted) adjacency matrix of the
given graph, and flow matrix F = (f ij) given by f ij = |i �
j|, for all i, j. In the minimum weight feedback arc set
problem (FASP) a weighted digraph G = (V , E) with
vertex set V and arc set E is given. The goal is to re-
move a set of arcs from Ewithminimum overall weight,
such that all directed cycles, so-called dicycles, in G are

destroyed and an acyclic directed subgraph remains.
Clearly, the minimum weight feedback arc set problem
is equivalent to the problem of finding an acyclic sub-
graph ofGwithmaximumweight. The unweighted ver-
sion of the FASP, that is a FASP where the edge weights
of the underlying digraph equal 0 or 1, is called the
acyclic subdigraph problem and is treated extensively in
[74]. An interesting application of the FASP is the so-
called triangulation of input-output tables which arises
along with input-output analysis in economics used to
forecast the development of industries, see [91]. For de-
tails and a concrete description of the application of
triangulation results in economics, see [41] and [122].
Since the vertices of an acyclic subdigraph can be la-
beled topologically, that is, such that in each arc the la-
bel of its head is larger than that of its tail, the FASP
can be formulated as a QAP. The distance matrix of the
QAP is the weighted adjacency matrix ofG and the flow
matrix F = (f ij) is a lower triangular matrix, that is, f ij
= �1 if i � j and f ij = 0, otherwise. The FASP is well
known to be NP-hard (see [58,79]).

Another well known NP-hard problem which can
be formulated as a QAP is the graph packing problem
(cf. [16]). The graph packing problem can be formu-
lated as a QAP with distance matrix equal to the adja-
cency matrix of G2 and flow matrix equal to the adja-
cency matrix of G1. A packing of G2 into G1 exists if
and only if the optimal value of this QAP is equal to
0. In the positive case the optimal solution of the QAP
determines a packing.

QAP ProblemGenerators

Since the QAP is a very hard problem from a practi-
cal point of view, often heuristics are the only reason-
able approach to solve it, and so far there exists no per-
formance guarantees for any of the algorithms devel-
oped for the QAP. One possibility to evaluate the per-
formance of heuristics and to compare different heuris-
tics is given by QAP instances with known optimal so-
lution. Heuristics are applied to these instances and
the heuristic solution is compared to the optimal one
known before hand. The instances with known optimal
solution should ideally have two properties: first, they
should be representative in terms of their hardness, and
secondly, they should not be especially easy for any of
the heuristics.
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Two generators of QAP instances with known opti-
mal solution have been proposed so far: Palubeckis’ gen-
erator [107] and the Li–Pardalos generator [92].

The first method for generating QAP instances
with a known optimal solution was proposed by G.S.
Palubeckis [107] in 1988. The input of the Palubeckis’
algorithm consists of the size n of the instance to be
generated, the optimal solution (permutation) � of the
output instance, two control parameters w and z, where
z < w, and the distance matrix A of an r × s grid with rs
= n. A contains rectilinear distances also called Man-
hattan distances, that is, the distance aij between two
given knots i, j lying in rows ri, rj and in columns ci, cj,
respectively, is given by aij = |ri � rj| + |ci � cj|. The out-
put of the algorithm is a second matrix B such that � is
an optimal solution of QAP(A, B). The idea is to start
with a matrix B such that QAP(A, B) is a trivial instance
with optimal solution �. Then B is transformed such
that QAP(A, B) is not any more trivial, but � continues
to be its optimal solution.

Palubeckis starts with a constant matrix B = (bij)
with bij = w. QAP(A, B) is a trivial problem because
all permutations yield the same value of the objective
function and thus, are optimal solutions. Hence, also
the identity permutation id is an optimal solution of
QAP(A, B). Then matrix B is iteratively transformed
so that it is not a constant matrix any more and the
identity permutation remains an optimal solution of
QAP(A, B). In the last iteration the algorithm con-
structs an instance QAP(A0, B) with optimal solution
� with the help of QAP(A, B) with optimal solution the
identity permutation id, by setting A0 = (a�(i)�(j)). The
optimal value of QAP(A0, B) equals w

Pn
iD1

Pn
jD1 aij.

D. Cyganski, R.F. Vaz and V.G. Virball [42] have ob-
served that the QAP instances generated by Palubeckis’
generator are ‘easy’ in the sense that their optimal value
can be computed in polynomial time by solving a linear
program.

Another generator of QAP instances with known
solution has been proposed by Li and Pardalos [92]. As
Palubeckis’ generator, Li and Pardalos starts with a triv-
ial instance QAP(A, B) with the identity permutation id
as optimal solution and iteratively transforms A and B
so that the resulting QAP instance still has the optimal
solution id but is not trivial any more. The transforma-
tions are such that for all i, j, i0, j0, aij � ai0 j0 is equivalent
to bij � b0ij at the end of each iteration.

If the coefficient matrices are considered as
weighted adjacency matrices of graphs, each itera-
tion transforms entries corresponding to some spe-
cific subgraph equipped with signs on the edges and
hence called sign-subgraphs. The application of the
Li–Pardalos algorithm with different sign-subgraphs
yields different QAP generators. A number of gener-
ators involving different sign-subgraphs, for example,
subgraphs consisting of a single edge, signed triangles
and signed spanning trees have been tested. It is per-
haps interesting and surprising that QAP instances gen-
erated by involving more complex sign-subgraphs are
generally ‘easier’ than those generated by involving sub-
graphs consisting of single edges. Here a QAP instance
is considered to be ‘easy’, if most heuristics applied to
it find a solution near to the optimal one in a relatively
short time. Nothing is known about the complexity of
QAP instances generated by the Li–Pardalos generator,
since the arguments used to analyze Palubeckis’ gener-
ator do not apply in this case.

Surveys and Books

In this concluding section a list of survey articles and
books which cover all the aspects of the QAP in depth
is given.

One of the early survey articles is [51] where the
eigenvalue based lower bounds for the QAP are in-
troduced. The survey papers [20,112] and [25] cover
every aspect of the QAP. Specifically, the article [25]
is the most recent one, and the most comprehensive.
A collection of articles with theoretical and algorithmic
contributions for the QAP can be found in the book
[113]. The book [35] has a comprehensive introduction
on the QAP, and focuses on special cases of the QAP
which can be solved in polynomial time. Finally the
book [106] focuses on polyhedral aspects of the QAP.
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Given two continuous functions f : Rn! R and gRn!

R defined on a polyhedral set S � Rn such that g(x) > 0
for all x 2 S, the fractional programming problem is to
find some point x� which satisfies

f (x�)
g(x
)

D max
x2S

f (x)
g(x)

: (1)

Applications and algorithms for fractional programs
have been treated in considerable detail since the early
work of J.R. Isbell and W.H. Marlow [5]. Included
among the many applications are portfolio selection,
stock cutting, game theory, and numerous decision
problems in management science. See [3] for work
known to up to 1971 and [1,4,12,13] for the most re-
cent surveys.

If f (x) is concave and nonnegative and g(x) and
S are convex (and S is bounded), then (1) is called
a concave-convex fractional program. It was shown in
[10] that such problems can be solved by a single con-
cave problem using a simple variable transformation.
This provides an efficient approach for solving a lim-
ited class of fractional programming problems. Unfor-
tunately, even in some of the simplest cases (for exam-
ple when f (x) and g(x) are quadratic) a new constraint,
which may be nonlinear, must be added (to the trans-
formed feasible region), and the transformed problem
becomes very difficult to solve. In addition, if the prob-
lem is not concave-convex initially, then the transfor-
mation does not even necessarily yield a concave prob-
lem. In fact, in the most general case, Eq (1) may have
many local maxima which are different from the opti-
mal one, and hence determining the global maximum
is very difficult (i. e., NP-hard).

A different and more recent method is to replace the
nonlinear functions by suitable linear underestimators
and then obtain the global optimum by a vertex rank-
ing procedure. This method, due to P.M. Pardalos [6],

is applicable only when f (x) is a convex quadratic func-
tion and g(x) is linear (hence the ratio is quasiconvex).

Another well-known approach, and one of the old-
est, is to consider the global optimization problem

max
x2S

f (x)� �g(x) ; (2)

where � 2 R is a constant. This ‘parametric’ approach,
which was first proposed by W. Dinkelbach [2], gener-
ates a sequence of values �i that converges to the global
optimum function value [11]. This method has since
then been applied to many specific types of fractional
programs including the concave-convex type, but very
little work has been done to solve fractional programs
where the ratio of two concave, two convex, or the ratio
of a convex and a concave function is to be maximized.
In addition, this method does not provide a sequence
of improving upper bounds, and hence even though the
sequence �i may be converging to the global optimum
function value, no bound on the error is available at any
iteration.

The method discussed here improves Dinkelbach’s
algorithm by providing a means for obtaining a se-
quence of improving upper bounds which, along
with the corresponding sequence of improving lower
bounds, will provide a bound on the error at each it-
eration of the solution procedure. In addition, both
the sequence of lower bounds and the sequence of
upper bounds converge to the global optimum func-
tion value at a ‘superlinear’ rate. This algorithm is also
appropriate for the class of quadratic fractional pro-
grams (i. e., one or both of f (x) and g(x) are quadratic)
where the ratio may involve concave, convex, or even
indefinite terms. It combines Dinkelbach’s approach
with a method guaranteed to solve linearly constrained
quadratic programming problems regardless of the def-
initeness of the quadratic from [8].

Two algorithms which are similar to the one pre-
sented here are given in [4,11]. Schaible’s method [11]
first computes a sequence of improving upper and
lower bounds using an efficient section method.Dinkel-
bach’s algorithm is then started as soon as the section
method achieves a set of bounds that differ by some
pre-specified tolerance. The algorithm presented here
differs from Schaible’s method in that the upper and
lower bounds are continuously improving throughout
the procedure. Nevertheless, in both algorithms the se-
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quence of upper and lower bounds converges superlin-
early.

Likewise, [4] presents a variety of related algorithms
which also provide upper and lower bounds. These al-
gorithms combine Dinkelbach’s approach with various
search techniques (e. g., Newton, binary, modified bi-
nary). The result is a set of related algorithms with con-
vergence rates that vary depending on the search tech-
nique employed. T. Ibaraki [4] also provides a collec-
tion of computational results for the fractional knap-
sack problem and quadratic fractional programs.

Problem Formulation and Properties

The fundamental result which relates the global op-
timization problem (2) to the general fractional pro-
gramming problem (1) is as follows: x� solves the frac-
tional programming problem (1) if and only if x� solves
the global optimization problem (2) with constant �� =
f (x�)/g(x�).

Dinkelbach’s original iterative algorithm is based on
this theorem and can be described as follows:

1 Select some x(0) 2 S.
Set �(0) = f (x(0))/g(x(0)) and k = 0.

2 Solve the constrained global optimization
problem (2) to get the optimal solution point
x(k+1).

3 IF f (x(k+1)) � �(k)g(x(k+1)) = 0,
THEN set x� = xk+1; �� = �(k),
STOP.

4 IF f (x(k+1)) � �(k)g(x(k+1)) > 0,
THEN set �(k+1) = f (x(k+1))/g(x(k+1)) and k =
k + 1.
Go to Step 2.

Dinkelbach(S; f; g)

The efficiency of this algorithm depends on the
number of times the constrained global optimization
problem must be solved, and on the time spent solving
it during each iteration. Also note that a test of the form
f (x(k + 1)) � �(k)g(x(k + 1)) < 0 is not necessary since, for
any fixed k,

f (x(kC1)) � �(k)g(x(kC1)) D max
x2S

f (x)� �(k)g(x)

� f (x(k)) � �(k)g(x(k))

D 0 :

Now consider the functionM(�) defined as

M(�) D max
x2S

f (x) � �g(x) : (3)

The function M(�) has two interesting properties that
are important in guaranteeing convergence of upper
and lower bounds to �� and in determining the rate of
this convergence. The first of these properties is that for
any lower bound � of ��, M(�) is positive, and for any
upper bound � of ��, M(�) is negative. Secondly, the
functionM(�) is convex. That is,
1) M(�) > 0 for all � < ��, andM(�) < 0 for all � > ��;

and
2) M(�) is convex.
The sequence of iterates �(0), �(1), . . . generated by the
algorithm Dinkelbach(S, f , g) is strictly monotone in-
creasing, and satisfy M(�(i)) > 0 for i = 0, 1, . . . [2].
Hence, by the properties ofM(�) listed above, they pro-
vide a strictly monotone increasing sequence of lower
bounds for ��.

Bounds and Convergence Rates

The sequence of lower bounds �(i) converges superlin-
early to �� � f (x�) : g(x�) ! where x� is any opti-
mal solution for (1) as shown in [7]. However, as it
now stands, the algorithm Dinkelbach(S, f , g) does not
provide upper bounds on the global optimum function
value ��. One way to obtain an initial upper bound is
to solve the following two problems:

max
x2S

f (x) (3a)

to get the optimal solution f (x0), and

min
x2S

g(x) (4)

to get the optimal solution g(x00). Then an initial upper
bound is clearly given by � (� 1) � f (x0)/g(x00). In fact,
according to the properties ofM (part 1), any � 2R sat-
isfyingM(�) < 0 would also be an upper bound. Hence,
if we define

� (n) � � (n�1)�M(� (n�1)) �
�

� (n�1) � �(n)

M(� (n�1)) �M(�(n))

�

where �(n) is the most recent lower bound of �� and
� (n� 1) is the most recent upper bound of ��, then the
new upper bound is given by � (n). As Fig. 1 illustrates,
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� (n) is just the root of the line segment joining the points
(�(n),M(�(n))) and (� (n� 1),M(� (n� 1))).

This leads to an important modification of the algo-
rithm Dinkelbach(S, f , g):

1 Select some x(0) 2 S.
Set �(0) = f (x(0))/g(x(0)).

2 Solve the constrained global optimization
problems (4) and (5) to get the optimal func-
tion values f (x0) and g(x0), respectively.
Set � (�1) = f (x0)/g(x") and k = 0.
IF � (�1) � �(0) � ı,
THEN set �� = �(0) and x� = x(0);
STOP.

3 Solve the constrained global optimization
problem

M(�(k)) = max
x2S

f (x)� �(k)g(x) (6)

to get the optimal solution point x(k+1).
4 IF M(�(k)) = 0,

THEN set x� = x(k+1) and �� = �(k);
STOP.

5 Solve the constrained global optimization
problem

M(� (k�1)) = max
x2S

f (x) � � (k�1)g(x) (7)

to get the optimal solution point y(k).
6 IF M(� (k�1)) = 0,

THEN set x� = y(k) and �� = � (k�1);
STOP.

7 Set

� (k) = � (k�1)

�M(� (k�1)) �
�

� (k�1) � �(k)
M(� (k�1)) �M(�(k))

�
:

8 IF � (k) � �(k) � ı,
THEN set �� = �(k) and x� = x(k+1);
STOP.

9 Set �(k+1) = f (x(k+1))/g(x(k+1)) and k = k + 1.
Go to Step 3.

Fract(S; f; g; ı)

Quadratic Fractional Programming: DinkelbachMethod, Fig-
ure 1

Note that the parameter ı � 0 is a user supplied
stopping tolerance. The following assertion from [7]
shows that the sequence iterates � (� 1), � (0), � (1), . . . is,
in fact, a sequence of upper bounds on ��, and that the
sequence is strictly monotonically decreasing:

�� � � (iC1) � � (i) for i D �1; 0; 1; : : : :

In fact, the sequence of upper bounds � (i) also con-
verges to ��, and this convergence is superlinear as
well [7].

Special Cases

If the feasible set S is polyhedral and the functions f (x)
and g(x) are either linear or quadratic, then the al-
gorithm solves a sequence of linear or quadratic pro-
grams, respectively. In particular, if f (x) = c|x and g(x)
= d|x then the algorithm solves the sequence of linear
programs

max
x2S

(c � �(k)d)>x (8)

If both f (x) and g(x) are quadratic, i. e., f (x) = (½) x|Qx
+ c|x and g(x) = (½) x|Px + d|x, then the algorithm
solves the sequence of quadratic programs

max
x2S

1
2
x>(Q � �(k)P)x C (c � �(k)d)>x : (9)

Notice that the matrix (Q� �(k)P) may be indefinite, in
which case the algorithm is required to find the global
maximum of a linearly constrained indefinite quadratic
function. Even though this is anNP-hard problem (e. g.,
when (Q � �(k)P) is positive definite), the method de-
veloped by A.T. Phillips and J.B. Rosen [8] is guaran-
teed to find an �-approximate global maximum (i. e.,
the relative error is no larger than �) for any specified �
> 0.
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Furthermore, if f (x) and g(x) are such that f (x) � �
g(x) is only ‘partially separable’, then the method devel-
oped in [9] can be used to find an �-approximate global
maximum for any � > 0. Specifically, the method in [9]
is guaranteed to find solutions to the sequence of sub-
problems (6) and (7) if x can be partitioned into two
components x = (w, z) such that f (x) � � g(x) (where
the constant � = �(k) or � (k� 1)) can be written in the
form �(w) +  (z) where �(w) is a separable convex
function of w and  (z) is a concave (but not necessar-
ily separable) function of z. The applicability of these
methods to the solution of these subproblems greatly
extends the class of fractional programming problems
that can be solved in practice.
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Introduction

In this paper we consider a quadratic programming
(QP) problem of the following form:

min f (x) D
1
2
xTQx C cTx

s.t. x 2 D
(1)

where D is a polyhedron in Rn , c 2 Rn . Without
any loss of generality, we can assume that Q is a real
symmetric (n � n)-matrix. If this is not the case, then
the matrix Q can be converted to symmetric form by
replacing Q by (Q C QT)/2, which does not change
the value of the objective function f (x). Note that if
Q is positive semidefinite, then Problem (1) is consid-
ered to be a convex minimization problem. When Q
is negative semidefinite, Problem (1) is considered to
be a concave minimization problem. When Q has at
least one positive and one negative eigenvalue (i. e., Q
is indefinite), Problem (1) is considered to be an indefi-
nite quadratic programming problem.We know that in
the case of convex minimization problem, every Kuhn-
Tucker point is a local minimum, which is also a global
minimum. In this case, there are a number of classical
optimization methods that can obtain the globally opti-
mal solutions of quadratic convex programming prob-
lems. These methods can be found in many places in
the literature. In the case of concave minimization over
polytopes, it is well known that if the problem has an
optimal solution, then an optimal solution is attained at
a vertex of D. On the other hand, the global minimum
is not necessarily attained at a vertex of D for infinite
quadratic programming problems. In this case, from
second order optimality conditions, the global mini-
mum is attained at the boundary of the feasible domain.
In this research, without loss of generality, we are inter-
ested in developing solution techniques to solve general
(convex, concave and indefinite) quadratic program-
ming problems.

Complexity of Quadratic Programming

In this section we discuss the complexity of quadratic
programming problems. The complexity analysis can

give an idea of the possibility of developing efficient al-
gorithms for solving the problem. In [10], the QP was
shown to beNP-hard in the case of a negative definite
matrix Q. The QP was also proven to beNP-hard by
reduction to the satisfiability problem [11], and reduc-
tion to the knapsack feasibility problem [5]. Moreover,
it has also been shown that checking local optimality for
the QP itself is anNP-hard problem [11]. In addition,
checking for strict convexity (checking local optimal-
ity as part of the second order necessary conditions) in
the QP was proven to be NP-hard [8]. In fact, find-
ing a local minimum and proving local optimality of
such a solution to the QP may take exponential time.
This is true even in the case of a small number of con-
cave variables. For instance, although the matrix Q is of
rank one with exactly one negative eigenvalue, the QP
is stillNP-hard [9]. However, a large number of neg-
ative eigenvalues does not necessarily make the prob-
lem harder to solve. For example, consider the follow-
ing problem:

min
1
2
xTQx C cTx

s.t. x � 0 :

If the matrix Q has (n � 1) negative eigenvalues, then
there must be at least (n � 1) active constraints at the
optimal solution [3]. Correspondingly, it is sufficient to
solve (n � 1) different problems, in each case setting
(n � 1) of the constraints to equalities, to find the opti-
mal solution. In general, if the matrixQ has (n�k) neg-
ative eigenvalues, then we are required to solve n!

k!(n�k)!
independent problems. In addition, the total computa-
tional time required to solve this problem is propor-
tional to k3ck n!

k!(n�k)! . Thus, if k is an constant and indepen-
dent of n, then the computational time is bounded by
a polynomial in n. On the other hand, if k grows with
n, then the computational time can grow exponentially
with n [3].

Equivalence Between Discrete
and Continuous Problems

Before we show the equivalence between discrete and
continuous programs, it is important to discuss an
equivalence property between two extremum prob-
lems [2]. Therefore, we refer to the following theorem
(see [2] for a proof).
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Theorem 1 Let Z̄ and X̄ be compact sets in Rn ; R be
a closed set inRn, and let the following hypotheses hold.

H1) f : Rn ! R is a bounded function on X̄, and
there exists an open set A � Z̄ and real number
˛; L > 0 such that, for any x; y 2 S; f satisfies
the following Hölder condition: j f (x) � f (y)j
� Lkx � yk˛ .

H2) It is impossible to find ' : Rn ! R such that
(i) ' is continuous on X̄,
(ii) '(x) D 0; x 2 Z̄; '(x) > 0; x 2 X̄ � Z̄;
(iii) 8z 2 Z̄; there exists a neighborhood S(z) and

a real "̄ > 0 such that, for any x 2 S(z)\(X̄�
Z̄); '(x) � "̄kx � zk˛ .

Then a real �0 exists such that for any real � � �0,
min f (x); x 2 Z̄ \ R is equivalent to min[ f (x) C
�'(x)]; x 2 X̄ \ R.

Now we can show an equivalence between discrete and
continuous programs from the following theorem [2].

Theorem2 Let eT D (1; 1; : : : ; 1); Z̄ D Bn; X̄ D fx 2
Rn ; 0 � x � eg; R D fx 2 Rn ; g(x) � 0g. Consider
the problem

min f (x)

s.t. g(x) � 0; x 2 Bn ;
(2)

and the problem

min [ f (x)C �xT(e � x)]

s.t. g(x) � 0; 0 � x � e :
(3)

Then we suppose that f verifies assumption H1 from The-
orem 1 with ˛ D 1; that is, it is bounded on X̄ and Lip-
schitz continuous on an open set A � Z̄. Subsequently,
there exists some �0 2 R such that 8� < �0 Prob-
lems (2) and (3) are equivalent.

Integer Programming Problems
and Complementarity Problems

The connections between integer programs and com-
plementarity problems can be exhibited by applying
KKT conditions. The results can be generalized in the
quadratic programming case [4].

Theorem 3 Let us first assume
3a) f : Rn ! R; g : Rn ! R are continuously differ-

entiable functions.

3b) g(x) satisfies a constraint qualification condition at
x0 to ensure that KKT conditions are validated.

Then the nonlinear programming problem

min f (x)
s.t. g(x) � 0; x � 0 ;

(4)

has an optimal solution x0 if there exist u0 2 Rn ;

y0; v0 2 Rv such that (x0; y0; u0; v0) is an optimal solu-
tion to the following problem:

min f (x)

s.t. f 0(x) � yTg0(x) � u D 0;
g(x) � v D 0;

yTv D 0

xTu D 0

x; y; u; v � 0 :

(5)

Proof 1 Necessity. If x0 is an optimal solution to Prob-
lem (4), from KKT conditions we obtain (y0; u0) such
that

f 0(x0) � y0
T
g(x0) � u0 D 0;

g(x0) � 0;

x0
T
u0 D 0;

x0; y0; u0 � 0 :

Let v0 D g(x0), then (x0; y0; u0; v0) is an optimal solu-
tion to Problem (5).

Sufficiency. The proof is trivial. �

We now generalize the results of Theorem 3 to the
quadratic programming case. Consider the following
problem

min
1
2
xTQx C cTx

s.t. Ax � b;

x 2 Bn ;

(6)

whereQ is a symmetricmatrix. Using Theorem 2, Prob-
lem (6) is equivalent to

min
�
1
2
xT(Q � 2�I)x C (cT C �eT)x

�

s.t. Ax � b;

x � e;

x � 0 :

(7)
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Applying Theorem 3 to Problem (7), we then obtain

min
�
1
2
xT(Q � 2�I)x C (cT C �eT)x

�
(8)

s.t. c C Qx C �(e � 2x) � yTAC t D u ; (9)

b � Ax D v ; (10)

e � x D w; (11)

xTu D 0 ; (12)

yTv D 0 ; (13)

tTw D 0 ; (14)

x; y; t; u; v;w � 0 : (15)

Arrange the terms in (9), we then have Qx � 2�x D
�(c C �e)C yTA� t C u. Consequently, (8) becomes
min[ 12 (c

T C �eT)x C 1
2 (b

Ty � eTt). From (12), (13),
and (14), we have

xTu D 0;

0 D yTv D yTb � yTAx;

0 D tTw D tTe � tTx ;

therefore, yTb D yTAx and tTe D tTx. Taken all to-
gether, Problem (6) is equivalent to the following prob-
lem.

min ĉT x̂

s.t. Âx̂ C û D b̂;

x̂û D 0;

x̂; û � 0 ;

where

x̂T D (xT; yT; tT);

ûT D (uT; vT;wT);

Â D

0
@
�Q C 2�I AT �I

A 0 0
I 0 0

1
A ;

ĉT D
1
2
(cT C �eT C eT; bT; eT);

b̂T D (cT; bT; eT) :

Note that there are no restrictive assumptions made on
Q, this transformation is applicable to the convex case
as well as the nonconvex case.

Integer Programming Problems
and Quadratic Integer Programming Problems

Integer programming is used to model a variety of im-
portant practical problems in operations research, engi-
neering, and computer science. Consider the following
linear zero-one programming problem:

min cTx

s.t. Ax � b; xi 2 f0; 1g; (i D 1; : : : ; n)

where A is a real (m � n)-matrix, c 2 Rn and b 2 Rm .
Let eT D (1; : : : ; 1) 2 Rn denote the vector whose
components are all equal to 1. Then the zero-one in-
teger linear programming problem is equivalent to the
following concave minimization problem:

min f (x) D cTx C �xT(e � x)
s.t. Ax � b; 0 � x � e

where� is a sufficiently large positive integer. We know
that the function f (x) is concave because �xTx is con-
cave.

The equivalence of the two problems is based on
the facts that a concave function attains its minimum
at a vertex and that xT(x � e) D 0; 0 � x � e, implies
xi D 0 or 1 for i D 1; : : : ; n. We note that a vertex
of the feasible domain is not necessarily a vertex of the
unit hypercube 0 � x � e, but the global minimum is
attained only when xT(e � x) D 0, provided that � is
a sufficiently large number.

These transformation techniques can be applied to
reduce quadratic zero-one problems to equivalent con-
cave minimization problems. For instance, consider
a quadratic zero-one problem of the following form:

min f (x) D cTx C xTQx

s.t. x 2 f0; 1g

where Q is a real symmetric (n � n) matrix. Given any
real number �, let Q̄ D Q C �I where I is the (n � n)
unit matrix, and c̄ D c � �e. Because of f̄ (x) D f (x),
the above quadratic zero-one problem is equivalent to
the problem:

min f (x) D c̄Tx C xTQ̄x

s.t. xi 2 f0; 1g; (i D 1; : : : ; n)
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In this case, if we choose � such that Q̄ D Q C �I be-
comes a negative semidefinite matrix (e. g., � D ��;
where � is the largest eigenvalue of Q), then the objec-
tive function f̄ (x) becomes concave and the constraints
can be replaced by 0 � x � e. Thus, this problem is
equivalent to the minimization of a quadratic concave
function over the unit hypercube [4].

Various Equivalent Forms
of Quadratic Zero-One Programming Problems

The problem considered here is a quadratic zero-one
program, which has the form

min f (x) D xTQx;

s.t. xi 2 f0; 1g; i D 1; : : : ; n;
(16)

where Q is an n � n matrix [6,7]. Throughout this sec-
tion the following notation will be used.
� f0; 1gn : set of n dimensional 0–1 vectors.
� Rn�n : set of n � n dimensional real matrices.
� Rn: set of n dimensional real vectors.
In order to formalize the notion of equivalence we need
some definitions.

Definition 1 The problem P is “polynomially re-
ducible” to problem P0 if given an instance I(P) of prob-
lem P, an instance I(P0) of problem P0 can be obtained
in polynomial time such that solving I(P) will solve
I(P0).

Definition 2 Two problems P1 and P2 are called
“equivalent” if P1 is “polynomially reducible” to P2 and
P2 is “polynomially reducible” to P1.

Consider the following three problems:

P : min f (x) D xTQx; x 2 f0; 1gn;

Q 2 Rn�n ;

P1 : min f (x) D xTQx C cTx; x 2 f0; 1gn;
Q 2 Rn�n ; c 2 Rn :

P2 : min f (x) D xTQx; x 2 f0; 1gn;

Q 2 Rn�n ;

nX
iD1

xi D k for some k

s.t. 0 � k � n;

where x D (x1; x2; : : : ; xn) :

Next we show that problems P, P1, and P2 are all “equiv-
alent”. Then, formulation P2 will be used in the rest of
the sections.

Lemma 1 P is “polynomially reducible” to P1.

Proof 2 It is very easy to see that P is a special case of
P1. �

Lemma 2 P1 is “polynomially reducible” to P.

Proof 3 Problem P1 is defined as follows: min f (x) D
xTQx C cTx; x 2 f0; 1gn;Q 2 Rn�n ; c 2 Rn . If Q D
(qi j) then let B D (bi j) where

bi j D

(
qi j if i ¤ j
qi j C ci if i D j :

Since x2i D xi (because xi 2 f0; 1g), we have g(x) D
xTBx D xTQx C cTx. So the following problem is
equivalent to problem P1 : min g(x) D xTBx; x 2
f0; 1gn; B 2 Rn�n . �

Using Lemma 1 and Lemma 2, it is evident that P and
P1 are “equivalent”.

Lemma 3 P2 is “polynomially reducible” to P.

Proof 4 Problem P2 is as follows: min f (x) D

xTQx; x 2 f0; 1gn; Q 2 Rn�n ;
Pn

iD1 xi D k for
some k s.t. 0 � k � n. If Q D (qi j) then let M D

2[
Pn

jD1
Pn

iD1 jqi jj] C 1. Now, define the following
problem P : min g(x) D xTQxCM(

Pn
iD1 xi � k)2 s.t.

x 2 f0; 1gn;Q 2 Rn�n . Let xb D (xb1 ; : : : ; xbn) and x0 D
(x01 ; : : : ; x0n) such that

Pn
iD1 x

b
i ¤ k and

Pn
iD1 x

0
i D k;

then g(x0) � M�1
2 as

Pn
iD1 x

0
i D k; g(xb) � �(M�1)

2
C M or g(xb) � MC1

2 as j
Pn

iD1 x
b
i � kj � 1. There-

fore, g(x0) < g(xb) if
Pn

iD1 x
b
i ¤ k and

Pn
iD1 x

0
i D k.

Hence, if min g(x) D g(x0) where x0 D (x01; : : : ; x0n)
then

Pn
iD1 x

0
i D k. So min f (x) D min g(x). From the

above discussion, it can be easily seen that P2 is “poly-
nomially reducible” to P. �

The proof of Lemma 3 also illustrates how equality
(knapsack) constraints in a quadratic zero-one program
can be eliminated.

Lemma 4 P is “polynomially reducible” to P2.

Proof 5 Let problem P be defined as follows:
min f (x) D xTQx; x 2 f0; 1gn; Q 2 Rn�n . De-
fine a series of (nC1) problems: P2(0); P2(1); P2(2); � � � ;
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P2(n), where P2(j) is the following problemmin f (x) D
xTQx; x 2 f0; 1gn; Q 2 Rn�n ,

Pn
iD1 xi D j.

Let the minimum of the problem P2(j) be yj, then the
minimum of problem P is easily seen to be the min
fy0; y1; : : : ; yng. �

Lemma 3 and Lemma 4 imply that P and P2 are “equiv-
alent”. Since “equivalent” is a transitive relative, P, P1,
P2 are all “equivalent”.

Complexity of Quadratic Zero-One
Programming Problems

Quadratic zero-one programming is a difficult prob-
lem. We next will show that the quadratic knapsack
zero-one problem in (P2) is a NP hard problem by prov-
ing that it is equivalent to the k-clique problem. A k-
clique is a complete graph with k vertices.

k-clique Problem

Given a graph G=(V , E) (V is the set of vertices and E
is the set of edges), does the graph G have a k-clique as
one of its subgraphs?

k-clique problem is known to be NP-complete. We
will show that the k-clique problem is “polynomially re-
ducible” to problem P2 defined in the previous subsec-
tion.

Theorem 4 The k-clique problem is “polynomially re-
ducible” to P2.

Proof 6 Problem P2 was defined as min f (x) D xTQx,
s.t. xi 2 f0; 1g; i D 1; � � � ; n,

Pn
iD1 xi D m for some

0 � m � n. Given the graph G D (V ; E), define Q D
(qi j) such that

qi j D

(
0 if (vi ; v j) 2 E
�1 if (vi ; v j) 62 E ;

where n D jV j;m D k (we are trying to find a k-
clique). The meaning attached to the vector x 2 f0; 1gn

in problem P2 is as follows

xi D

(
1 means that vi is in the clique;
0 means that vi is not in the clique :

We can easily prove that the graph G has a k-clique if
and only if min f (x) D �k(k�1). So the k-clique prob-
lem is “polynomially reducible” to P2. �

Problem P2 is “equivalent” to P, so problem P is also
NP-hard. Therefore, as the dimension of the problem
increases, the necessary CPU time to solve the problem
increases exponentially.

Quadratic Zero-One Programming
andMixed Integer Programming

In this section, we consider a quadratic zero-one pro-
gramming problem in the following form:

min f (x) D xTQx;

s.t.
nX

iD1

xi D k; x 2 f0; 1gn :
(17)

Let Q be n � n matrix, whose each element qi; j � 0.
Define x D (x1; : : : ; xn), where each xi represents bi-
nary decision variables. We will show that the problem
in (17) can be linearized as the following mixed integer
programming problems. The first linearization tech-
nique is trivial and can be found elsewhere. Recently,
more efficient linearization technique was introduced
in [1]. In addition, the linearization technique for more
general case (where qi; j 2 real) and multi-quadratic
programming was also proposed in [1].

Conventional Linearization Approach

For each product xixj in the objective function of the
problem (17) we introduce a new continuous variable,
xi j D xi x j(i ¤ j). Note that xi i D x2i D xi for
xi 2 f0; 1g. The equivalent mixed integer programming
problem (MIP) is given by:

min
X
i

X
j

qi jxi j

s.t.
nX

iD1

xi D k;

xi j � xi ; for i; j D 1; : : : ; n(i ¤ j)
xi j � x j; for i; j D 1; : : : ; n(i ¤ j)

xi C x j � 1 � xi j; for i; j D 1; : : : ; n(i ¤ j)

0 � xi j � 1; for i; j D 1; : : : ; n(i ¤ j)
(18)

where xi 2 f0; 1g, i; j D 1; : : : ; n.
The main disadvantage of this approach is that the

number of additional variables we need to introduce is



Quadratic Knapsack Q 3159

O(n2), and the number of new constraints is alsoO(n2).
The number of 0–1 variables remains the same.

A New Linearization Approach

Consider the following mixed integer programming
problem:

min
x;y;s

g(s) D
nX

iD1

si D eTs

s.t.
nX

iD1

xi D k;

Qx � y � s D 0;

y � �(e � x);

xi 2 f0; 1g; for i D 1; : : : ; n

yi ; si � 0; for i D 1; : : : ; n :

(19)

where Q is an n � n matrix, whose each element
qi; j � 0.

In [1], the mixed integer 0–1 programming problem
in (19) was proved equivalent to the quadratic zero-one
programming in (17). The main advantage of this ap-
proach is that we only need to introduce O(n) addi-
tional variables and O(n) new constraints, where the
number of 0–1 variables remains the same. This lin-
earization technique provedmore robust andmore effi-
ciently solving quadratic zero-one and multi-quadratic
zero-one programming problems [1].
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The quadratic knapsack problem is one of the sim-
plest quadratic programming problems as defined be-
low (cf. also � Quadratic programming with bound
constraints):

(P)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min f (x) D 1
2 x
>Qx C c>x

s.t.
nX

iD1

ai xi D M;

0 � xi � 1; i D 1; : : : ; n;

where x 2 Rn is a variable vector, Q 2 Rn × n, c 2 Rn and
M is a scalar.
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The problems are mainly classified by the nature
of matrix Q. When the matrix Q is positive semidefi-
nite, i. e., the objective function f (x) is convex, prob-
lem (P) can be solved in polynomial time by the ellip-
soid algorithm [8], and several kinds of interior point
algorithms (e. g. [5,7,11], which solve general convex
quadratic problems including (P) as a special case).
Also, P.M. Pardalos, Y. Ye and C.G. Han [15] show
a potential reduction algorithm for the special case of
(P) defined below:
8̂
ˆ̂̂<
ˆ̂̂̂
:

min 1
2 x
>Qx

s.t.
nX

iD1

xi D 1;

xi � 0; i D 1; : : : ; n:

In particular, when (P) has a diagonal matrix Q with
positive elements, anO(n) algorithm has been proposed
by P. Brucker [3]. The algorithm generates the corre-
sponding KKT condition using binary search. Pardalos
and N. Kovoor [13] also propose an O(n) randomized
method.

The convex case is important because of its frequent
appearance as a subproblem in many application areas.
Among those are general convex quadratic program-
ming [9], multicommodity network flow problems [1],
resource management [2], and portfolio selection prob-
lems [10].

The problem becomes extremely difficult if f (x) is
not convex. S. Sahni [16] shows that the problems with
the negative diagonal matrix Q are NP-hard (cf. also
� Computational complexity theory; � Complexity
theory), which implies that the general indefinite case
is also NP-hard.

Let a1, . . . , an and b be positive integers, and let us
consider the subset sum problem, which finds a feasible
solution of the set defined below:(

x :
nX

iD1

ai xi D b; xi 2 f0; 1g; i D 1; : : : ; n

)
:

The feasibility is determined by the the following con-
cave quadratic knapsack problem:
8̂
ˆ̂̂<
ˆ̂̂̂
:

min
nX

iD1

xi(1 � xi)

s.t.
nX

iD1

ai xi D M; 0 � xi � 1; i D 1; : : : ; n:

The subset sum problem is feasible if and only if the
global optimum value of the corresponding quadratic
knapsack problem is zero.

As we see in the above, the indefinite case arises in
several combinatorial optimization problems. For ex-
ample, given a graph G(V , E) where V = {1, . . . , n} is
a set of vertices and E � V2 is a set of edges, find the
maximum clique of G. This problem can be formulated
in the following way:
8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

min
X

(i; j)2E

�xi x j

s.t.
nX

iD1

xi D 1;

xi � 0; i D 1; : : : ; n:

If G has a maximum clique of size k, then the global
maximum is (1/k � 1)/2. We can also formulate the
maximum independent set problem and the node cov-
ering problem in a similar fashion.

One can also formulate any quadratic minimization
problem over a convex hull by the quadratic knapsack
problem. Consider the problem of the form:

(
min q(z) D z>Mz C r>z
s.t. z 2 P;

(1)

where z, r 2 Rm,M 2 Rm ×m and P� Rm is the polytope
described as the convex hull of a given set of points {v1,
. . . , vn}. It can be verified easily that the above general
quadratic problem has the following equivalent formu-
lation

8̂
ˆ̂̂<
ˆ̂̂̂
:

min f (x) D x>(V>MV)x C r>Vx

s.t.
nX

iD1

xi D 1;

xi � 0; i D 1; : : : ; n;

(2)

where V = [v1, . . . , vn]. Let z� and x� be optimum solu-
tions of (1) and (2), respectively. Then we have

q(z�) D f (x�) ;

and moreover z� = Vx�.
There exist only a few algorithms for obtaining

a global optimum solution for the case of the general
indefinite Q. See [15] for a partitioning approach as
well as an interior point method, while [4] surveys al-
gorithms for general nonconvex quadratic problems.
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The case when the objective function is separa-
ble has also been well investigated by several authors.
Some practical algorithms to obtain an exact solu-
tion are reported in [6,14]. S.A. Vavasis [18] shows an
O(n(log n)2) algorithm for finding a local minimum of
the problem, while K.G. Murty and S.N. Kabadi [12]
show that verifying a local minimum for an indefinite
quadratic problem with general constraints is NP-hard.
Also, [17] gives an �-approximation algorithm which is
weakly polynomial in the problem size if the number of
negative diagonal elements is fixed.

See also

� ˛BB Algorithm
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Synonyms

QPwBC

Problem Statement

The bound constrained quadratic problem has the fol-
lowing form:

min
x2˝

f (x) D min
x2˝

1
2
x>Qx C c>x ;

˝ D fx 2 Rn : l � x � ug ;
(1)

where Q = (qij) 2 Rn × n is an indefinite symmetric ma-
trix and x, c, l, u 2 Rn. Here (as always in the sequel),
all inequalities involving vectors are interpreted com-
ponentwise, and r f (x) = Qx + c is the gradient of f .
The region ˝ is assumed to be nonempty (i. e. li � ui
for each i 2 {1, . . . , n}) and may be unbounded (i. e. li
= � 1 and/or ui = +1 for some i 2 {1, . . . , n}). The
function f (x) is assumed to be bounded below on ˝ .
For each x 2˝ , the active set A(x) is defined as:

A(x) D fi : xi 2 fli ; uigg :

Problems of the form (1) naturally arise in a number of
different applications. Moreover, QPwBC is a basic sub-
routine for many nonlinear programming codes, and
the monotone linear complementarity problem can be
written in the above form. For the convex case (i. e.
Q positive semidefinite), which is known to be poly-
nomially solvable [16], many efficient algorithms ex-
ist [4,5,7,9,10,12,18,36].However, not many algorithms
exist for the efficient solution of the general nonconvex
problem [8,17,22,24,25,26].

From the complexity point of view, problem (1) is
NP-hard [32], and even checking local optimality for
a feasible point is NP-hard [20,27]. The complexity of
finding a stationary point for (1) is an open question (in

the concave case this problem is PLS-complete [15]).
Algorithms to construct approximate solutions [33] in
polynomial time exist.

Optimality Conditions

For problem (1) the classical local optimality conditions
can be stated in a very special form. Moreover, there
exist interesting results about global optimality which
lead to efficient numerical procedures.

Local Optimality Conditions

Proposition 1 If x� 2 ˝ is a local minimum for prob-
lem (1) then:
A) if qii � 0, then

i) [r f (x�)]i = 0; or
ii) [r f (x�)]i> 0 and x�i = li; or
iii) [r f (x�)]i< 0 and x�i = ui.

B) if qii < 0, then
i) [r f (x�)]i > 0 and x�i = li; or
ii) [r f (x�)]i< 0 and x�i = ui.

Proposition 1 specializes the classical KKT stationarity
conditions, which only involve first order information,
to problem (1) by taking into the account the sign of the
second order pure derivatives. If x� is nondegenerate,
i. e.

(x�i � li)(x�i � ui )C
ˇ̌�
r f (x�)

�
i

ˇ̌
¤ 0

for each i 2 A(x�), then the conditions A)–B) are suffi-
cient for local minimization.

The following proposition states a relationship be-
tween the number of negative eigenvalues of the matrix
Q and the cardinality of the active set at a stationarity
point x�.

Proposition 2 If the matrix Q has k negative eigenval-
ues counting multiplicities, then at least k constraints are
active at a local solution x� of problem (1).

Because of Proposition 2, if f is concave, the problem is
bounded if and only if all upper and lower bounds are
finite, and the solution can be found by checking all the
vertices of ˝ . Therefore the concave QPwBC problem
is equivalent to a quadratic zero-one problem [1,22].
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Global Optimality Conditions

Global optimality conditions for problem (1) can be
stated in terms of copositivity [14] of the Hessian ma-
trix.

Definition 3 An n × n matrix Q is copositive with re-
spect to a polyhedral cone � � Rn (denoted by � -
copositive) if and only if

v>Qv � 0 for all v 2 � n f0g

(for strict copositivity, � has to be replaced by >).

Definition 4 Given x 2 ˝ , the tangent cone � (x) of
˝ in x is defined as

� (x) D fv 2 Rn : x C ˛v 2 ˝ for some ˛ > 0g :

Definition 5 Given x 2 ˝ and v 2 Rn, we define
�(x; v) as follows:

�(x; v) D max f� � 0 : x C �v 2 ˝g :

Let us consider the following decomposition for the
cone � (x):

� (x) D

 n[
iD1

� Ci (x)

!
[

 n[
iD1

� �i (x)

!
;

where

� Ci (x) D fv 2 � : [x C �(x; v) � v]i D uig ;

� �i (x) D fv 2 � : [x C �(x; v) � v]i D lig ;

i D 1; : : : ; n ;

i. e. if v 2 � Ci (x)\{0} (or v 2 �
�
i (x) \ {0}), then vi 6D 0

and the maximum stepsize along v moving from x sat-
urates the ith upper (lower) constraint (see Fig. 1).

Proposition 6 A KKT point x yields a global minimum
if and only if x is stationary point and the QCi (or Q�i )
are � Ci -copositive (respectively, �

�
i -copositive), where

QCi D
�
(ui � xi )Q C 2r f (x)e>i

�
;

Q�i D
�
(xi � li)Q � 2r f (x)e>i

�
:

Finally, the following Proposition [21] gives a sufficient
condition for a KKT point to be a global minimum, in
terms of convexity of some augmented function L(x).

Quadratic Programming with Bound Constraints, Figure 1
Partitioning of the set  (x) for the two-dimensional case

Proposition 7 Let x be a KKT point for problem (1).
Let li and ui be finite for each i 2 {1, . . . , n}. Let

D D diag
�
j[r f (x)]1j
u1 � l1

; : : : ;
j[r f (x)]nj
un � ln

�
:

If L(x) D f (x)C (x� x)>D(x� x) is convex in˝ , then
x is a global solution of (1). Moreover, if L(x) is strictly
convex in˝ , then this solution is unique.

This kind of result can be a useful tool for branch and
bound algorithms for global optimization. Moreover,
Proposition 7 allows one to construct test problems in
quadratic programming with known global minimum.

More results on the global optimization criteria for
(1) exist in the literature (see, for example, [21] and ref-
erences therein).

Algorithms for Local Minimization

Most of the algorithms to locally solve problem (1)
can be classified in the so-called active set strategies,
which reduce the solution of the problem to a sequence
of auxiliary unconstrained subproblems on affine sub-
spaces of Rn (faces). They generate a sequence of feasi-
ble points x(k), each x(k) associated with a working set
W(k) � A(x(k)). The active set algorithms can be de-
scribed according to the very general framework in Ta-
ble 1.

These methods differentiate on the way they solve
the subproblems P(x(k), W(k)) and on the definition of
a new face. One of the first of such algorithms, due to
B.T. Polyak [29], uses a conjugate gradient algorithm to
solve P(x(k),Wk)). Since then, many modifications have
been proposed for the solution of the auxiliary problem.
In particular, the approximate solution of such prob-
lems is suitable to deal with large scale problems. With
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Quadratic Programming with Bound Constraints, Table 1
Active set algorithm for QPwBC

Initialization:
take a first point x(0) 2 ˝ ;
W (0) = A(x(0)); k = 0;
REPEAT

Solve the quadratic unconstrained problem:
P(x(k);W (k)) = min f (x(k) + v),
vi = 0;8i 2 W (k);
IF P(x(k);W (k)) is unbounded below THEN

ACT1) choose x(k+1) 2 ˝ :
A(x(k+1)) = A(x(k)) and f (x(k+1)) < f (x(k));
choose W (k+1) 	W (k);

ELSE
ACT2) ˛(k) = maxf˛2 [0; 1] : x(k)+˛v(k)2˝g;
x(k+1) = x(k) + ˛(k)v(k);
choose W (k+1)

such that A(x(k+1)) 
 W (k+1) ¤W (k);
ENDIF
k = k + 1;

UNTIL(stop condition holds)

regard to the definition of a new working set, in ACT2)
a projected gradient step can be taken in order to add
more than a new variable to the new working set [18].
Arguments of combinatorial nature show that, in non-
degeneracy assumptions, an active set strategy termi-
nates in a finite number of steps at a stationary point,
provided that the exact minimization of the subprob-
lems is performed (at least once every j steps, for some
prefixed j). In case of degeneracy, the finite termination
still holds for some active set algorithms. Specialized
versions of active set strategies have been successfully
proposed for solving large sparse problems [4,5,19].

On a completely different approach are based the
algorithms that belong to the family of the interior
point methods (cf. also � Linear programming: Inte-
rior point methods); after Karmarkar’s polynomial al-
gorithm for linear programming, many interior point
algorithms have been developed for the convex linear
complementary problem (and therefore for the convex
QPwBC). They include the primal-dual potential re-
duction algorithm and the path following algorithms
[34]. For more detail see � Linear complementarity
problem. Finally, penalty techniques have been success-
fully proposed for the convex QPwBC [6].

Algorithms for Global Minimization

The global optimality conditions expressed in Propo-
sition 6, suggest a very simple algorithmic framework
for solving (1), whose main ingredient is the procedure
COPOS(Q, � , d). Such a procedure [2], given an n ×
n matrix Q and a polyhedral cone � , detects either the
� -copositivity ofQ or a direction d 2 � such that d|Qd
< 0. In the sequel all Qi matrices and the cones � i are
relative to the stationary point x.

In the algorithm in Table 2, COPOS is used to es-
cape from local solution which are not global.

In [3] the basic algorithm escape has been improved
using pseudoconvexity and a preprocessing procedure.
However, because of complexity reasons (the problem
of exactly checking copositivity is itself NP complete!)
algorithms based on copositivity are suitable only for
very small size problems.

A different approach [23], originally proposed for
concave quadratic problems [30], uses a separable for-
mulation based on the eigenstructure of the quadratic
form. Using the linear variable transformation x = Py,
where P is an orthogonal matrix whose columns are the
eigenvectors of Q, the original problem is transformed
into the separable form

min
y2M

�1(y)C �2(y) ;

Quadratic Programming with Bound Constraints, Table 2
Global QPwBC algorithm

Initialization:
take a first stationary point x;
i = 1;
REPEAT

IF � +
i ¤ f0g THEN call COPOS(Q+

i ; �
+
i ; d);

IF � �
i ¤ f0g THEN call COPOS(Q�

i ; �
�
i ; d);

IF a direction d is found such that d>Q+d < 0
or d>Q�d < 0;
THEN

x� = x + �max(d)d;
use x� as starting point for a procedure that
generates a new stationary point x;
i = 0;

ENDIF
i = i + 1;

UNTIL(i = n + 1).
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where M is a rectangle of minimum volume that con-
tains b̋ D fy 2 Rn : l � Py � ug. The functions
˚1(y) and ˚2(y) are, respectively, the concave part and
the convex part of the objective function.

The function ˚2(y) can be underestimated by using
a piecewise linear approximation and this gives a con-
vex problem which approximates the original problem
and for which an error bound can be given, depending
both on the size of the negative eigenvalues ofQ and on
the size of the range of allowed displacements along the
respective eigenvectors. This technique can be incorpo-
rated within a branch and bound framework. A way
to improve the approximation is to make a partition-
ing of the domain along the eigendirections, based on
the error estimate, and bounding techniques can be de-
vised. An efficient parallel implementation is described
in [28].

The reformulation-linearization/convexification
techniques [31] are based on a suitable linearized re-
formulation of the problem (1). The goal of RLT is to
try to approximate the convex envelope of the objective
function over the feasible region in deriving tighter and
tighter lower bounding linear programs.

Based on the combinatorial nature of the problem
some branch and bound enumerative techniques have
been proposed [13], that can be very expensive from
a computational point of view, and therefore only suit-
able for small size problems or problems whose spar-
sity allows only a low number of subproblems to be ex-
plored.

More attracting from the computational point of
view are algorithms based on interior point methods,
whose main drawback is unfortunately that no guaran-
tee exist about the convergence to the global solution of
problem (1) [11].

See also

� Complexity Theory: Quadratic Programming
� D.C. Programming
� Quadratic Assignment Problem
� Quadratic Fractional Programming: Dinkelbach

Method
� Quadratic Knapsack
� Quadratic Programming Over an Ellipsoid
� Reverse Convex Optimization
� Standard Quadratic Optimization Problems:

Algorithms

� Standard Quadratic Optimization Problems:
Applications

� Standard Quadratic Optimization Problems: Theory

References

1. Benson HH (1995) Concave minimization: Theory, applica-
tions and algorithms. In: Horst R, Pardalos PM (eds) Hand-
book Global Optim. Kluwer, Dordrecht, pp 43–142

2. Bomze IM, Danninger G (1993) A global optimization al-
gorithm for concave quadratic problems. SIAM J Optim
3:826–842

3. Bomze IM, Danninger G (1994) A finite algorithm for solv-
ing general quadratic problems. J Global Optim 4:1–16

4. Coleman TF, Hulbert LA (1989) A direct active set algorithm
for large sparse quadratic programs with simple bounds.
Math Program 45:373–406

5. Coleman TF, Hulbert LA (1993) A globally and superlinearly
convergent algorithm for convex quadratic programs with
simple bounds. SIAM J Optim 3:298–321

6. Facchinei F, Lucidi S (1992) A class of penalty functions
for optimization problems with bound constraints. Optim
26:239, 259

7. Fletcher R, Jackson MP (1974) Minimization of a quadratic
functionofmany variables subject only to lower and upper
bounds. J Inst Math Appl 14:159–174

8. Floudas CA, Visweswaran V (1995) Quadratic optimization.
In: Horst R, Pardalos PM (eds) Handbook Global Optim.
Kluwer, Dordrecht, pp 217–270

9. Frank M, Wolfe P (1956) An algorithm for quadratic pro-
gramming. Naval Res Logist Quart 3:95–110

10. Gill PE, Murray W, Saunders MA, Wright MH (1991) Inertia-
controlling methods for general quadratic programming.
SIAM Rev 33(1):1–36

11. Han CG, Pardalos PM, Ye Y (1992) On the solution of indef-
inite quadratic problems using an interior point algorithm.
Informatica 3(4):474–496

12. Han CG, Pardalos PM, Ye Y (1990) Computational aspects
of an interior point algorithm for quadratic programming
problems with box constraints. SIAM, pp 92–112

13. Hansen P, Jaumard B, Ruiz M, Xiong J (1993) Global min-
imization of indefinite quadratic functions subject to box
constraints. Naval Res Logist 40:373–392

14. Hiriart-Urruty JB (1995) Conditions for global optimality.
In: Horst R, Pardalos PM (eds) Handbook Global Optim.
Kluwer, Dordrecht, pp 1–26

15. Johnson DS, Papadimitriou CH, Yannakakis M (1988) How
easy is local search? J Comput Syst Sci 37:79–100

16. Kozlov MK, Tarasov SP, Khachian LG (1979) Polyno-
mial solvability of convex quadratic programming. S-Dokl
20:1108–1111

17. Manas M (1968) An algorithm for a nonconvex program-
ming problem. Econ Math Obzor Acad Nacl Ceskoslov
4:202–212



3166 Q Quadratic Programming over an Ellipsoid

18. Moré JJ, Toraldo G (1989) Algorithms for bound con-
strained quadratic programming problems. Numer Math
55:377–400

19. Moré JJ, Toraldo G (1991) On the solution of large
quadratic programming problemswith bound constraints.
SIAM J Optim 1:93–113

20. Murty KG, Kabadi SN (1987) Some NP-complete problems
in quadratic and nonlinear programming. Math Program
39:117–129

21. Neumaier A (1996) Second-order sufficient optimality
conditions for local and global nonlinear programming.
J Global Optim 9:141–151

22. Pardalos PM (1990) Polynomial time algorithms for some
classes of constrained non-convex quadratic problems.
Optim 21:843–853

23. Pardalos PM (1991) Global optimisation algorithms for lin-
early constrained indefinite quadratic problems. Comput
Math Appl 21:87–97

24. Pardalos PM, Glick JH, Rosen JB (1987) Globalminimization
of indefinite quadratic Problems. Computing 39:281–291

25. Pardalos PM, Rosen JB (1986) Methods for global concave
minimization: A bibliographic survey. SIAM Rev 28:367–
379

26. Pardalos PM, Rosen JB (1987) Constrained global optimiza-
tion: Algorithms and applications. Lecture Notes Com-
puter Sci, vol 268. Springer, Berlin

27. Pardalos PM, Schnitger G (1988) Checking local optimal-
ity in constrainedquadratic programming isNP-hard. Oper
Res Lett 7(1):33–35

28. Phillips AT, Rosen JB (1990) A parallel algorithm for par-
tially separable non-convex global minimization: Linear
constraints. Ann Oper Res 25:101–118

29. Poljak BT (1969) The conjugate gradient method in ex-
tremal problems. USSR Comput Math Math Phys 9:94–112

30. Rosen JB (1983) Global minimization of a linearly con-
strained concave function by partition of feasible domain.
Math Oper Res 8:215–230

31. Sherali HD, Tuncbilek CH (1995) A reformulation-
convexification approach for solving nonconvex quadratic
programming problems. J Global Optim 7:1–31

32. Vavasis SA (1991) Nonlinear optimization: Complexity is-
sues. Oxford Univ. Press, Oxford

33. Vavasis SA (1993) Polynomial time weak approximation al-
gorithms for quadratic programming. In: Pardalos PM (ed)
Complexity in Numerical Optimization. World Sci., Singa-
pore

34. Wright S (1993) A path following infeasible-interior point
algorithm for linear complementarity problems. Optim
Methods Softw 2:79–106

35. Yang EK, Tolle JW (1991) A class of methods for solving
large convex programs subject to box constraints. Math
Program 51:223–228

36. Ye Y, Tse E (1989) An extension of Karmarkar’s projective
algorithm for convex quadratic programming. Math Pro-
gram 44:157–179

Quadratic Programming
over an Ellipsoid
YINYU YE

Department Management Sci., University Iowa, Iowa
City, USA

MSC2000: 90C20, 90C25

Article Outline

Keywords
See also
References

Keywords

Quadratic programming; Bisection method; Newton
method; Trust region model; Complexity

Quadratic programming (QP) plays an important role
in optimization theory. In one sense it is a continuous
optimization and a fundamental subroutine for general
nonlinear programming, but it is also considered one of
the most challenging combinatorial optimization prob-
lems.

One of QP problems is to minimize a quadratic
function over an ellipsoid constraint. Since any ellipsoid
can be transformed to a ball by an affine transforma-
tion, without of loss generality, we consider the follow-
ing ball-constrained QP problem BQP (r):

(
min 1

2 x
>Qx C c>x

s.t. x 2 B(r) D fx 2 Rn : kxk � rg ;
(1)

where Q 2 Rn × n, c 2 Rn, and superscript | denotes the
transpose operation. Here, k � k denotes L2 norm and
r > 0 is the radius of the ball. A main recent result is
that this problem is an ‘easy’ problem, even when the
objective function is nonconvex.

We begin with a brief history of this problem.
There is a class of nonlinear programming algorithms
called model trust region methods. In these algorithms,
a quadratic function is used as an approximate model of
the true objective function around the current iterate.
Then the main step is to minimize the model function.
In general, however, the model is expected to be accu-
rate or trusted only in a neighborhood of the current
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iterate. Accordingly, the quadratic model is minimized
in a L2-norm neighborhood, which is a ball, around the
current iterate. Recently (1996), it was demonstrated
[5] that a class of combinatorial optimization problems
can be solved by solving a sequence of ball-constrained
QP problem.

The model-trust region method is due to K. Leven-
berg [7] and D.W. Marquardt [8]. These authors con-
sidered only the case where Q is positive definite. J.J.
Moré [10] proposed an algorithm with a convergence
proof for this case. D.M. Gay [4] and D.C. Sorenson
[15] proposed algorithms for the general case, see also
[2]. These algorithms work very well in practice, but
no theoretical complexity result was established for this
problem then.

It is well known [4,15] that the solution x of problem
BQP (r) satisfies the following necessary and sufficient
conditions:

(Q C �I)x D � c ;

� � maxf0;��g ;

kxk D r ;

(2)

where � denotes the least eigenvalue of matrix Q. Since
Q is not positive semidefinite, we must have � < 0.

Let �� and x� satisfy conditions (2). It has been
shown that �� is unique and

�� � j�j C
kck
r
: (3)

It is also known that

j�j � nmaxf
ˇ̌
qi j
ˇ̌
g ;

where qij is the (i, j)th component of matrix Q. Thus,
we have

0 � �� � �0 :D nmaxf
ˇ̌
qi j
ˇ̌
g C
kck
r
; (4)

where �0 is a computable upper bound. It is further
proved that ([19])

1
2
r2 j�j �

1
2
r2�� � q(0)�q(x�) �

1
2
r2 j�jCr kck : (5)

This inequality can be used to develop an approxima-
tion algorithm for general quadratic optimization, see
[3].

We now analyze the complexity of solving BQP (r).
A simple bisection method was proposed in [18] and in

[19]. For any given �, denote solutions of the top linear
equations by x
 in conditions (2), i. e.,

x
 :D �(Q C �I)�1c ; 8� > j�j : (6)

For any given�we can check to see if�� |�| by check-
ing the positive definiteness of matrix Q + � I, which
can be solved as a LDL| decomposition. These facts lead
to a bisection method to search for the root of k x
 k
= r over the interval � 2 [|�|, �0] � [0, �0]. Obvi-
ously, for a given �00 2 (0, 1), a � such that, say 0 �
� � �� � �0 ��/8, can be obtained in O(log(�0/��)
+ log(1/�0)) bisection steps, and the cost of each step is
O(n3) arithmetic operations (for performing LDL| de-
composition).

The remaining question is what �0 would be suffi-
cient to generate an �-minimizer of q(x) over the ball
B(r), that is, an x satisfying

q(x)� q(x�)
q(0)� q(x�)

� � :

Let � denote the right endpoint of the interval gen-
erated by the bisection search. Then, � � ��. If � =
��, then we get an exact solution x� = x
� . Thus, we
assume � > �� � �. By the positive semidefiniteness of
Q + �� I, we have



x



 < kx�k D r :

We consider two cases.

Case I. In the first case we assume
�
1 �

�

8
p
n

�
�� � j�j

or

�� � j�j C
�

8
p
n
�� :

Using the relation (6) and simplifying, we obtain

kx�k2 �


x




2 D (x�)>

� (I � (Q C ��I)(Q C �I)�2(Q C ��I))x�

D (x�)>(2(�� ��)(Q C �I)�1

� (� � ��)2(Q C �I)�2)x� :
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Next we bound the above expression by using the small-
est eigenvalue � of Q. This gives

kx�k2�


x




2 �
�
2(�� ��)
(�� j�j)

�
(� � ��)2

((� � j�j))2

�
kx�k2

D

�
2(�� ��)

(�� ��)C (�� � j�j)

�
(� � ��)2

((� � ��)C (�� � j�j))2

�
kx�k2

D
(�� ��)2 C 2(�� ��)(�� � j�j)

((� � ��)C (�� � j�j))2
r2

D

�
1 �

(�� � j�j)2

((�� ��)C (�� � j�j))2

�
r2

�

0
@1 �

( �

�

8
p
n )

2

((�� ��)C �
�

8
p

n )
2

1
A r2 ;

where in the last step we used the assumption

�� � j�j C
�

8
p
n
�� :

Therefore, if we have � � �� � �0 ��/8, then

kx�k2�


x




2 �
�
2
p

n�0
�

�
C
�p

n�0
�

�2
�
1C

�p
n�0
�

��2 r2 �
2
p
n�0

�
r2 :

(7)

On the other hand, note that

q(x
) � q(x�)

D
1
2
x>
Qx
 C c>x
 �

1
2
(x�)>Qx� � c>x�

D
1
2
(Qx
 C c)>(x
 � x�)

C
1
2
(Qx� C c)>(x
 � x�)

D �
1
2
�x>
 (x
 � x�) �

1
2
��(x�)>(x
 � x�)

D �
1
2
(� � ��)x>
 (x
 � x�)

�
1
2
��(



x



2 � kx�k2) :

(8)

Now we use the bound (7), the assumption � � �� �
�0��/8 and the fact k x
 k � k x� k = r to obtain:

q(x
) � q(x�) �
��r2�0

8
C r2��

p
n�0

�

D

�
�0

4
C

2
p
n�0

�

�
��r2

2

�

�
�0

4
C

2
p
n�0

�

�
(q(0)� q(x�)) ;

where the last step is due to (5). Thus, if we select

�0 �
�2

2
p
nC 1

4

;

then x
 is feasible for BQP(r) and

q(x
) � q(x�) � �(q(0)� q(x�)) ;

i. e., x
 is an �-minimizer to x�.
Case II. In this case, we have
�
1 �

�

8
p
n

�
�� < j�j

or

�� < j�j C ��
�

8
p
n
:

Again, if we have � � �� < �0 ��/8, then � � j�j <
�0
�

8 C

��

8
p

n . However, unlike Case I, we find that k x

k is not sufficiently close to r.Whenwe observe this fact,
we do the following computation, essentially due to S.A.
Vavasis and R. Zippel [18], to enhance x
.

Let q,



q



 D 1, be an eigenvector associated with

the eigenvalue �. Then, one of the unit vectors ej, j = 1,
. . . , n � m, must have

ˇ̌
ˇe>j q

ˇ̌
ˇ � 1p

n . (In fact, we can use

any unit vector q to replace ej as long as q>q � 1p
n .

A randomly generated q will do it with high probabil-
ity.) Now we solve for y from

(Q C �I)y D e j

and let

x D x
 C ˛y ;

where ˛ is chosen such that kxk = r. Note we have

(Q C �I)x D �c C ˛e j ;
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and in the computation of x
 and y, matrix Q + � I
needs to be factorized only once.

It is easy to show that

kyk �
1

p
n(� � j�j)

and

j˛j � 2r(�� j�j)
p
n � 2r

�
�0��

8
C
���

8
p
n

�
p
n :

Then, we have from (8)

q(x)� q(x�)

D
1
2
(Qx C c)>(x � x�)

C
1
2
(Qx� C c)>(x � x�)

D
1
2
(Qx C c � ˛e j)>(x � x�)

C
1
2
˛e>j (x � x�) �

1
2
��(x�)>(x � x�)

D �
1
2
�x>(x � x�)

C
1
2
˛e>j (x � x�) �

1
2
��(x�)>(x � x�)

D �
1
2
(�x C ��x�)>(x � x�)

C
1
2
˛e>j (x � x�)

D �
1
2
(� � ��)x>(x � x�)C

1
2
˛e>j (x � x�) ;

where the last step follows from kxk = k x� k = r. Now
we use���� < �0��/8 and the preceding upper bound
on ˛ to estimate the right-hand side:

q(x)� q(x�) �
r2���0

8
C 2

�
�0��

8
C
���

8
p
n

�
r2
p
n

D

�
�0

4
C

p
n�0

2
C
�

2

�
��r2

2

�

�
�0

4
C

p
n�0

2
C
�

2

�
(q(0)� q(x�)) ;

where the last step is due to (5). Thus, if we choose

�0 �
�

p
nC 1

2

;

then x is feasible for BQP(r) and

q(x)� q(x�) � �(q(0)� q(x�)) � �(z � z) ;

i. e., x is an �-minimizer of q(x) over B(r).
Hence, the bisection method will terminate with an

�-minimizer of BQP(r) in at most

O
�
log

�
�0

��

�
C log

�
1
�

�
C log n

�

steps, or in a total of O(n3(log(�0/��) + log(1/�) + log
n)) arithmetic operations.

Theorem The total running time of the bisection al-
gorithm for generating an �-minimal solution to the
ball-constrained QP is bounded by O(n3(log(�0/��) +
log(1/�) + log n)) arithmetic operations.

Recently, F. Rendl and H. Wolkowicz [14] showed that
BQP(r) can be reformulated as a positive semidefinite
problem, which is a convex nonlinear problem. There
are polynomial interior point algorithms (see [11]) to
compute an dx0 such that q0(dx0) � q(dx 0(�k)) � �0 in
O(n3 log(Mk/�0)) arithmetic operations. This will also
establish an

O
��

n6

�
log

1
�
C n4 log n

��
log

1
�
C log n

��

arithmetic operation bound for the algorithm.
The polynomial complexity in Theorem 1 can be

further improved. In particular, see [20] for a mixed bi-
section and Newton method for solving BQP(r) and for
an arithmetic operation bound O(n3 log(log(�0/��) +
log(1/�0))) to yield a � such that 0 � � � �� � �0. The
brief idea of the method is to first find an approximate
� to the absolute value of the least eigenvalue |�| and an
approximate eigenvector q to the true q, such that 0 �
� � � � �0 and q|qk � 1 � �0 . This approximation can
be done in O(n3 log(log(1/�0))) arithmetic operations.
Then, we will use q to replace ej in Case II (i. e., k x
 <
r) to enhance x(�) and generate a desired approxima-
tion. Otherwise, we know �� > � and, using the mixed
method in [20], we will generate a� 2 (�,�0) such that
|����|� �0 ��/8 inO(n3 log(log(�0/��) + log(1/�0)))
arithmetic operations.

Finally, let Q and c have integer data. Consider the
decision problem: Is there an x 2 Rn satisfying kxk �
1, and q(x) < 0? Under the Turing machine computa-
tional model, this problem can be answered in polyno-
mial time (see [18]).
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Consider that we have n ‘objects’ and m ‘locations’, n >
m, and we want to assign all objects to locations with at
least one object to each location, so as to minimize the
overall distance covered by the flow of materials mov-
ing between different objects. Given a flow matrix F =
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(f ij) and a distance matrix D = (dij), we can formulate
the quadratic semi-assignment problem as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
nX

iD1

nX
jD1

m�1X
kD1

mX
lDkC1

fi jdk l xki xl j

C

mX
iD1

nX
jD1

bi jxi j

s.t.
nX

jD1

xi j D 1; i D 1; : : : ;m;

xi j 2 f0; 1g;
i D 1; : : : ;m; j D 1; : : : ; n:

Comparing the above formulation with that of the
quadratic assignment problem (cf.� Quadratic assign-
ment problem), we can see that the QSAP is a re-
laxed version of the QAP, where instead of assign-
ment constraints we have semi-assignment constraints.
SQAP unifies some interesting combinatorial optimiza-
tion problems like clustering and m-coloring. In a clus-
tering problemwe are given n objects and a dissimilarity
matrix F = (f ij). The goal is to find a partition of these
objects into m classes so as to minimize the sum of dis-
similarities of objects belonging to the same class. Obvi-
ously this problem is a QSAP with coefficient matrices
F and D, where D is an m × m identity matrix. In the
m-coloring problem we are given a graph with n vertices
and want to check whether its vertices can be colored by
m different colors such that each two vertices which are
joined by an edge receive different colors. This problem
can bemodeled as a SQAPwith F equal to the adjacency
matrix of the given graph and D them ×m identity ma-
trix. The m-coloring has an answer ‘yes’ if and only if
the above SQAP has optimal value equal to 0. Practical
applications of the SQAP include distributed comput-
ing [5] and scheduling [1].

SQAP was originally introduced by D.E. Greenberg
[2]. As pointed out in [3], this problem is NP-hard.
I.Z. Milis and V.F. Magirou [5] propose a Lagrangian
relaxation algorithm for this problem, and show that
similarly as for for the QAP, it is very hard to provide
optimal solutions even for SQAPs of small size. Lower
bounds for the SQAP have been provided in [4], and
polynomially solvable special cases have been discussed
in [3].

See also

� Feedback Set Problems
� Generalized Assignment Problem
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� Graph Planarization
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� Quadratic Assignment Problem

References
1. Chretienne P (1989) A polynomial algorithm to optimally

schedule tasks on a virtual distributed system under tree-
like precedence constraints. Europ J Oper Res 43:225–
230

2. Greenberg DE (1969) A quadratic assignment problemwith-
out column constraints. Naval Res Logist Quart 16:417–
422

3. Malucelli F (1993) Quadratic assignment problems: solu-
tionmethods and applications. PhD Thesis, Dip. Informatica,
Univ. Pisa

4. Malucelli F, Pretolani D (1993) Lower bounds for the
quadratic semi-assignment problem. Techn Report 955,
Centre Rech Transports, Univ Montréal, Canada

5. Milis IZ, Magirou VF (1995) A Lagrangean relaxation algo-
rithm for sparse quadratic assignment problems. Oper Res
Lett 17:69–76

6. Stone HS (1977) Multiprocessor scheduling with the aid of
network flow algorithms. IEEE Trans Softw Eng 4:85–93

QuasidifferentiableOptimization
GEORGIOS E. STAVROULAKIS

Carolo Wilhelmina Techn. University,
Braunschweig, Germany

MSC2000: 49J52, 26B25, 90C99, 26E25

Article Outline

Keywords
One-Dimensional Nonsmooth Functions

One-Sided Differentials
Quasidifferential
Necessary and Sufficient Optimality Conditions

Finite-Dimensional Nonsmooth Functions
Subdifferentiable Functions
Superdifferentiable Functions
Quasidifferentiable Functions

Further Related Topics



3172 Q Quasidifferentiable Optimization

See also
References

Keywords

Nonsmooth optimization; Quasidifferentiability;
Nonsmooth analysis; Nonconvex optimization;
Mathematical programming

Smoothness, or the existence of the classical derivative
information for a function plays a significant role in the
theory and the tools used today for modeling, approxi-
mation, optimization and for their applications. Never-
theless, nature seems to be more rich than the assump-
tions done within currentmathematical or physical the-
ories. Nonsmoothness arises in a very large number of
applications. The arising phenomena, including com-
plex dynamics, pattern formation and chaos, are ap-
pealing for both theoretical investigations and practi-
cal applications. Most of them have not yet been stud-
ied. Abandoning smoothness assumptions one arrives
at the area of nonsmooth analysis.

Within nonsmooth approximation the classical no-
tion of the derivative is replaced by some set-valued
generalized derivative. This is required for the con-
struction of qualitative and quantitative first order ap-
proximations of a function with points of nondifferen-
tiability (kinks) or, respectively of a set with corners. In
fact, the linearization (i. e., the linear or affine approx-
imation) of a function at a given point which is based
on the familiar Taylor expansion formula is based on
the assumption that the derivative of the function (or
its gradient) exists at the considered point.

Historically, for convex nondifferentiable functions,
a suitable set-valued extension of the derivative has
been provided by the subdifferential of convex analy-
sis, in the sense of J.-J. Moreau and R.T. Rockafellar
[8,12]. For the general case of nonconvex, nondifferen-
tiable functions, a direct extension of the convex analy-
sis subdifferential has been provided by the generalized
subdifferential in the sense of F.H. Clarke and Rockafel-
lar [1,2,13]. This notion has been used in a variety of ap-
plications, although it does not possess the above men-
tioned first order approximation property. One should
note that a large number of notions have been proposed
for the approximation of nonconvex and nonsmooth
functions (or sets) or of the solution of affiliated opti-

mization problems. A complete list would go beyond
the limits of this short article. This activity demon-
strates the large practical interest of this area.

The quasidifferential in the sense of V.F. Demyanov
and A.M. Rubinov is an appropriate tool for the con-
struction of first order approximations of functions and
sets and, subsequently, for the solution of nonsmooth
and nonconvex optimization problems. By treating sep-
arately convex and concave contributions of the func-
tion the quasidifferential introduces an ordered pair of
convex sets. Intuitively speaking, the convex analysis
subdifferential is present, for the convex contribution,
while the superdifferential takes into account the con-
cave parts (which, in turn, can also be studied by means
of convex analysis arguments, since a concave function
becomes convex if one changes its sign). The links of
the quasidifferential with other notions of nonsmooth
analysis have been discussed in � Quasidifferentiable
optimization: Dini derivatives, Clarke derivatives and
[4]). More important is that certain calculus rules have
been developed for the calculation of the quasidifferen-
tial of sums, differences, products, quotients and, more
general, of every function that can be constructed by
using finite number times the minimum and maximum
operators over a finite number of classical, smooth con-
stituent functions (see � Quasidifferentiable optimiza-
tion: Calculus of quasidifferentials and [7]). Finally,
based on the notion of the quasidifferential, certain new
variational formulations can be constructed which gen-
eralize the notion of variational inequalities of convex
analysis. These variational formulations have the form
of sets of variational inequalities, are valid for the gen-
eral nonsmooth and nonconvex case (see also � Qua-
sidifferentiable optimization: Variational formulations
[6,11]) and give a computationally advantageous form
to the hemivariational inequalities in the sense of P.D.
Panagiotopoulos (see, among others,�Nonconvex en-
ergy functions: Hemivariational inequalities; � Hemi-
variational inequalities: Applications in mechanics and
[6,9,10,11]).

Here, the definition of the quasidifferential for one-
dimensional and finite-dimensional functions is given
and hints for its extension into functionals are dis-
cussed. Finally, some information on the related, and
more convenient for the numerical applications notion
of the codifferential and on the construction of opti-
mization algorithms is provided.
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One-Dimensional Nonsmooth Functions

Let f be a real-valued finite function defined on the real
line R. The most powerful and widely used tool to study
the properties of f is the notion of derivative. Function f
is called differentiable at x 2 R if there exists its deriva-
tive f 0(x) at x, which is defined by

f 0(x) D lim
˛!0

1
˛

�
f (x C ˛) � f (x)

�
: (1)

If this limit exists for every point of some open set S 2
R, the function f is called differentiable on S.

Among the variety of applications of the deriva-
tive one recalls here the first order approximation (lin-
earization) of f in the neighborhood of a point x:

f (x C	) D f (x)C f 0(x)	C ox (	) (2)

with

ox (	)
	
! 0 as	! 0 : (3)

Moreover, x� is a minimum of the function f if

f 0(x�) D 0 : (4)

Relation (4) defines a stationary point of f , since it also
holds true for amaximum and for a saddle point of f . As
is usual, higher order derivatives are checked in order to
specify the nature of the stationary point.

One-Sided Differentials

Assume now that the limit (1) does not exist, but at
the same time the following directional derivatives ex-
ist: the right-hand side derivative f 0+(x) and the left-
hand side derivative f 0�(x) of f at x. The right-hand side
derivative is defined by:

f 0C(x) D lim
˛#0

1
˛

�
f (x C ˛) � f (x)

�
: (5)

Analogously, the left-hand side derivative is defined by
the limit:

f 0�(x) D lim
˛"0

1
˛

�
f (x C ˛) � f (x)

�
: (6)

Here ˛ # 0 means that ˛! 0, by taking positive values
˛ > 0 and ˛ " 0 means that ˛! 0, with negative values
˛ < 0.

It is clear that for a function f to be differentiable at
x it is necessary and sufficient that f 0+(x) = f 0�(x).

The directional derivative of a function f at point x
and in the direction x 2 R is defined by the limit:

f 0(x; g) D lim
˛#0

1
˛

�
f (x C ˛g) � f (x)

�
; (7)

if this limit exists.
The notion of directional derivative is a proper ex-

tension of the notion of the derivative. For example, it
can be used to linearize a given function (cf. (2)) along
a direction g. In this case relation (2) holds along a given
direction, a different value holds for the opposite di-
rection, etc, so that it provides the basis for a quasilin-
earization of the function f .

From the definition one may easily see that a neces-
sary condition for a directionally differentiable function
f to attain a minimum at point x� is that:

f 0(x�; g) � 0 ; 8g 2 R : (8)

If strict inequality holds in (8) for every direction g not
equal to zero, the condition becomes also sufficient for
x� to be a strict local minimum of f . On the other hand,
a necessary condition for a directionally differentiable
function f to attain a maximum at point x� is that:

f 0(x��; g) � 0 ; 8g 2 R ; (9)

with analogous implications for a strict local maximum.
A point x� which satisfies relation (8) is called an

inf-stationary point of f , while a point x� � satisfying
(9) is called a sup-stationary point. It is interesting to
observe that for a nonsmooth function first order opti-
mality conditions may, in some cases, become sufficient
for a minimum or a maximum.

Quasidifferential

A function f : R! R is called quasidifferentiable (q.d)
at a point x if it is directionally differentiable at x and
there exists a pair of closed intervals @f (x) = [v1, v2] and
@ f (x) D [w1;w2] such that

f 0(x; g) D max
v2@ f (x)

vg C min
w2@ f (x)

wg ; 8g 2 R : (10)

The pair of intervals D f (x) D [@ f (x); @ f (x)] is called
a quasidifferential of f at x. The set @f (x) is called the
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subdifferential and the set @ f (x) the superdifferential of
f at x.

It is clear that a quasidifferential is not uniquely de-
fined. In fact, if a function f is quasidifferentiable at
x and Df (x) is its quasidifferential at this point, i. e.,
D f (x) D [@ f (x); @ f (x)], then every pair of the form
[@ f (x) C C@ f (x) � C], where C is an interval C = [c1,
c2] 2 R, with c1 � c2 is also a quasidifferential of f at
x. In fact, the quasidifferential is a class of equivalent
ordered pairs of convex sets.

Necessary and Sufficient Optimality Conditions

For a quasidifferentiable function the necessary and
sufficient optimality conditions (see (8)–(9)) can be
written as follows. Let D f (x) D [@ f (x); @ f (x)] be
a quasidifferential of f at x. A necessary condition for
function f to attain a minimum at point x� is that:

� @ f (x�) � @ f (x�) : (11)

The condition

� @ f (x�) � int @ f (x�) (12)

is sufficient for x� to be a strict local minimum of f .
Analogously, a necessary condition for a maximum of f
at x� � is that:

� @ f (x��) � @ f (x��) ; (13)

with an analogous result for a sufficient condition for
a strict local maximum:

� @ f (x��) � int @ f (x��) : (14)

Finite-Dimensional Nonsmooth Functions

Subdifferentiable Functions

Let a function f defined on an open set X � Rn be di-
rectionally differentiable at a point x 2 X. The function
f is subdifferentiable at x if its directional derivative is
a superlinear function, i. e. there exists a convex com-
pact set U such that

f 0(x; g) D max
h2U

(h; g);8g 2 Rn : (15)

Superdifferentiable Functions

A function is superdifferentiable at x if its directional
derivative can be written by means of a convex compact
set V as

f 0(x; g) D f 0x(g) D min
h2V

(h; g); 8g 2 Rn : (16)

Quasidifferentiable Functions

A directionally differentiable function f defined on an
open set X � Rn is called quasidifferentiable at a point
x 2 X, if there exists an ordered pair of convex compact
sets [U, V] in Rn × Rn which produces the directional
derivative of the function by:

f 0(x; g) D f 0x(g) D max
h2U

(h; g)Cmin
h2V

(h; g); 8g 2 Rn :

(17)

Clearly, the first term on the right of (17) is a sublinear
function while the second term is a superlinear func-
tion. Thus, the directional derivative of a quasidiffer-
entiable function belongs to the space L of functions
which can be written as the sum of a sublinear func-
tion and a superlinear function. Moreover with an ele-
ment [U,V] of the space of compact sets it is associated
the class of equivalent ordered pairs of compact convex
sets.

Thus, the class of equivalent ordered pairs of convex
compact sets [U, V] of (17) (the quasidifferential Df (x)
of f at x) fully describes the first order derivative of the
directionally differentiable function f and gives rise to
the quasilinearization (17) and, subsequently, to a qual-
itative and quantitative first order approximation of f
in the sense of (2).

As an example, let us mention that for a differen-
tiable function f either Df = [rf , {0}] or Df = [{0}, rf ]
can be used as the quasidifferential of f . For a convex,
nondifferentiable function f , Df = [ @f, {0}], where @f
denotes the classical subdifferential of convex analysis
[12] can be used. Analogously, for a concave function
f , one may uses Df = [{0}, @f ], where @f denotes the
superdifferential of the concave function f . A difference
convex function (d.c. function) is a function f which can
be expressed as the difference of two appropriately de-
termined convex constituents, i. e., f (x) = f 1(x) � f 2(x),
8x 2 X, where f 1(x) and f 2(x) are convex functions.
In this case one constructs a quasidifferential simply by
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Df (x) = [ @f 1(x), @f 2(x)], where the convex subdifferen-
tials of the functions f 1(x) and f 2(x) are used.

Further Related Topics

Extension of the theory of quasidifferentiability to
infinite-dimensional function spaces has not been stud-
ied till now (1999) in details. First hints can be found in
[3,6].

The notion of the quasidifferential has been ex-
tended by Demyanov to the notion of the codifferen-
tial, which has certain advantages for numerical appli-
cations (see � Quasidifferentiable optimization: Cod-
ifferentiable functions and [4]). Several applications of
the quasidifferentiability concept and related references
are given in� Quasidifferentiable optimization: Appli-
cations and in [5].
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Quasidifferentiability and codifferentiability extend the
notion of the subdifferential of convex analysis for
a quite general class of nonconvex and nonsmooth
functions. If for a directionally differentiable function f :
Rn! R there exists an ordered pair of convex compact
sets [U, V] in Rn × Rn which produces the directional
derivative of f at x in the direction g by the expression:

f 0(x; g) D max
h2U

(h; g)Cmin
h2V

(h; g) ; (1)

this function is called quasidifferentiable in the sense of
V.F. Demyanov and A.M. Rubinov.

If moreover the quasidifferential of the above func-
tion is of the form [U, 0] (where 0 is considered as an
element of the space Rn), then function f is called subd-
ifferentiable.

More details on this notion, the calculus rules for
computing quasidifferentials, its connection to other
notions of nonsmooth analysis and it applications
can be found in � Quasidifferentiable optimization;
� Quasidifferentiable optimization: Calculus of qua-
sidifferentials;�Quasidifferentiable optimization: Dini
derivatives, Clarke derivatives; � Quasidifferentiable
optimization: Applications; as well as in [1,2,3].

The quasidifferential, as well as the subdifferential
of convex analysis, are set-valued quantities which in-
clude discontinuities at the points of nondifferentiabil-
ity. In numerical algorithms this may cause problems.
A notion that takes into account neighboring informa-
tion would be more appropriate. This led Demyanov to
extend the notion of the quasidifferential and to define
the notion of the codifferential.

Let X be an open subset of Rn and let a function f be
defined and finite for every x 2 X. A function f is called
codifferentiable at x if there exist convex, compact sets
d f (x) � RnC1 and d f (x) � RnC1 such that the func-
tion admits a first order approximation in a neighbor-
hood of x of the form

f (x C	) D f (x)C max
[˛;v]2d f (x)

[˛C (v; 	)]

C min
[b;w]2d f (x)

[bC (w; 	)]C ox (	) ;
(2)

where ox(˛�)/˛! 0, as ˛ # 0, 8� 2 Rn. The ordered
pair of convex, compact sets D f (x) D [d f (x); d f (x)]
is called a codifferential of f at x, where d f (x) is a hy-
podifferential and d f (x) is a hyperdifferential.

If there exists a codifferential of the form D f (x) D
[d f (x); 0], where 0 is considered as an element of space
Rn + 1, the function f is called hypodifferentiable.

One recalls that classical convex nondifferentiable
functions are subdifferentiable (resp. hypodifferen-
tiable) in the above outlined framework, since one may
use the classical convex analysis subdifferential in the
above definitions for the construction of the subdiffer-
ential (resp. the hypodifferential) at a given point.

More details about codifferentiability (including ex-
tensions to higher order codifferentials) can be found
in�Quasidifferentiable optimization: Codifferentiable
functions.

Hypodifferentiable Optimization

Efficient nonsmooth optimization algorithms can be
constructed for hypodifferentiable functions. In fact,
the technique of replacing a nondifferentiable opti-
mization problem by an enlarged, classical, inequality
constrained optimization problem has been success-
fully used for convex or for composite optimization
problems [4,13]. For hypodifferentiable functions a di-
rection of descent at each given point can be deter-
mined and used in an iterative optimization procedure.
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Let us consider a conceptual iterative steepest de-
scent optimization algorithm and the form it takes for
nondifferentiable (hypodifferentiable) functions. First,
recall that a nondifferentiable function does not possess
derivatives in the classical sense. One uses set-valued
approximations of the derivative (cf., the subdifferen-
tial or the hypodifferential) at the points of the nondif-
ferentiability instead.

Accordingly optimality conditions (which will also
provide the stopping rules for an optimization algo-
rithm) and the calculation of the steepest descent di-
rection must appropriately be modified.

The first order necessary condition for a hypodif-
ferentiable function f to attain a minimum at point x0
reads:

0 2 d f (x0) : (3)

Points x0 for which relation (3) is satisfied are called inf-
stationary points. Note that the previous relation hold
in the space Rn + 1.

If at a given point xk, at the kth iteration of an iter-
ative optimization scheme, relation (3) is not satisfied,
then one may always find the point z with minimum
norm in the closed convex set d f (xk), such that:

z�(xk) D (��(xk); z�(xk)) D arg min
z2d f (xk )

kzk : (4)

Since (3) is not satisfied, one has


z�(xk)



 > 0. The
direction

gk(xk) D �
z�; (xk)
kz�(xk)k

(5)

can be used as a descent direction within an optimiza-
tion algorithm.

In the conceptual manner used in this note, the next
step of the iterative algorithm will have the form:

xkC1 D xk C ˛k xk ;

where steplength ˛k will be determined from the so-
lution of the one-dimensional optimization problem
(along the direction gk):

˛k D argmin
˛�0
f f (xk C ˛gk )g :

For more general quasidifferentiable and codifferen-
tiable functions one may construct appropriate solution
algorithms, see �Quasidifferentiable optimization: Al-
gorithms for QD functions and in the original literature
(see, e. g., [1]).

Comments

Nondifferentiable optimization procedures have at-
tracted the attention of several researchers and practi-
tioners in the last decade. The lost of information which
is connected with smoothing approaches is, for sev-
eral applications, critical for the quality of the results.
Beyond the quasidifferentiable optimization literature,
previously mentioned in this note, general methods and
theory for descent type methods for nonsmooth func-
tions can be found in [7,12]. In this respect, the bun-
dle concept has been found useful (see, among others,
[6,8,9,11]). An application of this method for the solu-
tion of hemivariational inequality problems arising in
mechanics can be found in [10] and [5].

Closing one would like to mention again the addi-
tional requirements of nonsmooth optimization with
respect to classical, smooth one. First, stopping crite-
ria must take into account the set-valued nature of the
nonsmooth optimality conditions. Otherwise cycling in
an iterative scheme or premature exit at a noncritical
point may occur. This is the more critical point. More-
over, the line search must take into account the non-
differentiability of the involved function. This require-
ment is, usually, easily taken into account (for instance,
by means of a derivative-free technique).
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Codifferentiable (c.d.) Functions

f : Rn ! R is called quasidifferentiable at x 2 Rn if
it is directionally differentiable (in the sense of Dini
or Hadamard) and there exists a pair D f (x) Dh
@ f (x); @ f (x)

i
of compact convex sets of Rn such that

f 0(x; g) D max
v2@ f (x)

(v; g)C min
w2@ f (x)

(w; g) : (1)

Here f 0(x, g) is either the Dini or Hadamard derivative
of f at x in a direction g 2Rn. (See�Quasidifferentiable
optimization: Optimality conditions).
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In the sequel we discuss only the problem of min-
imizing the function f . In � Quasidifferentiable opti-
mization: Optimality conditions, necessary conditions
for a minimum of f were formulated in terms of qua-
sidifferentials (q.d.) and a formula for computing steep-
est descent directions was derived. However, it is diffi-
cult to apply steepest descent directions for construct-
ing numerical methods for minimizing the function f
since the quasidifferential mapping Df is, in general,
discontinuous in the Hausdorff metric. This is why we
need some other tool to overcome the discontinuity of
Df .

A function f : Rn ! R is called Dini codifferen-
tiable (D.c.d.) at x 2 Rn if there exists a pair D f (x) D
[d f (x); d f (x)] of compact convex sets of Rn + 1 such
that

f (x C	) D f (x)C max
[a;v]2d f (x)

�
aC (v; 	)

�

C min
[b;w]2d f (x)

�
bC (w; 	)

�
C ox (	) :

(2)

ox (˛	)
˛

! 0 ; 8	 2 Rn : (3)

Here a, b 2 R; v, w 2 Rn. If in (2)

ox (	)
k	k

k�k!0
! 0 ; 8	 2 Rn ; (4)

then f is called Hadamard codifferentiable (H.c.d) at x.
Without loss of generality it may be assumed that

max
[a;v]2d f (x)

a D min
[b;w]2d f (x)

b D 0 : (5)

If it causes no misunderstanding, we shall use the term
codifferentiable (c.d.) for both Dini and Hadamard
codifferentiable functions.

The pair D f (x) D [d f (x); d f (x)] is called a cod-
ifferential of f at x, df (x) is a hypodifferential, d f (x) is
a hyperdifferential. A codifferential (like quasidifferen-
tial) is not uniquely defined. If there exists a codifferen-
tial of the formDf (x) = [df (x), {0n + 1}], the function f is
called hypodifferentiable at x. If there exists a codifferen-
tial of the form D f (x) D [f0nC1g; d f (x)], the function
f is called hyperdifferentiable at x.

It is easy to see that the class of Dini (Hadamard)
codifferentiable functions coincides with the class of
Dini (Hadamard) quasidifferentiable functions.

For example, if D f (x) D [d f (x); d f (x)] is a cod-
ifferential of f at x such that (5) holds, then the pair
D f (x) D [@ f (x); @ f (x)], where

@ f (x) D fv 2 Rn : [0; v] 2 d f (x)g ;

@ f (x) D
n
w 2 Rn : [0;w] 2 d f (x)

o
;

is a quasidifferential of f at x.
A function f is called continuously codifferentiable

at x if it is codifferentiable in some neighborhood of x
and there exists a codifferential mapping Df which is
Hausdorff continuous at x.

Remark 1 Of course, it is possible to introduce the no-
tion of continuously quasidifferentiable function; how-
ever, if f is continuously q.d. at x then it is just differen-
tiable at x.

For a fixed � the functions (see (1) and (2))

˚1x (	) D f (x)C max
v2@ f (x)

(v; 	)C min
w2@ f (x)

(w; 	)

and

˚2x (	) D f (x)C max
[a;v]2d f (x)

�
aC (v; 	)

�

C min
[b;w]2d f (x)

�
bC (w; 	)

�

are both first order approximations of f in a neighbor-
hood of x. The function F1(�) = ˚1x(�)�f (x) is pos-
itively homogeneous (of degree one) in � while the
function F2(�) = ˚2x(�)�f (x) is, in general, not pos-
itively homogeneous. The loss of homogeneity is the
price to be paid for the continuity (if any) of the cod-
ifferential mapping.

Note again that the ‘value’ of the mapping Df at any
x is a pair of convex compact sets in Rn + 1.

If turns out that most of the known functions are
continuously codifferentiable (see [3,4]). For example,
all smooth, convex, concave and concavo-convex func-
tions are continuously codifferentiable. The class of c.d.
functions enjoys a very rich calculus similar to that for
q.d. functions (see � Quasidifferentiable optimization:
Optimality conditions) which is a generalization of the
classical differential calculus. The class of c.d. functions
was introduced in [3].

First we discuss the problem of minimizing a c.d.
function on the entire space (in the absence of con-
straints).
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For a c.d. function the following necessary condi-
tion holds:

Proposition 2 For a point x� 2 Rn to be a minimizer of
f on Rn it is necessary that

0nC1 2 fd f (x�)C [0;w]g ;

8[0;w] 2 d f (x�)
(6)

(it is assumed that condition (5) holds).

A point x� satisfying (6) is called inf-stationary. Let x
be not inf-stationary. Then there exists w D [0;w] 2
d f (x) such that

0nC1 … fd f (x�)C wg D Lw (x) : (7)

Find

min
z2Lw (x)

kzk D kzw(x)k :

(7) implies that

zw (x) D
�
�w (x); zw(x)

�
¤ 0nC1

(�w (x) 2 R ; zw (x) 2 Rn) :

It is also possible to show that zw (x) ¤ 0n and that for
the direction

gw (x) D �
zw(x)
kzw(x)k

the inequality f 0(x; gw (x)) � �kzw (x)k holds.

Method of Codifferential Descent (MCD)

Let a function f be defined, Lipschitz and continuously
codifferentiable on Rn. Fix any � > 0. Choose an arbi-
trary x0 2 Rn. Let xk have already been found. If con-
dition (6) holds at xk, then xk is inf-stationary and the
process terminates. Otherwise, for every w 2 d
 f (xk)
where

d
(x) D
n
w 2 d f (x) : w D (!;w); 0 � ! � �

o
(8)

we find

min
z2Lw (xk )

kzk D kzkwk

with

zkw D [�kw ; zkw] ; Lw (xk) D [d f (xk)C w] :

Now, for every w 2 d
 f (xk) we find

min
˛�0

f (xk � ˛zkw ) D f (xk � ˛kwzkw) (9)

and then

min
w2d
 f (xk )

f (xk � ˛kwzkw ) D f (xk � ˛kwk zkwk ) :

Put xkC1 D xk � ˛kwk zkwk . Continuing in the same
manner we construct a sequence {xk} such that f (xk+1)
< f (xk).

Proposition 3 (See [4, Thm. V.5.1].) Let the set {x 2
Rn: f (x) � f (x0)} be bounded, x� be a limit point of the
sequence {xk} and let relation (4) hold uniformly in x
from some neighborhood of x� and in � from S = {�
2 Rn: k�k = 1}.

Then the point x� is an inf-stationary point of f (i. e.
condition (6) holds).

Remark 4 The above described MCD is a conceptual
method (according to the terminology of E. Polak). It
should be adjusted to a specific class of functions. The
MCD is a generalization of the classical steepest descent
method.

For example, if for every x 2 Rn the set d f (x) is the
convex hull of a finite number of points then in (8) one
can take only points w D (w; !) which are ‘vertices’ of
d f such that 0 � ! � �.

In this case at each step it is required to solve only
a finite number of one-dimensional optimization prob-
lems (9).

Method of Hypodifferential Descent (MHD)

Let f be defined, Lipschitz and continuously hypodif-
ferentiable on Rn, i. e. there exists a codifferential map-
ping of the form D f (x) D [d f (x); f0nC1g] which is
Hausdorff continuous. Then the necessary condition
for a minimum (6) takes the form

0nC1 2 d f (x�) : (10)

If x 2 Rn is not an inf-stationary point (i. e., (10) does
not hold) then let us find

min
z2d f (x)

kzk D k(�(x); z(x))k D �(x) D kz(x)k :

Since �(x) > 0 then z(x) ¤ 0nC1. It is possible to show
that z(x) 6D 0n. The direction g(x) = � z(x)/ k z(x) k
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is a descent direction (not necessarily the steepest de-
scent direction). The vector function g(x) is continuous
at any point which is not inf-stationary.

Take any x0 2 Rn. Let xk have already been con-
structed. Let us find �(xk) D kz(xk)k. If �(xk) = 0 then
xk is inf-stationary and the process terminates. Other-
wise, take gk = �z(xk)/ k z(xk) k and find

min
˛�0

f (xk C ˛gk) D f (xk C ˛k gk) :

Put xk + 1 = xk + ˛kxk. Continuing analogously we con-
struct a sequence {xk} such that f (xk + 1) < f (xk).

Proposition 5 Let x� be a limit point of the sequence
{xk} and the hypotheses of Proposition 3 hold. Then 0n + 1

2 df (x�) i. e. x� is an inf-stationary point of f .

Difference of Convex (d.c.) Functions

Let f (x) = f 1(x)� f 2(x) where f 1, f 2:Rn!R are convex.
A d.c. function is quasidifferentiable with the quasidif-
ferentialD f (x) D [@ f (x); @ f (x)] where @f (x) = @f 1(x),
@ f (x) D �@ f2(x), @f 1(x) and @f 2(x) are subdifferentials
(in the sense of convex analysis) of the functions f 1 and
f 2 respectively:

@ fi(x) D
�
v 2 Rn : fi(z) � fi(x) � (v; z � x);

8z 2 Rn

	
:

The sets @f i are convex and compact. The necessary
condition for a minimum (6) takes the form

@ f2(x�) � @ f1(x�) : (11)

If f 2 is a polyhedral function (i. e. f 2(x) = maxi 2 I{ai +
(vi, x)} where ai 2 R, vi 2 Rn, I = 1, . . . , N) then condi-
tion (11) is sufficient for the point x� to be a local min-
imizer of f .

Since the mappings @f 1 and @f 2 are discontinuous
then Df is also discontinuous.

If F is a convex function, " � 0 then the set

@"F(x) D

8<
:v 2 Rn :

F(z) � F(x)
� (v; z � x) � ";
8z 2 Rn

9=
;

is called the "-subdifferential of F at x.
We shall use the following properties of a convex

function (see, e. g., [7]):
1) @"F(x) is a closed compact set.

2) The mapping @"F is Hausdorff continuous jointly in
" and x on (0,1) × Rn.

3)

max
v2@"F(x)

(v; g) D inf
˛�0

1
˛

�
F(x C ˛g) � F(x)C "

�

:D F 0"(x; g) :

In [6] the following necessary and sufficient condi-
tion for a global minimum is stated:

For a point x� to be a global minimizer of a d.c.
function f (x) = f 1(x) � f 2(x) it is necessary and suffi-
cient that

@" f2(x�) � @" f1(x�) ; 8" � 0 : (12)

Note that if "1 > "2 and

f 0"1"2 (x; g) :D f 01"1(x; g) � f 02"2(x; g) � 0 (13)

then

inf
˛�0

f (x C ˛g) � f (x)C "2 � "1 : (14)

Let us construct the following method for finding an
inf-stationary point of f (i. e. a point satisfying (11)).

Fix "0,�0 = "0/2. Take an arbitrary x00 2Rn. Assume
that the set

C D fx 2 Rn : f (x) � f (x00)g

is bounded (then it is closed since f is continuous). If

B00 :D @
0 f2(x00) � A00 :D @"0 f1(x00)

then we put x0 = x00. If

@
0 f2(x00) 6� @"0 f1(x00)

then let us find

max
w2B00

min
v2A00

kv � wk D kv00 � w00k D �00

and put g00 = (w00 � v00)/ k w00 � v00 k. Since �00 > 0
then

f 0"0
0
(x00; g00) < 0
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and, by (13) and (14), we conclude that

inf
˛�0

f (x00C˛g00) D f (x00C˛00g00) � f (x00)�
"0

2
:

(15)

Now take x01 = x00 + ˛00g00 and check the condition

B01 :D @
0 f2(x01) � A01 :D @"0 f1(x01) :

Continuing in the same manner, in a finite number of
steps we shall find a point x0s0 such that

B0s0 :D @
0 f2(x0s0 ) � A0s0 :D @"0 f1(x0s0 ) (16)

(it is due to (15) and the boundedness of C).
Put x0 = x0s0 . By (16)

B0 :D @
0 f2(x0) � A0 :D @"0 f1(x0) :

Let xk be constructed such that

@
i f2(xk) � @"i f1(xk) ; 8i 2 0; : : : ; k ; (17)

where �i = �0/2i, " = "0/2i.
Put xk + 1, 0 = xk. If

@
kC1 f2(xkC1;0) � @"kC1 f1(xkC1;0) (18)

then we take xk + 1 = xk + 1, 0. If (18) does not hold, we
continue as above and in a finite number of steps a point
xkC1;skC1 will be found such that

@
kC1 f2(xkC1;skC1 ) � @"kC1 f1(xkC1;skC1 )

and we put xk + 1 = xkC1;skC1 .
As a result we construct a bounded sequence {xk}

satisfying (17).

Proposition 6 Any limit point of the sequence {xk} is
an inf-stationary point of f .

Difference of Max-Type (d.m.) Functions

Let

f (x) D f1(x) � f2(x)

where f 1, f 2: Rn! R are max-type functions:

f1(x) D max
y2G1

'1(x; y) ;

f2(x) D max
y2G2

'2(x; y)

where '1 and '2 are continuous on Rn × G1 and Rn

× G2, respectively, and there exist derivatives '1x
0 and

'2x
0 which are continuous. The function f (called a d.m.

function) is quasidifferentiable. It is also continuously
codifferentiable:

f (x C	) D f (x)C max
[a;v]2d f (x)

�
aC (v; 	)

�

C min
[b;w]2d f (x)

�
bC (w; 	)

�
C ox (	) ;

where

d f (x) D co

8<
:[a; v] :

a D '1(x; y) � f1(x);
v D ' 01x(x; y);

y 2 G1

9=
;

� R � Rn ;

d f (x) D co

8<
:[b;w] :

b D f2(x) � '2(x; y);
w D �' 02x(x; y);

y 2 G2

9=
;

� R � Rn :

Here a, b 2 R; v, w 2 Rn.
Now it is possible to employ the MCD for finding

inf-stationary points.

Twice Codifferentiable Functions

A function f : Rn ! R is called twice codifferentiable at
x 2 Rn if there exist convex compact sets d2f (x) and
d
2
f (x) � R � Rn � Rn�n such that

f (x C	) D f (x)

C max
[a;v;A]2d2 f (x)

�
aC (v; 	)C

1
2
(A	;	)

�

C min
[b;w;B]2d

2
f (x)

�
bC (w; 	)C

1
2
(B	;	)

�

C o(	2)

where

o((˛	)2)
˛2

˛!0
! 0 ; 8	 2 Rn :

Here Rn×n is the space of real (n × n)-matrices.
The pair of sets D2 f (x) D [d2 f (x); d

2
f (x)] is called

a second order codifferential of f at x. If f is twice c.d. in
some neighborhood of x and the mapping D2f is Haus-
dorff continuous at x, then the function is called twice
continuously codifferentiable at x.
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The class of twice c.d. functions is quite rich and en-
joys a well-developed calculus (see [4]).

Let f be twice continuously c.d. on Rn. Then the fol-
lowing second order Newton-type method can be em-
ployed to find inf-stationary points of f .

Take any x0 2 Rn. Let xk have already been con-
structed. Put

Fk(	) D max
[a;v;A]2d2 f (xk )

�
aC (v; 	)C

1
2
(A	;	)

�

C min
[b;w;B]2d

2
f (xk )

�
bC (w; 	)C

1
2
(B	;	)

�
;

find

min
�2Rn

Fk(	) D Fk(	k)

and take xk + 1 = xk +�k.
The sequence {xk} thus constructed converges (un-

der some additional assumptions) to an inf-stationary
point of f (see [1]).

Quasidifferentiable Programming Problems

Let functions f and hi: Rn ! R (i 2 I = 1, . . . , N) be
quasidifferentiable on Rn and let

˝ D fx 2 Rn : hi(x) � 0; 8i 2 Ig :

Assume that ˝ 6D ;.
It is required to find

(P)min
x2˝

f (x) D f � :

The set ˝ is called quasidifferentiable, problem (P)
is a quasidifferentiable (q.d.) programming problem.
Necessary conditions for a minimum of f on ˝ are
stated in � Quasidifferentiable optimization: Optimal-
ity conditions. If all the functions f and f i0 are, in addi-
tion, continuously codifferentiable then it is possible to
extend the MCD to problem (P) (see [4]).

Another approach to problem (P) is based on the
penalization technique.

We say that problem (P) is calm if

lim sup
"#0

f � � f"
"

� B <1 (19)

where
f" D inf

x2˝"
f (x) ;

˝" D fx 2 Rn : hi(x) � "; 8i 2 Ig ;

" > 0 :

Proposition 7 If the calmness condition (19) holds then
there exists A� <1 such that, for any A > A�, the set of
minimizers of the function f on˝ coincides with the set
of minimizers of the function

F(x;A) D f (x)C A
X
i2I

hCi (x) (20)

on Rn. Here h+i (x) = max{0, hi(x)}.

Remark 8 Thus, the constrained optimization problem
(P) is reduced to the unconstrained one. Since the func-
tion F(x, A) is again quasidifferentiable, one can use
methods for unconstrained optimization. Another con-
dition (different from (19)) under which Proposition 7
is valid was stated in [2].

Remark 9 Problem (P) is called a d.c. programming
problem if all the functions f and hi0 (i 2 I) are d.c., i. e. f
= f 1 � f 2, hi = h1i � h2i where f 1, f 2, h1i, h2i are convex.
If the calmness condition (19) holds then, by Proposi-
tion 7, problem (P) is reduced to that of minimizing the
function F(x,A) (see (20)) (ifA is sufficiently large). We
have

hCi (x) D maxf0; hi(x)g

D maxf0; h1i(x)� h2i(x)g D h1i(x) � h2i (x) ;

where

h1i (x) D maxfh1i(x); h2i(x)g ;

h2i (x) D h1i(x)C h2i(x) :

The functions h1i and h2i are convex, therefore hCi
is d.c. and, hence, the function F(x, A) is also d.c. and
one may use the method described above for d.c. func-
tions.

See also
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� Hemivariational Inequalities: Applications in
Mechanics
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Quasidifferentiability and the notion of the quasidif-
ferential extend the subdifferential of convex analysis
for a quite general class of nonconvex and nonsmooth,
but directionally differentiable functions. By using an
ordered pair of convex sets, the quasidifferential copes
in a nice way with both nonsmoothness and noncon-
vexity issues. Since its introduction by V.F. Demyanov,
a number of quasidifferential optimization problems
have been studied. Moreover calculus rules have been
developed and applications, among others in mechan-
ics and engineering [5] have been considered. In addi-
tion, the related, more appropriate for numerical pur-
poses notion of the codifferential has been introduced.

Let us consider a classical optimization algorithm,
the (anti)gradient optimization, and how it is modi-
fied for quasidifferentiable functions. First, recall that
a nondifferentiable function does not has derivatives in
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the classical sense. One should use set-valued approx-
imations at the points of the nondifferentiability in-
stead. This replacement introduces the following two
problems in a gradient optimization algorithm. First,
one has to calculate an appropriate direction of de-
scent, which should be followed at a given iteration
step. Moreover, the optimality conditions for a non-
differentiable function have a form dictated by the set-
valued approximation of the derivative (i. e., one should
check, at a given point, if zero is element of a set, or if
some relation between sets is satisfied). Several appli-
cations of the quasidifferentiability concept are briefly
reviewed in this short article.

Nonsmooth Modeling

Let us recall first the notion of quasidifferentiability in
the sense of Demyanov. A function f which is defined
on an open set X � Rn and which is directionally dif-
ferentiable at a point x 2 X is called quasidifferentiable
if there exists an ordered pair of convex compact sets
[@ f (x); @ f (x)] in Rn × Rn which produces the direc-
tional derivative of the function by the following for-
mula

f 0(x; g) D max
w2@ f (x)

hw; gi C min
v2@ f (x)

hv; gi ; (1)

for all directions g 2 Rn. More details are given in
� Quasidifferentiable optimization.

Relation (1) gives rise to a qualitative and quantita-
tive nonsmooth approximation (quasilinearization) of
a nonsmooth and nonconvex function f at point x. The-
oretical results on nonsmooth modeling can be found,
among others, in [8,9,14].

The notion of the quasidifferential gives rise to non-
smooth models, with applications in mechanics [5,11].
In particular, interesting nonconvex variational formu-
lations can be written, as it is discussed in more de-
tail in � Quasidifferentiable optimization: Variational
formulations. They extend the variational inequalities,
which are valid for the convex, nondifferentiable case,
and constitute a parallel development to the hemivaria-
tional inequalities in the sense of P.D. Panagiotopoulos
(see also � Nonconvex energy functions: Hemivaria-
tional inequalities; �Hemivariational inequalities: Ap-
plications in mechanics as well as [12]). Furthermore,
quasidifferential and codifferential optimization tech-
niques can be used for the construction of numerical

algorithms for problems of nonsmooth computational
mechanics [5].

Nonsmooth and Nonconvex Optimization

The notion of the quasidifferential allows one to calcu-
late one steepest descent direction of a quasidifferen-
tiable function f (x) at a given point x0. Assume that at
point x0 one has the subdifferential @f (x0) and the su-
perdifferential @ f (x0). Then, a steepest descent direc-
tion h can be calculated by:

h D
w�1 C w�2
kw�1 C w�2 k

; (2)

for w�1 2 @f (x0), w�2 2 @ f (x0), such that

kw�1 C w�2 k D max
w12@ f (x0)

(
min

w22@ f (x0)
kw1 C w2k

)
:

Moreover, there exists necessary (and in some cases
sufficient) set-valued optimality conditions for quasid-
ifferentiable optimization problems (see � Quasidif-
ferentiable optimization). Thus one has whatever is
needed for the construction of a numerical algorithm.
Calculus rules exist for the construction of the quasid-
ifferential (see�Quasidifferentiable optimization: Cal-
culus of quasidifferentials), if this is not obvious from
the definition of the optimization problem. Stopping
rules for an optimization algorithm can also be ex-
tracted. In fact, if the optimality criteria are satisfied,
then (at least local) minimum point has been calculated.
Otherwise, one can calculate a steepest descent direc-
tion by (2) and proceed with a (steepest descent like)
numerical optimization scheme. In this respect the af-
filiated notion of the codifferentiability has certain ad-
vantages for the numerical implementation. More de-
tails can be found in � Quasidifferentiable optimiza-
tion: Codifferentiable functions and in [3,6].

It is worth noting to observe here that formula (2)
may admit multiple solutions. This should be expected
since one deals with nonconvex (global) optimization
problems. This is actually one of the advantages of the
quasidifferentiability concept since, theoretically, if one
follows all possible directions of descent which may
arise along an iterative algorithm one should be able to
calculate multiple solutions (i. e., local minima).

More information on smooth (convex and noncon-
vex) optimization and appropriate algorithms devel-
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oped for these problems can be found, among others,
in [2,7]. Note also the multi-objective programming ap-
proach for the solution of systems of quasidifferentiable
equations which has been developed in [13].

Multilevel andMarginal Function Optimization

Interesting results on the application of the quasidiffer-
entiability concept for the sensitivity analysis and algo-
rithms for multilevel optimization problems have been
presented in [1,10].

Applications in nonsmoothmechanics

Quasidifferential modeling and optimization have been
used for nonsmooth mechanics applications. As it is al-
ready mentioned these results can be found in [5,11].
A number of recent (2000) applications of quasidiffer-
entiability can be found in [4].
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Certain semipermeability or temperature control prob-
lems in thermoelasticity, which may be combined with
analogous mechanical unilateral contact effects, can be
formulated and studied in a unified framework by non-
smooth modeling techniques [7]. The theory of qua-
sidifferentiable optimization, in the sense of V.F. De-
myanov and A.M. Rubinov, provides a general frame-
work for the treatment of both convex and noncon-
vex, nonsmooth modeling problems [1,2,3,4]. Coupled
thermal and kinematical nonconvex unilateral effects
will be modeled in the sequel by using the quasidif-
ferentiable optimization approach. Analogous formu-
lations which have been based on the notion of hemi-
variational inequalities have been proposed and stud-
ied for semipermeability and thermal problems by P.D.

Panagiotopoulos et al. [6,7]. An extension to thermo-
viscoelasticity has recently been published in [5].

This short article is mainly based on the results pre-
sented in [4,7], where more details can be found.

Classical Thermoelastic Model

Let us consider a thermoelastic medium in the Eu-
clidean space R3. A point is denoted by x and its co-
ordinates with respect to a fixed Cartesian coordinate
system 0x1x2x3 by xi, i = 1, 2, 3. The time variable t takes
values in the interval [0, T]�R. Moreover, let u = u(x,
t) be the displacement of the material point x at time t
with reference to the natural state of the body, which is
characterized by zero stresses and a constant absolute
temperature �0 > 0. The density at point x of the natu-
ral state is denoted by � = �(x) and the open, bounded,
connected subset of R3 occupied by the body is denoted
by ˝ . As usual, the boundary � of˝ is assumed to be
regular.

The behavior of a linear thermoelastic body is gov-
erned by the following constitutive equations for the
stress tensor � = {� ij}, i = 1, 2, 3, and the specific en-
tropy deviation � � �0 (where �0 is the specific entropy
of the natural state)

�i j D ti j � mi j(� � �0)

D Ci jhk"hk � mi j(� � �0);
(1)

� � �0 D
1
�0

cD(� � �0)C
1
�
mi j"i j: (2)

Here � = �(x, t) is the absolute temperature, and " =
{"ij} the strain tensor, which is related to the displace-
ments by the small deformation elasticity relation

"i j(u) D
1
2
(ui; j C uj;i ):

Here C = {Cijhk}, i, j, h, k = 1, 2, 3, is the elasticity tensor,
which satisfies the well-known symmetry and ellipticity
conditions, m = {mij} is the symmetry tensor of thermal
expansion, and cD = cD(x)> 0 is the specific heat at zero
strain of the body. C(x), m(x) and cD(x) are referred to
the natural state of the body. The equations of motion
read:

�u00i D �i j; j C fi ; (3)

and the law of conservation of energy has the form

��0�
0

D �qi;i C Q: (4)
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Here f = {f i}, f i = f i(x, t), is the volume force vector, q
= {qi}, qi = qi(x, t), is the heat flux vector and Q = Q(x,
t) is the radiant heating per unit volume. Fourier’s law
of heat conduction reads:

qi D �ki j�; j: (5)

The symmetric tensor of thermal conductivity k = {kij},
kij = kij(x), refers to the natural state of the body and
satisfies the condition

ki j ai a j � cai ai ; 8a D faig 2 R3;

where c is a positive constant. These relations lead to
the following system of differential equations, which
describe the linear thermoelastic behavior of a generally
nonhomogeneous and nonisotropic body:

�u00i D fi C (Ci jhk"hk); j �
�
mi j(� � �0)

�
; j ;

in˝ � (0; T) ; (6)

�cD� 0 � (ki j�; j);i C mi j�0"
0
i j D Q;

in˝ � (0; T):
(7)

In the sequel the following initial conditions at t = 0 are
assumed:

ui D u0i (x); u0i D u1i(x) in˝; (8)

and

� D �(x) in˝: (9)

Let the following bilinear forms be introduced:

a(u; v) D
Z
˝

Ci jhk"i j(u)"hk(v) d˝;

(u; v) D
Z
˝

uivi d˝;

M1(�; v) D
Z
˝

(mi j�); jvi d˝;

M2(u; ') D
Z
˝

mi jui; j' d˝;

K(�; ') D
Z
˝

ki j�; j';i d˝;

(�; ') D
Z
˝

�' d˝:

(10)

Quasidifferential Thermal Boundary Conditions

In order to complete the description of the previous
boundary value problem one needs to specify boundary
conditions for the thermal and for the elasticity prob-
lem. First, let us assume that between the boundary
temperature and the heat flux the following quasidif-
ferential (QD) superpotential relation holds:

qini D �ki j�; jni D w1(�; t)C w2(�; t);

with fw1(�; t);w2(�; t)g 2 Dj(�; t);
on �1 � (0; T);

(11)

where � 1 �� and on the remaining part of the bound-
ary one assumes, for simplicity, that:

� D 0 on � � �1: (12)

For the displacements, a simple boundary condition is
considered:

ui D 0 on � � (0; T): (13)

Here n = {ni} denotes, as usual, the unit normal to �
directed towards the exterior of˝ .

Variational Formulation

One follows here the usual way for the construction
of the variational or weak formulation of the previ-
ous boundary value problem (see also � quasidifferen-
tiable optimization: variational formulations; � hemi-
variational inequalities: applications in mechanics). Let
the virtual variations v� u0 and ' � � are sufficiently
smooth. Then, by multiplying (6) and (7) by v� u0

and ' � � respectively, integrating over ˝ , and using
the Green—Gauss theorem, one obtains the variational
equalities

(�u00; v � u0)C a(u; v � u0)CM1(� � �0; v � u0)

D ( f ; v � u0)C
Z
�

ti jn j(vi � u0i) d�

in˝ � (0; T)
(14)

and

(�cD� 0; ' � �)C K(�; ' � �)CM2(�0u0; ' � �)

D (Q; ' � �)C
Z
�

ki j�; jni (' � �) d�

in˝ � (0; T):
(15)
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Now let us assume that Cijhk, kij, mij, �> 0 and cD>
0 are elements of L1(˝), and that f (t)2 [L2(˝)]3 and

Q(t)2 L2(˝). Moreover, the spaces [
0
H1(˝)]3 for v, u0

and H1(˝) for ', � are introduced.
Let us recall that a QD boundary condition (for in-

stance, the relation (11)), gives rise, due to the definition
of the quasidifferential, to a min-max relation. This re-
lation, is used for the formulation of nonconvex vari-
ational problems, as it is discussed in more details in
� quasidifferentiable optimization: variational formu-
lations.

Thus, the variational equalities (14) and (15) are
combined with the boundary conditions (11)–(13), and
lead to the following variational problem: find func-

tions u : [0; T] ! [
0
H1(˝)]3 and � : [0, T]! ˚ =

H1(˝): � = 0 on � � � 1}, with u0(t) 2 [
0
H1(˝)]3,

u0 0(t)2 [L2(˝)]3, � 0 (t)2 L2(˝), which satisfy the initial
conditions and the variational expression

(�u00; v � u0)C a(u; v � u0)CM1(� � �0; v � u0)

D ( f ; v � u0); 8v 2 [
0
H1(˝)]3;

(16)

and

(�cD� 0; ' � �)C K(�; ' � �)

CM2(�0u0; ' � �)

Cmax fhw�1 ; � � �i : w�1 2 @J(�; t)g

Cmin
n
hw�2 ; � � �i : w�2 2 @J(�; t)

o

D (Q; ' � �); 8' 2 ˚:

(17)

Quasidifferential Elastic Boundary Conditions

Assume now simple thermal boundary conditions, i. e.,

� D �0 on � � (0; T): (18)

For the elasticity problem let a nonmonotone, possibly
multivalued quasidifferential (QD) boundary law holds
on a part � S of the boundary � :

� S D f�Sig D f��i jnig

D S1(u0; x; t)C S2(u0; x; t);

fS1(u0; x; t); S2(u0; x; t)g 2 D (u0; x; t)

on �S � (0; T):

(19)

On the remaining part of the boundary one assumes
simply that:

ui D Ui on �U � (0; T): (20)

Here � D � U [� S , where � U and � S are nonempty,
disjoint, open sets,Ui =Ui(x, t) is a prescribed displace-
ment vector on � U (which should be compatible with
the initial conditions (8)–(9)).

In an analogous way one proceeds with the bound-
ary value problemwhich is defined by the relations (6)–
(9) and (18)–(19). Let v, u0 2 [H1(˝)]3 be such that v
= u0 = U 0(t) on � U and ', � 2 H1(˝) with ' = � =
�0 on � . In this case one gets the variational problem:
find u: [0, T]! [H1 (˝)]3 with u0 = U on � U and � 2
H1(˝) with � = �0 on � with u0 (t)2 [H1(˝)]3, u0 0(t)2
[L2(˝)]3, � 0(t)2 L2(˝), which satisfy the initial condi-
tions and the variational expression

(�u00; v � u0)C a(u; v � u0)

CM1(� � �0; v � u0)

Cmax
˚˝
S�1 ; v � u0

˛
: S�1 2 @� (u0; t)

�

Cmin
˚˝
S�2 ; v � u0

˛
: S�2 2 @� (u0; t)

�

D ( f ; v � u0);

8v 2 [H1(˝)]3 with v D U 0(t) on �U

(21)

and

(�cD� 0; ' � �)C K(�; ' � �)

CM2(�0u0; ' � �)

D (Q; ' � �);

8' 2 H1(˝) with ' D �0 on �:

(22)

More general thermoelastic problems may be consid-
ered by considering QD laws for both the elasticity and
the thermal part of the problem, or even mixed laws.

See also

� Generalized monotonicity: Applications to
variational inequalities and equilibrium problems

� Hemivariational inequalities: Applications in
mechanics

� Hemivariational inequalities: Eigenvalue problems
� Hemivariational inequalities: Static problems
� Nonconvex energy functions: hemivariational

inequalities
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A function f defined on an open set X � Rn and di-
rectionally differentiable at a point x 2 X is called qua-
sidifferentiable (in the sense of V.F. Demyanov) if there
exists an ordered pair of convex compact sets [U, V] in
Rn ×Rn which produces the directional derivative of the
function by the following formula

f 0(x; g) D max
h2U

(h; g)Cmin
h2V

(h; g) ; (1)

for all directions g 2 Rn.
Quasidifferentiability is a genuine generalization

of the classical differentiability concept which is valid
for smooth differentiable functions, and of the con-
vex analysis subdifferential, which, in turn, is a set-
valued differential valid for convex, nondifferentiable
functions. An ordered pair of convex sets is used for the
approximation of the directional derivative in (1). More
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details can be found in the companion article � Qua-
sidifferentiable optimization, the links with other no-
tions of nonsmooth analysis are discussed in � Qua-
sidifferentiable optimization: Dini derivatives, Clarke
derivatives and applications are briefly presented in
� Quasidifferentiable optimization: Applications. One
may also consult the original publications [2,3,4,5,6].

Using classical differential calculus and on the
assumption of smooth (differentiable) functions the
derivative of sums, of differences or of composite func-
tions etc may easily be calculated. To this end one uses
calculus rules and the derivatives of the involved func-
tions (cf., the chain rule of differentiation). For quasid-
ifferentiable functions there exist appropriate calculus
rules [2]. The situation is more complicated here, since
one manipulates ordered pairs of convex sets. Further-
more, calculus rules have been developed for composite
functions which can be produced from a finite num-
ber of smooth constituents and from the application of
a finite number of minimum or maximum operators.
Moreover, as the quasidifferential of a given function is
not uniquely determined (it is actually a class of equiv-
alent ordered pairs of convex sets) one may wishes to
simplify the results of such a calculus operation.

It is clear that, since quasidifferentials have found
a number of applications, among others in optimiza-
tion, in mechanics, in control theory and in economy,
the need for refining the quasidifferential calculus and
for incorporating it into automatic computational pro-
cedures (e.g, in computer algebra systems, in analogy
to classical systems [1]) is obvious. For the latter task,
which at the present remains open for future research
efforts, use of results developed within the theory of in-
terval analysis may be advantageous.

Calculus rules for one-dimensional functions (de-
fined on R) and for functions defined on Rn are given
without proofs here. See [2,3] for more details.

One-Dimensional Case

A function in R1 and sets which are intervals of the real
line R1 are considered first. Let D1 and D2 be two pairs
of closed intervals: D1 = [A1, B1], D2 = [A2, B2], where
A1 = [v11, v12], B1 = [w11, w12], A2 = [v21, v22], B2 = [w21,
w22], with vi1 � vi2, wi1 � wi2, 8i 2 {1, 2 }. Addition of
intervals is defined as follows: D = D1 + D2 = [A1+ B1,
A2+ B2] = [A, B], where A = [v11+ v21, v12+ v22] and B

= [w11+w21, w12+ w22]. Moreover, for D = [A, B], A =
[v1, v2], B = [w1, w2], v1 � v2, w1 � w2, multiplication
by a scalar quantity � is defined by:

�D D

(
�[A; B]; � � 0;
�[B;A]; � < 0;

where, on the right-hand side one has � [A, B] = [[� v1,
� v2], [� w1, � w2]], etc.

Based on these results concerning calculus of closed
intervals one derives calculus rules for quasidifferentials
in the one-dimensional case.

Let f 1 be a directionally differentiable function at
a point x and let D f1(x) D [@ f1(x); @ f1(x)] be its qua-
sidifferential at a point x 2 R1: @ f1(x) D [v11; v12],
@ f1(x) D [w11;w12], v11 � v12, w11 � w12. Then the
function f = � f 1 is also directionally differentiable at
x and admits a quasidifferential of the form D f (x) D
[@ f (x); @ f (x)], where

@ f (x) D

(
[�v11; �v12] ; � � 0;
[�w12; �w11] ; � < 0;

@ f (x) D

(
[�w11; �w12] ; � � 0;
[�v12; �v11] ; � < 0:

If in addition, f 1(x) 6D 0 then the function f = 1/f 1 is
also directionally differentiable at x and

D f (x) D �
1
f 21
D f1(x) D [@ f (x); @ f (x)] ;

where

@ f (x) D
�
�

1
f 21
w12;�

1
f 21
w11

�
;

@ f (x) D
�
�

1
f 21
v12;�

1
f 21
v11
�
:

Let us consider two directionally differentiable
functions f 1, f 2 at a point x and let D f 1(x), D f 2(x) be
their quasidifferentials

D f1(x) D [@ f1(x); @ f1(x)] ;

D f2(x) D [@ f2(x); @ f2(x)] ;

with the corresponding intervals denoted by:

@ f1(x) D [v11; v12] ; @ f1(x) D [w11;w12] ;

@ f2(x) D [v21; v22] ; @ f2(x) D [w21;w22] ;

vi1 � vi2 ; wi1 � wi2 ; 8i 2 f1; 2g :
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Then the function f = f 1+ f 2 is also directionally differ-
entiable at x and one can take D f (x) D [@ f (x); @ f (x)],
where

@ f (x) D @ f1(x)C @ f2(x) D [v1; v2]

@ f (x) D @ f1(x)C @ f2(x) D [w1;w2] ;

with v1 = v11+ v21, v2 = v12+ v22, w1 = w11+ w21 and w2

= w12+ w22.
Analogously one proceeds with the product of two

functions f = f 1f 2, where

D f (x) D f1(x)D f2(x)C f2(x)D f1(x)

D [@ f (x); @ f (x)] :

Furthermore, let ' i(x) (i 2 I = {1, . . . , N}) be direc-
tionally differentiable functions at a point x. The func-
tions

f1(x) D max
i2I

'i(x) ; f2(x) D min
i2I

'i(x)

are also quasidifferentiable.
Finally, let f (z1, . . . , zm) be a smooth function and

let y1, . . . , ym be quasidifferentiable functions at a point
x0. Then the function F(x) = f (y1(x), . . . , ym(x)) is also
quasidifferentiable at x0.

One concludes that the family of quasidifferentiable
functions is a linear space, closed with respect to all
smooth operations, as well as the operations of taking
the pointwise maximum and minimum over a finite
number of functions.

Finite-Dimensional Case

In this case one needs calculus rules for pairs of convex
sets of Rn (see, e. g. [4,6]).

Let the functions f , f 1, f 2 be quasidifferentiable at x
and � be a real number. Then the sum, the product, the
function � f and the function 1/f (x) (or every point x
such that f (x) 6D 0) are also quasidifferentiable and an
element of their quasidifferential can be calculated as
follows:

D( f1 C f2)(x) DD f1(x)C D f2(x) ;
D( f1 � f2)(x) D f1(x)D f2(x)C f2(x)D f1(x) ;

D(� f )(x) D�D f (x) ;

D
�
1
f

�
(x) D �

1
f 2(x)

D f (x) :

Let moreover the functions f 1, . . . , f m be defined on
an open set X � Rn and be quasidifferentiable at x 2 X.
Then, the functions

�1(x) D max
i2f1;:::;mg

fi(x); �2(x) D min
i2f1;:::;mg

fi(x)

are quasidifferentiable at x as well. The following rela-
tions hold:

D� j(x) D
h
@� j(x); @� j(x)

i
; j D 1; 2 ;

with

@�1(x) D co
[

k2R(x)

0
BBBBBB@
@ fk(x) �

X

i 2 R(x);
i ¤ k

@ fi(x)

1
CCCCCCA
;

@�1(x) D
X

k2R(x)

@ fk(x); @�2(x) D
X
k2q(x)

@ fk(x);

@�2(x) D co
[

k2Q(x)

0
BBBBBB@
@ fk(x) �

X

i 2 Q(x);
i ¤ k

@ fi(x)

1
CCCCCCA
:

Here, [@ fk(x); @ fk(x)] is a quasidifferential of f k at x
and the following activity sets have been used:

R(x) D fi 2 I : fi(x) D �1(x)g ;

Q(x) D fi 2 I : fi(x) D �2(x)g ;

where I = {1, . . . , n}.
Finally, consider the case of a composite function.

Let a mappingH(x) = (h1(x), . . . , hm(x)) be defined such
that H(x): X! Y , where X is an open set in Rn and Y
is an open set in Rm and every function hi is quasid-
ifferentiable at x0 2 X. Let us assume that a function
f is defined on Y and is Hadamard differentiable and
quasidifferentiable at y0 = H(x0). Then the composite
function

�(x) D f (H(x))
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is quasidifferentiable at x0 and its quasidifferential
D�(x0) D [@�(x0); @�(x0)] is expressed by the formu-
las:

@�(x0)

D

8̂
<̂
ˆ̂:
p :

p D
mP
iD1

(�(i)(�i C �i ) � �(i)�i � �
(i)�i );

� D (�(1); : : : ; �(m)) 2 @ f (y0);
�i 2 @hi(x0); �i 2 @hi(x0)

9>>=
>>;

@�(x0)

D

8̂
<̂
ˆ̂:
l :

l D
mP
iD1

(�(i)(�i C �i )C �(i)�i C �
(i)�i );

� D (�(1); : : : ; �(m)) 2 @ f (y0);
�i 2 @hi(x0); �i 2 @hi(x0)

9>>=
>>;
;

where � and � are arbitrary vectors such that

� � � � � ; 8� 2 @ f (y0) [
�
�@ f (y0)

�
:

Concrete examples and the derivation of the above
rules can be found in the above given literature. One
should only mention that if some of the involved sets
(i. e., the subdifferential or the superdifferential) hap-
pens to be polyhedral, then certain of the previous rules
can be simplified significantly (see, e. g., [7]). The latter
case appears, among others, in the applications of qua-
sidifferential calculus within a finite element method
environment for applications in mechanics (see also
�Quasidifferentiable optimization: Variational formu-
lations; � Quasidifferentiable optimization: Applica-
tions to thermoelasticity, and [5]).
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� Nonconvex Energy Functions: Hemivariational
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� Nonconvex-Nonsmooth Calculus of Variations
� Quasidifferentiable Optimization
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QD Functions
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If for a directionally differentiable function there exists
an ordered pair of convex compact sets [U, V] in Rn

×Rn which produces the directional derivative of f at x
in the direction g by the expression:

f 0(x; g) D max
h2U

(h; g)Cmin
h2V

(h; g) ; (1)

this function is called quasidifferentiable in the sense of
V.F. Demyanov and A.M. Rubinov. This notion cov-
ers a large number of structured nonconvex and non-
smooth functions, which can be used for the solution
of nonconvex and global optimization problems. For
instance, the class of difference convex functions is in-
cluded.

More details on this notion, the calculus rules for
computing quasidifferentials, its connection to other
notions of nonsmooth analysis and it applications
can be found in � Quasidifferentiable optimization;
� Quasidifferentiable optimization: Calculus of qua-
sidifferentials;�Quasidifferentiable optimization: Dini
derivatives, Clarke derivatives; � Quasidifferentiable
optimization: Applications, as well as in [1,2,3].

The quasidifferential, as well as the subdifferential
of convex analysis, are set-valued quantities which in-
clude discontinuities at the points of nondifferentiabil-
ity. In numerical algorithms this may cause problems.

A notion that takes into account neighboring informa-
tion would be more appropriate. This led Demyanov
to extend the notion of the quasidifferential by intro-
ducing the codifferential. Accordingly, the notions of
subdifferential and superdifferential are extended to the
notions of hypodifferential and hyperdifferential. One
should mention that all quasidifferentiable functions
are codifferentiable as well. Moreover, calculus rules ex-
ists, in analogy to the quasidifferential calculus rules.

These notions, which are useful for the construction
of numerical algorithms in nonsmooth optimization
[1] and nonsmooth computational mechanics [2] are
introduced in this short paper. More details are given
in the cited literature and in the previously mentioned
lemmas.

Codifferentiable Functions

Let X be an open subset of Rn and let a function f be
defined and finite for every x 2 X. A function f is called
codifferentiable at x if there exist convex compact sets
d f (x) � RnC1 and d f (x) � RnC1 such that the func-
tion admits a first order approximation in a neighbor-
hood of x of the form

f (x C	) D f (x)C max
[˛;v]2d f (x)

[˛C (v; 	)]

C min
[b;w]2d f (x)

[bC (w; 	)]C ox (	) ;
(2)

where ox(˛ 	)/˛! 0 as ˛ # 0, 8	 2 Rn. The ordered
pair of convex compact sets D f (x) D [d f (x); d f (x)] is
called a codifferential of f at x, where df (x) is a hypodif-
ferential and d f (x) is a hyperdifferential.

If moreover there exists a codifferential Df which is
Hausdorff continuous in a neighborhood of x, the func-
tion f is called continuously codifferentiable at x.

If there exists a codifferential of the form Df (x)
= [df (x), {0}], the function f is called hypodifferen-
tiable, while if there exists a codifferential of the form
D f (x) D [f0g; d f (x)] the function is called hyperdif-
ferentiable.

Note here that for a continuously codifferentiable
function the first order approximation which is based
on (2) is a continuous function in both x and � (recall
that the analogous approximation based on the quasid-
ifferential is a continuous function of only�).
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Twice Codifferentiable Functions

Twice codifferentiable functions present a suitable tool
for constructing higher order approximations of non-
differentiable functions. They extend the notion of sec-
ond order derivatives of classical smooth analysis.

Let a function f be defined on an open set X � Rn

and let it be finite there. The function f is twice codif-
ferentiable at x 2 X if there exist convex compact sets
d2f (x), and d

2
f (x), both subsets of R ×Rn ×Rn+n such

that

f (xC	) D f (x)

C max
[˛;v;A]2d2 f (x)

�
˛ C (v; 	)C

1
2
(A	;	)

�

C min
[b;w;B]2d

2
f (x)

�
bC (w; 	)C

1
2
(B	;	)

�

C o(	2) ;

with o((˛ �)2)/˛2 ! 0 as ˛ # 0 and 8� 2 Rn. Here
Rn+n is the space of real (n × n)-matrices.

The ordered pair of convex sets D2 f (x) D

[d2 f (x); d
2
f (x)] is called a second order codifferential

of f at x, the set d2f (x) is a second order hypodifferen-
tial and the set d2f (x) is a second order hyperdifferen-
tial of f at x. Moreover, if f is twice codifferentiable in
some neighborhood of a point x and the mapping D2

f is Hausdorff continuous at x, then the function f is
called twice continuously codifferentiable at x.

Analogously to the quasidifferentiable and codiffer-
entiable functions, twice hypodifferentiable functions
and twice hyperdifferentiable functions may be defined.
Calculus rules do also exist for twice codifferentiable
functions (see [1, p. 216]).

For example, let f be convex and finite on a convex
set X � Rn, x 2 X, and let X0 be an arbitrary closed
convex and bounded subset of X with x 2 int X0. In this
case one may consider the second order codifferential
D2f (x) = [d2f (x), 0]>, with

d2 f (x) D co

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂
[˛; v;A] :

˛ D f (z)� f (x)
C(v(z); x � z);
v(z) 2 @ f (z);
A D 0 2 RnCn ;

z 2 X0

9>>>>>=
>>>>>;
:

Here v(z) 2 @f (z) is an arbitrary element of the set val-
ued mapping, which is kept fixed for every z 2 X0 and

@f (z) is equal to the classical convex analysis subdiffer-
ential.

Moreover, for a twice continuously differentiable
function f it is well-known that

f (xC	) D f (x)C( f 0(x); 	)C
1
2
( f 00(x)	;	)Co(	2);

where f 0 0(x) is the matrix of second order derivatives
(Hessian) of f at x. The function f is twice continuously
codifferentiable and one may consider (among other
choices) one of the following second order codifferen-
tials of f :

d2 f (x) Df[0; f 0(x); f 00(x)]g ;

d
2
f (x) Df0; 0; 0g ;

or

d2 f (x) Df0; 0; 0g ;

d
2
f (x) Df[0; f 0(x); f 0(x)]g :

Applications

Efficient nonsmooth optimization algorithms can be
constructed based on the notion of the codifferential,
or, for hypodifferentiable functions, on the notion of
the hypodifferential. In fact, the technique of replac-
ing a nondifferentiable optimization problem by an
enlarged, classical, inequality constrained optimization
problem has been successfully used for convex or for
composite optimization problems [4,15]. For hypod-
ifferentiable functions a direction of descent at each
given point can be determined and used in an iterative
optimization procedure. For general, codifferentiable
functions, several directions of descent can be deter-
mined. This can be expected, given that one deals with
nonconvex, global optimization problems. Some details
in this direction are given in � Quasidifferentiable op-
timization: Applications and in the original publica-
tions [3,11].

Furthermore, twice (or higher order) quasidiffer-
entials and codifferentials provide set-valued approxi-
mations of the higher order derivatives of a function.
For numerical optimization tasks this information may
lead to more efficient algorithms, in analogy to the use
of Hessian matrices in classical, smooth optimization.
Other attempts for generalized second order deriva-
tives can be found, for convex functions in [5] and
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for nonconvex functions in [10,12]. For more informa-
tion in the area of nonsmooth optimization see, e. g.,
[6,7,8,9,13].

Another area of interest for practical applications
will be the use of this information for the construc-
tion of necessary and sufficient (local)optimality condi-
tions. Applications of these results include stability and
sensitivity analysis for quasidifferentiable and codiffer-
entiable optimization problems. In mechanics, this in-
formation can be used for the study of the stability of
structures governed by quasidifferentiable superpoten-
tials (cf. e. g., [14] and � Quasidifferentiable optimiza-
tion: Stability of dynamic systems). Applications in eco-
nomics will be of interest as well. Much work remains
to be done in this area, which is open for further inves-
tigations (as of 1999).
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The notion of the quasidifferential in the sense of V.F.
Demyanov and A.M. Rubinov [5] constitutes a set-
valued extension of the classical differential, which is
appropriate for nonsmooth and generally nonconvex
but directionally differentiable functions. This class of
functions covers a large number of applications in non-
smooth analysis and, among others, includes the pop-
ular in global optimization class of difference convex
functions. The quasidifferential approximates the di-
rectional derivative of a function by using an ordered
pair of convex sets, the subdifferential and the superdif-
ferential. Definitions are given in�Quasidifferentiable

optimization. Information on the corresponding calcu-
lus can be found in�Quasidifferentiable optimization:
Calculus of quasidifferentials.

Here, the relation between quasidifferentials and
more classical notions in nonsmooth analysis is briefly
addressed. In particular, the Dini directional derivatives
and the F.H. Clarke [2,3] derivatives are considered.
Other notions of nonsmooth analysis may be found,
among others, in the recent publications [1,3,11].

Dini Derivatives

The Dini upper derivative of a function f : Rn ! R at
a point x 2 dom f in a direction g 2 Rn is defined by:

f "D D lim sup
˛#0

1
˛
[ f (x; ˛g) � f (x)] : (1)

Note that the upper limit in (1) is not necessarily finite.
Analogously, the Dini lower derivative of f at x is de-
fined by the relation

f #D D lim inf
˛#0

1
˛
[ f (x; ˛g) � f (x)] :

Recall that if the limit

f 0(x; g) D lim
˛#0

1
˛
[ f (x C ˛g) � f (x)]

exists it is called the derivative of a function f at a point
x in a direction g, or theDini derivative and it is denoted
by f D0(x, g).

Since the Dini derivative (resp. the Dini upper or
lower derivative) is just the one-sided (resp. the one-
sided upper or lower) derivative of an ordinary real-
valued function, one can uses the methods developed
to study functions of one variable. Thus, for instance,
calculus rules for directional derivatives can be con-
structed.

A function f defined on an open set˝ is called Dini
uniformly directionally differentiable at a point x 2 ˝
if it is directionally differentiable at x and there exists
a real number ˛0 such that

1
˛
[ f (x C ˛g) � f (x)� ˛ f 0(x; g)] < � ;

8˛ 2 (0; ˛0) ; 8g 2 S ;
(2)

where S = {g |g| = 1 is the unit sphere. By setting ˛ g =
v in (2) one gets:

ˇ̌
f (x C v) � f (x) � f 0x(v)

ˇ̌
< � kvk ;

8v such that kvk � ˛0 :
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Thus the uniform directional differentiability means
that 1

kvk

ˇ̌
f (x C v) � f (x) � f 0x(v)

ˇ̌
tends to zero, as kvk

! 0.
More details on Dini derivatives and their use in op-

timization can be found in [9].

Clarke Derivatives

Let us consider the upper and lower Dini derivatives of
a function f for a fixed direction g, i. e. the functions x
! f "D(x, g) and x! f #D(x, g). Let us also consider the
upper (resp. the lower) regularizations of these func-
tions:

f "D(x; g) D max
�
f "D (x; g); lim sup

x0!x
f "D (x; g)

	
;

respectively

f #D(x; g) D min
�
f #D (x; g); lim inf

x0!x
f #D (x; g)

	
:

For a Lipschitz function f , the upper and lower Dini
derivatives are bounded in some neighborhood of x,
hence both previous limits are finite.

The Clarke upper and lower derivatives are defined
as upper and lower regularizations of the Dini upper
and lower derivatives, i. e.

f "CL(x; g) D f "D(x; g) ;

f #CL(x; g) D f #D(x; g) :

For the initial, equivalent definition of these quantities,
see [2,6 p. 69]. Here the approach of [8] has been fol-
lowed. For every fixed direction g, the function x !
f "CL(x, g) is upper semicontinuous and the function x
! f #CL(x, g) is lower semicontinuous.

It is appropriate to recall here some properties of the
Clarke derivatives. For every fixed point x, the function
g! f "CL(x, g) is sublinear and the function g! f #CL(x,
g) is superlinear, thus the subdifferential @ f "CL(x, g) and
the superdifferential @ f #CL(x; g) can be determined, such
that

f "CL(x; g) D max
l2@ f"CL(x;g)

(l ; g) ;

f #CL(x; g) D min
w2@ f#CL(x;g)

(w; g) :

Moreover, the following relations hold

f "CL(x;�g) D (� f )"CL(x;�g) ;

f "CL(x; g) D � f "CL(x;�g) :

From the above properties it results that

max
l2@ f"CL(x;g)

(l ; g) D max
w2@ f#CL(x;g)

(w; g) ;

thus the two compact convex sets coincide. The Clarke
subdifferential is thus defined as

@CL f (x) D @ f "CL(x; g) D @ f
#
CL(x; g) :

The mapping x! @CLf (x) is upper semicontinuous. An
element of the Clarke subdifferential is called a general-
ized gradient of f at x.

Concerning the relation between the directional
derivative of the function (if it is directionally differen-
tiable) and the Clarke upper and lower derivatives one
has, in general,

f #CL(x; g) � f 0(x; g) � f "CL(x; g) : (3)

Thus Clarke upper and lower derivatives are a sublinear
majorant and a superlinear minorant of f 0(x, g) respec-
tively. Only in the case of an u.s.c. (resp. l.s.c.) direc-
tional derivative f 0(x, g) the second (resp. the first) in-
equality in (3) holds as an equality. The latter property
is considered to be the major drawback of the Clarke
subdifferential in nonsmooth analysis applications, be-
cause it does not always gives rise to an approximation
of the directional derivative at the points of nondiffer-
entiability.

For further reference we recall here the necessary
optimality conditions for a locally Lipschitz function f
at a point x:

0 2 @CL f (x):

Note also that since approximations of sets and func-
tions are linked, the notion of Clarke subdifferen-
tial gives rise to a notion for the generalized tangent
cone (and respectively a generalized normal cone). The
reader is referred to [2,3] [6, p. 83], [10] for more de-
tails.

Quasidifferential and Clarke Subdifferential

Before giving some information on the links between
the quasidifferential and the Clarke subdifferential,
some elements on the several definitions of the differ-
ence of convex compact sets are in order.
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Differences of Convex Sets

Before stating the definition, some introductory mate-
rial must be given. The max-face of a compact set U
generated by x 2 Rn is defined by

Gx (U) D
�
h 2 U : (h; x) D max

g2U
(x; g)

	
:

Recall that the max-face set coincides with the subdif-
ferential of the support function of U, i. e. Gx(U) = @
pU(x). Recall also that for a convex function defined on
Rn the set of points of T � Rn where max-face is a sin-
gleton is of measure zero is a set of full measure (with
respect to Rn, i. e. Rn \ T is a set of measure zero).

The difference of two sets U and V , U�̇V is de-
fined on the set of full measure T where both Gx(U)
and Gx(V) are singletons by:

U�̇V D clco frpU (x) � rpV (x) : x 2 Tg ;

where r g denotes the gradient of function g. One may
observe here that if U = V +W then U�̇V DW .

An equivalent definition of U�̇V is given by

U�̇V D clco

0
@ [

x2TU;V

[Gx(U) � Gx (V )]

1
A ; (4)

where the dependence of T on both U and V is explic-
itly indicated.

An extension of (4) leads to the quasidifference op-
eration �̈, defined by

U�̈V D clco

0
@[

x¤0

[Gx (U) � Gx (V)]

1
A : (5)

Unfortunately �̈ is not invariant with respect to the
equivalence relation	. Nevertheless an estimate of the
form U�̈V � U�̇V , for every sets U and V always
holds and in some cases there exist conditions under
which the inclusion holds as an equality (see e. g. [6, p.
117]).

Estimation Results

The Clarke subdifferential can also be generated, in
some cases, by the set operators difference �̇ and qua-
sidifference �̈ applied on the subdifferential @ f (x) and
the superdifferential @ f (x) of a quasidifferentiable func-
tion f (x).

Under appropriate assumptions on f , and for ap-
propriate choice of the elements of the subdifferential
and the subdifferential of f at x, an estimate of the fol-
lowing form can be extracted:

A � @CL f (x) � B:

with set A D @ f (x)�̇(�@ f (x)) and set B D

@ f (x)�̈(�@ f (x)), as it is discussed in [6, pp. 143–155].
A different approach to the study of the relationship be-
tween the Clarke subdifferential and the quasidifferen-
tial is followed in [7] (see also [6, pp. 156–159]). More
details in this direction can also be found in [4].
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Penalty function methods are used for solving many
constrained optimization problems of the form: Find

inf
x2X

f (x) D f � ; (1)

where f is a locally Lipschitz quasidifferentiable func-
tion defined on Rn,D f (x) D [@ f (x); @ f (x)] is its qua-
sidifferential at a point x 2 Rn, X � Rn is a closed set.

It is always possible to define X in the form (see [2])

X D fx 2 Rn : '(x) D 0g ; (2)

where ' is also a locally Lipschitz quasidifferentiable
function defined on Rn, the pair of sets D'(x) D
[@'(x); @'(x)] is a quasidifferential of ' at x 2 Rn and

'(x) > 0 ; 8x … X :

Thus the set X is the set of global minimum points
of the function ' on Rn. Hence, it is closed. We shall
assume that the set X � Rn is not empty and bounded.

As the function ' is quasidifferentiable then the fol-
lowing expansion holds:

'(x C ˛g) D '(x)C ˛' 0(x; g)C o(˛; x; g) ;

where

o(˛; x; g)
˛

˛#0
! 0 :

We shall assume that in this expansion at each point x
2 Rn the convergence to 0 is uniform with respect to g
2 Rn, kgk = 1.

The idea of penalty function methods consists in
reducing the problem (1) to a problem of the un-
constrained optimization. Among the different ap-
proaches existing for such reduction we shall consider
the method of exact penalty functions.
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For solving the problem (1) a penalty function

F(c; x) D f (x)C c'(x)

is introduced, where c is a nonnegative number, and
then the problem

inf
x2Rn

F(c; x) (3)

is considered.
We assume that infx 2RnF(c, x) is attained for every

c � 0. In practice it would be useful to find conditions
which guarantee that there exists an exact penalty pa-
rameter c� � 0 such that the set�

x 2 Rn : x D arg min
x2Rn

F(c�; x)
	

coincides with the set�
x 2 Rn : x D argmin

x2X
f (x)

	
:

At first such a problem was investigated in [5,10]
for the problem of convex programming. Now there are
many works in this field of mathematics. (See, for exam-
ple, [1,4,6,8,9]).

The implementation of exact penalty function
methods first of all depends on the properties of the
function '. Therefore various conditions are imposed
on ' to make it possible to solve our problem. We shall
consider some of them.

Regularity Condition 1

(See [3].)
We say that a regularity condition is satisfied for the

function ' if for any boundary point x� 2 bdX there
exist positive real numbers "(x�) and ˇ(x�), such that

o(˛; x; g)
˛

> �' 0(x; g)C ˇ(x�)

D �

"
max

v2@'(x)
hv; gi C min

w2@'(x)
hw; gi

#
C ˇ(x�) ;

8x 2A(X) \ S"(x�)(x�) ;

8˛ 2 (0; "(x�)] ;

8g 2 N(X; x) : kgk D 1 ;

where bd X is the set of boundary points of X,

S"(x�)(x�) D fx 2 Rn : kx � x�k � "(x�)g ;

A(X) D
�
x 2 bd X : 9z … X :

x is a projection of z

	
;

N(X, x) is the normal cone to the set X at the point x 2
X:

N(X; x) D
�
g 2 Rn : hg1; gi � 0;

8g1 2 � (X; x)

	

and

� (X; x) D

8<
:g 2 Rn :

9gk 2 Rn ; ˛k � 0;
gk ! g; ˛k # 0;
x C ˛k gk 2 X

9=
; :

The regularity condition 1 is a condition about the
behavior of the function ' only at the boundary points
of the set X.

If for the function ' the regularity condition 1
holds, then there exists an exact penalty parameter c�.

Since in practice the exact penalty parameter is
a priori unknown, a sequence of real values ck is con-
structed, satisfying the conditions

0 D c0 < � � � < ck < � � � ;

lim
k!C1

ck D C1 :

Let us find

x(�k) D arg min
x2Rn

F(�k; x) :

As a result, a decreasing sequence of real values {'
(x(ck))} is constructed. There exists an integer K> 0
such that x(ck) 2 X, 8k> K. Thus, for k> K, the points
x(ck) will be global minimum points of a function F(ck,
x) on Rn, i. e. will be solutions of problem (1). The value
of the penalty parameter c� is directly proportional to
the Lipschitz constant of the function f on the set

L(x��) D fx 2 Rn : '(x) � '(x��)g ;

where

x�� D min
x2Rn

f (x) ;

and inversely proportional to the number ˇ(x�), where
the point x� is a limit point of the sequence {x(ck)}. In
this method the regularity condition 1 is used only in
a neighborhood of the point x�.

Note that the function ' is essentially nondifferen-
tiable at the boundary points of the set X.
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For differentiable functions at the boundary points
of the set X, the regularity condition 1 does not hold.
For this reason, if the function ' at the boundary points
of the setX is superdifferentiable, then it cannot be used
for constructing a sequence of exact penalty functions
F(c, x).

An example of a function, which can be used for
constructing a family of exact penalty functions (even
not requiring the set X to be bounded) is the Euclidean
distance function. For it as an exact penalty parameter it
is possible to take the Lipschitz constant of the function
f on the set L (x� �). However this function is not suit-
able for practical use due to computational problems.

We shall notice, that the regularity condition 1 is not
constructive. Sometimes instead of it one uses another
regularity condition.

Regularity Condition 2

(See [3].)
We shall assume that there exists a real number ˇ>

0, such that the following inequality holds

inf
x2A(X)

min
kgk D 1;

g 2 N(X; x)

' 0(x; g) D inf
x2A(X)

min
kgk D 1;

g 2 N(X; x)

"
max

v2@'(x)
hv; gi C min

w2@'(x)
hw; gi

#
�ˇ :

(4)

If the set X is bounded and does not consist of iso-
lated points, and the regularity condition 2 is fulfilled
for the family of penalty functions {F(ck, x)} then there
exists an exact penalty parameter.

Under some assumptions on the set X it is possible
to get an analytical representation of the normal cone
for this set at each boundary point and then, having
calculated the constant ˇ, it is possible to evaluate the
exact penalty parameter c�.

We shall assume, that for the function ' at each
point x 2 bd X the regularity condition 2 holds. Then
the representation of the normal cone N(X, x) to the
given set X at the point x 2 bd X,

N(X; x) D
\

w2@'(x)

cl cone(@'(x)C w) ;

holds. Here, clA is the closure ofA, coneA is the conical
hull of A.

For example, if the function ' is subdifferentiable at
each boundary point of the set X, then

N(X; x) D cl cone(@'(x)) ;

and (4) can be rewritten as

inf
x2A(X)

min
kgkD1;

g2cl cone(@'(x))

max
v2@'(x)

hv; gi � ˇ > 0 : (5)

Example 1 Let

f0(x) D
1
2
hA0x; xi C hb0; xi ; x; b0 2 Rn ;

fi(x) D
1
2
hAix; xi C hbi ; xi C ci ;

x; bi 2Rn ; ci 2 R1; i 2 I D 1; : : : ; p ;

where f i, i 2 (0, . . . , p) are strongly convex functions.
All the matrices Ai, i = 0, . . . , p, are positive definite.

Consider the problem

min
x2X

f0(x) ; (6)

where

X D fx 2 Rn : fi(x) � 0; i 2 Ig :

Let

'(x) D maxf0; '1(x)g ;

'1(x) D max
i2I

fi(x) ;

x 2Rn :

Then

X D fx 2 Rn : '(x) D 0g :

Let

x D arg min
x2Rn

'1(x) :

We shall assume that '1(x) < 0.
Problem (6) is a convex programming problem. For

this problem the regularity condition 1 is valid.
Let d be the radius of the maximal ball centered at

the point x and inscribed into the set X. Then the num-
ber c� = L/2 md is an exact penalty parameter for the
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problem (6). In this equality L is a Lipschitz constant of
the function f 0 on the set

X1 D fx 2 Rn : '(x) � '(x��)g ;
x�� D arg min

x2Rn
f0(x) ;

i. e. the number

L D max
x2X1
kA0x C b0k

can be taken as a Lipschitz constant of f on X1, m is
a strong convexity constant of the function '1 m D
mini2I mi , where mi is constant of strong convexity of
the function f i, i 2 I).

Example 2 Consider the optimization problem

min
x2X

f (x) ; (7)

where

f (x) D f1(x) � f2(x) ;

X D fx 2 Rn : '1(x) � '2(x) � 0g ;

f 1, f 2, '1, '2 are convex functions defined on Rn.
Let the set X be bounded. It can be defined in the

form

X D fx 2 Rn : '(x) D 0g ;

where '(x) = max {0, '1(x)� '2(x)}.
The function ' can be represented as the difference

of convex (d.c.) functions

'(x) D maxf'1(x); '2(x)g � '2(x) :

We shall consider only points x 2 X where '1(x) =
'2(x). Then the pair of convex sets

D'(x) D
�
cof@'1(x); @'2(x)g;�@'2(x)

�

is a quasidifferential of the function ' at a point x,
where @' i(x), i= 1, 2, is the subdifferential of the convex
function ' i at x in the sense of convex analysis. Here co
A is the convex hull of A.

If the regularity condition 2 is valid for the function
', i. e. there exists a real value ˇ> 0 such that

inf
x2A(X)

min
kgk D 1

g 2 N(X; x)
�

max
v2cof@'1(x);@'2(x)g

hv; gi � max
w2@'2(x)

hw; gi
	
� ˇ ;

then there exists an exact penalty parameter c� for the
sequence of penalty functions

F(ck; x) D f (x)C ck'(x)

D
�
f1(x)C ck maxf'1(x); '2(x)g

�

�
�
f2(x)C ck'2(x)

�
:

Let the set X be defined as

X D fx 2 Rn : '1(x) � '2(x) D 0g ;

then it can be rewritten as

X D fx 2 Rn : '(x) D 0g ;

where '(x) = max{0, |;'1(x)� '2(x)|}.
In this case the function ' can be represented as the

difference of convex functions, namely

'(x) D max f2'1(x); 2'2(x); '1(x)C '2(x)g
� ('1(x)C '2(x)) :

If the regularity condition 2 is valid for the function
', i. e. there exists a real value ˇ> 0 such that

inf
x2A(X)

min
kgk D 1

g 2 N(X; x)
�

max
v2cof2@'1(x);2@'2(x);@'1(x)C'2(x)g

hv; gi

� max
w2@['1(x)C'2(x)]

hw; gi
	
� ˇ;

then there exists an exact penalty parameter c� for the
sequence of penalty functions

F(ck ; x) D f (x)C ck'(x)

D f1(x)C ck maxf2'1(x); 2'2(x); '1(x)

C '2(x)g �
�
f2(x)C ck'1(x)C ck'2(x)

�
:

Thus the solution of the problem (7) can be ob-
tained as the result of unconstrained optimization of
d.c.functions.

V.F. Demyanov [2] considers the following condition
for constructing a family of exact penalty functions. Put

d(x) D min
kgkD1

' 0(x; g)

D min
kgkD1

"
max

v2@'(x)
hv; gi C min

w2@'(x)
hw; gi

#
;

�X(x) D lim sup
x0!x;x0…X

d(x0) :
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Regularity Condition 3

If for some " > 0 the set

X" D fx 2 Rn : '(x) � "g

is bounded and

�X(x) < 0 ; 8x 2 bd X ;

then for the family of penalty functions F(ck, x) there
exists an exact penalty parameter c�<1.

To use the regularity condition 3 it is necessary to
know the behavior of the function ' in the neighbor-
hood of the set X.

Sometimes the following regularity condition is
used (see [7]).

Regularity Condition 4

(Condition of �-regularity). We say that the problem
(1) with the set X is �-regular if there exists a positive
number ˇ such that the inequality

'(x) � ˇ�X(x) ; 8x 2 RnnX ;

holds, where �X is the Euclidean distance function.
It is not difficult to observe that the regularity condi-

tion 4 is not constructive. In [7] the existence of an ex-
act penalty parameter for a family of penalty functions
is proved for problems of nonlinear programming if the
condition of �-regularity is satisfied.
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Directionally Differentiable Functions

Let f be a real-valued function defined on an open set X
� Rn, x 2 X. The function f is called Dini differentiable
at the point x in a direction g 2 Rn if there exists the
finite limit

f 0D(x; g) D lim
˛#0

1
˛
[ f (x C ˛g) � f (x)] : (1)

Here ˛ # 0means that ˛! 0, ˛ > 0. The quantity f 0D(x,
g) is called the Dini derivative of f at x in a direction g.

The function f is called Hadamard differentiable at
the point x in a direction g 2 Rn if there exists the finite

limit

f 0H(x; g) D lim
[˛;g0]![C0;g]

1
˛
[ f (x C ˛g0) � f (x)] : (2)

Clearly, if f is Hadamard differentiable at x in a direc-
tion g then it is Dini differentiable as well and

f 0H(x; g) D f 0D(x; g) : (3)

If the limit in (1) exists and is finite for every g 2 Rn

then the function f is called Dini directionally differen-
tiable (D-d.d) at x. The quantity f 0D(x, g) is called the
Hadamard derivative of f at x in a direction g.

If the limit in (2) exists and is finite for every g 2 Rn

then the function f is called the Hadamard direction-
ally differentiable (H-d.d) at x. Of course, every H-d.d.
function at x is D-d.d., the converse is not necessarily
true.

The directional (and generalized directional)
derivatives may be used to describe optimality con-
ditions (see � Dini and Hadamard derivatives in opti-
mization). However, using properties of special classes
of functions one can expect to get more ‘constructive’
conditions. One of such classes is the family of quasid-
ifferentiable functions.

Quasidifferentiable Functions

Let f be a real-valued function defined on an open set X
� Rn, x 2 X. The function f is called Dini (Hadamard)
quasidifferentiable (q.d) at x if it is Dini (Hadamard)
directionally differentiable at x and if its directional
derivative f 0D(x, g) (f 0H(x, g)) can be represented in the
form

f 0D(x; g) D max
v2@ fD(x)

(v; g)C min
w2@ fD(x)

(w; g);

 
f 0H(x; g) D max

v2@ fH(x)
(v; g)C min

w2@ fH(x)
(w; g)

!
;

where the sets @ fD(x); @ fD(x); @ fH(x); @ fH(x) are con-
vex compact sets of Rn. The pair

D fD(x) D [@ fD(x); @ fD(x)] ;�
D fH(x) D [@ fH(x); @ fH(x)]

�

is called a Dini (Hadamard) quasidifferential of f at x.
Most of the results stated below are valid for both Dini
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and Hadamard q.d. functions, therefore we shall use the
notation D f (x) D [@ f (x); @ f (x) for both DDf (x) and
DHf (x) and the pair Df (x) will just be called a quasid-
ifferential of f at x. Analogously, the notation f 0(x, g) is
used for both f 0D(x, g) and f 0H(x, g).

The directional derivative f 0(x, g) is positively ho-
mogeneous (in g) of degree one:

f 0(x; �g) D � f 0(x; g) ; 8� > 0 : (4)

Note that Hadamard quasidifferentiability implies Dini
quasidifferentiability, the converse not necessarily be-
ing true.

Thus for a quasidifferentiable (q.d) function

f 0(x; g) D max
v2@ f (x)

(v; g)C min
w2@ f (x)

(w; g) ;

8g 2 Rn :

(5)

The set @f (x) is called a subdifferential of f at x, and
the set @ f (x) is called a superdifferential of f at x. Note
that a quasidifferential is not uniquely defined: If a pair
D = [A, B] is a quasidifferential of f at x then, e. g., for
any convex compact set C � Rn the pair D1 = [A +
C, B � C] is a quasidifferential of f at x (since, by (5),
both these pairs produce the same function f 0(x, g)).
The equivalence class of pairs of convex compact sets
D f (x) D [@ f (x); @ f (x) producing the function f 0(x, g)
by formula (5) is called the quasidifferential of f at x (we
shall use the same notation Df (x) for the quasidifferen-
tial of f at x).

If there exists a quasidifferential Df (x) of the form
Df (x) = [@f (x), {0n}] then f is called subdifferentiable at
x. If there exists a quasidifferential Df (x) of the form
D f (x) D [f0ng; @ f (x)] then f is called superdifferen-
tiable at x. Here 0n = (0, . . . , 0) 2 Rn.

Examples of q.d. Functions

1) If f is a smooth function on X then

f 0(x; g) D ( f 0(x); g) ; (6)

where f 0(x) is the gradient of f at x. It is clear that

f 0(x; g) D max
v2@ f (x)

(v; g)C min
w2@ f (x)

(w; g) ; (7)

with

@ f (x) D f f 0(x)g ; @ f (x) D f0ng :

Hence, f is Hadamard quasidifferentiable and even
subdifferentiable. Since in (7) one can also take

@ f (x) D f0ng ; @ f (x) D f f 0(x)g ;

then f is superdifferentiable as well.
2) If f is a convex function on a convex open set X �

Rn then (as it is known from convex analysis) f is
H-d.d. on X and

f 0(x; g) D max
v2@ f (x)

(v; g) ;

where @f (x) is the subdifferential of f (in the sense of
convex analysis):

@ f (x) D
�
v 2 Rn : f (z) � f (x) � (v; z � x)

8z 2 X

	
:

Therefore f is Hadamard quasidifferentiable and one
can take the pair Df (x) = [ @f (x), {0n}] as its quasid-
ifferential. Thus, f is even subdifferentiable.

3) If f is concave on a convex set X then f is H-d.d. and

f 0(x; g) D min
w2@ f (x)

(w; g);

where

@ f (x) D
�
w 2 Rn : f (z) � f (x) � (w; z � x)

8z 2 X

	
:

Hence, f is Hadamard quasidifferentiable and one
can take the pair

D f (x) D [f0ng; @ f (x)]

as its quasidifferential. Thus, f is even superdifferen-
tiable.

Calculus of Quasidifferentials

The family of q.d. functions enjoys a well-developed
calculus: First let us define the operation of addition of
two pairs of compact convex sets and the operation of
multiplication of a pair by a real number.

If D1 = [A1, B1], D2 = [A2, B2] are pairs of convex
compact sets in Rn then

D1 C D2 D [A; B]

with

A D A1 C A2 ; B D B1 C B2 :
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If D = [A, B] where A and B are convex compact sets, �
2 R then

�D D

(
[�A; �B] ; � � 0;
[�B; �A] ; � < 0:

Let X � Rn be an open set.

Proposition 1 ([1, Chap. III])
1) If functions f 1, . . . , f N are quasidifferentiable at

a point x 2 X, and �1, . . . , �N are real numbers then
the function

f D
NX
iD1

�i f i

is also quasidifferentiable at x with a quasidifferential
D f (x) D [@ f (x); @ f (x)] where

Df (x) D
NX
iD1

�iD fi(x) ; (8)

Df i(x) being a quasidifferential of f i at x.
2) If f 1 and f 2 are quasidifferentiable at a point x 2 X

then the function f = f 1� f 2 is also q.d. at x and

Df (x) D f1(x)Df2(x)C f2(x)Df1(x) : (9)

3) If f 1 and f 2 are quasidifferentiable at a point x 2 X
and f 2(x) 6D 0 then the function f = {f 1f 2} is also q.d.
at x and

Df (x) D
1

f 22 (x)
�
f2(x)Df1(x) � f1(x)Df2(x)

�
: (10)

4) Let functions f 1, . . . , f N be quasidifferentiable at
a point x 2 X. Construct the functions

'1(x) D max
i21;:::;N

fi(x) ;

'2(x) D min
i21;:::;N

fi(x) :

Then the functions '1 and '2 are q.d. at x and

D'1(x) D [@'1(x); @'1(x)] ;

D'2(x) D [@'2(x); @'2(x)] ;
(11)

where

@'1(x) D co

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

@ fk(x) �
X

i 2 R(x)
i ¤ k

@ fi(x) : k 2 R(x)

9>>>>>>=
>>>>>>;

;

@'1(x) D
X

k2R(x)

@ fk ;

@'2(x) D
X

k2Q(x)

@ fk ;

@'2(x) D co

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

@ fk(x) �
X

i 2 Q(x)
i ¤ k

@ fi(x) : k 2 Q(x)

9>>>>>>=
>>>>>>;

:

Here [@ fk(x); @ fk(x)] is a quasidifferential of the
function f k at the point x,

R(x) D fi 2 1; : : : ;N : fi(x) D '1(x)g ;

Q(x) D fi 2 1; : : : ;N : fi(x) D '2(x)g :

The following composition theorem holds.

Proposition 2 [1, Chap. III]) Let X be an open set in
Rn, Y be an open set in Rm and let a mapping H(x) =
(h1(x), . . . , hm(x)) be defined on X, take its values in Y
and its coordinate functions hi be quasidifferentiable at
a point x0 2 X. Assume also that a function f is defined
on Y and is Hadamard quasidifferentiable at the point
y0 = H(x0). Then the function

'(x) D f (H(x))

is quasidifferentiable at the point x0.

The corresponding formula for the quasidifferential of
' at x0 is presented in [Thm. III.2.3]

Remark 3 Thus, the family of quasidifferentiable func-
tions is a linear space closed with respect to all ‘smooth’
operations and, what is most important, the operations
of taking the pointwise maximum and minimum. For-
mulas (8)–(10) are just generalizations of the rules of
classical differential calculus. Most problems and re-
sults of classical differential calculus may be formulated
for nonsmooth functions in terms of quasidifferentials
(see, e. g., [1,3]). For example, a mean value theorem is
valid [5].
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Necessary and Sufficient Conditions
for an UnconstrainedOptimum

The following results hold due to the properties of di-
rectionally differentiable functions.

Let X � Rn be an open set, f be a real-valued func-
tion defined and directionally differentiable on X.

Proposition 4 For a point x 
 2X to be a local or global
minimizer of f on X it is necessary that

f 0(x�; g) � 0 ; 8g 2 Rn : (12)

If f is Hadamard d.d. at x 
 and

f 0H(x
�; g) > 0 ; 8g 2 Rn ; g ¤ 0n ; (13)

then x 
 is a strict local minimizer of f .
For a point x 
 
 2 X to be a local or global maxi-

mizer of f on X it is necessary that

f 0(x��; g) � 0 ; 8g 2 Rn : (14)

If f is Hadamard d.d. at x 
 
 and

f 0H(x
��; g) < 0 ; 8g 2 Rn ; g ¤ 0n ; (15)

then x 
 
 is a strict local maximizer of f .

These conditions may be restated in terms of quasidif-
ferentials. Let f be quasidifferentiable on an open set X
� Rn.

Proposition 5 (see [1,3,5]) For a point x 
 2 X to be
a local or global minimizer of f on X it is necessary that

� @ f (x�) � @ f (x�) : (16)

If f is Hadamard quasidifferentiable at x 
 and

� @ f (x�) � int @ f (x�); (17)

then x 
 is a strict local minimizer of f .
For a point x� � 2X to be a local or global maximizer

of f on X it is necessary that

� @ f (x��) � @ f (x��) : (18)

If f is Hadamard quasidifferentiable at x� � and

� @ f (x��) � int @ f (x��) ; (19)

then x� � is a strict local maximizer of f .

Remark 6 The quasidifferential represents a general-
ization of the notion of gradient to the nonsmooth case
and therefore conditions (16)–(19) are first order opti-
mality conditions.

In the smooth case one can take D f (x) D

[@ f (x); @ f (x)] where @ f (x) D f f 0(x)g, @ f (x) D f0ng;
therefore condition (16) is equivalent to

f 0(x�) D 0n ; (20)

condition (18) is equivalent to

f 0(x��) D 0n ; (21)

and, since both sets @ f and @ f are singletons, the con-
ditions (17) and (19) are impossible. Thus, conditions
(17) and (19) are essentially ‘nonsmooth’.

A point x� 2 X satisfying (16) is called an inf-stationary
point, a point x� � 2 X satisfying (18) is called a sup-
stationary point of f . In the smooth case the necessary
condition for a minimum (20) is the same as the neces-
sary condition for a maximum (21).

Directions of Steepest Descent and Ascent

Let x 2 X be not an inf-stationary point of f (i. e. condi-
tion (16) is not satisfied). Take w 2 @ f (x) and find

min
v2@ f (x)

kv C wk D kv(w)C wk D �1(w):

Since @ f (x) is a convex compact set, the point v(w)
is unique. Find now

max
w2@ f (x)

�1(w) D �1(w(x)):

The point w(x) is not necessarily unique. As x is not an
inf-stationary point, then �1(w(x)) > 0. The direction

g1(x) D �
v(w(x))C w(x)
kv(w(x))C w(x)k

D �
v(w(x))C w(x)

�1(w(x))
(22)

is a steepest descent direction of the function f at the
point x, i. e.

f 0(x; g1(x))) D min
kgkD1

f 0(x; g) :

Here k � k is the Euclidean norm. The quantity f 0(x,
g1(x)) = � �1(w(x)) is the rate of steepest descent of f
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at x. It may happen that the set of steepest descent di-
rections is not a singleton (and it need not be convex
too). Recall that in the smooth case the steepest descent
direction is always unique (if x is not a stationary point).

Similarly, if x 2 X is not a sup-stationary point of f
(i. e. condition (18) does not hold) then let us take v 2
@f (x) and find

min
w2@ f (x)

kv C wk D kv C w(v)k D �2(v)

and

max
v2@ f (x)

�2(v) D �2(v(x)) :

The direction

g2(x) D
v(x)C w(v(x))
kv(x)C w(v(x))k

D
v(x)C w(v(x))
�2(v(x))

(23)

is a steepest ascent direction of the function f at x, i. e.

f 0(x; g2(x))) D max
kgkD1

f 0(x; g) :

The quantity f 0(x, g2(x)) = �2(v(x)) is the rate of steepest
ascent of f at x. As above it may happen that there exist
many steepest ascent directions.

Remark 7 Thus, the necessary conditions (16) and (18)
are ‘constructive’: in the case where one of these condi-
tions is violated we are able to find steepest descent or
ascent directions.

The condition for a minimum (16) can be rewritten in
the equivalent form

0n 2
\

w2@ f (x�)

[@ f (x�)C w] :D L1(x�) ; (24)

and the condition for a maximum (18) can also be rep-
resented in the equivalent form

0n 2
\

v2@ f (x��)

[@ f (x��)C v] :D L2(x��) : (25)

However, if, for example, (24) is violated at a point
x, we are unable to recover steepest descent directions,
it may even happen that the set L1(x) is empty (see [1,
Sects. V.2 and V.3]).

Therefore, condition (24) is not ‘constructive’: if
a point x is not inf-stationary then condition (24) sup-
plies no information about the behavior of the function

in a neighborhood of x and we are unable to get a ‘bet-
ter’ point (e. g., to decrease the value of the function).
The same is true for the condition for a maximum (25).
Nevertheless conditions (25) and (25) may be useful for
some other purposes.

Example 8 Let x = (x(1), x(2)) 2 R2, x0 = (0, 0), f (x) =
jx(1)j� jx(2)j. We have f (x) = f 1(x)� f 2(x), where f 1(x)
= max{f 3(x), f 4(x)}, f 2(x) = {f 5(x), f 6(x)}, f 3(x) = x(1),
f 4(x) = � x(1), f 5(x) = x(2), f 6(x) = � x(2). The functions
f 3–f 6 are smooth therefore (see (7))

D f3(x) D [@ f3(x); @ f3(x)] ;

with @ f3(x) Df(1; 0)g; @ f3(x) D f(0; 0)g ;

D f4(x) D [@ f4(x); @ f4(x)] ;

with @ f4(x) Df(�1; 0)g; @ f4(x) D f(0; 0)g ;

D f5(x) D [@ f5(x); @ f5(x)] ;

with @ f5(x) Df(0; 1)g; @ f5(x) D f(0; 0)g ;

D f6(x) D [@ f6(x); @ f6(x)] ;

with @ f6(x) Df(0;�1)g; @ f6(x) D f(0; 0)g ;

Applying (11) one gets D f1(x0) D [@ f1(x0); @ f1(x0)],
where

@ f1(x0) D eratornamecof@ f3(x0) � @ f4(x0)

@ f4(x0) � @ f3(x0)g D cof(1; 0); (�1; 0)g ;

@ f1(x0) Df(0; 0)g ;

D f2(x0) D [@ f2(x0); @ f2(x0)] ;

where

@ f2(x0) D cof@ f5(x0) � @ f6(x0); @ f6(x0) � @ f5(x0)g

D cof(0; 1); (0;�1)g ;

@ f2(x0) Df(0; 0)g :

Finally, formula (8) yields

D f (x0) D [@ f (x0); @ f (x0)] ;

where

@ f (x0) D cof(1; 0); (�1; 0)g ;

@ f (x0) D cof(0; 1); (0;�1)g :

Since (see Fig. 1) conditions (16) and (18) are not sat-
isfied, the point x0 is neither inf-stationary nor sup-
stationary.
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Quasidifferentiable Optimization: Optimality Conditions,
Figure 1

Quasidifferentiable Optimization: Optimality Conditions,
Figure 2

Applying (22) and (23) we conclude that there exist
two directions of steepest descent: g1 = (0, 1), g10 = (0,
� 1) and two directions of steepest ascent: g2 = (1, 0),
g20 = (� 1, 0).

It is also clear that the sets (see (24), (25))

L1(x0) D
\

w2@ f (x0)

[@ f (x0)C w]

and

L2(x0) D
\

v2@ f (x0)

[@ f (x0)C v]

are both empty.

Remark 9 If a function f is directionally differentiable
but not quasidifferentiable, and if its directional deriva-
tive f 0(x, g) is continuous as a function of direction (this
is the case, e. g., if f is directionally differentiable and
Lipschitz) then (by the Stone–Weierstrass theorem) its
directional derivative may be approximated (to within
any given accuracy) by the difference of two positively
homogeneous convex functions, i. e.

f 0(x; g) 	 max
v2A

(v; g)Cmin
w2B

(w; g) ; (26)

where A and B are convex compact sets in Rn. Rela-
tion (26) shows that f 0 can be studied by means of qua-
sidifferential calculus (e. g., one is able to find an ap-
proximation of a steepest descent direction etc.). Cor-
responding results can be found in [1,4].

Remark 10 In many cases of practical importance the
quasidifferential of a function f is a pair of sets each of
them being the convex hull of a finite number of points
or/and balls. If this happens it is easy to store and op-
erate with the quasidifferential, to check necessary con-
ditions, to find directions of descent or ascent, to con-
struct numerical methods.

Necessary and Sufficient Conditions
for a ConstrainedOptimum

Let a function f be defined and finite on some open set
X �Rn and let˝ � X. Consider the problem of finding
a minimum or a maximum of f on˝ . For the definite-
ness in the sequel we shall consider only the problem of
minimizing f on ˝ since the problem of maximizing f
is the problem of minimizing the function f 1 = � f .

Let x 2˝ . The set

� (x;˝) D

8̂
<̂
ˆ̂:
g 2 Rn :

9f[˛k ; gk]g :
[˛k ; gk]! [C0; g]
x C ˛k gk 2 ˝

8k

9>>=
>>;

(27)

is called the Bouligand cone to the set ˝ at the point x
(or the cone of feasible directions). It is nonempty and
closed. If x 2 int˝ then � (x,˝) = Rn.

Proposition 11 Let f be Hadamard directionally differ-
entiable at a point x� 2˝ . For the point x� to be a local
or global minimizer of f on˝ it is necessary that

f 0H(x
�; g) � 0 ; 8g 2 � (x�;˝) : (28)
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If

f 0H(x
�; g) > 0 ; 8g 2 � (x�;˝); g ¤ 0n ; (29)

then x� is a strict local minimizer of f on ˝ , i. e. there
exists ı> 0 such that

f (x) > f (x�) ;

8x 2 ˝; kx � x�k < ı; x ¤ x� :

The set ˝ � Rn is called quasidifferentiable if it can be
represented in the form

˝ D fx 2 Rn : h(x) � 0g ; (30)

where h is a quasidifferentiable function.
Take x 2˝ and consider the cones

�1(x) D
˚
g 2 Rn : h0(x; g) < 0

�
;

�1(x) D
˚
g 2 Rn : h0(x; g) � 0

�
:

Let h(x) = 0.We say that the ‘regularity condition is sat-
isfied at x’ if

cl �1(x) D �1(x) : (31)

If h(x) = 0 (i. e., by (30), x 2 ˝) and the regularity
condition (31) holds then

� (x;˝) D �1(x) : (32)

Now we are able to express condition (28) and (29)
in terms of quasidifferentials of the functions f and h.

If h(x)< 0 then x 2 int ˝ , � (x, ˝) = Rn and, by
Proposition 5, conditions (16) and (17) hold. Therefore
let us consider the case h(x) = 0.

Proposition 12 Let functions f and h be Hadamard
quasidifferentiable at a point x� 2˝ and h(x�) = 0. As-
sume also that the regularity condition (31) is satisfied at
x�. For the point x� to be a local or global minimizer of f
on˝ it is necessary that

�
@ f (x�)C w

�\�
� cl(cone(@h(x�)C w0))

�
¤ ;

(33)

for all w 2 @ f (x�), w0 2 @h(x�).

Condition (33) is equivalent to the condition

� @ f (x�) � L(x�) ; (34)

where

L(x) D
\

w2@h(x)

�
@ f (x)C cl(cone(@h(x)C w))

�
:

The set L(x) is nonempty and convex.
If h(x�) = 0 and

� @ f (x�) � int L(x�) ; (35)

then x� is a strict local minimizer of f on˝ .
A point x� 2˝ is called an inf-stationary point of f

on˝ if condition (28) holds.
Let x 2 ˝ , h(x) = 0. Assume that x is not an inf-

stationary point and find

min
z2[@ f (x)Cw]



z C z0


 D 

z(w;w0)C z0(w;w0)





D


v(w;w0)C w C v0(w;w0)C w0




D


q(w;w0)

 D d(w;w0)

and

�(x) D max
w 2 @ f (x)
w0 2 @h(x)

d(w;w0)

D d(w0;w00) D


q(w0;w00)



 :
(36)

Since x is not inf-stationary then �(x)> 0.

Proposition 13 If h(x) = 0 and the regularity condition
(31) holds then the direction

g0 D �
q(w0;w00)
�(x)

(37)

is a steepest descent direction of f on ˝ at x and g0 2
� (x,˝),

f 0(x; g0) D min
kgkD1;g2� (x)

f 0(x; g)

D �


q(w0;w00)



 D ��(x)
i. e. � �(x) is the rate of steepest descent.

Remark 14 If there exist several pairs [w0;w00](w0 2

@ f (x);w00 2 @h(x)) satisfying (36), then (by (37)) there
are several steepest descent directions.

Remark 15 Condition (33) is also equivalent to

0n 2
\

w 2 @ f (x 0)
w 0 2 @h(x�)

�
@ f (x�)C w C cl(cone(@h(x�)C w0))

�

D L0(x�) :
(38)



3212 Q Quasidifferentiable Optimization: Optimality Conditions

However, condition (38) is not ‘constructive’ since
the set L0(x) may happen to be empty if x is not a sta-
tionary point (we consider the case h(x) = 0).

Proposition 16 Let x� 2˝ and h(x�) = 0. Assume that
the functions f and h are quasidifferentiable at x�. For
the point x� to be a local or global minimizer of f on ˝
it is necessary that

L1(x�) � L2(x�) ; (39)

where

L1(x) D � [@ f (x)C @h(x)] ;

L2(x) D cof@ f (x) � @h(x) ; @h(x)� @ f (x)g:

If, in addition, f and h are Hadamard q.d. at x�,
h(x�) = 0 and L1(x�)� int L2(x�) then x� is a strict local
minimizer of f on˝ .

Proposition 17 Let h(x�) = 0, f and h be Hadamard
q.d. at x�. If the regularity condition (31) holds at x� then
condition (39) is equivalent to condition (28).

Let x 2 ˝ , h(x) = 0. Assume that (39) does not hold.
Find

d(x) D max
v2L1(x)

�(v) D �(v(x));

where

�(v) D min
w2L2(x)

kv � wk D kv � w(v)k :

Since (39) is not satisfied then �(v(x)) > 0.

Proposition 18 The direction

g00 D
v(x) � w(v(x))

�(v(x))
(40)

is a descent direction of f on˝ at x.

Remark 19 While the steepest descent direction g0 (see
(37)) may be not admissible, the direction g00 (see (40))
is always admissible, i. e. for sufficiently small ˛> 0 we
have x + ˛ g00 2˝ .

Recent results and the state-of-the-art in quasidifferen-
tial calculus can be found in [2].
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Problems in mechanics whose governing relations can
be obtained from a generally nondifferentiable and
nonconvex, but quasidifferentiable (in the sense of V.F.
Demyanov and A.M. Rubinov) potential function are
considered. They consider a fairly general form for the
modeling and the study of nonsmooth problems in
mechanics [4] and they cover certain classes of varia-
tional and hemivariational inequality problems of me-
chanics [14,15]. The notion of hemivariational inequal-
ities has been introduced and thoroughly studied in
mechanics by P.D. Panagiotopoulos (see also � Non-
convex energy functions: Hemivariational inequalities;

� Hemivariational inequalities: Applications in me-
chanics). Moreover, there exists extensive theoretical
support for the use of quasidifferentiable calculus and
optimization techniques, see, e. g., [3,4]. For methods
and heuristic algorithms of nonconvex optimization
in computational mechanics, see [12]. In this short
note some techniques for treating stability problems
for nonsmooth structures are outlined. This way re-
sults for classical, smooth structures (e. g., [1,10,11])
can be extended to cover nonsmooth ones (cf., also
[8,9]). This work and the preliminary results outlined
here are based on [18,19].

All previously mentioned potentials are piecewise-
differentiable and may be described, in general, as con-
tinuous selections of differentiable functions. In turn,
the structural analysis problem results from minimality
or in general critical point conditions of the potential
(see examples in [2,6,7,14,15]).

Results from stability analysis of parametric opti-
mization problems for nondifferentiable functions are
used for the study of a stepwise holonomic, incremental
structural analysis problem. In particular the system-
atic first and second order linearizations proposed in
respectively, and the arising normal forms are adopted
for the potential energy function.

The techniques outlined here may be useful both for
the analysis of the stability of structures which involve
nonmonotone and possibly multivalued nonlinearities
(in a holonomic or a stepwise holonomic setting) and
for the design of incremental-iterative algorithms for
structural analysis purposes.

Smooth Potentials and Stability in Mechanics

Let a discretized elastostatic analysis problem be formu-
lated as a potential energy minimization problem:

min
u2Uad

˚
˘ (u; �) D ˘ (e(u))� p(u; �)

�
: (1)

Here u is the n-vector of displacement degrees of free-
dom, e is the m-vector of discrete element deforma-
tions, ˘ (e) 2 R is the internal energy density, p (u, �)
2 R is the external loading potential, parametrized by
a loading scalar � 2 R1 and U ad � Rn is the space of
admissible displacements. Displacement u and defor-
mation e vectors are connected by the geometric com-
patibility operator A(u):Rn!Rm such that e (u) = A (u)
holds.
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On the assumption that ˘ (u; �) is smooth, the
equilibrium configurations for the structural system are
critical points of this potential, i. e. for fixed � D � one
has:

˙crit D
n
u 2 Rn : ru˘ (u; �) D 0

o
: (2)

Moreover, inspection of the second order deriva-
tives (the Hessian matrix of ˘ (u; �)) gives us stability
information [1]. If u is a nondegenerate critical point,
i. e. u 2 ˙ crit and r2

u˘ (u; �) is regular, then a positive
or negative definite Hessian r2

u˘ (u; �) indicates that
the point u is a local minimum or maximum, respec-
tively. Only local minima correspond to stable equilib-
rium configurations. If r2

u˘ (u; �) is singular in u 2
˙ crit, then higher order derivatives of ˘ (u; �) must be
examined for stability [1].

If u0 is either a noncritical or a nondegenerate crit-
ical point of ˘ (u; �), which is assumed here to be at
least a C2-function, i. e. two times continuously differ-
entiable, then˘ (u; �) is C1-equivalent to its second or-
der approximation around u0, i. e.

(˘ ı ˚)(u) D˘ (u0; �)Cru˘ (u0; �)>(u � u0)

C
1
2
(u � u0)>r2

u˘ (u0; �)(u � u0) ;

(3)

where˚ is a C1-coordinate transformation (diffeomor-
phism). In the vicinity of a nondegenerate critical point
the behavior of˘ (u; �) is characterized by the number
of negative eigenvalues of r2

u˘ (u; �) (the quadratic in-
dex).

In the coordinates � u = u � u0 and the notation
	˘ (	u; �) D ˘ (u; �) � ˘ (u0; �) we can determine
(cf. [5, p. 21]) a local C1-coordinate transformation ˚ :
U ! V , where U, V are neighborhoods of the origin,
such that:

	˘ ı ˚�1(y) D � y21 � � � � � y2k C y2kC1 C � � � C y2n ;

8y 2 V :
(4)

Qualitative stability results for fixed load � D � are rec-
ognized in the normal form (4).

Incremental Algorithm

Incremental-iterative solution algorithms are based on
appropriate approximations of (1). Let us consider the

one-parametric load incrementation on the following
case of (1) (cf. [10]):

min
u2Rn
f˘(u; �) D ˘ (u) � �p>ug : (5)

For equilibrium we have

ru˘ (u; �) D 0 ) ru˘ (u) � �p D 0 (6)

For the examination of the stability of a solution we
study the following relation in terms of � � �0 = � �,
(defining �u as a function of��, if r2

u ˘ (u0) is regu-
lar)

r2
u˘ (u0)	uC	�p D 0 ; (7)

which connects the incremental displacement � u for
a change of loading equal to � � p. Relation (7) can be
produced by subtraction of the Taylor expansions of the
equilibrium equation (6) in (u0 + � u, �0 + � �) and
(u0, �0), respectively, and by using the approximation
(up to higher order terms)

ru˘ (u0 C	u) D ru˘ (u0)Cr2
u˘ (u0)	u : (8)

Consider the coordinate transformation: � u =˚�1 (y)
= � i yi = F y where � i are the eigenvectors of r2 ˘ (u0)
and the summation convention over repeated indices is
used. Then equation (7) is written in the new coordi-
nate system as:

r2˘ (u0)Fy � p	� D 0

) F>r2˘ (u0)Fy � F>p	� D 0

)
�
!i yi

�
� F>p	� D 0 :

(9)

Here !i are the eigenvalues of the local tangential stiff-
ness matrix K (u0) = r2 ˘ (u0), which act as stability
coefficients for the linearized equation of equilibrium
(7) [10,11].

Nonsmooth Superpotentials

Let us assume problem (1) with a nonsmooth potential
energy function. For simplicity let only the internal en-
ergy function˘ (u) be nonsmooth and Uad = Rn in (1).

Let V denote an open subset of Rn. We call a func-
tion f : V!R a continuous selection of the Cr-functions
gi: V! R, 1 � i � k, (briefly, f 2 CS{g1, . . . , gk}), if f is
continuous and 8u 2 V 9i 2 {1, . . . , k}: f (u) = gi(u). Let



Quasidifferentiable Optimization: Stability of Dynamic Systems Q 3215

˘ (u) in (1) be a piecewise differentiable PCr) function
of appropriate order r > 1, defined on an open set U �
Rn. This means that (cf. [7]) at every point u0 2 U there
exists an open neighborhood V � U and a finite col-
lection of Cr-functions {˘ 1, . . . ,˘ k} defined on V such
that˘ |V 2 CS{˘ 1, . . . ,˘ k}.

Let I(u) be the active index set set{i:˘ (u) =˘ k (u)}
One considers a smooth external loading potential p (u,
�), which depends on the one-dimensional loading pa-
rameter � (cf. (1)).

The assumption of a PCr-potential energy function
is very general and covers a large number of nonsmooth
mechanics applications (see, also, [13, Chap. 8]). More
detailed analysis of the requirements which are neces-
sary in order for a PCr-function to be the potential of
a certain structural analysis problem must be investi-
gated on a case-by-case basis.

Any PCr-potential is locally Lipschitz continuous
and Bouligand differentiable with the B-derivative at
a point u0 2 Rn in the direction d 2 Rn being a con-
tinuous selection of the functions r˘i(u0)>d; i 2
bI(u0). HerebI(u0) denotes the essentially active index set
bI(u0) D fi 2 I(u0) : u0 2 cl(int(fu 2 U : ˘ (u) D
˘i (u)g))g, with cl (resp. int) abbreviating the closure
(resp. the interior) of a set. For completeness, recall
that Clarke’s generalized subdifferential is given by [7]
@Cl˘ (u0) D conv

n
r˘i(u0) : i 2bI(u0)

o
where conv

stands for the convex hull.

Nonsmooth Local Approximations

For the needs of the applications in mechanics the first
and the second order differentiation, or the appropriate
analogous nonsmooth notions, and suitable local non-
smooth approximations which generalize the (second
order) Taylor expansion of a smooth function are used.
A local coordinate transformation will provide us with
a simple formulation of the energy minimization prob-
lem, cf. (4), which, in turn, will be used for the extrac-
tion of stability information analogous to (9).

Following [6], a critical point u0 of a PC2-potential
function ˘ (u) is called a nondegenerate critical point if
˘ is locally representable as a continuous selection of
functions ˘ 1; : : : ; ˘ k such that the following proper-
ties are true:
ND1) the vectors r˘ j(u0); j 2 I(uO )nfig are linearly

independent 8i 2 I (u0),

ND2) the restricted Hessian of the Lagrangian, the ma-
trix r2 L(u0) |V (u0), is invertible.
Here V(u}0) denotes the space
�
y 2 Rn : [r˘ i(u0) � r˘ j(u0)]>y D 0;

i; j 2 I(u0)

	
:

For the Lagrangian

L(u) D
X

i2I(u0)

�i˘ i (u)

holds
X

i2I(u0)

�ir˘ i(u0) D 0 ;

X
i2I(u0)

�i D 1 ; �i � 0 :
(10)

The qualitative behavior of the potential energy func-
tion, the link to the stability of the described mechanical
system, can be shown if one considers the normal form
(cf. (4))). In this context, the following result of [6] is of
importance.

Let ˘ 2 CS(˘ i ; i 2 I) and let u0 2 Rn be a nonde-
generate critical point for˘ with quadratic index equal
to q. Suppose moreover that |I0(u0)| = k + 1. Then at u0,
the potential is topologically equivalent to g(y), where

g(y1; : : : ; yn) D˘ (u0)C CS

 
y1; : : : ; yk ;�

kX
iD1

yi

!

�

kCqX
jDkC1

y2j C
nX

rDkCqC1

y2j :

(11)

One observes that the second term in the right-hand
side of (11) is sufficiently rich to describe locally every
type of nonsmooth, finite-dimensional functions.

Furthermore, following [7] one notes that a PC2-
function can always be transformed into the min-max
normal form:

˘ (u) D max
1�i�k

min
j2Mi

˘ j(u) ; (12)

where (12) is considered as a local representation of the
potential in a neighborhood of u0,Mi � {1, . . . , m} and
the functions ˘ j : U ! R, j 2 {1, . . . , m}, are C2-
functions.
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In this case a consistent nonsmooth second order
approximation of the PC2-potential, expressed by the
normal form (12), is given by:

max
1�i�k

min
j2Mi

�
˘ j(u0)Cr˘ j(u0)>(u � u0)
C 1

2 (u � u0)>r2˘ j(u0)(u � u0)

	
:

(13)

Note here that the previously denoted min-max form is
not defined in an unique way.

Stability Results. Discussion

For a structural analysis system with a structured non-
smooth PC2-potential with (11) and for a nondegener-
ate critical point u0 2 Rn, the local approximation (11)
is available. Let us assume a potential of the external
loading equal to � p| u, as in (5) and let for the present
the load parameter � be fixed to a given value. From
(11) the following complete subdivision of the coordi-
nate space Rn arises:

Rn D Rk ˚Rq ˚Rn�k�q D Rnon˚Run˚Rst ; (14)

where Rnon stands for the essentially nondifferentiable
subspace, Run for the unstable subspace and Rst for
the stable subspace. Let, moreover, the local coordinate
transformation that leads to (11) be traced for the com-
ponents of the vector � p (cf. (6)–(9)). Let the compo-
nents of the last vector in the three subspaces of ((14))
beepnon,epun andepst, respectively.

Further one considers the type of the CS in the lin-
ear term of the right-hand side in (11) in comparison
with the three above defined components of the load-
ing vector. This information can be used for stability
analysis. Smooth and nonsmooth contributions should
be treated separately. For the nonsmooth part, for ex-
ample, if one has a max-type function and q = 0, then
only stable local minima of the potential energy func-
tion arise.

The above outlined scheme can be followed for the
derivation of stability considerations for a structure at
a given point and for a given loading level (� is con-
stant). For the examination of the stability question
along a given loading path (one-parametric change of
�) one should take into account that the local repre-
sentation (11) may change as � changes. The results
are qualitative of the same nature, but, for practical ap-

plications, a combinatorial problem arises, which con-
cerns the way of possible changes of the subdivision
(14) as loading changes. Further work in this direc-
tion will generalize the computational mechanics tech-
niques for the tracing of post-buckling equilibria in
nonsmooth mechanics’ applications. Theoretical sup-
port will be provided by the theory of parametric op-
timization (cf., e. g., [5] and the applications in contact
mechanics [16,17]).

See also

� Generalized Monotonicity: Applications to
Variational Inequalities and Equilibrium Problems

� Hemivariational Inequalities: Applications in
Mechanics

� Hemivariational Inequalities: Eigenvalue Problems
� Hemivariational Inequalities: Static Problems
� Nonconvex Energy Functions: Hemivariational

Inequalities
� Nonconvex-Nonsmooth Calculus of Variations
� Optimization Strategies for Dynamic Systems
� Quasidifferentiable Optimization
� Quasidifferentiable Optimization: Algorithms for

Hypodifferentiable Functions
� Quasidifferentiable Optimization: Algorithms for

QD Functions
� Quasidifferentiable Optimization: Applications
� Quasidifferentiable Optimization: Applications to

Thermoelasticity
� Quasidifferentiable Optimization: Calculus of

Quasidifferentials
� Quasidifferentiable Optimization: Codifferentiable

Functions
� Quasidifferentiable Optimization: Dini Derivatives,

Clarke Derivatives
� Quasidifferentiable Optimization: Exact Penalty

Methods
� Quasidifferentiable Optimization: Optimality

Conditions
� Quasidifferentiable Optimization: Variational

Formulations
� Quasivariational Inequalities
� Sensitivity Analysis of Variational Inequality

Problems
� Solving Hemivariational Inequalities by Nonsmooth

Optimization Methods
� Variational Inequalities



Quasidifferentiable Optimization: Variational Formulations Q 3217

� Variational Inequalities: F. E. Approach
� Variational Inequalities: Geometric Interpretation,

Existence and Uniqueness
� Variational Inequalities: Projected Dynamical

System
� Variational Principles

References

1. Bazant ZP, Cedolin L (1991) Stability of structures. Elastic,
inelastic, fracture and damage theories. OxfordUniv. Press,
Oxford

2. Curnier A, He Q-C, Zysset Ph (1995) Conewise linear elastic
materials. J Elasticity 37:1–38

3. Demyanov VF, Rubinov AM (1985) Quasidifferentiable cal-
culus. Optim. Software, New York

4. Demyanov VF, Stavroulakis GE, Polyakova LN, Pana-
giotopoulos PD (1996) Quasidifferentiability and nons-
mooth modelling in mechanics, engineering and eco-
nomics. Kluwer, Dordrecht

5. Guddat J, Guerra Vasquez F, Jongen ThH (1990) Paramet-
ric optimization: Singularities, path following and jumps.
Teubner and Wiley, New York

6. Jongen ThH, Pallaschke D (1988) On linearization and con-
tinuous selection of functions. Optim 19(3):343–353

7. Kuntz L, Scholtes S (1995) Qualitative aspects of the local
approximation of a piecewise differentiable function. Non-
linear Anal Th Methods Appl 25(2):197–215

8. Kurutz M (1993) Stability of structures with nonsmooth
nonconvex energy functionals. The one dimensional case.
Europ J Mechanics A Solids 12(3):347–385

9. Rohde A, Stavroulakis GE (1997) Genericity analysis for
path-following methods. Application in unilateral con-
tact elastostatics. Z Angew Math Mechanics (ZAMM)
77(10):777–790

10. Kurutz M (1994) Equilibrium paths of polygonally elas-
tic structures. Mechanics of Structures and Machines
22(2):181–210

11. Li L-Y (1991) The criteria of identifying the type of critical
points. Arch Appl Mechanics 61:231–235

12. Li L-Y (1994) Determination of stability in nonlinear analy-
sis of structures. Arch Appl Mechanics 64:119–126

13. Mistakidis ES, Stavroulakis GE (1997) Nonconvex optimiza-
tion in mechanics. Algorithms, heuristics and engineering
applications by the F.E.M. Kluwer, Dordrecht

14. PallaschkeD, Rolewicz S (1997) Foundations ofmathemati-
cal optimization. Convex analysis without linearity. Kluwer,
Dordrecht

15. Panagiotopoulos PD (1985) Inequality problems in me-
chanics and applications. Convex and nonconvex energy
functions. Birkhäuser, Basel

16. Panagiotopoulos PD (1993) Hemivariational inequalities.
Applications in mechanics and engineering. Springer,
Berlin

17. Rohde A, Stavroulakis GE (1995) Path–following energy
optimization in unilateral contact problems. J Global Op-
tim 6:347–365

18. Stavroulakis GE, Rohde A (1996) Stability of structures with
quasidifferentiable energy functions. In: Sotiropoulos D,
Beskos DE (eds) 2nd Greec Conf. Computational Mechan-
ics, Chania, June 1996. GRACAM, pp 406–413

19. Stavroulakis GE, Rohde A (1999) Normal forms and sta-
bility in nonsmooth potential elastostatics. Mechanics Res
Comm 26(2):185–190

QuasidifferentiableOptimization:
Variational Formulations
GEORGIOS E. STAVROULAKIS

Carolo Wilhelmina Techn. University,
Braunschweig, Germany

MSC2000: 74G99, 74H99, 74Pxx, 49J40, 49M05, 49S05

Article Outline

Keywords
Variational Formulation of Subdifferential Laws
Variational Formulation of Quasidifferential Laws
Example: an Elastostatic Problem Involving
QD-Superpotentials
Variational Equality
Convex Variational Inequality
QD Laws and Systems of Variational Inequalities

See also
References

Keywords

Variational problems; Variational inequalities;
Nonsmooth optimization; Nonsmooth mechanics;
Quasidifferentiability

In science and, especially in engineering, the variational
or weak formulation of a given boundary value prob-
lem has certain advantages. Instead of writing point-
wise relations (for example, partial differential equa-
tions) which hold for each point of the considered sys-
tem, one multiplies the governing relation with an ar-
bitrary virtual variation, integrates over the entire area
and requires that the latter integral be equal to zero.
This is a weak or a variational formulation of the prob-
lem. Since the considered virtual variation is arbitrary
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one gets back, on the assumption of sufficient regular-
ity, the initial pointwise relations.

Variational formulations provide the basis for the
development of numerical approximation methods (for
example, by the finite element method). One of the ad-
vantages is that by performing partial integration one
transfers differentiability requirements from the actual
variables of the problem to the virtual ones, which, in
turn, results in less demanding requirements on the
complexity of the required finite element basis approx-
imation functions. The literature on variational prob-
lems is very large, so that every selection of references
would be incomplete. In this sense, let us mention here
the publications [1,3,7,8,14].

In the language of smooth optimization, instead of
considering the first order optimality condition that the
derivative of a function at a given point is equal to zero,
one proceeds as follows. The latter equation is multi-
plied by a virtual change of the variables along an arbi-
trary direction. Then, one considers the equivalent re-
lation that the directional derivative of the function is
equal to zero for all directions emanating from the as-
sumed point.

In mechanics the arising quantities have a physical
meaning (for instance, they correspond to the virtual
work of a system). For historical reasons one speaks
about variational principles. Moreover, on adequate
smoothness assumptions one writes variational equal-
ities. Finally, for engineering applications, and depend-
ing on the nature of the studied problem, one has to
solve, after numerical discretization, systems of linear
or nonlinear equations.

In connection with convex, nondifferentiable po-
tentials or for convex problems with inequality con-
straints it is intuitively conceivable that not all virtual
variations are allowed for. The theory of variational in-
equalities has been developed for the study of this class
of problems. It is connected with the subdifferential of
convex analysis and it is appropriate for the study of
monotone operators [5,9]. In simple cases, or after ap-
propriate reformulations one gets linear or nonlinear
complementarity problems (see, e. g. [6] for a recent re-
view).

For general nonconvex and nonsmooth problems
a nonconvex extension of the notion of the variational
inequality is required. For potential operators and by
using the generalized subdifferential in the sense of F.H.

Clarke, this class of variational problems have been
developed and studied by P.D. Panagiotopoulos, who
called them hemivariational inequalities. See � Non-
convex energy functions: Hemivariational inequalities;
� Hemivariational inequalities: Applications in me-
chanics or [9,11] for more details.

The notion of quasidifferentiability, in the sense of
V.F. Demyanov and A.M. Rubinov, provides an ele-
gant way for the formulation and study of noncon-
vex variational inequality problems. By taking advan-
tage of the ability of the quasidifferentials to provide
a qualitative and quantitative nonsmooth approxima-
tion of a nonsmooth function one arrives at a very pow-
erful variational description of the problem. This link
has been studied for several applications in mechanics
in [4,10,12]. One should mention that the author’s un-
derstanding of this theory and their first attempts have
been based on previous theoretical results of C.A. Stuart
and J.F. Toland [13] and G. Auchmuty [2] concerning
difference convex energy functions. Of course, the class
of difference convex functions is included in the class of
quasidifferentiable functions, so that the here presented
approach is sufficiently general.

Variational Formulation of Subdifferential Laws

Let us assume a monotone possibly multivalued (i. e.,
with complete vertical branches) relation (a law) be-
tween the quantities u and �f . To be more precise, one
may think about a nonlinear boundary law which con-
nects boundary reactions �f with boundary displace-
ments u in mechanics. Let a convex l.s.c. and proper
function ˚ exists, the convex superpotential in the
sense of J.-J. Moreau, and that the previously men-
tioned law is written in the subdifferential form:

� f 2 @˚(u) : (1)

Here @ denotes the subdifferential of convex analysis.
Function ˚(u) can be considered as the potential en-
ergy corresponding to the mechanical law (1).

By definition, (1) is equivalent to the following vari-
ational inequality:

˚(u�) �˚(u) � �h f ; u� � ui ; 8u� 2 R : (2)

For example, if ˚ is the indicator IK of a convex
closed interval K of R, then one has

� f 2 @IK (u) : (3)
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This is a unilateral constraint as one easily recognizes by
considering the equivalent variational inequality (for u
2 K):

h f ; u� � ui � 0 ; 8u� 2 K : (4)

Indeed, if u? � u is an admissible variation of u (in
the sense that it satisfies (4)), then the same does not
hold for the variation u � u?. Of course in the one-
dimensional case h�, �i is a simple multiplication. For
multidimensional problems it will be an inner product.

Analogous subdifferential relations can be written
for multidimensional laws (for example, for constitu-
tive laws in elastoplasticity [9]).

Variational Formulation
of Quasidifferential Laws

Let us assume now a nonmonotone possibly multival-
ued relation. By means of a real-valued, quasidifferen-
tiable superpotential energy function ˚ , one may ex-
presses this relation in the form:

� f D w1 C w2 ; (5)

with fw1;w2g 2 D˚(u) D [@˚(u); @˚(u)].
By definition, (5) is equivalent to the relation:

h� f ; u� � ui D max
w�1 2@˚(u)

hw�1 ; u
� � ui

C min
w�2 2@˚(u)

hw�2 ; u
� � ui ;

8u� 2 U ;

(6)

for u 2 U, or with the system of variational inequalities

h� f ; u� � ui � hw�2 ; u
� � ui � max

w�1 2@˚(u)
hw�1 ; u

� � ui ;

8u� 2 U ; 8w�2 2 @˚(u) ;
(7)

and

h� f ; u� � ui � hw�1 ; u
� � ui � min

w�2 2@˚(u)
hw�2 ; u

� � ui ;

8u� 2 U ; 8w�1 2 @˚(u) :
(8)

Space U is in general a subspace of Rn and depends on
the considered application.

Analogously one treats multidimensional relations
(for example, boundary adhesive layers) or constitutive
laws (e. g., materials with softening effects). A number
of concrete examples have been given in [4, Chap. 3].

Example: an Elastostatic Problem Involving
QD-Superpotentials

Let ˝ � R3 be an open bounded subset occupied by
a deformable body in its undeformed state. On the as-
sumption of small deformations one writes the virtual
work relation
Z
˝

�i j(u)"i j(v � u) d˝

D

Z
˝

fi(vi � ui) d˝ C
Z
�

�i jn j(vi � ui)d� ;

8v 2 V ;

(9)

for u 2 V . Here V denotes the function space of the
displacements which will be defined further. As it has
been outlined previously, for the derivation of (9) one
multiplies the equilibrium equation:

�i j; j C fi D 0 ; (10)

where f i is the volume force vector, by a virtual dis-
placement vi � ui and then we have integrated over ˝ .
On the assumption of appropriately regular functions,
one applies the Green–Gauss theorem by taking into
account the strain-displacement relation

"i j D
1
2
(ui; j C uj;i ): (11)

Let us assume further that the body is linearly elastic,
i. e. that

�i j D Ci jhk"hk ; (12)

whereC = {Cijhk}, i, j, h, k = 1, 2, 3, is the elasticity tensor
which obeys to the well-known symmetry and ellipticity
conditions. The energy bilinear form of linear elasticity
is further denoted by ˛ (u, v) =

R
˝Cijhk"ij(u)"hk(v)d˝ .

Variational Equality

For example, let us assume first that on the boundary �
of the structure the classical boundary conditions SN =
0 and uTi = 0, i = 1, 2, 3, hold. Then one gets the classical
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variational equality: Find u 2 V0 = {v: v 2 V , vTi = 0 on
� } such that

˛(u; v) D
Z
˝

fivi d˝ ; 8v 2 V0 :

Convex Variational Inequality

Furthermore, let us assume now that on � the general
monotone multivalued subdifferential boundary condi-
tion (1) holds. Using (2) and (9) one obtains the follow-
ing variational inequality: find u 2 V with ˚(u) <1,
such that

˛(u; v � u)C
Z
�

(˚(v) �˚(u)) d�

�

Z
˝

fi(vi � ui) d˝ ;

8v 2 V : j(v) <1 :

QD Laws and Systems of Variational Inequalities

Let us assume that on � the nonmonotone, possibly
multivalued boundary condition (5) holds, where ˚ is
a quasidifferentiable functional. It has the form

�S D w1 C w2 ;

with fw1;w2g 2 Dj(u) D f@˚(u); @˚(u)g.
Then one has, by definition, the relation (6), where

˚ 0(u, v) = h�S, vi. Finally, by an analogous way, one has
the variational problem: find u 2V , w1, w2 2W such as
to satisfy the relation

˛(u; v � u) �
Z
˝

fi(vi � ui) d˝

C max
w�1 (x) 2 @˚(u(x))

a.e. on �

hw�1 ; v � ui

C min
w�2 (x) 2 @˚(u(x))

a.e. on �

hw�2 ; v � ui D 0 ;

8v 2 V :

(13)

The function spaces V and W depend on the studied
application. For instance, for three-dimensional elasto-
statics the following choice has been proposed in [4]:
V = [H1(˝)]3,W = [L2(� )]3. A more general formula-
tion, also proposed in the previously given original pub-
lication, would be to assume that w1, w2 2 [H�1/2(� )]3.

Then in the left-hand side of (13) on should replace
w1(x) 2 @˚(u(x)) a.e. on � byw1 2 @F(u) andw2(x) 2
@ ˚(u(x)) a.e. on � by w2 2 @F(u), where one assumes
that

F(u) D

8<
:

Z
�

˚(u(x)) d� if ˚(�) 2 L2(� );

1 otherwise:

Then instead of (13) one has the following problem:
find u 2 [H1(˝)]3, w1, w2 2 [H� 1/2(� )]3 such that

˛(u; v � u) �
Z
˝

fi(vi � ui ) d˝

Cmax
w�1
fhw�1 C w�2 ; v � ui : w�1 2 @F(u)g

Cmin
w�2
fhw�1 C w�2 ; v � ui : w�1 2 @F(u)g D 0 ;

8v 2 [H1(˝)]3 :

One should mention that the related questions con-
cerning the extension of QD-superpotentials to func-
tion spaces remain still open.

Moreover we can write the min-max form which
reads: find u 2 [H1(˝)]3 such as to satisfy the relation:

˛(u; v � u) �
Z
˝

fi(vi � ui ) d˝

C min
w�2 2@F(u)

max
w�1 2@F(u)

fhw�1 C w�2 ; v � ui D 0 ;

8v 2 [H1(˝)]3 :

If in particular the superpotential F can be expressed
as the difference of two convex functions, i. e. if F =
˚1� ˚2, with ˚1 and ˚2 convex, then one has

@F D @˚1 ; @F D �@˚2 ;

where @is the subdifferential of the convex analysis. In
this case the following system of variational inequalities
results, as it can easily be shown by using the definition
of the subdifferential: find u 2 [H1(˝)]3, such as to sat-
isfy

˛(u; v � u)�
Z
˝

fi(vi � ui) d˝

� hw�2 ; v � ui C ˚1(v) � ˚1(u) � 0 ;

8v 2 [H1(˝)]3

for all w?2 2 [H�1/2(� )]3 such that

hw�2 ; v � ui � ˚2(v)�˚2(u); 8v 2 [H1(˝)]3 :
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Further information on variational formulations in
elastostatics can be found in � Hemivariational in-
equalities: Applications in mechanics.
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Variational or weak formulations of boundary value
problems in science and, in particular, in engineering
are integral, energetic expressions of all involved quan-
tities (involving differential equations and boundary
conditions). Usually, under differentiability (smooth-
ness) assumptions of the involved variables and equal-
ities throughout the considered model one gets vari-
ational equality problems. The strong formulation of
the initial problem (i. e., constitutive relations, bound-
ary conditions, etc) can be reconstructed if one con-
siders certain values for the (otherwise arbitrary) varia-
tions in the weak form, i. e., in the variational equality.
Variational formulations provide the basis for modern
computational mechanics techniques (e. g., the finite el-
ement method) and for this reason they have been ex-
tensively studied in the affiliated literature (see, among
others, [22]). In terms of optimization they can be con-
sidered as stationary point statements for the total dif-
ferential of an appropriately constructed (convex or
nonconvex) potential energy function, provided that
the studied problem admits a potential. Namely, the
weak formulation expresses the fact that the variation
of a function for every small variation of the involved
independent variables is equal to zero, which, due to
the arbitrariness of the variations, is equivalent to the
more classical requirement that the first derivative of
the function vanishes at a critical point.

Due to inequality-type constraints or due to lack of
differentiability in the involved functions one is some-

times obliged to consider one-sided (unilateral) varia-
tions of the problem’s variables. A systematic way of
doing so is provided by the theory of variational in-
equalities [13]. They are related to monotone opera-
tors, to convex, nondifferentiable optimization prob-
lems and to complementarity problems. Variational in-
equalities have been applied for the study of problems
in engineering [17,20], economics, transportation plan-
ning and flow in networks (see also [6,8,10]).

Extensions for nonconvex variational inequalities,
which are based on the generalized gradient ap-
proach in the sense of F.H. Clarke, have been pro-
posed and studied by P.D. Panagiotopoulos who named
them hemivariational inequalities. Details are given in
� Nonconvex energy functions: Hemivariational in-
equalities and � Hemivariational inequalities: Appli-
cations in mechanics. Parallel developments which are
based on the notion of the quasidifferentiability in the
sense of V.F. Demyanov and A.M. Rubinov are de-
scribed in � Quasidifferentiable optimization: Varia-
tional formulations.

Furthermore, there exist problemswhere the admis-
sible space (for the variables and their variations) or the
involved potentials depend on the solution of the prob-
lem. This class of implicit variational inequality prob-
lems are called quasivariational inequalities. They have
been used for the modeling of stochastic impulsive con-
trol problems, in free boundary problems, in mechanics
and in economy. The interested reader may find more
information in the references [1,2,7,9,15]. Here a short
outline of quasivariational inequality problems is given.
A model application arising in unilateral contact prob-
lems with Coulomb friction in engineering mechan-
ics demonstrates the discussed ideas. This approach is
based on early theoretical and numerical studied of [19]
(see also numerical applications in [11,12]) and, among
others, have recently been tested for several convex and
nonconvex problems of mechanics in [14].

Variational Inequalities

Let us first consider abstract variational formulations of
a boundary value problem which is defined in a subset
˝ of Rn, n = 1, . . . , n, with boundary � . Let V be a real
Hilbert space and V 0 be its dual space. Let a(�, �): V × V
! R be a symmetric, continuous and coercive bilinear
form and (l, �) be a continuous linear form on V . An
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abstract variational problem reads: find u 2 V such that

a(u; v � u) D (l ; v � u) ; 8v 2 V : (1)

Let moreover K be a closed convex subset of V and
assume that a solution of the boundary value problem
within the set K is sought. It can be shown that this so-
lution is characterized by the following abstract vari-
ational inequality (of the G. Fichera type, see [20, p.
188]):

8̂
<̂
ˆ̂:

Find u 2 K � V
s.t. a(u; v � u) � (l ; v � u);

8v 2 K:

(2)

For a convex, l.s.c. proper functional ˚ on V one
may define the more general (nonlinear) variational in-
equality ([14]):

8̂
ˆ̂̂<
ˆ̂̂̂
:

Find u 2 V
s.t. ˛(u; v)C˚(v) � ˚(u) �

� (l ; v � u);
8v 2 V :

(3)

It is obvious that (2) is a special case of (3), with˚ = IK ,
where the indicator function of the set K is defined by
IK(v) = 0 if v 2 K, +1 otherwise.

Let moreover j: R ! R denotes a locally Lipschitz
function and let j0(u, v�u) denotes the generalized gra-
dient of the nonconvex and nonsmooth function j. By
definition, one has the following connection with the
generalized gradient, in the sense of Clarke:

j0(u; v) D fmax hw; vi : w 2 @CL j(u)g : (4)

A hemivariational inequality problem reads:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

find u 2 V

s.t. a(u; v � u)C
Z
˝

j0(u; v � u) d˝

� (l ; v � u);
8v 2 V :

(5)

Implicit Variational Inequalities
and Quasivariational Inequalities

If one assumes for instance that the linear form (l, �) or
the set K in the previous relations depend on the so-

lution u, one gets various types of implicit variational
inequalities or quasivariational inequalities.

Let the set K be a variable of the solution u. Then
from (2) one gets the quasivariational inequality:
8̂
<̂
ˆ̂:

find u 2 K(u) � V
s.t. ˛(u; v) � (l ; v � u);

8v 2 K(u):

Along the same lines one formulates from (3) the im-
plicit variational inequality:
8̂
ˆ̂̂<
ˆ̂̂̂
:

find u 2 V
s.t. ˛(u; v)C ˚(u; v) � ˚(u; u)

� (l ; v � u);
8v 2 V :

Here the first argument in ˚(�, �) is tackled as a pa-
rameter. A concrete application of this method will be
demonstrated by the mechanical problem in the next
section.

Finally, in analogy to the previous extensions, for
a continuous mapping h(u) the following quasihemi-
variational inequality (which may also be characterized
as implicit hemivariational inequality) problem can be
written (see [16, p. 128]):

8̂
ˆ̂̂<
ˆ̂̂̂
:

find u 2 V
s.t. a(u; v � u)C h(u) j0(u; v � u)d

� l(v � u);
8v 2 V :

(6)

Mechanical Example:
Coupled Unilateral Contact Problemwith Friction

Let ˝ 2 R3 be an open bounded subset occupied by
a deformable body in its undeformed state. On the as-
sumption of small deformations one writes the virtual
work relation (for u 2 V)
Z
˝

�i j"i j(v � u) d˝ D
Z
˝

fi(vi � ui) d˝

C

Z
�

SN (vN � uN ) d�

C

Z
�

STi (vTi � uTi ) d� ;

8v 2 V :

(7)
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Here V denotes the function space of the displace-
ments, which in general is an appropriate subset of
H1(˝) and f i, SN , STi 2 L2(� ). Recall here that the ab-
stract bilinear form ˛(�, �) reads in this case of linear
elasticity

˛(u; v) D
Z
˝

Ci jhk"i j(u)"hk(v) d˝ : (8)

Moreover the underlying elastostatic equilibrium equa-
tion boundary value problem has the form:

�i j; j C fi D 0 ; (9)

where the f i is the volume force vector. One recalls
here the strain-displacement relation (small deforma-
tion theory):

"i j D
1
2
(ui; j C uj;i ) : (10)

Let a linearly elastic body be assumed, i. e., the consti-
tutive material relation reads:

�i j D Ci jhk"hk ;

where C = {Cijhk}, i, j, h, k = 1, 2, 3, is the elasticity tensor
which satisfies the well-known symmetry and ellipticity
properties.

Recall here that on the assumption that classical
support conditions hold on � (i. e., say uN = 0 and uTi =
0, i = 1, 2, 3) one gets the following variational equality:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

Find u 2 V0 D

8̂
<̂
ˆ̂:
v 2 V :

vN D 0;
vTi D 0
on �

9>>=
>>;

s.t. ˛(u; v) D
Z
˝

fivi d˝;

8v 2 V0:

(11)

Signorini–Coulomb Unilateral Frictional Contact

Let us assume the pointwise unilateral contact relations
(known as Signorini condition, for the frictionless uni-
lateral contact case):

� SN � 0 ; uN � g � 0 ;

� SN (uN � g) D 0 on � :
(12)

Here, the inequalities on the boundary tractions corre-
spond to the mechanical restriction that no tensile trac-

tions are permitted. Moreover, the normal boundary
displacements should not be greater that a given initial
distance g, because no penetration is allowed. Finally,
the complementarity relation expresses the physical fact
that either contact is realized or a separation takes place.

A simplified static version of the Coulomb’s friction
law connects the tangential (frictional) forces STi with
the normal (contact) forces SN by the relation

� D � jSN j � jST j � 0 : (13)

Here | 
 | denotes the norm in R3 and � is the fric-
tion coefficient. The friction mechanism is considered
to work in the following way: If |ST | < �|SN | (i. e. � > 0)
the slipping value � must be equal to zero and if |ST | =
�|SN | (i. e. � = 0) then we have slipping in the opposite
direction of ST . Explicitly we have:

8̂
<̂
ˆ̂:

if � > 0 then yT D 0;
if � D 0 then there exists � > 0

s.t. yTi D ��STi ;

(14)

where i = 1, 2, 3 refers to the components of vector ST
with respect to a reference Cartesian coordinate system.

Contact law (12) can be written in the superpoten-
tial form:

� SN 2 @IUad (uN ) D @˚N (u) DNUad (uN ) : (15)

Here the set of admissible displacements is introduced:

Uad D fu 2 V : uN � g � 0g (16)

and the notions of the convex analysis subdifferential
and of the normal cone to a set have been used. The
corresponding variational inequality reads

� SN (uN )(vN � uN) � 0 ; 8vN 2 Uad : (17)

For the friction law one writes, analogously:

� ST 2 @uN (� jSN j juN j) D @˚T (SN ; uT ) ; (18)

where the involved potential is nondifferentiable (due
to the absolute value nonlinearity of |uN |) and de-
pends on the normal contact traction SN , thus, implic-
itly, on the solution of the problem u, i. e. one consid-
ers the parametrized potential ˚T(u;uT) = ˚T(SN ;uT)
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= �|SN ||uN |. The corresponding variational inequality
reads

� ST (uT )(vT � uT ) � ˚T (u; vT) � ˚T (u; uT) ;

8vT 2 Uad :
(19)

Combining relations (7), (9) and (15) one gets the
implicit variational inequality: find u 2 Uad such that
Z
˝

�i j"i j(v � u) d˝ C ˚T (u; vT) �˚T (u; uT)

�

Z
˝

fi(vi � ui ) d˝ ;

8v 2 Uad :

(20)

A dual problem in terms of stresses provides us a corre-
sponding quasivariational inequality problem. For sim-
plicity, a two-dimensional problem is considered fur-
ther. Moreover, the following set of admissible bound-
ary tractions for the Signorini–Coulomb unilateral con-
tact problem is assumed:

Sad D
˚
(SN ; ST ) : g j(SN ; ST ) � 0; j D 1; 2

�
;

where the constraint functions have the form:

g1(SN ; ST ) D�SN � ST ;

g1(SN ; ST ) D�SN C ST :

Moreover one needs the set of admissible stresses
(which include the boundary tractions):˙(�) = {� : � ij, j

+ f i = 0} \ Sad. It may be shown that in this case the
previous problem is expressed in the form of the quasi-
variational inequality:
8̂
ˆ̂<
ˆ̂̂:

find � 2 ˙(�)

s.t.
Z
˝

"i j(�i j � �i j) d˝ � 0;

8� 2 ˙(�)

Numerical Algorithms: Applications

Theoretical results and numerical algorithms can be
found in several books dealing with variational inequal-
ities, convex analysis and their applications. For the nu-
merical solution, usually one solves, iteratively, a num-
ber of variational inequality problems. The resulting se-
ries approximates the solution of the initial quasivaria-
tional inequality. Further information and references,
mainly connected with the mechanical problems used

as model applications in this paper and their general-
izations, can be found in [3,5,14,18,21]. Finally iterative
solution methods can be based on multilevel optimiza-
tion techniques, as it is discussed in � Multilevel opti-
mization in mechanics.

See also

� Generalized Monotonicity: Applications to
Variational Inequalities and Equilibrium Problems

� Hemivariational Inequalities: Applications in
Mechanics

� Hemivariational Inequalities: Eigenvalue Problems
� Hemivariational Inequalities: Static Problems
� Nonconvex Energy Functions: Hemivariational

Inequalities
� Nonconvex-Nonsmooth Calculus of Variations
� Quasidifferentiable Optimization
� Quasidifferentiable Optimization: Algorithms for

Hypodifferentiable Functions
� Quasidifferentiable Optimization: Algorithms for

QD Functions
� Quasidifferentiable Optimization: Applications
� Quasidifferentiable Optimization: Applications to

Thermoelasticity
� Quasidifferentiable Optimization: Calculus of

Quasidifferentials
� Quasidifferentiable Optimization: Codifferentiable

Functions
� Quasidifferentiable Optimization: Dini Derivatives,

Clarke Derivatives
� Quasidifferentiable Optimization: Exact Penalty

Methods
� Quasidifferentiable Optimization: Optimality

Conditions
� Quasidifferentiable Optimization: Stability of

Dynamic Systems
� Quasidifferentiable Optimization: Variational

Formulations
� Sensitivity Analysis of Variational Inequality

Problems
� Solving Hemivariational Inequalities by Nonsmooth

Optimization Methods
� Variational Inequalities
� Variational Inequalities: F. E. Approach
� Variational Inequalities: Geometric Interpretation,

Existence and Uniqueness



3226 Q Quasivariational Inequalities

� Variational Inequalities: Projected Dynamical
System

� Variational Principles

References
1. Baiocchi C, Capelo A (1984) Variational and quasivaria-

tional inequalities. Applications to free boundary prob-
lems. Wiley, New York

2. Bensoussan A, Lions J-L (1984) Impulse control and quasi-
variational inequalities. Gauthier-Villars

3. Bisbos CC (1995) A competitive game algorithm with five
players for unilateral contact problems including the rota-
tional and the thermal degrees of freedom. In: Raous M,
Jean M, Moreau JJ (eds) Contact Mechanics. Plenum, New
York, pp 251–258

4. Brézis H (1972) Problèmes unilatéraux. J Math Pures Appl
51:1–168

5. Curnier A, He Q-C, Telega JJ (1992) Formulation of unilat-
eral contact between two elastic bodies undergoing finite
deformations. CR Acad Sc Paris Ser II-1, p 314

6. Ferris MC, Pang JS (1997) Engineering and economic
applications of complementarity problems. SIAM Rev
39(4):669–713

7. Friedman A and Spruck J (eds) (1993) Variational and free
boundary problems. IMA vol Math Appl. Springer, Berlin

8. Friesz TL, Bernstein DH, Strough R (1996) Dynamic sys-
tems, variational inequalities and control theoretic mod-
els for predicting time-varying urban network flows. Trans-
port Sci 30:14–31

9. Harker PT (1991) Generalized Nash games and quasi-
variational inequalities. Europ J Oper Res 54:81–94

10. Harker PT, Pang JS (1990) Finite dimensional variational in-
equality and nonlinear complementarity problems: A sur-
vey of theory, algorithms and applications. Math Program
48:161–220

11. Kalker JJ (1988) Contact mechanical algorithms. Comm
Appl Numer Meth 4:25–32

12. Kalker JJ (1990) Three-dimensional elastic bodies in rolling
contact. Kluwer, Dordrecht

13. Kinderlehrer D, Stampaccia G (1980) An introduction to
variational inequalities and their application. Acad. Press,
New York

14. Mistakidis ES, Stavroulakis GE (1998) Nonconvex Optimiza-
tion in Mechanics. Algorithms, heuristics and engineering
applications by the F.E.M. Kluwer, Dordrecht

15. Mosco V (1976) Implicit variational problems and quasi-
variational inequalities. In: Nonlinear operators and the
calculus of variations. Lecture Notes Math, vol 543.
Springer, Berlin, pp 83–156

16. Naniewicz Z, Panagiotopoulos PD (1995) Mathematical
theory of hemivariational inequalities and applications. M.
Dekker, New York

17. Oden JT, Kikuchi N (1988) Contact problems in elasticity:
A study of variational inequalities and finite element meth-
ods. SIAM, Philadelphia
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