The k closest pairs problem

Hans-Peter Lenhof Michiel Smid
Maz-Planck-Institut fir Informatik
W-6600 Saarbricken, Germany

April 1992

Abstract

We give an algorithm that computes the k closest pairs in a set of
n points in d-dimensional space in O(nlogn + klogn log(n?/k)) time.

1 Introduction

In a recent paper, Katoh and Iwano [2] give a technique for solving problems
such as finding the k£ furthest pairs in a set of n planar points, and finding
the k closest bichromatic pairs in a set of n red and n blue points in the
plane.

In this note, we show that their method can also be applied to find the k
closest pairs in set of n points in d-space.

For this problem, the following results are known. Smid [4] shows how to
compute the n?/? closest pairs in O(nlogn) time. This result was extended
in two directions. First, for the planar case, Dickerson and Drysdale [1]
show how to compute the k closest pairs—ordered by their distances—in
O(nlogn+klogn) time. Second, Salowe [3] gives an algorithm that computes
the n closest pairs in O(nlogn) time. The latter result holds for an arbitrary
dimension.

Let S be a set of n points in d-space and let £ be an integer such that
1<k< (72‘) We give a recursive algorithm that computes the & closest pairs
in S. Distances are measured in an arbitrary L;-metric, where 1 < ¢t < oo.

The algorithm works as follows. If n? < 4k, then compare all pairs of
points in S and output the k closest ones.

Assume that n? > 4k. Let [:= [4k/n]. Use Vaidya’s algorithm [5] to
compute for each point in S its [nearest neighbors. This gives a list of In
pairs of points. In this list, select the 2k closest pairs. This gives a multiset
DT of size 2k. (Pairs may be represented twice in DT.) Let D be the set
obtained from D% by removing duplicates. Then, k£ < |D| < 2k.

Note that—in general—D does not contain all k£ closest pairs of S. There-
fore, let

S":={p€ S :(p,q) € D for all | nearest neighbors ¢ of p}.

Use the same algorithm to find the & closest pairs in the set S’. Let D'
be the list containing these pairs.
Then, in the final step, select the & closest pairs in the set D U D’.

This is the entire algorithm. We first prove the correctness. Then, we
analyze the running time.

Lemma 1 The set DUD' contains all k closest pairs in S. As a result, the
algorithm 1s correct.

Proof: Let {p,q} be one of the k closest pairs. We distinguish three cases.
Case 1: q is one of the | nearest neighbors of p. Then, {p, ¢} € D.
Case 2: p is one of the [nearest neighbors of g. Then, {p, ¢} € D.
Case 3: ¢ is not one of the [nearest neighbors of p, and p is not one of the
[nearest neighbors of q.

Let 1 <" <[and let r be the I'-th nearest neighbor of p. Let dy be the
k-th smallest distance in S. Then

d(p,r) < d(p,q) < d.

It follows from the definition of D% that it must contain the pair (p,r). Since
I' is arbitrary, it follows that p € S’.

By a symmetric argument, it follows that ¢ € S’. Since S’ C S, the pair
(p, ¢) must be one of the k closest pairs in S’. Therefore, {p,q} € D'. I

To analyze the running time, we need the following lemma.

Lemma 2 The set S’ has size at most n/2.
Proof: Clearly, |D*| > [|5’|. Since |D*| = 2k, we get

2k 2k 2k

S ST = T S Ty

n/2. 1

Let T'(n,k) denote the running time of the algorithm. Since Vaidya’s
algorithm takes O(Inlogn) time, it follows that for n? > 4k,

T(n,k) = O(lnlogn + klogk) + T(|S'], k)
= O((n+k)logn)+T(n/2,k).
Clearly, T'(n, k) = O(n?) for n? < 4k.

Applying the recursive relation repeatedly, we obtain (assuming the con-
stant in the Big-O-bound is one)

j .
T(nk) < 3 (22 + k) log% + T(n/2* k)
i=0
< (n+jk)logn +T(n/27 k).
Now take j = |5 log(n?/k)]. (Note that j > 1, because n? > 4k.) Then
n n

1 <
2 n?/k

_VF

and, therefore,
T(n/2%' k) < T(Vk, k) = O(k).
This shows that
T(n,k) = O(nlogn + klognlog(n®/k)).
We have proved the following theorem.

Theorem 1 Let S be a set of n points in d-space and let 1 < k < (g) We
can find the k closest pairs in the set S in O(nlogn—+klognlog(n®/k)) time.

We can obtain the £ closest pairs ordered by their distances, by using
the above algorithm and then sorting the list of k closest pairs. This adds
O(klogk) to the time complexity, which is less than the time bound of our
algorithm. Hence, we can also solve the ordered k closest pairs problem in
O(nlogn + klognlog(n?/k)) time.

References

[1] M.T. Dickerson and R.S. Drysdale. Enumerating k distances for n points
in the plane. Proc. 7-th ACM Symp. on Comp. Geom., 1991, pp. 234-238.

[2] N. Katoh and K. Iwano. Finding k farthest pairs and k closest/farthest
bichromatic pairs for points in the plane. Proc. 8&th ACM Symp. on
Comp. Geom., 1992, to appear.

[3] J.S. Salowe. Shallow interdistance selection and interdistance enumer-
ation. Proc. WADS’91, Lecture Notes in Computer Science, Vol. 519,
Springer-Verlag, Berlin, 1991, pp. 117-128.

[4] M. Smid. Maintaining the minimal distance of a point set in less than
linear time. Algorithms Review 2 (1991), pp. 33-44.

[5] P.M. Vaidya. An O(nlogn) algorithm for the all-nearest-neighbors prob-
lem. Discrete Comput. Geom. 4 (1989), pp. 101-115.

