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Use of the free energy in dynamical fission calculations and of the level density in si-
multaneous particle-evaporation yields raises the question of compatibility of these two
pieces of input of quite different origin in calculations of the decay of hot compound
nuclei. Seeming discrepancies between the Bethe formula for the level density and the
popular assumption of a quadratic temperature dependence of the free energy are dis-
cussed in the framework of the picket-fence model, where the theory of partitions allows
to calculate all thermodynamic functions analytically together with their limits for large
systems and high temperature.

1. Introduction

When nuclear fission dynamics is described by Langevin equations, one derives the

conservative forces from the derivatives of the free energy F (q) with respect to

the shape parameters q at fixed temperature. For moderate excitation energies,

corresponding to temperatures T < 4 MeV, the free energy is written as1

F = F0(q) − a(q)T 2, (1)

where F0 is the zero-temperature liquid-drop energy. A temperature-dependent shell

and pairing correction 2,3 is to be added to F0 for temperatures below the shell-

model energy ~ω. The emission rates of light particles from an excited compound

nucleus are proportional to the ratio ρ(E∗
sd)/ρ(E∗

0 ) of the level densities at the

intrinsic energyE∗
sd at the saddle point of the emission channel to the level density at

the excitation energy E∗
0 of the initial state. For the level density the asymptotically

valid Bethe formula4

ρ(E∗,q) '
exp
(

2
√

a(q)E∗
)

√
48E∗

, aE∗ � 1 (2)

is mostly used, where we left out spin and isospin degrees of freedom. Consistency of

fission-evaporation models requires that the level-density parameter a(q) in Eqs. (1)

and (2) should be the same quantity, moreover Eq. (1) should imply Eq. (2).
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2. Two Seeming Discrepancies

From the canonical partition sum

Z(β) =
∑

i

e−βEi ≈
∫ ∞

−∞
ρ(U)e−βUdU (3)

with β = 1/T and the definition of the free energy F = −T lnZ one finds for the

level density the inverse Laplace transform

ρ(U) =
1

2πi

∫ c+i∞

c−i∞
eβ(U−F )dβ =

1

2πi

∫ c+i∞

c−i∞
ea/β+β(U−F0)dβ, (4)

where Eq. (1) has been used. This integal diverges. However, the ansatz

ρ(U) = δ(E∗) + Θ(E∗)ρ(E∗) (5)

with the excitation energy E∗ = U − F0 and ρ(E∗) = 0 for E∗ < 0 leads to the

convergent integral

ρ(E∗) =
1

2πi

∫ c+i∞

c−i∞
(ea/β − 1)eβE∗

dβ =
√

a/E∗I1(2
√
aE∗) (6)

with the modified Bessel function I1. Using its asymptotic expansion, one finds

ρ(E∗) ' (aE∗)1/4

√
4πE∗

(

1 − 3

16
(aE∗)−1/2 + . . .

)

e2
√

aE∗

(7)

in disagreement with Eq. (2). If the integral (4) would be evaluated in the saddle-

point approximation – although it does not exist – the result (7) would also be

obtained.

An alternative way to relate the free energy (naively) to the level density starts

with the observation that from the definition of the entropy S as the logarithm of

the phase-space volume Ω(E∗) follows

ρ(E∗) =
∂Ω

∂E∗
=

∂S

∂E∗
eS(E∗). (8)

One may use the thermodynamic relations

S(T ) = −∂F/∂T (9)

and

E∗(T ) = F (T ) − F0 − T∂F/∂T, (10)

invert the last equation, and insert T (E∗) into Eq. (9) to obtain S(E∗). With the

form (1) for the free energy F (T ) the equation

ρ(E∗) =

√

a

E∗
e2

√
aE∗

(11)

follows, which is again different from Eq. (2) as well as from Eq. (7). Obviously

something is wrong with some of the relations used above.
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3. Canonical Partition Sum in the Picket-Fence Model

One of the very few model systems which allow an analytical treatment is the picket-

fence model. It consists of non-interacting fermions in a one-dimensional harmonic

oscillator, i.e. with an equidistant single-particle spectrum. We shall see that even

this almost trivial model is sufficient to clarify the discrepancies mentioned above.

From the generating function G(y) for the canonical partition sum Z(β,N) for

N non-interacting fermions at temperature T = 1/β 5

G(y) =
∞
∏

n=1

(1 + e−βεny) =
∞
∑

N=0

Z(β,N)yN (12)

with single-particle energies εn one derives for the picket-fence model εn = nε0

Z(β,N) =
bN(N+1)/2

∏N
n=1(1 − bn)

(13)

with b = exp(−βε0). This is easily seen in the following way: In the picket-fence

model the product representation (12) of the generating function yields the func-

tional relation G(y) = (1+ by)G(by). Inserting the power series for G on both sides

of this equation and equating coefficients of the same power in y yields the recur-

rence relation Z(N) = bN(1 − bN )−1Z(N − 1), from which Eq. (13) follows with

the initial value Z(β, 0) = 1. The free energy is then given by

F (β,N) = − 1

β
lnZ(β,N) = N(N + 1)

ε0
2

+
1

β

N
∑

n=1

ln(1 − e−nβε0) (14)

and is seen to have an essential singularity at T = 0.

The denominator of the partition sum (13) is the generating function of the

partition numbers pN(n). They are the number of partitions {nj} of n into at most

N integers nj ≥ 0 with repetition 6

n =

N
∑

j=1

jnj . (15)

The partition sum becomes Z(β,N) = bN(N+1)/2
∑∞

n=0 pN (n)bn in terms of the

pN (n). Inverting Eq. (3) with this expression for Z(β,N), the level density is

ρ(E∗) =

∞
∑

n=0

pN(n)δ(E∗ − nε0), (16)

where F0 = N(N + 1)ε0/2 has been used. As expected, the level density has con-

tributions at the discrete excitation energies E∗
n = nε0 of the picket-fence model.

In view of the relation (15) the weights pN (n) appear to describe the eigenvalue

multiplicity of a system of N bosons in the picket-fence model. And in fact, starting

from the generating function for bosons 5 G(B)(y) =
∏∞

n=1(1− bny)−1, one obtains

for the bosonic partition sum Z(B)(β,N) = bN
∏N

n=1(1 − bn)−1. Since in this case

F0 = Nε0, the expression (16) is seen to be also valid for the boson system.
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To see that the pN (n) also describe the degeneracy in the picket-fence model

for fermions, we represent the excitations of the fermion system as the sum of the

excitation energy of nh holes, distributed over N levels below and at the Fermi

energy and np particles, which are allowed to occupy any states above the Fermi

energy. The generating function for the holes is

G(h)(yh) =

n−1
∏

n=0

(1 + bnyh) =

N
∑

nh=0

Zh(β, nh)ynh

h ,

where the fact has been used that the lowest hole state, the one at the Fermi energy,

has zero energy. Expanding the product into a power series with respect to b and

yh gives

G(h)(yh) =

N
∑

nh=0

nmax
∑

n=nmin

q(N)
nh

(n)bnynh

h ,

in terms of the number qnh
(n) of partitions of n into exactly nh integers ≤ N ,

without repetition. The boundaries of the inner sum are nmin = nh(nh − 1)/2 and

nmax = nh(N − (nh + 1)/2). By an argument similar to the one sketched above in

connection with Eq. (13) one can prove that the partition sum for the holes is

Zh(β, nh) = bnh(nh−1)/2
nh
∏

n=1

1 − bN+1−n

1 − bn
. (17)

Similarly the generating function for the partition function of the particle states is

G(p)(yp) =
∞
∏

n=1

(1 + bnyp) =
∞
∑

np=0

Zp(np)y
np

with the partition sum

Zp(β, np) =
bnp(np+1)/2

∏np

n=1(1 − bn)
. (18)

Zp(β, np)Zh(β, np) is the partition function for the combined system with np = nh.

Summing over all np ≤ N represents the same system as the N -fermion system

with the partition function (13), except that the energy zero-point is shifted by

F0 = ε0N(N + 1)/2. One therefore expects the identity

N
∑

np=0

Zp(β, np)Zh(β, np) = b−N(N+1)/2Z(β,N)

to hold. Inserting the expressions (17), (18), and (13) leads to the algebraic identity

N
∑

np=0

bn
2

p

np
∏

n=1

1 − bN+1−n

(1 − bn)2
=

N
∏

n=1

1

1 − bn
, (19)
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which can also be proved directly.6 An expansion of Eq. (19) in powers of b leads

to a sum rule for partition numbers

N
∑

µ=0

µ(N−µ)
∑

n′=0

pµ(n− n′ − µ)q(N)
µ (n′) = pN (n).

4. The Thermodynamic Limit

It is instructive to consider the thermodynamic limit N → ∞, ε0 = Ef/N , Ef

fixed, for the level density and the free energy per particle f(β) = F/N . Expanding

the logarithm in Eq. (14) in a power series, one obtains

f = lim
N→∞

F (β,N)/N =
Ef

2
− 1

Efβ2

(

π2

6
− Li2(e

−βEf )

)

with the dilogarithm Li2(x) =
∑∞

l=1 l
−2xl = −

∫ x

0 t
−1 ln(1− t)dt. The temperature-

independent part of f is the average energy of particles in an external (one-

dimensional harmonic oscillator) potential, where Ef is the highest occupied state.

The temperature-dependent part has again an essential singularity for β → ∞, i.e.

T → 0. However, if this limit is taken along the real axis, the dilogarithmic term

vanishes exponentially. For real T the form (1) with F = Nf is therefore justified

and gives

a

N
=

π2

6Ef
. (20)

The expression (1) must however not be extended into the complex β-plane as it

was done in Eq. (4).

In order to take the thermodynamic limit of the level density, we write

ρ(E∗)dE∗ =

N(E∗+dE∗)/Ef
∑

n=NE∗/Ef

pN (n) = pN(NE∗/Ef )N
dE∗

Ef
. (21)

For E∗ ≥ Ef one has pN (NE∗/Ef ) = p(NE∗/Ef ), the unrestricted partition

(N → ∞). An asymptotic approximation for this partition is the first term of the

Hardy-Ramanujan-Rademacher series 7

p(n) ' exp(
√

2π2n/3)√
48 n

[

1 − 1
√

2π2n/3
+ O

(

exp(−
√

π2n/6)
)

]

with n = n−1/24. Putting n = NE∗/Ef in this equation and introducing a instead

of Ef with Eq. (20), we find – neglecting terms of order n−1/2 – the asymptotic

expansion of the level density, Eq. (21)

ρ(E∗) ' a
exp
(

2
√

aE∗ − (π/12)2
)

√
48 [aE∗ − (π/12)2]

. (22)
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This agrees with Bethe’s result (2), apart from the term (π/12)2, which is in general

very small compared to the leading term aE∗. An alternative, asymptotic expres-

sion, this time for pN (n), was derived by Auluck and Kothari 8

pN (n) ' 1√
48n

exp

(

π

√

2

3
n−

√
6n

π
e−πN/

√
6n

)

, N � n1/2,

which yields

ρ(E∗) ' 1√
48E∗

exp

(

2
√
aE∗

[

1 − 3

π2
e−

√
aEf (Ef /E∗)

])

.

This again agrees with Eq. (2), except for the very small correction term in the

exponent.

There is an alternative way to show the problems connected with a tacit exten-

sion of the ansatz (1) into the complex β-plane. Trying to evaluate integral (4) by

the saddle-point method with the exact expression (14) for the free energy, yields

the saddle-point condition

0 =
∂(β[U − F ])

∂β
= E∗ −

∞
∑

n=1

nε0
eβnε0 − 1

.

Besides the real solution β0 of this equation, which one would also have obtained

with Eq. (1), there is an infinity of additional solutions

βν = β0 ± i
2π

ε0
ν, ν = 1, . . . , (23)

which move to infinity in the thermodynamic limit ε0 → 0. The integrand in Eq. (4)

should therefore not be evaluated by the saddle-point approximation.

Difficulties with the use of the saddle-point approximation to evaluate the inte-

gral (4) were noticed already by Van Lier and Uhlenbeck, 5 but seem to have been

disregarded later.

It remains to understand why the expression (11) for the level density differs

from Eq. (7) although the same ansatz (1) for F (β) has been used in both cases.

With Eq. (8) for the level density the saddle-point approximation for the canonical

partition sum Eq. (3) yields

e−βF = S′(E0)e
S(E0)−βE0

√

2π/(S + lnS′)′′, (24)

where E0(β) follows from the saddle-point condition β = S ′(E0)+(lnS)′. One now

argues that for large N the second term on the right side of this equation is of order

1/N smaller than the first term and it is dropped. Taking the logarithm of Eq. (24)

−βF = S(E0) − βF0 +
1

2
ln

2πS′2

(S + lnS′)′′
,

one argues again that the last term on the right side of this equation is of order

1/N smaller than the other terms and drops it. Identifying in Eq. (10) E∗ with E0,

one obtains from i Eq. (1)E∗ = aT 2 and S(E∗) = 2
√
aE∗ and therefore Eq. (11)
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follows by insertion into Eq. (8). This derivation of the thermodynamic relations

shows that the contributions from the factor ∂S/∂E∗ in Eq. (8) are always neglected

and in fact, taking the logarithm of this equation, ln ρ = S + lnS ′, one would drop

the lnS′ term for large N . In this strong thermodynamic limit only the exponential

term in Eq. (11) is well-defined, the rest is of the neglected order.

5. Grand Canonical Ensemble

Since Bethe’s treatment of the nuclear level density, the starting point has always

been the partition sum of the grand canonical ensemble

G(e−α, β) =
∞
∑

N=0

Z(β,N)e−Nα =
∞
∏

n=1

(1 + e−β(εn−µ)),

where α = −µβ with the chemical potential µ. In the picket-fence model, εn = nε0,

G(α, β) =

∞
∑

N=0

e−(ε0N(N+1)/2−Nµ)β

∏N
n=1(1 − bn)

=

∞
∑

N=0

e−(ε0N(N+1)/2−Nµ)β
∞
∑

n=0

pN (n)e−βnε0 . (25)

In view of the relation
∞
∏

n=1

(1 + e−α−βεn) =
∑

N

∑

Ui

e−αN−βUi ≈
∫

dN

∫

dU ρ(N,U)e−αN−βU

the level density for the N -particle system is represented by the double inverse

Laplace transform

ρ(E∗) =
1

(2πi)2

∫ c+i∞

c−i∞
dα

∫ c+i∞

c−i∞
dβ G(α, β)e−αN ′+βU . (26)

Inserting the expression (25) for the picket-fence model, one obtains

ρ(E∗) = δNN ′

∑

n

pN (n)δ(nε0 −E∗),

in agreement with Eq. (16), as it should be.

We now consider the Gibbs potential

Ψ(α, β) = lnG(α, β) =

∞
∑

n=1

ln(1 + bn−nµ) (27)

with nµ = [µ/ε0]. Using standard manipulations, but dropping no terms, gives

Ψ =
1

2
βε0nµ(nµ − 1) + 2

∞
∑

n=0

ln(1 + bn) − ln 2 −
∞
∑

n=nµ

ln(1 + bn).

Expanding ln(1 + bn) = −∑∞
l=1(−bn)l/l and interchanging l and n summations,
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one obtains

Ψ = −1

2
α

(

µ

ε0
− 1

)

+
1

βε0

(

π2

6
+

∞
∑

l=1

1

l

(−bnµ)l

1 − bl

)

− ln 2.

In the thermodynamic limit ε0 → 0, ε0N = Ef fixed, the potential per particle

becomes

ψ(α, β) = lim
n→∞

Ψ

N
=

1

βEf

(

α2

2
+
π2

6
+ Li2(−e−α)

)

.

For real β with α = µβ � 1 the dilogarithm is negligible. If the approximation

G(α, β) ≈ exp(Nψ(α, β)) is inserted into Eq. (26) and the double integral is evalu-

ated in the saddle-point approximation, Eq. (2) results, despite the fact that for the

Gibbs potential (27), before the limit N → ∞ is taken, the saddle-point condition

∂βΨ = −U has clearly the infinitely many complex solutions (23). Similarly the

second saddle condition ∂αΨ = −N has also an infinity of complex solutions.

6. Concluding Remarks

We have seen that approximations for the free energy F (β), valid on the real β-axis,

can in general not be extended into the complex β-plane, in particular since F (β)

has an essential singularity at T = 1/β = 0. When the thermodynamic limit in

the derivation of asymptotic approximations for the level density is taken in several

separate steps, special care is needed to assertain the validity of all equations to the

desired order of N . This has to be kept in mind when, for instance, one wants to

find out which shell and pairing corrections to the Bethe formula follow from given

Strutinsky-type, temperature-dependent corrections to the free energy.

It should be stressed that the above considerations do not shed light on the

puzzling fact that empirical fits of the level-density parameter a yield substantially

larger values than predictions on the basis of any independent fermion model, self-

consistent or not.9
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