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N E T W O R K  S C I E N C E

Cumulative effects of triadic closure and homophily 
in social networks
Aili Asikainen1, Gerardo Iñiguez2,1,3,4, Javier Ureña-Carrión1, Kimmo Kaski1,5, Mikko Kivelä1*

Social network structure has often been attributed to two network evolution mechanisms—triadic closure and 
choice homophily—which are commonly considered independently or with static models. However, empirical 
studies suggest that their dynamic interplay generates the observed homophily of real-world social networks. By 
combining these mechanisms in a dynamic model, we confirm the longheld hypothesis that choice homophily 
and triadic closure cause induced homophily. We estimate how much observed homophily in friendship and 
communication networks is amplified due to triadic closure. We find that cumulative effects of homophily ampli-
fication can also lead to the widely documented core-periphery structure of networks, and to memory of homo-
philic constraints (equivalent to hysteresis in physics). The model shows that even small individual bias may 
prompt network-level changes such as segregation or core group dominance. Our results highlight that individual- 
level mechanisms should not be analyzed separately without considering the dynamics of society as a whole.

INTRODUCTION
One of the most important traits of human sociality is homophily 
(1), the tendency of similar people to be connected to each other due 
to their shared biological and cultural attributes such as gender, 
occupation, or political affiliation. Homophily has been observed 
across various social networks (1–5), and it is a major force behind 
several pressing social issues including inequality, segregation, and 
online echo chambers (6–8). Thus, a thorough quantitative under-
standing of the network mechanisms leading to homophily (9–12) 
is essential for promoting a sufficient flow of information (1, 13) and 
equal opportunity in social networks of individuals with diverse 
personal preferences.

The homophily observed in social networks is often attributed 
either to choice homophily, defined by people’s preference when 
choosing whom to connect with, or to induced homophily, rising 
from constraints in the opportunities of individuals to make con-
nections (2). These two mechanisms and their relative importance 
have long been a subject of study in social network research (14, 15). 
However, as suggested by longitudinal empirical results (16, 17), 
the two mechanisms of homophily generation cannot be separated 
without considering the cumulative advantage-like dynamics (10) 
driving the evolution of social networks: Choice homophily creates 
circumstances for induced homophily, such as groups of similar 
people interacting, which are then further reinforced in cycles of choice 
and induced homophily. While the dynamics of homophily is well under-
stood in the case of tipping point models of residential segregation 
(18, 19), a similar understanding of the dynamics in social networks 
is still needed to validate and measure homophily amplification (17).

Here, we introduce a minimal model of social network evolution 
to analyze to what extent the structural constraints caused by triadic 
closure and choice homophily interact. The triadic closure mecha-

nism uses the existing social network to create new connections be-
tween people who share common friends, acquaintances, or other 
connections. This mechanism has been reported as the most common 
structural constraint (16) and can explain many salient features of 
empirical social networks. These include a high number of closed 
triangles between acquaintances and fat-tailed degree distributions 
(20–23). Thus, triadic closure should be considered as the main mecha-
nism in most minimal dynamic social network models (20, 24, 25). 
In our approach, individuals are considered to belong to either of 
two groups (a and b) representing the values of a static attribute of 
interest (gender, class, party, etc.), and they rewire their connections 
by two mechanisms: triadic closure (modeling the creation of edges 
via current contacts) and random rewiring [emulating any unknown 
mechanisms beyond triadic closure, such as focal closure in large 
foci (16, 26)]. Choice homophily/heterophily is implemented by ac-
cepting new links with a bias probability dependent on the similarity 
of attributes between individuals.

In this study, we characterize the rich tapestry of emergent be-
havior captured by the model with a mean-field bifurcation analysis 
for varying relative group sizes, triadic closure probabilities, and choice 
homophily rates. We measure the amount of observed homophily 
in the network, which we interpret as the sum of choice homophily 
(a parameter in the model) plus the induced homophily caused by 
triadic closure acting on a homophilic social network. By tuning the 
parameters of the system with empirical data on friendship and com-
munication networks, we find that, under the right circumstances, 
even a small amount of choice homophily may be greatly amplified 
by triadic closure to produce large amounts of observed homophily. 
Further, we find that the interplay of triadic closure and homophily 
can explain the emergence of core-periphery structures. These findings 
suggest that the observations of homophilous patterns of association 
in society should not be explained solely on the basis of a human 
preference for similarity, but as a constantly evolving interplay 
between structural constraints and homophily, one that requires 
computational simulation as a central part of the analysis.

Model definition and parameters
We introduce a model of social network evolution with a simultaneous 
interplay of triadic closure and choice homophily (see Fig. 1, A to E 
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for an illustration and further model details). The model is stylized 
such that it contains a minimal set of simple mechanisms on how 
social relationships are made and forgotten; details beyond these core 
mechanisms are modeled by uniform randomness to assume the least 
amount of information on them. The initial social structure is a random 
network with static attribute groups a and b (of relative sizes na and 
nb, with na + nb = 1) distributed among nodes uniformly at random 
and independently of the initial network structure, such that there 
is a fraction Pab = Pba of edges between groups, and fractions Paa, Pbb 
within each group (Pab + Paa + Pbb = 1).

From its initial state, the network evolves with nodes updating 
their connections. At each time step, we select a focal node uniformly 
at random and a candidate neighbor, representing a social encounter 
that might lead to a new social relationship. The candidate neighbor 
is chosen by triadic closure with probability c or uniformly at random 
otherwise [emulating any other mechanisms for edge creation be-
yond the triadic closure; (23, 27–30)]. The triadic closure mecha-
nism selects a candidate neighbor by randomly sampling a neighbor 
of the focal node and then a neighbor of the sampled neighbor. If 
the edge between the focal node and the candidate node cannot be 
created (because it would create a multi-edge or a self-loop, or be-
cause the degree of the focal node is zero), then no updates are made 
for the focal node at this step.

The edge between the focal node and candidate neighbor is created 
with probability Sab if the focal node is in group a and the candidate 
neighbor is in group b. The elements Sab form a 2 × 2 bias matrix 
specifying the amount of choice homophily/heterophily in the social 
network. For simplicity, we parameterize the bias matrix as Saa = sa, 
Sab = 1 − sa, Sbb = sb, and Sba = 1 − sb, where sa (sb) is the choice homo-
phily for group a (b). In this way, when sa = sb = 1/2, all of the 
elements of the bias matrix are also 1/2, i.e., there is no choice homo-
phily bias. Multiplying the bias matrix by a constant changes the 
speed of network evolution, but not the fixed points of the dynamics. 
Note that the bias depends only on the groups the two individuals 
belong to, meaning that individuals have homogeneous choice 
homophily preferences (31, 32).

Last, as maintaining social connections requires mental capacity 
and time investment, creating new connections implies forgetting 
some of the old ones (33). We model this process by randomly re-
moving an edge of the focal node after a successful edge creation. 
This keeps the degree of the focal node unchanged (the individual 
making the time investment) but alters the degrees of the other two 
affected nodes, thus changing the degree distribution of the network. 
Note that random link removal may open triangles, while in reality, 
links that are surrounded by triangles are more likely to be strong 
links (24) and thus less likely to be removed. However, here we opt for 
random link removal (29) which does not involve these additional 
assumptions of social behavior and is a typical choice in this type of 
social network models [along with random node deletion; (26, 27)].

RESULTS
In our approach, the interplay between homophily and triadic closure 
(in a social network with two attribute groups) forms a dynamical 
system in which the evolution from an arbitrary initial network de-
pends on the parameters that regulate choice homophily (sa, sb) and 
triadic closure (c). As with any other network model, the associated 
stochastic process exhibits random fluctuations, but the average dy-
namics of key behavioral quantities such as the degree distribution, 
clustering coefficient, and, centrally, the observed homophily depend 
deterministically on the model parameters. We characterize the be-
havior of the network following our model dynamics using a mean-field 
approximation and confirm our results with numerical simulations 
(see Materials and Methods and the Supplementary Materials).

The amount of homophily that can be directly observed in the 
model network is not necessarily the same as the choice homophily 
parameter in the model. In a network with two groups of equal size 
(na = nb), the observed homophily within groups a and b (denoted 
by oa and ob) is equal to the transition probability that following a 
link from a group leads to the same group (Taa and Tbb). Thus, when 
there is no triadic closure (c = 0), the choice homophily equals the 
expected fraction of neighboring nodes in the same group (sa = oa = Taa 
and sb = ob = Tbb). If one of the groups is larger (na > nb) and there is 
no triadic closure (c = 0), the fraction of neighbors Taa in, group a is 
larger than the choice homophily bias (sa). This is why we define a 
group-size correction in the observed homophily as

   o  a   =    n  b    T  aa   ───────────   n  a  (1 −  T  aa   ) +  n  b    T  aa       (1)

and equivalently for group b. Note that this relation simplifies to 
oa = Taa and ob = Tbb when the attribute groups are of equal size 

0.0 0.5 1.0
Taa

0.0

0.5

1.0

(T
2

) a
a

1 − c

c F

Saa

1 − Saa

Sab

1 − Sab

BA C

D E

Fig. 1. Mechanisms of triadic closure and choice homophily. (A) A focal node 
selected uniformly at random (node at the center with green boundary) finds a 
candidate neighbor by either (B) selecting a node uniformly at random with prob-
ability 1 − c or by (D) closing a triangle with probability c. (C and E) For a focal node 
in group i, the candidate neighbor in group j is accepted with bias probability Sij 
(where i, j ∈ {a, b}). We parametrize Sij with tunable parameters sa, sb such that Saa = 
sa, Sbb = sb, Sab = 1 − sa, and Sba = 1 − sb. If the potential edge [dashed line in (B) and 
(D)] is accepted, an edge of the focal node (selected uniformly at random) is re-
placed by one between the focal and candidate neighbor nodes. Otherwise no 
edges are rewired. (F) Probability (T2)aa of choosing a candidate neighbor with 
triadic closure from the same group as the focal node (a) as a function of observed 
homophily oa = Taa for equally sized (na = nb) and equally connected groups (Taa = Tbb 
and Tab = Tba = 1 − Taa). If the network is not randomly mixed (Taa ≠ 1/2), the prob-
ability of triadic closure choosing two nodes of the same group is always larger than 
the same probability if the selection is done uniformly at random (1/2), implying 
that triadic closure amplifies existing observed homophily in the network (or 
suppresses heterophily). However, triadic closure without choice homophily is not 
enough to maintain the observed homophily in the network, which would make 
(T2)aa equal to observed homophily (dotted and solid lines cross). An exception is 
the case Taa = 1, where two completely separate components exist, and triadic closure 
cannot create edges between them.
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(see Fig. 1F). The size-corrected observed homophily equals choice 
homophily (oa = sa and ob = sb) when there is no triadic closure (c = 0; 
see Materials and Methods). In the case of arbitrary triadic closure 
(c ≥ 0), we further define induced homophily ia such that the observed 
homophily is the sum of induced homophily and choice homophily.

   o  a   =  s  a   +  i  a     (2)

Consistently, for c = 0, we have ia = 0, and all observed homophily 
in the social network is choice homophily.

When individuals form new edges using the triadic closure mecha-
nism in a network with existing homophilous patterns of connectivity, 
they link to their own group even without having an explicit choice 
homophily bias (Fig. 1F). This process increases the observed ho-
mophily (oa) in the network beyond that due to choice homophily 
(sa), which in turn increases the likelihood for homophilic connections 
in upcoming triadic closure events. That is, the existing observed 
homophily originally due to choice homophily creates induced ho-
mophily (more opportunities for similar people to meet), which in 
turn creates even more induced homophily. We call the result of this 
cumulative advantage-like cycle homophily amplification, since the 
amount of observed homophily (oa) is larger than the amount of 
choice homophily (sa) (see Fig. 2A for an illustration). The results of 
this cumulative homophily amplification are shown for equally sized 
groups and symmetric choice homophily (s = sa = sb) in Fig. 2B. In 
the extreme case of no random rewiring (lack of other mechanisms 
of edge creation), even a moderate choice homophily bias (s ≥ 2/3) 
will segregate the social network into fully disconnected groups (see 
Fig. 2B for the mean-field solution and the Supplementary Materials 
for a derivation of this result).

In addition to homophily amplification, the triadic closure mecha-
nism and choice homophily may also lead to a core-periphery (34–36) 
social structure where the core group mostly connects with itself, 
while the periphery group almost exclusively connects with the core 
group even in the presence of choice homophily (see Fig. 2A for an 
illustration of the core-periphery structure and Fig. 2B inset for the 
analytic and simulation results). This effect, seemingly opposed to 
the drive of individuals to find homophilous connections in the pe-
riphery group, is due to the large likelihood of finding a candidate 
neighbor in the core group while attempting to close triangles 
(Fig. 1D). This likelihood is larger when the connectivity between the 
two groups is weak, which explains the role of choice homophily in 
the formation of the core-periphery structure (see the Supplementary 
Materials for a schematic similar to Fig. 1F). Homophily amplification 
and core-periphery are two competing results of the interaction be-
tween triadic closure and choice homophily. A core-periphery social 
structure is possible within otherwise symmetric networks with high 
triadic closure when there is enough choice homophily to boost the 
core-periphery structure, but not enough to tip the balance toward two 
tightly interconnected groups. Alternatively, a core-periphery struc-
ture can appear when there is enough asymmetry in the social network 
due to unequal group sizes or choice homophily biases (Fig. 3).

The rise of homophily amplification and core-periphery social 
structures depends not only on the parameters regulating triadic 
closure and choice homophily but also on the initial conditions and 
random fluctuations of network evolution, meaning that the system 
exhibits memory of previous structural constraints, or homophily 
hysteresis (see Fig. 2B for an example where either of the two groups 
can become the core, and Fig. 3 for a more systematic analysis). In 

other words, if the system parameters change (i.e., choice homophily 
and probability of triadic closure), the social network can experience 
dramatic, nonreversible changes such that returning to the previous 
parameters does not return the system to the same final state (i.e., 
the same fixed point). This suggests that social networks may have 
persistent memory of homophily, with a structure dependent both 
on current choice homophily biases and their history. Therefore, we 
speculate that the timing of interventions aiming to reduce observed 
homophily or the formation of core groups in, say, an online social 
network can be critical. Once the network has reached a stable point 
of its dynamics or is close to one, it can be much more difficult to 
drive the system to another stable point by attempting to change the 
choice homophily of individuals or other parameters.

The time scales at which the social network is driven toward ho-
mophily amplification or a core-periphery structure vary greatly 
(Fig. 4A). Homophily amplification is generally a fast process, re-
quiring only a few rewiring events per edge for the social network to 
reach a stable point. On the other hand, a core-periphery social 
structure evolves slowly toward equilibrium, and even if a network 
would eventually stabilize to a core-periphery structure, it may exhibit 
fast homophily amplification first (Fig. 4B). This result suggests that 

A

B

Fig. 2. Interplay between triadic closure and choice homophily. (A) Schematics 
of the stationary states the network can converge to during the rewiring process 
(stable fixed points of the model dynamics based on a mean-field analysis; see the 
Supplementary Materials). Continuous (dashed) lines represent large (low) intra- and 
intergroup connectivity. The homophily amplification fixed point 0 has many edges 
within groups and a few between (high Taa and Tbb values). In the core-periphery 
fixed point + (−), the large (small) group forms the core and attracts edges from the 
small (large) periphery group: Tab and Tbb (Tba and Ta) are high, while Taa and Tba (Tbb 
and Tab) are low (see the Supplementary Materials for details on fixed point classi-
fication). (B) Observed homophily oa = Taa (fraction of neighbors in the same group 
of a focal node in group a) at the end of the dynamics as a function of choice 
homophily s = sa = sb. Group sizes are equal (na = nb), and triadic closure probability 
c is varied. Mean-field calculations (solid lines correspond to stable fixed points and 
dashed lines to unstable ones) and numerical simulations (crosses) agree very well 
(see the Supplementary Materials for systematic analysis). Inset: Case c = 0.9 where 
both stable/unstable points (continuous/dashed lines) exist. Since na = nb, fixed 
points +/− are equivalent, but for suitable choice homophily (0.56 < s < 0.70), one 
group becomes the core and the other periphery depending on the initial network 
and/or random chance.
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even if a real social network (in society or in online platforms) would 
follow our stylistic model accurately, it might not show a stable, fully 
realized core-periphery structure but a transient state slowly drift-
ing toward the structural dominance of one group over the other. 

If the network is first driven toward homophily amplification, the 
group that eventually becomes the core can depend purely on ran-
dom chance (Fig. 4A).

To estimate how much observed homophily differs from choice 
homophily in real-world social networks, as well as to find the stable 
point that best corresponds to their structure, we fit several empirical 
datasets of off- and online social interactions to our model of triadic 
closure and choice homophily (Fig. 5). We use two approaches for 
fitting the data: (i) solving for the choice homophily paramaters sa 
and sa from the fixed points of the mean-field equations, given the 
T matrix in data and a triadic closure probability c [we denote these 
solutions sa(c) and sb(c)], and (ii) using an approximate Bayesian 
computation (ABC) method (37) to find estimates for the model param-
eters (denoted by   s a  ABC   and   s b  ABC  ). To easily compare the effect of 
triadic closure across datasets, we first normalize choice and observed 
homophily such that 0 implies no homophily/heterophily in the network, 
and 1 implies maximum homophily (   ̂  s   = 2s − 1  and    ̂  o   = 2o − 1 ). 
We then define homophily amplification A as the relative difference 
between the normalized choice and observed homophilies

  A =     ̂  o   −   ̂  s   ─ ∣  ̂  o  ∣   =   i ─ ∣o − 1 / 2∣     (3)

where induced homophily i follows Eq. 2. Note that the observed 
homophily    ̂  o   =   ̂  s  (0)  is the same as the mean-field estimate for c = 0 
(see Materials and Methods for details).

In terms of fitting the mean-field behavior of the model to data, 
three networks show homophily amplification in both groups: a 
Facebook friendship network consisting of two classes in a U.S. uni-
versity (38), a 1-day contact network of primary school students 
divided by gender (39), and a network of political blogs divided by 
party affiliation (40). The rest of them—a friendship network in a 
website for sharing music listening habits (Last.fm) and a network of 
company directors (41), both divided by gender—display a pattern 
where part of the observed homophily within one of the groups could 
be explained by homophily amplification, but the choice homophily 
in the other groups could be underestimated because of the triadic 
closure mechanism. In the case of the board of directors, we observe 
choice heterophily within males and choice homophily within fe-
males, which together with the triadic closure mechanism explain 
the core of female directors observed in the study where this net-
work was introduced (41). In the mean-field fitting procedure, the 
maximum homophily amplification possible [A(c = 1)] goes higher 
than 50% for the social network of political blogs, the largest Facebook 
network, and the board of directors. The exact estimate of choice 
homophily depends on the latent tendency for triadic closure in the 
network (c). However, the parity of the amplification [A(c)] is inde-
pendent of this estimate, and the growth of amplification is monoto-
nous as a function of c.

The qualitative picture we get for the amplification estimates using 
the ABC method is mostly similar to the mean-field fitting process. 
The changes are mostly in the scales of the effects for some datasets, 
and in the primary school data, the almost nonexistent amplification 
is now estimated as negative amplification. In addition, the ABC method 
gives us an estimate for the triadic closure probability (〈cABC〉), which 
ranges from very high (for the Facebook and political blogs networks) 
to medium (for the other datasets). Full posterior distributions for 
the choice homophily variables have a fair amount of variance, which 
means that the point estimates we give are indicative of expected 

Fig. 3. Phase diagrams of available fixed points. Areas of different shading 
correspond to parameter ranges in which the various fixed points exist (stable 
points 0, +, and − or the corresponding unstable points U0, U+, and U−) (see Fig. 2A). 
Note that unstable fixed points are saddle points with qualitatively similar relative 
connectivities than their stable variants. (Top) Choice homophily is the same for both 
groups (s = sa = sb), and fixed points are shown as a function of s and c. (Bottom) 
Choice homophily for the groups is varied, and fixed points are shown as a function 
of sa and sb. Here, the triadic closure probability is fixed to c = 0.95. (Left) Groups are 
of equal size (na = nb). (Right) Groups are of unequal size (na = 0.1). The dashed line 
corresponds to parameter values in Fig. 2B inset and the dot to Fig. 4A and 4B. 
Results in the main panel of Fig. 2B are in the white region with a single fixed point 
(0) (upper left panel).

A B

Fig. 4. Model temporal evolution. Euclidean distance  in (Taa, Tbb)-space between 
current state of the dynamics and fixed points (A) + and (B) U0 as a function of time 
t (in units of the average number of times an edge is selected for rewiring) for na = 
nb, c = 0.9, and s = 0.6 (dashed vertical line in Fig. 2B inset). Markers are simulation 
results, and lines are mean-field solutions. Colors correspond to three different initial 
network configurations. (B) The dynamics amplifies homophily first by quickly ap-
proaching the unstable point U0 and diverting away from it after ∼100 time steps. 
(A) The blue and orange curves slowly approach the core-periphery stable point +. 
The green curve approaches the other core-periphery stable point (−).
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behavior only (see Fig. 5 and the Supplementary Materials for pos-
terior distributions for other parameter values). The ABC method 
also gives us a distribution of possible initial T matrices or, equiva-
lently, P matrices (see the Supplementary Materials for related dis-
tributions). Although for most networks the initial condition is largely 
irrelevant, for the political blogs network, the observed homophily 
needs to be high in the initial condition. This is because of the political 
blogs network being located in a part of a parameter space with 
multiple fixed points (i.e., homophily hysteresis). Our model suggests 
that the network could have been in a core-periphery fixed point if 
the network had not evolved from a structurally polarized situation 
historically (see the Supplementary Materials for details).

A systematic analysis of 100 Facebook networks (38) reveals that 
the bulk of ABC estimated amplification values are positive, rang-
ing up to the 60% value observed for the largest of these networks 

(and above in a few extreme cases). Note that there are large differ-
ences between the choice homophily estimates ( 〈  s a  ABC  〉  and  〈  s b  ABC  〉 ), 
and they are highly correlated (Pearson’s r = 0.88), which may indicate 
that the amount of choice homophily we observe in each university 
is a feature of the university and not of the student class. Results on 
both of our fitting procedures suggest that using observed homophily 
as a naive estimator for choice homophily can lead to a serious 
overestimation or underestimation of the intensity of homophily 
(even for a moderate amount of triadic closure) in several real-world 
social networks, both in society and online platforms.

DISCUSSION
Our findings show that the homophilous patterns of association 
typically seen in empirical social networks not only arise because of 

Fig. 5. Homophily amplification in real-world social networks. (Top) Estimated homophily amplification A (see Eq. 3) for empirical networks. Lines are mean-field fits 
as a function of triadic closure c. Points correspond to the estimated mean homophily amplification values using an ABC method, depicted at the estimated mean triadic 
closure 〈c〉. Edges, nodes, and attributes in each dataset are as follows: Facebook friendships for users by graduation year in the largest of the 100 networks (Facebook), 
links between political blogs by party (Polblogs), friendships between students by gender (School), Last.fm friendships for users by gender (Last.fm), and links between 
people in boards of directors in Norway in 2010 (Directors). The smaller group a is denoted in red. (Scatter plots) Estimated homophily amplification Aa and Ab, and mean choice 
homophily estimates  〈  s a  ABC  〉  and  〈  s b  ABC  〉  (both from ABC method) in all 100 universities of the Facebook dataset, where the two groups i = a, b (na < nb) are graduation years. 
The largest network is marked with a red cross (see Materials and Methods and Table 1 for dataset details). (Bottom) Estimated distributions for choice homophily   s a  ABC   
and   s b  ABC   using the ABC method for the corresponding top panel dataset (colors denote group), where vertical lines depict mean estimates ( 〈  s a  ABC  〉  and  〈  s b  ABC  〉 ).

Table 1. Properties of empirical datasets. List of real-world social networks used in this study, their main properties, and estimated model parameters. N is the 
number of nodes in the network, 〈k〉 is the average degree, na is the fraction of nodes in the smaller attribute group, HIa = (Taa − na)/(1 − na) and HIb = (Tbb−nb)/ 
(1 − nb) are the Coleman homophily indices (60) of the groups, sa(0) and sb(0) are the estimates of the bias parameters when c = 0 [equal to observed homophily, 
sa(0) = oa and sb(0) = ob], and sa(1) and sb(1) are the estimates when c = 1.  〈  s a  ABC  〉  and  〈  s b  ABC  〉  are the mean ABC estimates for sa and sb. 

a b N 〈k〉 na HIa HIb sa(0)/sb(0) sa(1)/sb(1)  〈  s a  ABC  〉  〈  s b  ABC  〉 

Facebook 2009 2008 14,251 42.49 47.2% 0.768 0.794 0.889/0.893 0.666/0.660 0.63 0.70

Polblogs Liberal Conservative 1,224 27.31 48.0% 0.813 0.810 0.909/0.902 0.665/0.664 0.804 0.861

School Female Male 212 4.12 49.1% 0.308 0.213 0.656/0.605 0.595/0.602 0.553 0.625

Last.fm Male Female 188,672 5.49 31.7% 0.168 0.106 0.621/0.540 0.588/0.550 0.55 0.588

Directors Female Male 2,412 6.12 35.8% 0.192 −0.382 0.658/0.321 0.554/0.372 0.594 0.36
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an individual preference for similarity but are also the result of a 
cumulative advantage-like process that has the tendency to amplify 
this intrinsic bias for choice homophily due to triadic closure. By 
means of a minimal model of social network evolution, we find 
bounds on the amounts of triadic closure and choice homophily 
necessary for such amplification of homophily to arise. This corrobo-
rates theoretically previous observations in organizational (42) and 
communication (16, 17) networks. In the generic case of a moderate 
amount of triadic closure events and similarly sized attribute groups, 
choice homophily is amplified by triadic closure through a tipping 
point mechanism analogous to the one responsible for residential 
segregation in the Schelling model (18), in which segregation takes 
place in the social network topology rather than in physical space.

In addition to homophily amplification, our results suggest that 
the interplay between triadic closure and choice homophily is a 
plausible explanation for the emergence of the core-periphery struc-
ture found in social, communication, academic, trade, and financial 
networks (34–36). In such structures, the core group of individuals 
is so well connected that following edges via triadic closure almost 
always leads to the same group, making the core even more connected. 
While triadic closure and homophily are already considered as con-
tributing factors in the formation of communities (cohesive and 
assortative groups densely connected within), the impact of node 
attributes on the core-periphery structure is less studied. Our model 
implies that the dynamic transition to core-periphery networks is 
slow and often preceded by fast but temporary homophily amplifi-
cation. This may partly explain why the social network literature 
has focused on clustered networks rather than other, rarer types of 
intermediate-scale structures.

The coupled effects of triadic closure and choice homophily also 
include the memory of homophilic constraints, i.e., systems with 
multiple, coexisting stable points for a wide range of relative group 
sizes and amounts of triadic closure and choice homophily. In other 
words, even if choice homophily or triadic closure tendencies are 
changed, a social network may preserve memory of their current 
structural configuration. This makes it difficult to alter the shape of a 
stable network, for example, by varying the typical choice homophily 
of its individuals. On the basis of these findings, we expect that, when 
planning external interventions to reduce homophily-induced so-
cial segregation, measures of action should be taken sooner rather 
than later, since the scale of interventions with meaningful effect on 
the structure of the social network increases with time. Still, more 
research is needed before we can deliver concrete suggestions on 
intervention strategies.

Because choice homophily is not directly observable from static 
social network data, one needs to infer it from the available infor-
mation. Such inference is always subject to assuming a model for 
data creation, and the exact estimates for choice homophily should 
always be interpreted with this in mind. Fitting the mean-field solu-
tion of the model to data assumes that the real-world network is in 
a stable state, since it is simply based on matching the linking prob-
abilities (T) of the data with the stable states of the model. The more 
elaborate ABC method involves more observables and a finite number 
of evolution steps. One could also include the number of steps t as a 
fitting parameter to investigate its effect in the convergence of the 
method. The results from the mean-field and ABC fitting procedures 
match each other qualitatively in the sense that the overall conclusions 
drawn from them are the same. However, the point estimate values 
are different in many cases, and there is a notable amount of variance 

in the posterior distributions of the parameter estimates for the ABC 
method. This variance could potentially be reduced by allowing for 
larger network sizes (which are limited by computational constraints), 
by including different summary statistics in the discrepancy function, 
by further tuning the ABC method parameters, or by including ad-
ditional mechanisms in the model. Applying these methods to mecha-
nistic network models is a relatively new approach (43), and new 
developments in this area can be expected as these methods mature.

In contrast to our approach, stationary, nonmechanistic models, 
such as exponential random graphs (ERGMs), can also be used to 
study the interplay between triadic closure and homophily (44–46).
The key conceptual difference to our approach is that ERGMs are 
static network models, which can be used to balance between the 
tendency toward triangles, homophilic edges, homophilic triangles, 
and many other network features as factors explaining network struc-
ture. Our approach is rather a model of cumulative interplay of two 
explicit and microscopic network evolution mechanisms [note, how-
ever, that some carefully crafted microscopic network evolution models 
can converge, under certain assumptions, to ERGMs as stable states 
(46, 47), and ERGMs are often sampled with Markov chain Monte 
Carlo methods in which networks are rewired (48)]. This means 
that ERGMs do not explicitly model cumulative processes or tell 
anything about multiple time scales or metastable states, which 
we find as a consequence of combining triadic closure with a choice 
homophily bias.

Our approach assumes that the biological and cultural attributes 
underlying homophily are constant in time. While this assumption 
is mostly true for long-term individual characteristics such as gender 
or religion, it is less so for traits like political affiliation, occupation, 
and opinions. Networks where both edges and attributes change 
adaptively to each other (i.e., following adaptive coevolutionary 
dynamics) have been studied extensively for biological, economic, 
and social phenomena (49–51). When edges between nodes with 
similar attributes are favored, the adaptive dynamics self-organizes 
into heterogeneous networks where groups of individuals sharing 
attributes are structurally distinguishable from each other (52–56). 
Such a generic feature of adaptive networks makes it likely that our 
observations of the cumulative effects of triadic closure and ho-
mophily will hold even in the case of time-dependent individual 
attributes (57, 58). The study of an adaptive interplay between triadic 
closure and homophily is a worthy line of future research that may 
reveal additional, complex feedback loops between social structure 
and attribute evolution.

The simplicity of our framework suggests that the presence of 
triadic closure and choice homophily for a given attribute value is 
enough to explain some salient features of empirical social networks 
like homophily amplification and core-periphery structures. Yet, the 
effects of more realistic features of society, such as the existence of 
more than two values for a single attribute, structural constraints 
beyond triadic closure, and the coexistence of several attributes in a 
population [in the spirit of the Axelrod model of cultural dissemi-
nation (59)], remain to be studied. We anticipate that our results 
promote even more interest in the data-driven computational simu-
lation of social interactions and shed further light on the relationship 
between triadic closure and homophily. This insight will help re-
searchers and policy-makers in devising intervention strategies to 
decrease the most adverse effects of homophilic decision making, 
including segregated social structures such as gender-specific work-
places and partisan political systems.
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MATERIALS AND METHODS
Mean-field bifurcation analysis
We derive approximate analytical expressions for the temporal evo-
lution of the amount of observed homophily in a social network based 
on a mean-field bifurcation analysis of our model. The key assump-
tion in this approximation is that all nodes within both groups are 
statistically equivalent, in the sense that we only track the relative 
number of connections within and between groups to determine the 
state of the system. Otherwise, the network is considered fully random 
(i.e., following a stochastic block model) and of infinite size. The 
validity of this approximation, which omits all higher-order structure 
such as local clustering or degree distributions, is confirmed by com-
paring it to extensive numerical simulations (see section S2).

In the case of two attribute groups, the state of the system at time t 
can be tracked by a 2 × 2 matrix P, where the element Pab is the 
probability that an edge chosen uniformly at random lies between 
groups a and b. Equivalently, we may follow the dynamics of a 2 × 2 tran-
sition matrix T, where element Tab is the probability that following 
a random edge from a node in group a leads to a node in group b. 
We can switch from the P to the T matrix via

   T  aa   =   2  P  aa   ─ 2  P  aa   +  P  ab       (4)

using a symmetric equation for Tbb, and noting that Tab = 1 − Taa and 
Tba = 1 − Tbb. A similar bijective transformation exists from T to P.

The evolution rules of choice homophily and triadic closure in 
the mean field are captured in the model matrix Mab, defined as the 
probability that, in a single time step of the dynamics, we create an 
edge between nodes in groups a and b, respectively, when a node from 
group a has been selected as the focal node. It can be written as

   M  ab   = [c  ( T   2 )  ab   + (1 − c )  n  b   ]  S  ab    (5)

The first term in the parenthesis on the right side of the equation 
is the probability that triadic closure chooses a candidate neighbor 
between groups a and b, and the second term gives this probability 
for random choice of the neighbor. This sum is then multiplied by 
the choice homophily probability that the link is accepted (Sab).

Using Mab, we then write a rate equation describing the change 
in the fraction of edges within group a

     dP  aa   ─ dt   =  n  a    M  aa   −  n  a    T  aa  ( M  aa   +  M  ab  )  (6)

and a symmetric equation for Pbb (or a similar equation for Pab). 
Here, the first term on the right side of the equation is the rate at 
which the edges are created, and the second term is the rate at which 
they are deleted because of successful rewiring. We determine the 
fixed points of the rate equations and their stability, and therefore 
those of the mean-field dynamics, through linear stability analysis (see 
the Supplementary Materials for details of the analytical solution of 
the model and Figs. 2 to 4 for a summary of the analytical results).

Numerical simulations
We use numerical simulations to verify the accuracy of the mean-
field approximation of Eq. 6 (Fig. 2B). We first construct a random 
network with N = 105 nodes and average degree 〈k〉 = 50. To create net-
works with different initial conditions in terms of in- and out-group 
edges, we choose values for the fractions of same-group neighbors 

Taa and Tbb. For simulations in Fig. 2B the initial networks have 
(Taa, Tbb) = (0.5,0.5). For the inset, we use two initial conditions, i.e., 
(Taa, Tbb) = (0.1,0.9) and (Taa, Tbb) = (0.9,0.1). We then create two 
random networks so that the number of edges in each network cor-
responds to the desired number of in-group edges. Last, we place 
the remaining edges randomly between the two groups, so that the 
final network has L = N〈k〉/2 edges.

Simulations follow the model definition described above. Between 
times t and t + 1, we attempt to rewire L edges, so that on average, 
each edge in the network is chosen once. For the parameters in 
Fig. 2B, t = 102 is enough for getting convergence to a fixed point, 
while for the parameters in the inset, we need t = 103. Each point in 
Fig. 2B is averaged over 102 realizations, with the SD smaller than 
the marker size (see the Supplementary Materials for a more detailed 
analysis of model parameters).

Social network data
We use several large-scale social network datasets to determine em-
pirically the possible effects of triadic closure on the observed ho-
mophily. The first one is Facebook, a friendship network of two 
classes at the University of Pennsylvania in the United States. The 
dataset includes friendships and metadata for 100 universities during 
2005 (38). For each university, we use the subnetwork of the two 
largest classes. The second one is Polblogs, a network of political 
blogs collected in 2005 (40), with edges between two nodes if at least 
one of the blogs links to the other. Blogs are split into two groups using 
the classification of liberal and conservative blogs provided by the 
original study. The third one is School, a network between students 
collected by automatically sensing proximity between individuals. 
The original data have a 20-s time resolution for 2 days, which we 
aggregate into edges by considering two nodes connected if they 
have been in each other’s proximity for at least 20 min during the 
observation period. Nodes are split into two groups according to 
gender (39). The fourth one is Last.fm, a snapshot of a self-reported 
friendship network in a music-listening website. The network is 
split into two groups according to gender, and it includes only users 
for which this information is available (see table S1 for a summary of 
dataset features and the Supplementary Materials for more details). 
The fifth one is Directors (41), a network of board directors for publicly 
listed companies in Norway, with groups determined by gender. This 
dataset was collected to analyze the effect of an affirmative action law 
enforced in 2008, which required for each gender to have at least 40% 
representation in any position, with a link established if two people 
belong to the same board of directors.

Homophily measures and model fitting
We have three ways of estimating choice homophily in the data: naive 
choice homophily estimation, choice homophily estimation with the 
mean-field approximation, and choice homophily estimation with ABC.
Estimation with the mean-field approximation
To estimate the amount of choice homophily in both groups of an 
empirical network, we solve the following inverse problem: Given a 
certain value c of triadic closure, we find the choice homophily pa-
rameters sa and sb in our mean-field solution of the model that lead 
to the observed edge fractions between and within groups, Paa, Pbb, 
and Pab. We solve this inverse problem by setting dPaa/dt = 0 in Eq. 6 
and solving for sa(c) and sb(c) given the matrix P or equivalently the 
transition matrix T (see the Supplementary Materials for a closed-
form formula).
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Estimation with ABC
ABC methods allow us to infer model parameters without knowing 
the explicit functional form of the likelihood function of the model. 
We use a recently developed method called Bayesian Optimization 
for Likelihood-Free Inference (37). The parameters we fit are the 
two choice homophily parameters sa and sb, the triadic closure 
probability c, and the transition matrix at the initial condition (T0). 
We use uniform priors for all of these variables. The relative group 
size na and average degree 〈k〉 are set to the same value as in the data. 
The number of time evolution steps is set to t = 200. The expected 
model results are not sensitive to network size, and for computational 
reasons, network size is limited to N = 1000 (this limitation might 
affect the variance of the posterior estimates). The method also re-
quires defining statistics we want to fit, and for this, we use 14 different 
statistics related to connectivity of the groups, clustering coefficients, 
and core-periphery structure. For consistency, we find that creating 
synthetic networks with our model, the ABC fitting method is able 
to recover all parameter values (with some issues mostly focused 
around the unstable fixed points) (see the Supplementary Materials 
for details).
Naive estimation
In the naive estimation of choice homophily, we assume that all of 
the observed homophily is due to choice homophily. For groups 
of equal size, these estimates are given by Taa and Tbb (i.e., elements 
of the transition matrix). Since group sizes will have an effect on the 
T matrix, we normalize the estimates separately for each group size 
(to keep choice homophily estimates comparable to each other). 
If we set c = 0 in the mean-field estimation, we get a naive estimate 
of the biases that does not consider any triadic closure but, for ex-
ample, corrects for a disproportionate amount of links observed 
within large groups as compared with small groups even if there is 
no intrinsic bias

   
 s  a  (0) =  o  a   =    n  b    T  aa   ───────────   n  a  (1 −  T  aa   ) +  n  b    T  aa        
 s  b  (0) =  o  b   =    n  a    T  bb   ───────────   n  b  (1 −  T  bb   ) +  n  a    T  bb    

   (7)

Note, however, that this feature of our estimation process leads 
to a different size correction than the Coleman homophily index 
(see Table 1) (60).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/19/eaax7310/DC1

REFERENCES AND NOTES
 1. M. McPherson, L. Smith-Lovin, J. M. Cook, Birds of a feather: Homophily in social 

networks. Annu. Revi. Sociol. 27, 415–444 (2001).
 2. J. M. McPherson, L. Smith-Lovin, Homophily in voluntary organizations: Status distance 

and the composition of face-to-face groups. Am. Sociol. Rev. 52, 370–379 (1987).
 3. W. Shrum, N. H. Cheek Jr., S. MacD, Friendship in school: Gender and racial homophily. 

Sociol. Educ. 61, 227–239 (1988).
 4. K. Lewis, J. Kaufman, M. Gonzalez, A. Wimmer, N. Christakis, Tastes, ties, and time: A new 

social network dataset using facebook. com. Soc. Net. 30, 330–342 (2008).
 5. Y. Volkovich, D. Laniado, K. E. Kappler, A. Kaltenbrunner, Gender patterns in a large online 

social network, in Proceedings of the Social Informatics: 6th International Conference 
(SocInfo’14), Barcelona, Spain, 11 to 13 November 2014, L. M. Aiello, D. McFarland, Eds. 
(Springer, 2014), Lecture Notes in Computer Science, vol. 8851, pp.139–150.

 6. D. Zeltzer, Gender homophily in referral networks: Consequences for the medicare 
physician earnings gap (21 February, 2017), available at SSRN; https://ssrn.com/
abstract=2921482 or http://dx.doi.org/10.2139/ssrn.2921482.

 7. M. D. Vicario, G. Vivaldo, A. Bessi, F. Zollo, A. Scala, G. Caldarelli, W. Quattrociocchi, Echo 
chambers: Emotional contagion and group polarization on facebook. Sci. Rep. 6, 37825 
(2016).

 8. A. L. Schmidt, F. Zollo, M. D. Vicario, A. Bessi, A. Scala, G. Caldarelli, H. E. Stanley, 
W. Quattrociocchi, Anatomy of news consumption on facebook. Proc. Natl. Acad. Sci. 
U.S.A. 114, 3035–3039 (2017).

 9. P. DiMaggio, F. Garip, Network effects and social inequality. Annu. Rev. Sociol. 38, 93–118 
(2012).

 10. T. A. DiPrete, G. M. Eirich, Cumulative advantage as a mechanism for inequality: A review 
of theoretical and empirical developments. Annu. Rev. Sociol. 32, 271–297 (2006).

 11. S. Currarini, M. O. Jackson, P. Pin, An economic model of friendship: Homophily, 
minorities, and segregation. Econometrica 77, 1003–1045 (2009).

 12. S. Currarini, J. Matheson, F. Vega-Redondo, A simple model of homophily in social 
networks. Eur. Econ. Rev. 90, 18–39 (2016).

 13. F. Karimi, M. Génois, C. Wagner, P. Singer, M. Strohmaier, Homophily influences ranking 
of minorities in social networks. Sci. Rep. 8, 11077 (2018).

 14. P. M. Blau, A macrosociological theory of social structure. Am. J. Sociol. 83, 26–54 
(1977).

 15. H. Louch, Personal network integration: Transitivity and homophily in strong-tie 
relations. Soc. Net. 22, 45–64 (2000).

 16. G. Kossinets, D. J. Watts, Empirical analysis of an evolving social network. Science 311, 
88–90 (2006).

 17. G. Kossinets, D. J. Watts, Origins of homophily in an evolving social network1.  
Am. J. Sociol. 115, 405–450 (2009).

 18. T. C. Schelling, Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971).
 19. D. Vinković, A. Kirman, A physical analogue of the schelling model. Proc. Natl. Acad. Sci. 

U.S.A. 103, 19261–19265 (2006).
 20. R. Toivonen, L. Kovanen, M. Kivelä, J.-P. Onnela, J. Saramäki, K. Kaski, A comparative study 

of social network models: Network evolution models and nodal attribute models.  
Soc. Net. 31, 240–254 (2009).

 21. N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar, D. Song, Evolution of 
social-attribute networks: Measurements, modeling, and implications using google+, in 
Proceedings of the 2012 Internet Measurement Conference (Organization ACM, year 2012) 
pp. 131–144.

 22. P. Klimek, S. Thurner, Triadic closure dynamics drives scaling laws in social multiplex 
networks. New J. Phys. 15, 063008 (2013).

 23. G. Bianconi, R. K. Darst, J. Iacovacci, S. Fortunato, Triadic closure as a basic generating 
mechanism of communities in complex networks. Phys. Rev. E 90, 042806 (2014).

 24. M. S. Granovetter, The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).
 25. T. A. B. Snijders, Statistical models for social networks. Annu. Rev. Sociol. 37, 131–153 

(2011).
 26. J. M. Kumpula, J.-P. Onnela, J. Saramäki, K. Kaski, J. Kertész, Emergence of communities 

in weighted networks. Phys. Rev. Lett. 99, 228701 (2007).
 27. J. Davidsen, H. Ebel, S. Bornholdt, Emergence of a small world from local interactions: 

Modeling acquaintance networks. Phys. Rev. Lett. 88, 128701 (2002).
 28. A. Vázquez, Growing network with local rules: Preferential attachment, clustering 

hierarchy, and degree correlations. Phys. Rev. E Sat. Nonlin. Soft Matter Phys. 67, 056104 
(2003).

 29. M. Marsili, F. Vega-Redondo, F. Slanina, The rise and fall of a networked society: A formal 
model. Proc. Natl. Acad. Sci. U.S.A. 101, 1439–1442 (2004).

 30. R. Toivonen, J.-P. Onnela, J. Saramäki, J. Hyvönen, K. Kaski, A model for social networks. 
Phys. A 371, 851–860 (2006).

 31. L. Peel, J.-C. Delvenne, R. Lambiotte, Multiscale mixing patterns in networks. Proc. Natl. 
Acad. Sci. U.S.A. 115, 4057–4062 (2018).

 32. G. T. Cantwell, M. E. J. Newman, Mixing patterns and individual differences in networks. 
Phys. Rev. E 99, 042306 (2019).

 33. J. Saramäki, E. A. Leicht, E. López, S. G. B. Roberts, F. Reed-Tsochas, R. I. M. Dunbar, 
Persistence of social signatures in human communication. Proc. Natl. Acad. Sci. U.S.A. 111, 
942–947 (2014).

 34. S. P. Borgatti, M. G. Everett, Models of core/periphery structures. Soc. Net. 21, 375–395 
(2000).

 35. P. Holme, Core-periphery organization of complex networks. Phys. Rev. E 72, 046111 
(2005).

 36. P. Rombach, M. A. Porter, J. H. Fowler, P. J. Mucha, Core-periphery structure in networks 
(revisited). SIAM Rev. 59, 619–646 (2017).

 37. M. U. Gutmann, J. Corander, Bayesian optimization for likelihood-free inference 
of simulator-based statistical models. J. Mach. Learn. Res. 17, 1–47 (2016).

 38. A. L. Traud, P. J. Mucha, M. A. Porter, Social structure of Facebook networks. Phys. A 391, 
4165–4180 (2012).

 39. J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton, M. Quaggiotto, 
W. Van den Broeck, C. Régis, B. Lina, P. Vanhems, High-resolution measurements 
of face-to-face contact patterns in a primary school. PLOS ONE 6, e23176 (2011).

 on D
ecem

ber 1, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/cgi/content/full/6/19/eaax7310/DC1
http://advances.sciencemag.org/cgi/content/full/6/19/eaax7310/DC1
http://ssrn.com/abstract=2921482
http://ssrn.com/abstract=2921482
http://dx.doi.org/10.2139/ssrn.2921482
http://advances.sciencemag.org/


Asikainen et al., Sci. Adv. 2020; 6 : eaax7310     8 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 9

 40. L. A. Adamic, N. Glance, The political blogosphere and the 2004 u.s. election: Divided 
they blog, in Proceedings of the 3rd International Workshop on Link Discovery, series and 
number LinkKDD ‘05 (ACM, New York, NY, USA, 2005) pp. 36–43.

 41. C. Seierstad, T. Opsahl, For the few not the many? The effects of affirmative action 
on presence, prominence, and social capital of women directors in norway.  
Scand. J. Manag. 27, 44–54 (2011).

 42. J. M. McPherson, J. R. Ranger-Moore, Evolution on a dancing landscape: Organizations 
and networks in dynamic blau space. Soc. Forces 70, 19–42 (1991).

 43. S. Chen, A. Mira, J.-P. Onnela, Flexible model selection for mechanistic network models 
via super learner. J. Complex Networks 2019, cnz024 (2019).

 44. D. V. Foster, J. G. Foster, P. Grassberger, M. Paczuski, Clustering drives assortativity 
and community structure in ensembles of networks. Phys. Rev. E 84, 066117 (2011).

 45. T.-Q. Peng, Assortative mixing, preferential attachment, and triadic closure: 
A longitudinal study of tie-generative mechanisms in journal citation networks. 
J. Informet. 9, 250–262 (2015).

 46. A. Mele, A structural model of homophily and clustering in social networks,  
(September 3, 2017), note available at SSRN: https://ssrn.com/abstract=3031489 or 
http://dx.doi.org/10.2139/ssrn.3031489.

 47. A. Mele, A structural model of dense network formation. Econometrica 85, 825–850 
(2017).

 48. T. A. B. Snijders, P. E. Pattison, G. L. Robins, M. S. Handcock, New specifications 
for exponential random graph models. Sociol. Methodol. 36, 99–153 (2006).

 49. T. Gross, B. Blasius, Adaptive coevolutionary networks: A review. J. R. Soc. Interface 5, 
259–271 (2008).

 50. T. Gross, H. Sayama, Adaptive Networks: Theory, Models and Applications (Springer, 2009).
 51. G. Zschaler, Adaptive-network models of collective dynamics. Eur. Phys. J. Special Topics 

211, 1–101 (2012).
 52. J. Ito, K. Kaneko, Spontaneous structure formation in a network of chaotic units 

with variable connection strengths. Phys. Rev. Lett. 88, 028701 (2001).
 53. S. Bornholdt, T. Röhl, Self-organized critical neural networks. Phys. Rev. E 67, 066118 (2003).
 54. P. Holme, M. E. J. Newman, Nonequilibrium phase transition in the coevolution 

of networks and opinions. Phys. Rev. E 74, 056108 (2006).
 55. F. Vazquez, J. C. González-Avella, V. M. Eguíluz, M. S. Miguel, Time-scale competition 

leading to fragmentation and recombination transitions in the coevolution of network 
and states. Phys. Rev. E 76, 046120 (2007).

 56. G. Iñiguez, J. Kertész, K. K. Kaski, R. A. Barrio, Opinion and community formation 
in coevolving networks. Phys. Rev. E 80, 066119 (2009).

 57. P. Klimek, M. Diakonova, V. M. Eguíluz, M. S. Miguel, S. Thurner, Dynamical origins 
of the community structure of an online multi-layer society. New J. Phys. 18, 083045 
(2016).

 58. T. Raducha, B. Min, M. S. Miguel, Coevolving nonlinear voter model with triadic closure. 
EPL 124, 30001 (2018).

 59. R. Axelrod, The dissemination of culture: A model with local convergence and global 
polarization. J. Conflict Resolut. 41, 203–226 (1997).

 60. J. S. Coleman, Relational analysis: The study of social organizations with survey methods. 
Hum. Organ. 17, 28–36 (1958).

 61. Wolfram Research, Inc. Mathematica, version 11.1, 2017.
 62. G. Timár, S. N. Dorogovtsev, J. F. F. Mendes, Scale-free networks with exponent one.  

Phys. Rev. E 94, 022302 (2016).

Acknowledgments: Numerical simulations were performed using computer resources within 
the Aalto University School of Science “Science-IT” project. J.U.-C. and M.K. thank the support 
from the Academy of Finland through the ECANET-project (No. 32779). We thank R. Dunbar, 
J. Saramäki, R. Hari, and M. San Miguel for helpful feedback. Author contributions: All authors 
contributed to the writing of the article and interpretation of the results. A.A., G.I., and M.K. 
contributed to the simulation and analysis software and deriving the mathematical results. 
A.A., J.U.-C., and M.K. prepared and analyzed the data. Competing interests: The authors 
declare that they have no competing interests. Data and materials availability: The Last.fm 
network dataset used in this study has been uploaded to Zenodo and is available under the 
accession number 3726824. The other data sets have been downloaded from publicly 
available data repositories. Key parts of the code used in this study are available from M.K. 
upon reasonable request.

Submitted 17 April 2019
Accepted 19 February 2020
Published 8 May 2020
10.1126/sciadv.aax7310

Citation: A. Asikainen, G. Iñiguez, J. Ureña-Carrión, K. Kaski, M. Kivelä, Cumulative effects of triadic 
closure and homophily in social networks. Sci. Adv. 6, eaax7310 (2020).

 on D
ecem

ber 1, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

https://ssrn.com/abstract=3031489
http://dx.doi.org/10.2139/ssrn.3031489
http://advances.sciencemag.org/


Cumulative effects of triadic closure and homophily in social networks
Aili Asikainen, Gerardo Iñiguez, Javier Ureña-Carrión, Kimmo Kaski and Mikko Kivelä

DOI: 10.1126/sciadv.aax7310
 (19), eaax7310.6Sci Adv 

ARTICLE TOOLS http://advances.sciencemag.org/content/6/19/eaax7310

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2020/05/04/6.19.eaax7310.DC1

REFERENCES

http://advances.sciencemag.org/content/6/19/eaax7310#BIBL
This article cites 55 articles, 6 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science AdvancesYork Avenue NW, Washington, DC 20005. The title 
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances 

License 4.0 (CC BY-NC).
Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial 
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

 on D
ecem

ber 1, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/content/6/19/eaax7310
http://advances.sciencemag.org/content/suppl/2020/05/04/6.19.eaax7310.DC1
http://advances.sciencemag.org/content/6/19/eaax7310#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

