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We discuss an analysis of constraint satisfaction problems, such as sphere packing, K-SAT, and graph
coloring, in terms of an effective energy landscape. Several intriguing geometrical properties of the solution
space become in this light familiar in terms of the well-studied ones of rugged �glassy� energy landscapes. A
benchmark algorithm naturally suggested by this construction finds solutions in polynomial time up to a point
beyond the clustering and in some cases even the thermodynamic transitions. This point has a simple geometric
meaning and can be in principle determined with standard statistical mechanical methods, thus pushing the
analytic bound up to which problems are guaranteed to be easy. We illustrate this for the graph 3- and
4-coloring problem. For packing problems the present discussion allows to better characterize the J-point,
proposed as a systematic definition of random close packing, and to place it in the context of other theories of
glasses.
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I. INTRODUCTION

Constraint optimization and satisfaction problems are a
particular, yet widespread, class. The prototype is the pack-
ing problem, in which we are given a fixed volume V and
asked to pack N objects of typical size ro �a scale factor�
without overlap, making N or ro as large as possible. When
ro is increased �with N ,V fixed� the problem becomes harder
as the number of configurations that solve it decreases, until
a point is reached ro

pack beyond which there are no more
solutions.

Another celebrated example is the satisfiability, or SAT,
problem �1�: we have a set of N Boolean variables �xi

=0,1�i=1,. . .,N and a number M =�N of clauses—when all
clauses have exactly K literals, the problem is referred to as
K-SAT—which in the present paper we shall assume are the
first M of a longer list that is generated at random and stipu-
lated once and for all. We are asked to find logical assign-
ments satisfying

F = ∧
�=1

M

C� = ∧
�=1

M

�zi1
��� ∨ zi2

��� ∨ ¯ ∨ zik
���� , �1�

where ∧ and ∨ stand for the logical “and” and “or” opera-
tions, respectively, � labels a set ii , . . . , iK and zi

��� is, depend-
ing on � either xi or its negation �this, and the xi that partici-
pate in each factor is what defines the clause�. An assignment
of the �xi�’s satisfying all clauses is a solution of the K-SAT
problem. When the number of clauses �N=M increased, the
number of sets �xi�’s satisfying all clauses decreases, until a
point �unsat is reached beyond which there are no solutions.

The third problem we shall consider is the graph
q-coloring problem �1�. We are given a graph with N vertices
and are asked to color them with one of q colors so that no
two vertices sharing a link have the same color. We shall
assume as before that we have a list of links, and we count
the number of possible colorings when the graph has the first
M =2�N of the list �where the average connectivity of the
graph is c=2��. As M is made larger, a point �uncol is
reached in which no more colorings are possible.

Coloring problems are a particular class of packing prob-
lems. Consider the following angle-packing construction: in
every node i of a graph we assign an angular variable �i.
There is a repulsive potential V��i−� j� between the angles of
linked sites as in Fig. 1, it is nonzero where the angle differ-
ence ��i−� j� lies between −2� /q and +2� /q �modulo 2��.
For every angle configuration with zero total energy, one can
obtain a solution of the q-coloring problem just by assigning

to the site i the color numbered by the integer R=Int� q�i

2�
�

�R=0,1 , . . . ,q−1�. Conversely, each coloring solution has at
least one zero energy configuration counterpart.

Statistical physics methods are particularly efficient in
treating large random problems, especially when mean-field
techniques are exact, and indeed several important results
were obtained for both satisfiability �2,3� and coloring �4� in
this case. The connection with statistical mechanics is usu-
ally introduced as follows �see, for example, �3,5,6��: one
first defines an energy E such that it is zero when the prob-
lem is satisfied and larger otherwise. In the examples above,
this could be the number of overlapping spheres, the number
of unsatisfied clauses, and the number of links joining verti-
ces with the same color, respectively. Next, one studies for
finite temperature T=1/� the partition sum over configura-
tions
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FIG. 1. �Color online� Potential of soft particles with finite-
range interactions. It allows to construct a packing version of the
coloring problem �see text�.
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Z = �
conf

e−�E�conf�. �2�

The results are encoded in the energy and entropy in the
zero-temperature limit. One can apply all the analytical tech-
niques of statistical mechanics, and has in addition available
all the standard practical methods of annealing energies �in
metallurgy as well as in computational physics� that serve at
least as a first, general purpose numerical tool.

In this paper we shall follow a different strategy. We first
introduce in Sec. II a pseudoenergy defined directly in terms
of the constraint satisfaction problem. For the packing prob-
lem, consider the set of configurations that satisfies the con-
straints at a given value of ro. If we make the problem harder
by increasing the common scale of all particles ro, the set of
configurations still satisfying the constraints is strictly a sub-
set of the previous one. Thus, we can construct a single-
valued landscape function E as in Fig. 2. For the SAT and
coloring problems we proceed similarly, with now � playing
the role of ro, increased by adding clauses �respectively,
links� one by one following the predefined list. The variable
conjugate to E is in fact a pressure.

Next, we explore in Sec. III the consequences of making
the following landscape hypothesis: The pseudoenergy E
landscape defined above has in the thermodynamic limit the
same qualitative properties as the usual rugged energy land-
scapes. This means that pressure plays a similar role as that
of an inverse temperature. We shall find that several intrigu-
ing results �7� in the geometry of random constraint satisfac-
tion problems �CSP� such as the satisfiability of random for-
mulas or the coloring of random graphs can be readily
understood in this language.

In Sec. IV, we describe a family of algorithms that imme-
diately suggests itself: it is simply a quench in the pseudoen-
ergy landscape, and hence by construction polynomial in the
system size. At each step one increases the difficulty of the
problem, and moves to a configuration in a finite neighbor-
hood so as to restore satisfaction, if there is no such configu-
ration the program stops. We shall show that its
performance—where it converges and in what times—can be
in principle determined analytically for the very same prob-

lems for which analytical statistical mechanical solutions are
available. The method can be generalized to slower anneal-
ings, or to finite pressure.

Next, we explore in detail the performance of this algo-
rithm for the random q-coloring problem. Although here we
are more interested in constructing a benchmark than a com-
petitive numerical strategy, we find that the performance is
surprisingly quite good.

In Sec. V we concentrate on hard spheres and recognize
that this algorithm yields the procedure of O’Hern et al. �8,9�
�and more generally the Lubachevsky-Stillinger �10� proce-
dure if a slower annealing is made� to define the so-called “
J-point,” which they propose to identify as random close
packing. Comparing with the random satisfaction problems
of the preceding sections, we are thus able to give a mean-
field realization of the J-point scenario �67�, and to put it in
the context of other special points in glass theory, such as the
�putative� ideal thermodynamic glass state, and the �finite-
dimensional relic of� the mode-coupling transition.

II. CONSTRAINT SATISFACTION PROBLEMS
AND A LANDSCAPE HYPOTHESIS

Let us describe the pseudoenergy in more detail. Consider
a fixed set of particles of any shape whose positions and
angles are given by the coordinates x1 , . . . ,xN, with a com-
mon scale ro, such that, for example, multiplying ro by 2
doubles the linear size of all particles while preserving their
shape. According to Fig. 1, the landscape at a point
E�x1 , . . . ,xN� is defined as �minus� the first value of ro at
which there is a particle overlap for these coordinates.
�The minus sign is conventional.�

In particular, for spheres of equal size ro, the pseudoen-
ergy is simply �minus� the smallest interparticle distance in
that configuration divided by 2. As such, it is very close to
the succession of potentials discussed by Stillinger and
Weber �11�,

ESW = − �
a�b

1

�xa − xb�n
for n → � . �3�

Here we are considering

E = − N lim
n→�

	�
a�b

1

�xa − xb�n
−1/n

. �4�

�The factor N is needed to assure that the quantity is exten-
sive if we make the limit n→� before the thermodynamic
limit.� Note that a gradient descent in (3) follows the same
path as one in (4).

For the SAT and the coloring problem the space is dis-
crete, and the difficulty of the problem may be increased by
adding clauses and links, respectively. The pseudoenergies
are then, by analogy, minus the number of clauses, and mi-
nus the numbers of links, respectively. As mentioned above,
we are considering in fact a succession of problems, obtained
by choosing the first M of a list of clauses or links which is
fixed once and for all. Note that if we could reshuffle the list,
the net result at finite M would depend on the length of the
list itself: for an infinite list we would optimize the choice of
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FIG. 2. �Color online� Constructing a pseudoenergy from a con-
straint satisfaction problem: the regions shown are the satisfied sets
at each level of difficulty. The height function is such that at each
level the intersection corresponds to a constraint satisfaction
problem.
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M constraints to make them easily satisfiable—this is called
the “annealed” problem in the disordered system literature
�not to be confused with the “annealed approximation” of the
probabilistic literature, which is something else altogether
�12��.

The landscape for the coloring problem is very rugged
indeed. We have a graph with M links that is well colored.
Let us consider how the pseudoenergy changes when we flip
the color of one given vertex. The new pseudoenergy is �mi-
nus� the largest value of M� that will make the new graph
colorable, so we must take away one by one the links in
reverse order, starting from the last introduced from M to
M�, but most of the links deleted will not be even close to
the configuration we have flipped, and it will typically take
M −M��O�N�. We shall see that this poses no problem if
one proposes changes only in nearby sites along the tree:
thus, jumps will be always to configurations that are close
and have lower pseudoenergy, avoiding other ones in the
neighborhood that are much higher.

From constraint satisfaction to energy landscapes and
back. As mentioned above, in this paper we shall make the
landscape hypothesis that the pseudoenergy defined above
has in the thermodynamic limit the same qualitative features
as expected from a generic rugged energy landscape. We do
not know if this is strictly so, but it is clear that the converse
is true: every rugged energy landscape yields, in the micro-
canonical ensemble, a constraint satisfaction problem �13�.
This is easy to see just reading Fig. 2 in the reverse way: we
imagine that the landscape H�x� is given, and by cutting
�microcanonical� slices of fixed energy at different depths E,
we obtain the CSP of finding x such that H�x��E.

What we shall do in the following section is to briefly
review some known facts from complex energy landscapes,
and then proceed by cutting microcanonical slices to infer
the behavior it implies for random constraint satisfaction
problems.

III. ENERGY LANDSCAPE: MICROCANONICAL SLICES

Let us review what we have learned, mostly from mean-
field analytic calculations, about rugged energy landscapes.
In order to match the constraint satisfaction situation, we
shall adopt the rather unusual point of view of making en-
ergy slices, rather than constant temperature ones. The states
we encounter shall then be regions of the energy shell that
are dynamically isolated. Figures 4, 5, and 6 show variations
of these constant energy slices: the temperature T is then a
variable that classifies the states at that energy: in the land-
scape of E it amounts to classifying states according to their
pressure �the inverse of the temperature conjugate to E�. This
is not the usual practice in optimization problems, which is
to classify the states according to their internal entropy �
�the logarithm of the number of configurations, 1

T = ��
�E �.

A. Energy vs free energy barriers

In what follows, we shall frequently allude to states, de-
fined as regions of phase space that are dynamically isolated,
in the sense that the system starting a random walk within

them will take a long time to exit. “Long” might mean “in-
finite,” or simply diverging with the system size N faster than
any power law. Consider, for example, a ferromagnet with
continuous spins on a lattice of dimension d	1 and linear
size L, with nearest-neighbor interaction

E = − �
next neighor

sisj − A�
i

�si
2 − 1�2. �5�

In terms of the temperature, the phase diagram appears as in
Fig. 3: there is a critical temperature below which there are
two states of magnetization M =�si= ±mLd, and above one
state of zero magnetization. As is well known, a system at
Ti�Tc performing Monte Carlo dynamics starting with mag-
netization density m will take a time to jump to the state of
magnetization −m that diverges in the thermodynamic limit.
We can also make a random walk at constant energy Ei, and
the time to pass from the +m to the −m state is still divergent.
Does this mean that the constant energy surface E�s�=Ei is
disconnected in two regions? A moment’s thought shows that
this cannot be the case. The actual saddle point in energy
separating the two energy minima is just the energy to create
an interface between one-half lattice at magnetization +m
and one-half at −m, Esaddle−Eo�Ld−1, while Ei−Eo=O�Ld�

Esaddle−Eo �see Fig. 3�. We conclude that the energy sur-
face is actually guitar shaped, and the reason why the system
takes a divergent time to pass from one state to the other is
that �for large size L� the neck is exponentially thin.

B. Flat bottom states

Consider a system of particles with a finite-range potential
as in Fig. 1, confined to a fixed volume. To the extent that the
packing without overlaps is possible, it is clear that the total
energy landscape will have minima of zero energy which are
flat. Surprisingly �and confusingly� also the pseudoenergy
landscape can have flat bottom states, both in the particle and
in the K-SAT and coloring problems, as we shall see in the
next section. They turn out to be very important.

C. Mean-field glass landscapes

We shall now give three examples of mean-field land-
scapes with many states. Mean-field problems in physics cor-
respond to large random problems in optimization and satis-
faction: the coloring of large random graphs or the
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FIG. 3. �Color online� Energy vs temperature of a
ferromagnet.
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satisfiability of random formulas are instances of this class.
Indeed these are the models for which we expect a corre-
spondence between landscapes to hold.

The first example �the Sherrington-Kirkpatrick model� has
the property that its states having free-energy density higher
than the ground state one are no obstacle for the dynamics.
This class also includes all models with smooth short range
interactions in finite dimensions, like the Edwards-Anderson
model.

The second example, the p-spin model is the precise op-
posite: a naive dynamics is trapped in a threshold level
where the first, highest minima are encountered—this hap-
pens at energy density above the lowest.

The third example, the Ising p-spin model, is the most
typical of random optimization problems: it has a combina-
tion of transparent high states that are avoided by the dynam-
ics, but it also has a threshold level at finite energy density
above the lowest, below which the dynamics only goes in
times that diverge with the size.

1. The Sherrington-Kirkpatrick class

The Sherrington-Kirkpatrick model �6� �SK� is the most
studied spin glass, it consists of ±1 spins coupled by random,
fully connected interactions

E = �
ij

Jijsisj . �6�

It was soon realized �14,15� that the free-energy landscape
had many metastable states �see �6��, a situation depicted in
Fig. 4. The dynamics in the thermodynamic limit has been
also solved �16�, and surprisingly one finds that at each con-
stant temperature the energy density tends for large times to
the equilibrium one. In other words: all but the very lowest
metastable states are transparent to the dynamics, if one
wishes to compute the energy per spin with any percentage
accuracy, this can be done in polynomial time �although the

true ground state might be harder to find�. It took over a
decade to clarify completely this from a pure landscape point
of view �17�.

Because the states are not strong dynamic traps, a pertur-
bation with small random forces that do not derive from a
potential—a weak stirring—immediately sets the system into
motion: the whole state structure is washed away.

2. Spherical and Ising p-spin glass

The spherical p-spin model �p	2� has a Hamiltonian

E = �
i1,. . .,ip

Ji1,. . .,ip
si1

¯ sip
, �7�

with the si satisfying a spherical constraint. It has a well-
studied �18,19� structure of states shown in Fig. 5. Each line
in the figure symbolizes a state �a free-energy minimum�.
These do not merge and keep their order. There is a threshold
level above which all the stationary points are unstable.
States under the threshold are stable, the more so the deeper,
and those that are just below are marginal, the spin-glass
susceptibility diverges within them �20�. A system sitting on
the threshold states will be set into motion by small noncon-
servative stirring forces �another manifestation of their mar-
ginality�, but this is not the case with deeper states which are
rigid.

The zero-temperature intercept of the threshold energy E*

will be of particular importance for us. Just above this point
are the overwhelming majority of energy barriers �20�, and
this means, according to the discussion above, that for all
energy slices higher than E* the states are in fact connected
by narrow bridges.

The out of equilibrium dynamics of this model is well
studied �21�, a quench starting from a random configuration
never goes below the threshold level. At zero temperature, a
quench ends in the energy E*. In fact, no �instance indepen-
dent� external field protocol is known that leads below the
threshold: temperature cycling, magnetic field changes, even
quantum annealing �22� have been tried, but the system al-
ways ends up on the threshold level at the end of the cycle.

E

T

E

o

paramagnet

E c A

T

Σ

FIG. 4. �Color online� A sketch of the metastable-state space of
the Sherrington-Kirkpatrick model: the gray area in the graph cor-
responds to a region with an exponential number of metastable
states. Inset: complexity along a constant-energy surface line A in
terms of temperature T �the same graph would be obtained by plot-
ting in terms of state entropy ��.
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FIG. 5. �Color online� The structure of metastable states of the
spherical p-spin model.
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The thick line of Fig. 5 labeled paramagnet corresponds to
the equilibrium high-temperature phase. Above Ed this is a
big state that dominates the dynamics and contains the over-
whelming majority of configurations. Between EK and Ed the
paramagnet is fractured in many states sharing each a negli-
gible volume, the probability of two configurations chosen at
random of being in the same state is zero. Below EK the
lowest states dominate, there are still many states having a
non-negligible volume, but the sharing of volume is so in-
egalitarian that two configurations chosen at random have a
finite probability of being in the same state.

Microcanonical slices at different energy levels give us a
first glimpse of what happens in a constraint satisfaction
problem. The number of states, as calculated in �19�, grows
with decreasing temperature �at constant energy�, up to T
=0—or the intersection with the threshold line, if this hap-
pens first. A system prepared at any energy E*�E�Ed per-
forming energy-conserving dynamics �23� will end in the
threshold level. If, on the contrary, E	Ed, the dynamics will
evolve in the paramagnetic state.

Note the presence at Ed�E�ETAP, in a range in which
the paramagnet dominates, of states that are completely irrel-
evant from the dynamic �or static� point of view: these were
found in �7,24,25� for the coloring and SAT problems in a
given range of parameters.

The spherical p-spin model is somewhat special, and in
fact the generic situation is richer. For example, the Ising
version of the p-spin model has a structure sketched in Fig.
6. In addition to the states that resemble those of the spheri-
cal case, there is a set of high-lying states that resemble those
of the SK model �26� and are transparent to the dynamics. A
small stirring perturbation wipes out the high-lying states,
while the deep nonmarginal ones are stable. There is still a
dynamically defined threshold level above which states are
marginal �27,28�, but it is still not clear if there is a purely
local characterization of it �but at any rate an exact dynamic
calculation is always possible �16��. We shall in the last sec-
tion also propose a static—though nonlocal—calculation to
achieve the same goal.

Making microcanonical sections as in Fig. 6, we see some
of the possibilities for the organization of states and their
respective dynamical and equilibrium properties. The inset of
Fig. 6 shows a sketch of section along the line C: the states
with smallest internal entropy correspond to the gray region
of dynamically transparent SK-like states. This feature has
been found in K-SAT �29� and in the coloring problem �30�.
The typical configurations �vertical line to the right-hand
side in the inset of Fig. 6� are those that maximize �+� and
do not coincide in general with the threshold states �31�.

In any case, the level achieved with a zero-temperature
annealing E* may �and as we shall see will� be lower than Ed
and even EK. For example, in the p-spin model these points
can be calculated analytically �18,21,32� and the results are
plotted in Fig. 7.

The important conclusion of this figure is that if the task is
to find a configuration with energy as small as possible, ge-
nerically neither Ed nor EK pose a serious limit in them-
selves, because E* may be smaller. The same is true, for the
same reason, for constraint satisfaction problems. This be-
comes more so for the smaller the values of p—and eventu-
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FIG. 6. �Color online� A
sketch of the organization of states
in the Ising p-spin model. Inset:
complexity in slice C; the two ver-
tical lines indicate the dynamic
threshold �left-hand side� and the
typical configurations �right-hand
side�, the dashed line symbolizes
states that are transparent to the
dynamics. The situation in slices
A–E have been all found in con-
straint satisfaction problems for
different levels of constraints �see
text�.
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FIG. 7. �Color online� The energies Ed, EK, E*, and Eo for the
p-spin model as a function of p �from �32��. A simple gradient
descent program goes to E* which is beyond Ed, EK for p�13.
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ally K and q in SAT and coloring. We shall see this in the
coloring problem in the next section.

3. Random constraint satisfaction problems

The random satisfiability and the random graph coloring
problem have been studied using the cavity method �2,4� and
their landscapes when varying the connectivity was charac-
terized in �7,24,25�. It is interesting to observe that they fol-
low our landscape hypothesis: they behave indeed like mi-
crocanonical slices of the typical energy landscapes we have
been discussing. This is best seen in Fig. 8.

For the coloring problem, the col-uncol transition appears
at �uncol�3�=2.355 and �uncol�4�=4.45 �4�. The other critical
connectivities in the properties of the landscape were found
and computed recently �24�. Using three colors, one has
�d�3�=2 �a result already obtained in �33��, �K�3�=2 and
�hard�3�=2.33. For the 4-coloring problem, the critical values
are �d�4�=4.175, �K�4�=4.23, and �hard�4�=4.42.

IV. ALGORITHMS: ARKLESS STRATEGY
FOR FLOOD VICTIMS

Consider a rugged landscape that is being slowly flooded.
We adopt the following strategy: we stay still until the shore
reaches our feet. We then move in small steps away from the
water, just enough each time to stay dry. At a certain point,
the patch where we are standing becomes an island, all land
bridges have been flooded: this is the dynamic transition
level. We keep on moving uphill, just avoiding the waterline.
Our island may further divide into smaller ones, but our
choice of island is dictated by the evolution of the shoreline.
Our fate is sealed when our island disappears altogether: this
may happen all of a sudden if its top is flat, or gradually if
the top is rounded. Note that nothing guarantees that we have
ended in the highest summit, so our survival level is just
locally—but not globally—optimal. Clearly, the dry land is
the set of configurations satisfying the constraints, and the
level of the water is the number of clauses, links or particle
size, which we increase gradually, while at the same time
moving in small steps to remain satisfied. The point reached
with this algorithm is image �5� of Fig. 8.

This is the fast procedure, a slightly more sophisticated
one is at each level of the water, not just to stay at the
shoreline, but to explore randomly all the available land,
always without crossing water. This means that on occasion
we shall take advantage of a land bridge to go �randomly�
from a promontory to another.

A composite strategy is to explore all the available land at
one level of water, and then for all subsequent levels just
follow the direct lazy strategy of moving just what is neces-
sary.

Now, from the point of view of pseudoenergy landscape
�which is reversed with respect to the flood analogy, with
summits becoming valleys�, in continuous cases it is clear
that the fast algorithm is just a gradient descent, and in gen-
eral a zero temperature quench, while the procedure in which
we take time to diffuse at constant energy, is a slow anneal-
ing �34�, in this case we must specify how slow. The last,
composite strategy, is again a rapid quench, but this time
starting from an equilibrium configuration at some level.

A. Hard sphere procedures

For the packing of hard spheres, the two procedures men-
tioned above have been used by Lubachevsky and Stillinger
�10� �the slow annealing�, and by O’Hern et al. �8� �the rapid
quenched�. In both cases one inflates all spheres simulta-
neously by a very small amount, and then uses some repul-
sion to eliminate any overlap �wet toes, in the analogy
above� that might have been generated �9�. In the annealed
version, one also takes time to diffuse without changing the
radii or allowing overlaps.

Another possibility is to adapt the composite procedure
used by Sastry et al. �35� to analyze �true� energy land-
scapes: one starts from a fully equilibrated configuration at a
given �low� level of packing, and from there onwards per-
forms a fast quench, without diffusing at each step more than
is necessary to eliminate overlaps.

The reason why O’Hern et al. used the rapid quench
rather than an annealing is that their purpose was to define a
point in parameter space �the J-point� in an unambiguous
way. Had they used an annealing procedure, a different point
would have been obtained for each annealing time—not to
speak about problems of crystallization in a monodisperse

DYNAMIC RIGIDITY UNCOLKAUZMANN

FIG. 8. �Color online� Sketch of the set of solutions in random CSP when the connectivity is increased �adapted from �7,24��. From
left-hand side to right-hand sides, in order of increasing difficulty: �1� easy problem, the whole solution space is connected; �2� a negligible
fraction of solutions become disconnected; �3� dynamic transition �d, the whole space breaks into dynamically isolated regions, two
configurations at random belong to different regions; �4� replica symmetry breaking, Kauzmann point �K, the regions become so rare that the
probability of two configurations being in the same region is now nonzero; �5� equilibrium rigidity point �hard. Typical configurations have
frozen variables; �6� best packing, unSat, unCol ��pack ,�unsol ,�uncol�, the last configuration satisfying the constraints disappears. Red �dark�
and grey regions symbolizes clusters with and without frozen variables, respectively.
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sphere case �and, indeed, the infinitely slow annealing limit
would lead to a packing fraction essentially corresponding to
equilibrium�.

As mentioned above, one of the aims of this paper is to
put this J-point in the context of the rest of glass theory. We
shall discuss this in further detail in Sec. V. Let us note here
that we can apply exactly the procedure of O’Hern et al. �or
Lubachevsky-Stillinger� for the angle-packing problem de-
scribed in the introduction for a given, fixed graph, starting
from q=� and decreasing q. The smallest integer value of q
attained gives then a realization of the coloring problem. We
shall not pursue this line here, but rather attack the coloring
problem from a different angle.

B. Introducing temperature in pseudoenergy landscape

The pseudoenergy landscape suggests how to construct a
Monte Carlo and/or parallel tempering program for hard
spheres.

Consider monodisperse hard spheres—the generalization
to polydisperse is straightforward—at inverse temperature
�i.e., pressure� �. Given a configuration, its pseudoenergy is
proportional to �minus� the smallest interparticle distance
2ro. We choose a particle at random and displace it by a
random amount. The minimal interparticle distance 2ro

old may
have changed: if it is so it must be due to the distance be-
tween the particle just moved and one of its neighbors be-
coming some value ro

new�ro
old We thus accept the motion if

ro
new�ro

old, otherwise we accept it with probability e−2��ro
old

−ro
new�. This is the Monte Carlo procedure. One can now run

several copies in parallel at different � and implement the
usual parallel tempering procedure.

C. Discrete lattice procedures

We have chosen to exemplify the algorithm in the random
q-coloring problem. We are given a long list of links, and
add them one by one. Suppose that we have a graph with
M −1 links, and a configuration of colors for the vertices
satisfying the constraints. We now add the Mth link from the
list: with probability 1 it will locally appear as in Fig. 9. As
we add the link, it may be that vertices A and B are of
different colors, in which case we proceed. If, on the con-
trary, the colors of A and B coincide, we must modify at least
one of the two. This will typically create problems in the tree
that has roots in them, so we shall need to modify colors up
the branches. If this can be done with a finite number of
trials, we do it, compute the total number of steps it took, and
proceed with the next link addition. In practice, for the read-

justment of the trees with root A or B, we use a Walk-COL
algorithm introduced in �24�, which is the coloring version of
the celebrated Walk-SAT program �36,37� This is perhaps
not ideal, but it definitely provides an upper bound of the
number of flips needed. Moreover, this strategy is straight-
forward to implement numerically. An important property of
this algorithm is that it is focused: it changes only frustrated
variables and it thus acts locally starting from the initial frus-
trated link, and does not perturb the solution far from this
link.

In this form, the algorithm is a recursive version of the
method called Incremental-SAT �39� in the computer science
community, in which one starts from a SAT formula and its
known solution �or a graph and its proper q-coloring� and
then adds one formula �or a new link for coloring� and must
find a solution to the new problem. This is usually done
using Walk-SAT, as we do, although this procedure has not
been proposed as far as we know as a general way to obtain
solutions starting from scratch. The point reached by our
algorithm can thus be seen as a easy-hard transition for the
recursive, incremental COL problem.

D. Coloring random graphs

We now discuss our results and show our data for the
3-coloring and the 4-coloring in Fig 10. It turns out that the
number of steps needed �the number of recolorings close to
A or B to get back to satisfaction� grows on average and
diverges at a given connectivity �*, where our program
stops.

The fact that the rearrangement needed grows with the
connectivity is not surprising in view of the results of Mon-
tanari and Semerjian �40,41�, who showed that the minimal
number of rearrangements needed to satisfy constraints fol-
lowing a change of color of a random vertex diverges like a
power law at a certain connectivity. The distance along the
graph of the rearrangements is a power law as well. This
critical connectivity corresponds in fact to the rigidity tran-
sition �hard considered in �24� where frozen variables �or
hard fields in the cavity language� appear that fix the value of
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FIG. 9. �Color online� Adding a link to a tree.
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FIG. 10. �Color online� Performance of the recursive algorithm
for the q=3,4 random coloring problem. The time needed to find a
proper coloring diverges at connectivity �*��uncol in both cases,
but the algorithm is able to find colorings in linear time beyond the
clustering �d and Kauzmann �K transitions.
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a finite fraction of variables for all configurations within a
state. After a situation with frozen variables is reached, an
additional link will have a finite probability of connecting
two variables frozen to the same color, thus rendering unsat-
isfied all configurations within the state. States with hard
fields have a high mortality rate: after an extensive number
of link additions, the survival probability of such a state is
exponentially small in N.

In fact, here the situation is somewhat different to the one
in �40,41�, in that we are not considering an equilibrium
configuration, but one obtained by a succession of link addi-
tions and rearrangements. The actual value �* that our pro-
gram can reach need not coincide exactly with �hard, because
hard fields appear at somewhat lower connectivities in our
out-of-equilibrium procedure.

It can be shown that for large connectivity, all clusters
have frozen variables beyond a certain connectivity �see, for
instance �24,25�, or �42� for rigorous proof in SAT�: this puts
a strict limit to the algorithm. For the 3- and 4-coloring prob-
lem, it has been shown �see again �24�� that all states have
frozen variables for ���hard.

Because we can scale the curves with system size, and we
consider only the regions where the curves superpose prop-
erly, we can in fact infer the behavior for N=�. We do that in
Fig. 11. In the 3-coloring, the algorithm reaches in time lin-
ear in N a value �*�2.275 which is beyond the clustering
and Kauzmann transition �d=�K=2. It is however, as ex-
pected, below the appearance of frozen variables in the ther-
modynamic states that take place at the rigidity transition
�hard=2.33 �and of course below �uncol=2.345�.

In the 4-coloring, the algorithm reaches in time linear in N
a value �*�4.31 which is again well above �d=4.175 and
�K=4.23 �but still systematically below �hard=4.42 and
�uncol=4.45�.

The integrated number of steps up to connectivity � is
��*−��− with �0.28. In Fig. 11 we show for reference
the case q=3, which is somewhat more dubious because it is
not clear yet to which class—from the replica theory point of
view—it belongs. In any case, the value �*�2.275, far be-
yond �d=�K=2, is quite close �but still smaller� to the one
��SP=2.3� obtained in Ref. �4� with the best algorithm—
survey propagation �SP� �2�—for smaller sizes.

Before concluding this section, we wish to compare for
this case the present algorithm with the belief propagation
�BP� algorithm �7,24�. We start with a configuration obtained
with BP at a given � �which we shall try to make as large as
possible� �43�, and then improve the procedure by adding
links one by one. The result is shown on the right-hand side
of Fig. 11: at the beginning there is a very fast progress, but
the asymptotic �* is not significantly different—at least
within our precision. We conclude that starting from a BP
solution does not seem to improve the scaling with the sys-
tem size.

To explain this, we can think in the flood analogy of BP as
starting us somewhere in the middle of an island. As the
level of water keeps on going up, at the beginning we have
little to do to stay dry, and the program proceeds rapidly.
Only when the many-dimensional shore reaches us do we
begin to move in a complex manner, and the system slows
down.

Scalings with system size. By performing at each step
Walk-COL starting from a site at the end of a new link, we
have used on average a certain function G��*−�� color flips
each time we add one link, a quantity of order one. The
program time t��� �the total number of steps up to connec-
tivity �� thus increases by G��*−�� each time that � in-
creases by 1/N,

dt

d�
= NG��* − �� �8�

and t��� is N times the integral of G. Thus, the curves t��� /N
for different N should collapse, which we check in Fig. 10.
The fact that the total time scales with N holds to the extent
that the number of rearrangements is, for large graphs, inde-
pendent of the graph size.

Note that nothing guarantees that G��*−��, defined on
the basis of Walk-COL, is the minimum average number of
flips needed to make the configuration satisfied after adding a
link, but just an upper bound. On the other hand, in a locally
treelike structure, the maximal number of moves with any
program is to try all the flips of sites at distance along the
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FIG. 11. �Color online� Estimate for the asymptotic �* of the
algorithm. Left-hand side: q=3 random coloring problem. Right-
hand side: q=4 random coloring problem. The two lower families
of curves correspond to procedures starting from configurations ob-
tained using the belief propagation algorithm of Ref. �24�: the initial
advantage seems eventually lost.
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graph smaller or equal than G��*−��, that is ��qG��*−��,
still a quantity independent of N. Thus, the fact that the local
structure of the graph is treelike has helped us to obtain a
program linear in N.

If we did not know that we had a treelike structure—for
example, if some loops are present—we would have to ex-
plore all configurations in phase space with a given number
of flips, trying all the phase space points at progressively
larger phase-space distances until satisfaction is restored. In
this way, G��*−�� flips would be obtained after at most

�NqG��*−�� trials, and the total integrated time would be

t � AN
0

�

d��NqG��*−��� � � AN

ln N
� NqG��*−��

qG���* − ��
. �9�

This is the absolute worst the program will do for the random
graphs discussed here, not using either Walk-COL or the
knowledge of the local treelike structure. Below �*, the per-
formance is still a power law in N.

E. Marginality, hard fields and rattlers

As we have seen in the preceding sections, when we add
links to the coloring problem �or clauses to the SAT problem�
each time the number of changes needed to keep the system
satisfied on average increases. This happens because as we
approach the point �* larger and larger clusters of vertices
must be moved together, changes that keep the system satis-
fied must be done in a correlated manner in each cluster. The
same happens with the sphere-packing problem: the clusters
of particles that are in contact, and must be displaced to-
gether at each step, increases with packing and at the critical
value of ro the whole structure percolates. By the time �* �or
the J-point, in a packing problem� is reached, the correlation
diverges, and the algorithm virtually stops. Some important
remarks are as follows.

�i� The density of links at which this happens depends on
the procedure, the point �hard obtained at equilibrium need
not coincide with the one obtained through the sequence of
additions of links we have been doing here. �This is why in
Fig. 11 we have tried to compare the divergence obtained by
addition of links starting from low link density, with the
divergence obtained starting from a very connected graph
colored with a BP program. Admittedly, the difference, if
any, is not large.� For a particle system, the packing fraction
at which this percolation happens also depends on the pro-
cedure.

�ii� For the overwhelming majority of runs of the algo-
rithm, when the level �* is reached, the addition of an ex-
tensive number of links requires a divergent number of re-
colorings. However, it will generally happen that a finite
fraction of vertices can still be recolored in many ways, with-
out destroying the satisfaction. For example, the intermediate
vertices in a short loop made of a succession of vertices of
connectivity 2 can be recolored in many ways. Similarly,
when a particle system reaches ro, there still are particles, or
groups of particles �the rattlers� which can move inside cages
made by the others.

To summarize: the SAT, coloring, and packing problems
all have critical situations that are process dependent in

which a subset of the elements form a backbone subjected to
hard fields from their neighbors and rattlers that still have
freedom. This point corresponds to the easy/hard transition
for the recursive incremental SAT �or Col� algorithm de-
scribed here. If we look at the pseudoenergy of a state, with
large probability the number of configurations at the critical
level of difficulty is still large �due to the freedom of rat-
tlers�, but it disappears completely at a level of difficulty just
higher. In other words: seen from the point of view of the
pseudoenergy, the minima have a flat bottom consisting of
the rattler configurations �44�.

V. THE J-POINT

In a series of papers �8,45� the highest density configura-
tion of hard spheres reached by inflating as in Sec. IV A have
been studied �46�. The point where this happens has been
called “J-point.” As we noted above, they did not consider a
slow annealing, as in the Lubachevsky-Stillinger procedure,
because this would make the system evolve in an annealing-
time-dependent manner, ultimately allowing it to crystallize.
For spheres in three dimensions the J-point packing fraction
turns out to be very close to the one quoted as random close
packing �9�, and whether one can identify J-point and ran-
dom close packing is a debated question �47�. The interest of
the J-point lies at any rate in the fact that it is critical, it has
associated with it a diverging length and soft modes �8,48�.
There is also good evidence that for spherical particles it is
isostatic, i.e., that the number of contacts is just the number
it takes to immobilize the system, without redundant static
conditions.

A question that immediately arises is whether the J-point
packing corresponds to the ideal glass phase, that is, the best
packed amorphous state without crystallization. Putting the
question this way, we immediately run into difficulties be-
cause by considering different degrees of crystallinity, we
can obtain a continuum of denser packings �49�. The random
models studied here allow us to avoid—at least to fix ideas—
the conceptual complication of crystallization, and to con-
centrate on the glassy aspects �50,51�. We shall hence first
discuss the SAT and coloring, which by construction have no
ordered states. On the latter the procedure of Ref. �8� can be
repeated in the angle packing version without modifications.

In SAT and coloring we have already pointed out that the
recursive incremental procedure of adding difficulty in a
constraint satisfaction problem yields a critical point with a
diverging length, given by the range of rearrangements nec-
essary each time to satisfy the constraints �see Refs. �40,41��.
This point, which we identify as the mean-field version of the
J-point, also corresponds to the appearance of frozen vari-
ables in the state �52�.

In the framework of the pseudoenergy landscape the pro-
cedure leading to the J-point amounts to a deep �zero tem-
perature� quench in this complex landscape, starting from a
random configuration. In this language, it is an infinite tem-
perature inherent structure. Clearly, there is no reason for this
procedure to converge to the �glassy� ground state �otherwise
it would be the ultimate solution to the coloring and SAT
problem�: minima with the largest basin of attraction are ge-
nerically not the deepest.
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Running the program several times starting from different
initial conditions leads to different end densities �8�, distrib-
uted around a typical value, the closer the larger the system:
The pseudoenergy view allows us to recognize this as the
standard situation with the inherent structure energy distribu-
tion �53�.

Another thing to notice is that configuration reached in
the J-point is not typical of the given packing fraction, just as
an inherent structure reached by a quench in an energy land-
scape is not the typical one of the corresponding energy. One
way to emphasize this is to envisage the analog of the pro-
tocol of Ref. �35�: starting from equilibrium configurations at
different initial packing fractions �or values of ro�, one ap-
plies the inflating procedure of O’Hern et al. If the landscape
hypothesis advocated here holds, the final packing fraction
�or ro� reached should depend on the initial one in much the
same way as in Ref. �35� the inherent structure energies de-
pend upon initial equilibrium energies �in finite dimensions
crystallization effects must be taken care of �50��. It would
be interesting to study other amorphous configurations with
the same packing fraction as the J-point, but reached after
different annealing protocols, and check whether they are not
critical. This is what happens in the mean-field models dis-
cussed above: their typical configurations at a packing frac-
tion equal to that of the J-point are not critical, even in this
situation in which there is no possibility of crystalline order.

VI. ANALYTICAL COMPUTATIONS OF PERFORMANCE:
DYNAMICS AND CAUSAL REPLICA CHAINS

The statistical mechanical description of complexity, in
particular based on the replica trick, concerns the average
geometric structures in a given subset of phase space. This
information is local, in the sense that it involves the structure
of typical states and not their whole basin of attraction.
Sometimes, this local information is enough to infer where a
dynamic process starting from a random configuration will
go. This is the case, for example, of dynamics of certain
mean-field models, where marginal states are chosen. How-
ever, it is not clear in general up to what point local infor-
mation of states is sufficient. One alternative that has been
widely discussed in the literature, is to solve the averaged
dynamics �for a review of this approach, see Ref. �54��. Here
we shall discuss a different but related approach, which is a
generalization of several works in the replica literature of the
1980s and 1990s �55–57� and in optimization problems �31�.

Let us first consider an energy landscape of discrete vari-
ables. We start by choosing a random configuration s1 �here
we use boldface to denote N-dimensional vectors�. Next,
keeping this one fixed, we search for another configuration s2
at distance �1 from the first. Keeping these two fixed, we
choose a third configuration s3 at distance �2 from the sec-
ond, and so on. In this way, we construct a causal chain,
since the subsequent links do not affect the preceding ones.
We must demand, for example, that each new replica be at an
energy as small as possible �subject to its constraints�: this is
done by thermalizing each link at a very low temperature.
Next, we must make the distance between links tend to zero,
and the number of links to infinity. From the point of view of

replica theory, this is just a generalization of the effective
potential method �57�, and is also closely related to the dis-
cussion in Refs. �55,56�. We write a partition function

Z = lim
n1→0

� lim
nR→0

 ds1
�1ds2

�2
� dsR

�R��chain�

�exp	− �1 �
�1=1

n1

E�s1
�1� − �2 �

�2=1

n2

E�s2
�2� − �

− �R �
�R=1

nR

E�sR
�R�
 , �10�

where s1
�1 ,s2

�2
�sR

�R are all N-dimensional vectors of spins.
s1

�1 is replicated n1 times, s2
�2 n2 times, etc. Spins are orga-

nized in a hierarchical manner: one of the n1 replicas s1
�1 has

an offspring of n2 of the s2
�2. One of the n2 of these has in

turn an offspring of n3 of the s3
�3, and so on. The term

��chain� is a product of �’s imposing that the rth offspring is
at a fixed distance �r from its parent.

For a constraint satisfaction problem, the problem can be
recast as follows. Taking the example of the coloring prob-
lem, we suppose we have a graph with connectivity per node
�max. The links are given by an N�N symmetric matrix Jij
with elements one and zero. An ordering is introduced by
defining the symmetric matrix Cij, with elements taken at
random with distribution uniform in �0,�max�. The number
of miscolorings at connectivity � is then

M�s,�� = �
ij

Jij��� − Cij��sisj
, �11�

where ��x� is 1 if x is positive, and zero otherwise. One
repeats now the argument as before, for the case of a chain of
replicas with progressively larger values of �, keeping the
total number of errors equal to zero.

In practice, one can make the computation for chains of a
small number of links, and extrapolate the result to the limit
of continuous chain. For systems on the Bethe lattice, the
replica calculation should be translated into the cavity lan-
guage, which is more flexible.

VII. CONCLUSIONS

We have adopted a unified point of view of hard-particle
glasses and the constraint satisfaction problems of computer
science and taken both to a �pseudo� energy landscape set-
ting. On the one hand, the glass literature has long been a
source of inspiration and methods to attack satisfaction prob-
lems. On the other hand, the statistical mechanics of optimi-
zation problems provides nontrivial yet solvable models for
which questions on the jamming transition can be answered
exactly.

In both cases, there are questions—such as a rigidity �hard
field� threshold, the presence of rattler and a backbone of
fixed particles �or Boolean variables, or colors�—peculiar to
the fact that the task is posed as a zero temperature problem
of optimizing parameters while respecting a constraint. The
pseudoenergy language helps to bring back many of these
results to a problem of relaxation in a complex landscape.
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A. Satisfaction

The statistical mechanic point of view of satisfaction has
been mainly concentrated on computation of static snapshot
properties of phase space. This approach has been very fruit-
ful and has suggested powerful algorithms �2�. Here, instead,
we take the approach of defining an algorithm whose prop-
erties can in principle be computed analytically, at least in
the same cases for which a static solution is possible. This
change of perspective reflects a similar passage from a static
to a dynamic approach in the glass literature �54�, and has
also been pursued in the statistical mechanics of optimization
�58�. In this paper we have only stated but not completed the
analytical calculation, but we have shown numerically that
problems are easy beyond the clustering transition, and with
the coloring problem that in some cases even beyond the
Kauzmann one. Indeed, one of the conclusions is that a
rather excessive importance has been attributed to the clus-
tering �dynamic� transition point: this is the point up to
which simple programs can easily sample all configurations
�59�, but not the last point at which it can easily obtain at
least one configuration—this happens at �*. It is then, upon
reflection, not so surprising that relatively straightforward
algorithms such as Walk-SAT �38� find easily solutions al-
most up to the satisfiability threshold.

B. Jamming transition

When the J-point was introduced �8� and shown to corre-
spond to a packing fraction close to the empirical value of
random close packing, the question arose of its meaning in
terms of the glass state. What the present approach under-
lines �but was already implicit in �10��, is that the nature of
this point is the same as that of a zero-temperature quench in
a rugged energy landscape �60�. Deeper, more compact,
points can be reached with other annealing procedures—even
in models without a crystalline state, as the examples we
have considered show. This suggests a picture of the transi-
tion in the temperature–shear-rate–density space �61�, rather
than as a single surface, as a multilayered onion, each level
being reached after a different protocol.

There is density at which a hard particle system has an
experimentally unaccessible relaxation time scale: this hap-
pens at a density distinctly smaller than the J-point one. In-
deed, the present analysis shows that the J-point is necessar-

ily denser than the mode-coupling transition density, in
models in which such a transition exists and is sharp. On the
other hand, the question of which point is denser, the J-point
or the Kauzmann transition point depends on the system and
the dimensionality—again based on what can be inferred
from models for which the latter transition can be shown to
exist �62�. Note that, if the J-point is denser than the glass
transition point, this is at the expense of being out of equi-
librium.

An interesting aspect of the J-point is that it is critical.
Here we have found that the same is also true for mean-field
models �as had already been found in the q-core problem
�63��, but this criticality does not correspond to the thermo-
dynamic glass transition itself �which in mean-field exists�,
but is that of the zero-temperature threshold states �21� al-
ready familiar from the mean-field glassy dynamics. In fact,
in any of the problems discussed here, if the procedure of
approach to the J-point is stopped when the correlation
length has reached a certain large value, and a thermalization
at fixed ro �or �� is applied subsequently, as the system tends
towards equilibrium the pressure drops and the correlation
length diminishes, rather than growing.

The study of problems with disorder raises doubts on the
fact that isostaticity of a frictionless particle system is a nec-
essary �apart from sufficient �45,64�, although see �65�� con-
dition for criticality. This may be checked just by testing the
J-point procedure with a packing of nonspherical �e.g., ellip-
soidal� particles, which are generically hypostatic �66�: if the
J-point for ellipsoids turns out to be critical, then it will be
clear that isostaticity is not a necessary condition for critical-
ity.

Finally, the analogy between particle and satisfaction
problems suggests that one may perhaps build a mean-field,
random first-order theory of rigidity �and to a certain extent
plasticity� by considering systems which develop hard fields,
and subjecting them to driving, nonconservative forces. The
coloring Hamiltonian, or its angle packing version, is a good
candidate for such a strategy.
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