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ABSTRACT
Nodes in real-world networks, such as social, information or tech-
nological networks, organize into communities where edges appear
with high concentration among the members of the community.
Identifying communities in networks has proven to be a challeng-
ing task mainly due to a plethora of definitions of a community,
intractability of algorithms, issues with evaluation and the lack of a
reliable gold-standard ground-truth.

We study a set of 230 large social, collaboration and information
networks where nodes explicitly define group memberships. We
use these groups to define the notion of ground-truth communities.
We then propose a methodology which allows us to compare and
quantitatively evaluate different definitions of network communi-
ties on a large scale. We choose 13 commonly used definitions of
network communities and examine their quality, sensitivity and ro-
bustness. We show that the 13 definitions naturally group into four
classes. We find that two of these definitions, Conductance and
Triad-participation-ratio, consistently give the best performance in
identifying ground-truth communities.
Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database Applications – Data mining
General Terms: Experimentation.
Keywords: Network communities, Community scores, Social and
information networks.

1. INTRODUCTION
Networks are a natural way to represent social [27, 18], biolog-

ical [21], technological [15], and information [6] systems. Nodes
in such networks organize into densely linked groups that are com-
monly referred to as network communities, clusters or modules [9].
There are many reasons why networks organize into densely linked
communities. For example, society is organized into groups, fam-
ilies, villages and associations [5, 10]. On the World Wide Web,
topically related pages link more densely among themselves [6].
And, in metabolic networks, densely linked clusters of nodes are
related to functional units, such as pathways and cycles [21].

Identifying community structure in networks [13, 4, 23, 7] has
proven to be a challenging task [8, 11, 17, 16] due to three reasons:
There exist multiple definitions of network communities [3, 22];
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Even if we would agree on a single common definition, the formal-
izations of community detection lead to NP-hard problems [23];
And, the lack of reliable “ground-truth” makes evaluation extremely
difficult.

Currently the performance of community detection methods is
evaluated by manual inspection. For each detected community an
effort is made to interpret it as a “real” community by identifying
a common property or external attribute shared by all the mem-
bers of the community. For example, when examining communi-
ties in a collaboration network of scientists, we might discover that
such communities correspond to sets of scientists working in vari-
ous areas of science [20]. Communities in social networks organize
around social circles, work places, common hobbies, interests and
affiliations [5, 10, 27]. Obviously, such anecdotal evaluation pro-
cedure requires extensive manual effort, is non-comprehensive and
is limited to small networks as one cannot examine and attempt to
interpret all the extracted communities of a large network.

Defining an appropriate notion of gold-standard ground-truth ad-
dresses the above issues. Using the ground-truth communities al-
lows for quantitative and large-scale evaluation and comparison of
different community detection methods. Such ability represents a
significant step forward as the field can move beyond the current
standard of anecdotal evaluation of communities to comprehensive
evaluation of the performance of community detection methods.

The contributions of the present work are two fold. First, we de-
scribe a set of 230 large social, information and collaboration net-
works where we have a reliable notion of ground-truth communi-
ties. Second, based on the ground-truth we quantitatively evaluate
13 commonly used definitions of network communities by examin-
ing their robustness and sensitivity.

In [16], we evaluated definitions of network communities on a
large scale real-world networks. However, there are two crucial dif-
ferences in our work here. First, [16] used detected communities
by the Local Spectral method [1] for the evaluation. Using com-
munities detected by a specific community detection method would
introduce a bias introduced by the detection method. In this paper,
our evaluation is free from such bias as we adopt ground-truth com-
munities which are explicitly declared by individual nodes. Sec-
ond, [16] provides qualitative evaluation by showing the Network
Characteristic Plot [17] for each definition of communities. Here
we aim to quantify the robustness and sensitivity of the definitions
of communities to compare which definitions are better than oth-
ers.

Present work: Ground-truth communities. Next we describe our
notion of ground-truth communities and argue why it corresponds
to “real” communities.

Generally, after communities are identified in a given network,
the essential next step is to interpret them by identifying a common



external property that all the members share and around which the
community organizes [5]. Thus, the goal of network community
detection is to identify sets of nodes with a common (often ex-
ternal/latent/unobserved) property based only the network connec-
tivity structure. A “common property” can be common attribute,
affiliation, role, property, or function [10, 27]. We use such com-
mon properties of nodes to define ground-truth communities. In our
work we distinguish between network communities and groups. A
community is defined structurally (i.e., a set of nodes extracted by
the community detection algorithm), while a group is defined based
on nodes sharing a property around which the nodes organize in the
network (e.g., belonging to a common interest based group, sharing
common affiliation) [5, 10].

Present work: Networks with ground-truth. We gathered 230
networks from a number of different domains and research areas
where nodes explicitly state their ground-truth community mem-
berships. The size of the networks ranges from hundreds of thou-
sand to hundreds of millions of nodes and edges. The networks rep-
resent a wide range of edge densities, numbers of explicitly defined
communities, as well as sizes and amounts of community overlap.
Our collection consists of social, collaboration and information net-
works, where we consider various notions of ground-truth.

For example, in online social networks (like, Orkut, LiveJournal,
Friendster and 225 different Ning networks) we consider explicitly
defined interest based groups (e.g., fans of Lady Gaga, members of
a group on knitting, students of the same high school) as ground-
truth communities. Such groups serve as organizing principles of
nodes in social networks. They are created on specific topics, inter-
ests, hobbies, affiliations, and geographical regions. Each node can
belong to zero, one or more groups. We also consider the Ama-
zon product co-purchasing network where groups are defined by
hierarchically nested product categories. Here all members of the
same ground-truth community share a common function or pur-
pose. Last, in the scientific collaboration network of DBLP we use
publication venues as proxies for ground-truth research communi-
ties. Thus, for each of these datasets, we have both a network and a
set of ground-truth communities. Note that we are careful to define
ground-truth communities based on common affiliation, social cir-
cle, role, activity, interest, function, or some other property around
which networks organize into communities [5, 10].

Present work: Methodology and findings. Communities are of-
ten studied structurally based on the connectivity patterns between
members. Ground-truth communities allow us to examine how well
various structural definitions of network communities correspond
to real groups (i.e., ground-truth communities). A good structural
definition of a network community would be such that it would
detect connectivity patterns that correspond to real groups. This
means that we can evaluate different structural definitions based on
their ability to identify connectivity structure of ground-truth com-
munities.

We choose 13 commonly used definitions of network commu-
nities and examine their quality, sensitivity and robustness. Each
such definition corresponds to a scoring function that scores a set
of nodes based on the connectivity pattern between them. A higher
score means that a set of nodes more closely resembles the con-
nectivity pattern of a community. By comparing correlations of
scores that different definitions assign to ground-truth communi-
ties, we find that the 13 definitions naturally group into four dis-
tinct clusters. We distinguish definitions that consider: (1) only
internal community connectivity, (2) only external connectivity of
the nodes to the rest of the network; (3) both internal and external
community connectivity, and (4) network modularity.

Dataset N E C S A

LiveJournal 4.0M 34.9M 311,782 40.06 3.09

Friendster 117.7M 2,586.1M 1,449,666 26.72 0.32

Orkut 3.0M 117.2M 8,455,253 34.86 95.9

Ning (225 nets) 7.0M 35.5M 137,177 46.89 0.92

Amazon 0.33M 0.92M 49,732 99.86 14.83

DBLP 0.42M 1.34M 2,547 429.79 2.56

Table 1: 230 social, collaboration and information networks
with explicit ground-truth communities. N : number of nodes,
E: number of edges, C: number of communities, S: average
community size, A: community memberships per node. Ning
statistics are aggregated over 225 different networks.

We then consider an axiomatic approach and define four intuitive
properties of good communities. Intuitively, a “good” community
is cohesive, compact, and internally well connected while being
also well separated from the rest of the network. This allows us to
characterize what connectivity patterns of ground-truth communi-
ties a given definition detects and which ones it misses. We also
measure the robustness of community scoring functions based on
four different types of randomized perturbations of ground-truth
communities. Overall, our results show that notions of network
community that are based on triadic closure [26] and the conduc-
tance [24] best capture the structure of ground-truth communities.

To the best of our knowledge our work is the first to use social
and information networks with explicit community memberships
to define evaluation methodology for comparing network commu-
nity detection algorithms based on their accuracy on real data. We
believe that the present work will bring more rigor and improve the
standard for the evaluation of community detection methods.

2. COMMUNITY SCORING FUNCTIONS
AND DATA SETS

We start by describing the network datasets with ground-truth
communities. Then we continue with outlining 13 commonly used
definitions of network communities.

Networks with ground-truth communities. Overall we consider
230 large social, collaboration and information networks, where
for each network we have a graph and a set of ground-truth com-
munities. We identify networks where nodes explicitly state their
ground-truth community memberships. Members of these ground-
truth communities share properties or attributes, common purpose
or function. We did our best to identify networks in which such
ground-truth communities can be reliably defined and identified.
Networks that we study come from a variety of domains. Their
size ranges from hundreds of thousand to hundreds of millions of
nodes and billions of edges. Table 1 gives the dataset statistics.

First we consider online social networks (the LiveJournal blog-
ging community [2], the Friendster online network [18], and the
Orkut social network [18]) where users create explicit groups to
which other users then join. Communities range from small to very
large and are created based on specific topics, interests, hobbies
and geographical regions. For example, LiveJournal categorizes
communities into the following types: culture, entertainment, ex-
pression, fandom, gaming, life/style, life/support, sports, student
life and technology. Similarly, in other social networks considered
in this study users define topical communities that others then join.
Each user can join to one or more communities. We define that
each such explicit community is a ground-truth community. Sim-
ilarly, we have a set of 225 different online social networks [12]
that are all hosted on the Ning software platform. It is important
to note that each Ning network is a separate social network — an
independent website with a separate user community. For exam-



ple, the NBA team Dallas Mavericks, rapper 50 Cent, and diabetes
patients network TuDiabetes all use Ning to host their separate so-
cial networks. After joining a specific network, users then create
and join topical communities. For example, communities in TuDi-
abetes network focus around specific types of diabetes, parenting
children with diabetes,emotional and social support, different geo-
graphical regions, and similar. We focus our study on 225 different
networks that each have at least 10,000 members.

The second type of network data we consider is the Amazon
product co-purchasing network [15]. The nodes of the network rep-
resent products and edges link commonly co-purchased products.
Each product (i.e., node) belongs to one or more hierarchically or-
ganized product categories and products from the same category
define a group which we view as a ground-truth community. This
means members of the same Amazon community share a common
function or role. Each level of the product hierarchy defines a set
of hierarchically nested and overlapping communities.

Finally, we also consider the DBLP collaboration network [2]
where nodes represent authors and edges connect authors that have
co-authored a paper. Here we use publication venues (i.e., con-
ferences) as ground-truth communities which serve as proxies for
highly overlapping scientific communities around which the net-
work then organizes.

All our networks are complete and publicly available: LiveJour-
nal [2], Friendster 1, Orkut [18], Ning [12], Amazon [15] and DBLP
[2].2 For each of these networks we identified a sensible way of
defining ground-truth communities that serve as organizational units
of these networks. The results we present here are consistent and
robust across a wide range of networks and across an even wider
range of groups. This gives further evidence that our approach is
general and well-founded. Our work is consistent with the premise
that is implicit in all community detection works: members of
“real” communities share some (latent/unobserved) property or af-
filiation that serves as an organizing principle of the nodes and
makes them well-connected in the network.

Data preprocessing. To represent all networks in a consistent
way we drop edge directions and consider each network as an un-
weighted undirected static graph. Because members of the group
may be disconnected in the network, we consider each connected
component of the group as a separate ground-truth community.
However, we allow ground-truth communities to be nested and to
overlap (i.e., a node can be a member of multiple groups at once).

Community scoring functions. We now proceed to discuss var-
ious scoring functions that characterize how community-like is a
given set of nodes. The idea is that given a community scoring
function, one can then find sets of nodes with high score and con-
sider these sets as communities. All scoring functions build on the
intuition that communities are sets of nodes with many connec-
tions between the members and few connections to the rest of the
network. There are many possible ways to mathematically formal-
ize this intuition. We gather 13 commonly used and representative
formalizations of scoring functions, or equivalently, 13 definitions
of a network community. Some scoring functions are well known
in the literature, while others are proposed for the first time.

We consider a function f(S) that, given a set of nodes S, char-
acterizes how community-like is the connectivity of these nodes.
Let G(V,E) be an undirected graph with n = |V | nodes and
m = |E| edges. Let S be the set of nodes, where nS is the

1http://archive.org/details/
friendster-dataset-201107
2All networks and the corresponding ground-truth communities are
available at http://snap.stanford.edu/data

number of nodes in S, nS = |S|; mS the number of edges in
S, mS = |{(u, v) ∈ E : u ∈ S, v ∈ S}|; and cS , the number of
edges on the boundary of S, cS = |{(u, v) ∈ E : u ∈ S, v �∈ S}|;
and d(u) is the degree of node u. We consider 13 scoring functions
f(S) that capture the notion of quality of a network community
S. The experiments we present later in the section show that the
scoring functions naturally group into four classes:

(A) Scoring functions based on the internal connectivity of S:

• Internal density: f(S) = mS
nS(nS−1)/2

is the internal edge

density of the node set S [22].

• Edges inside: f(S) = mS is the number of edges between
the members of S [22].

• Average degree: f(S) = 2mS
nS

is the average internal degree

of the members of S [22].

• Fraction over median degree (FOMD):
f(S) = |{u:u∈S,|{(u,v):v∈S}|>dm}|

nS
is the fraction of nodes

of S that have internal degree higher than dm, where dm is
the median value of d(u) of all the nodes in V .

• Triangle participation ratio (TPR):
f(S) = |{u:u∈S,{(v,w):v,w∈S,(u,v)∈E,(u,w)∈E,(v,w)∈E}�=∅}|

nS

is the fraction of nodes in S that belong to a triad.

(B) Scoring functions based on the external connectivity of S:

• Expansion measures the number of edges per node that point
outside the cluster: f(S) = cS

nS
[22].

• Cut Ratio is the fraction of existing edges (out of all possible
edges) leaving the cluster: f(S) = cS

nS(n−nS)
[7].

(C) Scoring functions that combine internal and external connec-
tivity of S:

• Conductance: f(S) = cS
2mS+cS

measures the fraction of

total edge volume that points outside the cluster [24].

• Normalized Cut: f(S) = cS
2mS+cS

+ cS
2(m−mS)+cS

[24].

• Maximum-ODF (Out Degree Fraction):
f(S) = maxu∈S

|{(u,v)∈E:v �∈S}|
d(u)

is the maximum fraction

of edges of a node in S that point outside S [6].

• Average-ODF: f(S) = 1
nS

∑
u∈S

|{(u,v)∈E:v �∈S}|
d(u)

) is the

average fraction of edges of nodes in S that point out of S [6].

• Flake-ODF: f(S) = |{u:u∈S,|{(u,v)∈E:v∈S}|<d(u)/2}|
nS

is

the fraction of nodes in S that have fewer edges pointing in-
side than to the outside of the cluster [6].

(D) Scoring function based on a network model:

• Modularity: f(S) = 1
4
(mS − E(mS)) is the difference

between mS , the number of edges between nodes in S and
E(mS), the expected number of such edges in a random
graph with identical degree sequence [19].

Experimental result: Four classes of scoring functions. Given
13 community scoring functions we investigate relationship be-
tween different scoring functions. We performed the following
experiment: For each of the 10 million ground-truth communities
in our networks, we compute the score using each of the 13 scor-
ing functions. We then create a correlation matrix between scoring
functions and threshold it. Fig. 1 shows connections between scor-
ing functions with correlation ≥ 0.6 (on the LiveJournal network).
We observe four connected components of scores which results in
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Figure 1: Correlations between community scoring functions.

the grouping above. Overall, none of the scoring functions are neg-
atively correlated, which means that none of the scoring functions
systematically disagree. Interestingly, Modularity is not correlated
with any other scoring function (Average degree is the most corre-
lated at 0.05 correlation). We observe similar correlation of scoring
function in all other data sets as well.

The experiment demonstrates that even though many different
notions of network community have been proposed, in the end
these notions are heavily correlated. Essentially there are only 4
different notions of community scoring functions as revealed by
Fig. 1. In the rest of the paper we only present results for the 6
representative scoring functions (blue nodes in Figure 1).

3. EVALUATION OF COMMUNITY
SCORING FUNCTIONS

The second main purpose of the paper is to develop evaluation
methodology for network community detection. Based on ground-
truth communities we now aim to compare and evaluate different
community scoring functions.

Community goodness metrics. Our goal is to rank different def-
initions of a network community (i.e., community scoring func-
tions) by their ability to detect ground-truth communities. We adopt
an axiomatic approach and proceed as follows. First, we define
four community “goodness” metrics that formalize the intuition
that “good” communities are both compact and well connected in-
ternally while being relatively well-separated from the rest of the
network.

The difference between community scoring functions from Sec-
tion 2 and the goodness metrics defined above is that a community
scoring function quantifies how community-like a set is, while a
goodness metric in an axiomatic way quantifies a desirable prop-
erty of a community. A set with high goodness metrics does not
necessarily correspond to a community, but a set with high com-
munity score should have a high value on one or more goodness
metrics. In other words, the goodness metrics shed light on various
(in many cases mutually exclusive) aspects of the network commu-
nity structure.

Using the notation from Section 2, we define four goodness met-
rics g(S) for a node set S:

• Separability captures the intuition that good communities
are well-separated from the rest of the network [24, 7], mean-
ing that they have relatively few edges pointing from set S to
the rest of the network. Separability measures the ratio be-
tween the internal and the external number of edges of S:
g(S) = mS

cS
.

• Density builds on intuition that good communities are well
connected [7]. One way to capture this is to characterize the
fraction of the edges (out of all possible edges) that appear
between the nodes in S, g(S) = mS

nS(nS−1)/2
.

• Cohesiveness characterizes the internal structure of the com-
munity. Intuitively, a good community should be internally
well and evenly connected, i.e., it should be relatively hard
to split a community into two sub communities. We charac-
terize this by the conductance of the internal cut. Formally,
g(S) = maxS′⊂S φ(S′) where φ(S′) is the conductance
of S′ measured in the induced subgraph by S. Intuitively,
conductance measures the ratio of the edges in S′ that point
outside the set and the edges inside the set S′. A good com-
munity should have high cohesiveness (high internal conduc-
tance) as it should require deleting many edges before the
community would be internally split into disconnected com-
ponents [16].

• Clustering coefficient is based on the premise that network
communities are manifestations of locally inhomogeneous
distributions of edges, because pairs of nodes with common
neighbors are more likely to be connected with each other [26].

Experimental setup. We are interested in quantifying how “good”
are the communities chosen by a particular scoring function f(S)
by evaluating their goodness metric. We formulate our experiments
as follows: For each of 230 networks, we have a set of ground-truth
communities Si. For each community scoring function f(S), we
rank the ground-truth communities by the decreasing score f(Si).
We measure the cumulative running average value of the goodness
metric g(S) of the top-k ground-truth communities (under the or-
dering induced by f(Si)).

The intuition for the experiments is the following. A perfect
community scoring function would rank the communities in the
decreasing order of the goodness metric and thus the cumulative
running average of the goodness metric would decrease monoton-
ically with k. While if a hypothetical community scoring function
would randomly rank the communities, then the cumulative run-
ning average would be a constant function of k.

Experimental results. Figure 2(a) shows the results by plotting
the cumulative running average of separability for LiveJournal3

ground-truth communities ranked by each of the six community
scoring functions. Curve “U” presents the upper bound, i.e., it plots
the cumulative running average of separability when ground-truth
communities are ordered by decreasing separability. We observe
that Conductance (C) and Cut Ratio (CR) give near optimal perfor-
mance, i.e., they nearly perfectly order the ground-truth communi-
ties from the most separable to the least separable. On the other
hand, we observe that Triad participation ratio (T) and Modularity
(M) essentially score ground-truth communities in the inverse or-
der of separability (especially for k < 100), which means that they
both prefer densely linked sets of nodes.

Similarly, Figures 2(b), (c), and (d) show the cumulative running
average of community density, cohesiveness and clustering coef-
ficient. We observe that all scoring functions (except Modularity)
rank denser, more cohesive and more clustered ground-truth com-
munities higher. For the density metric, the Fraction over median
degree (D) score performs best for high values of k followed by
Conductance (C) and Flake-ODF (F). In terms of cohesiveness and
clustering coefficient, the Triad participation ratio (T) score gives
by far the best results. In all cases the only exception seems to be

3For brevity we show plots for the LiveJournal network. Qualita-
tively similar results are obtained for all other datasets (Appendix).
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Figure 2: Cumulative average of goodness metrics for Live-
Journal communities ranked by each of the six community
scoring functions.

Scoring function Separability Density Cohesiveness Clustering

Conductance (C) 1.0 3.5 3.4 3.1

Flake-ODF (F) 3.9 3.6 3.5 4.3

FOMD (D) 4.9 3.0 2.9 2.9

TPR (T) 4.5 2.3 2.1 1.2
Modularity(M) 4.0 5.5 5.7 3.9

CutRatio (CR) 2.6 3.1 3.2 5.5

Table 2: Average scoring function rank for each goodness met-
ric across all the 230 networks. Conductance gives the highest
Separability while Triad participation ratio (TPR) scores best
on the remaining metrics.

that the Modularity score actually ranks the communities in nearly
reverse order of the goodness metric. Since the cumulative running
average increases as a function of k, this means that communities
with low density, cohesiveness or clustering coefficient are scored
higher by the Modularity score. We note that these are all well-
known issues of the Modularity score [8, 11] but they get further
attenuated when tested on large networks.

The curves in Figure 2 also illustrate the ability of the commu-
nity scoring functions to rank communities. To quantify this we
perform the following experiment. For a given goodness metric g
and for each community scoring function f , we measure the rank
of each scoring function in comparison to other scoring functions
at every value of k. For example, the score that consistently ranks
communities with larger separability higher than any other score
would have an average rank of 1. In Figure 2(a), the rank of Con-
ductance at k = 100 is 1, Cut ratio 2, Flake-ODF 3, FOMD 4,
Modularity 5, and TPR 6. Now for every k, we rank the scores and
compute the average rank over all values up to k, which quanti-
fies the ability of the scoring function to identify communities with
high value of the goodness metric.

Our results show that Conductance and Triad Participation Ra-
tio consistently give the best performance in ranking ground-truth
communities. In particular, Table 2 shows the average rank for each
score and each goodness metric. An average rank of 1 means that
a particular score always outperforms other scores, while rank of
6 means that the score gives worst ranking out of all 6 scores. We
observe that Conductance (C) performs best in terms of Separabil-

ity but relatively bad in the other three metrics. For Density, Co-
hesiveness and Clustering coefficient, Triad participation ratio (T)
gives by far best results and outperforms all other scoring functions.
Perhaps not surprisingly, Triad participation ratio scores badly on
Separability of ground-truth communities. Thus, Conductance is
able to identify well-separated communities, but performs poorly
in identifying dense and cohesive sets of nodes with high cluster-
ing coefficient. On the other hand, Triad participation ratio gives
the worst performance in terms of Separability but scores the best
for the other three metrics.

We conclude that depending on the network different definitions
of network communities might be appropriate. When the network
contains well-separated non-overlapping communities, Conductance
is the best scoring function. When the network contains dense
heavily overlapping communities, then the Triad participation ra-
tio defines the most appropriate notion of a community.

Lastly, in Figure 2 we observe that the average goodness metric
of the top k communities remains flat but then quickly degrades.
We observe the same pattern in all our data sets. Thus, for the
remainder of the paper we focus our attention to a set of the top
5,000 communities of each network based on the average rank over
the 6 scoring functions.

4. ROBUSTNESS OF COMMUNITY
SCORING FUNCTIONS

So far we have examined the ability of different scoring func-
tions to rank ground-truth communities according to their good-
ness. In the following section, we evaluate community scoring
functions using a set of perturbation strategies for communities. We
develop a set of strategies to generate randomized perturbations of
ground-truth communities, which allows us to investigate robust-
ness and sensitivity of community scoring functions. Intuitively, a
good community scoring function should be such that it is stable
under small perturbations but degrades quickly as the perturbation
get larger.

Our reasoning is as follows. We desire a community scoring
function that scores well when evaluated on a ground-truth com-
munity but scores low when evaluated on a perturbed community.
In other words, an ideal community scoring function should give
a maximal value when evaluated on the ground-truth community.
If we consider a slightly perturbed ground-truth community (i.e.,
a node set that differs very slightly from the ground-truth commu-
nity), we would want the score to be nearly as good as the score
of the original ground-truth community. This would mean that the
scoring function is robust to noise and small perturbations of the
original community. However, if the ground-truth community is
perturbed a lot and starts to resemble a random set of nodes, then a
good scoring function should give it a low score.

Community perturbation strategies. We proceed by defining a
set of community perturbation strategies. To vary the amount of
perturbation, each perturbation strategy has a single parameter p
that controls the intensity of the perturbation and thus the resem-
blance of the perturbed community to the ground-truth community.
Given p and a ground-truth community defined by its members S,
the community perturbation starts with S and then modifies it (i.e.,
removes some nodes from S and adds others to it) by executing the
perturbation strategy p|S| times. We define the following perturba-
tion strategies:

• NODESWAP perturbation is based on the mechanism where
nodes at the boundary of the community swap memberships
and so the community memberships diffuse from the orig-
inal community through the network. We achieve this by



picking a random edge (u, v) where u ∈ S and v �∈ S and
then swap the memberships (i.e., remove u from S and add
v). Note that NODESWAP preserves the size of S but if v is
not connected to the nodes in S, then NODESWAP makes S
disconnected.

• RANDOM takes community members and replaces them with
random non-members. We pick a random node u ∈ S and
a random v �∈ S and then swap the memberships. Like
NODESWAP, RANDOM maintains the size of S but may dis-
connect S. Generally, RANDOM will degrade the quality of
S faster than NODESWAP, since NODESWAP only affects the
“fringe” of the community.

• EXPAND perturbation grows the membership set S by ex-
panding it at the boundary. We pick a random edge (u, v)
where u ∈ S and v �∈ S and add v to S. Adding v to S will
generally decrease the quality of the community. EXPAND

preserves the connectedness of S but increases the size of S.

• SHRINK is the opposite of EXPAND as it removes members
from the community boundary. We pick a random edge (u, v)
where u ∈ S, v �∈ S and remove u from S. Removing u will
decrease the quality of S and result in a smaller community
while preserving connectedness.

For a given community S, we let h(S, p) denote a perturbed version
of the community generated by the perturbation h with intensity p.

We now quantify the difference of the score between the un-
perturbed ground-truth community and the perturbed community.
We use the Z-score, which measures in the units of standard de-
viation how much the scoring function changes as a function of
perturbation intensity. Given ground-truth communities Si, the Z-
score Z(f, h, p) of community scoring function f under perturba-
tion strategy h with intensity p is:

Z(f, h, p) =
Ei[f(Si)− f(h(Si, p))]√

V ari[f(h(Si, p))]
,

where Ei[·], V ari[·] are the mean and the variance over commu-
nities Si, and f(h(Si, p)) is the community score of perturbed Si

under perturbation h with intensity p. To measure f(h(Si, p)), we
run 20 trials of h(Si, p) and compute the average value of f . Z-
score is the difference between the average community score of true
communities f(Si) and the average community scores of perturbed
communities f(h(Si, p)) normalized by the standard deviation of
community scores of perturbed communities. Since f(h(Si, p) are
independent for each i, Ei[f(h(Si, p))] follows a Normal distribu-
tion by the Central Limit Theorem. Thus, P (z < Z(f, h, p)) gives
the probability that Ei[f(h(Si, p))] > Ei[f(Si)] where z is a stan-
dard normal random variable. We measure f so that lower values
mean better communities, i.e., we add a negative sign to TPR, Mod-
ularity and FOMD. High Z-scores mean that Ei[f(Si)] is likely to
be smaller than Ei[f(h(Si, p))] and that Si is better than h(Si, p)
in terms of f .

Experimental results. For each of the 6 community scoring func-
tions, we measure Z-score for perturbation intensity p ranging be-
tween 0.01 and 0.6. This means that we randomly swap between
1% and 60% of the community members and measure the Z-score
for each of the 6 community scoring functions. For small p, small
Z-scores are desirable since they would indicate that the scoring
function is robust and does not change much under small pertur-
bations of communities. For high perturbation intensities p, high
Z-scores are preferred because this would suggest that the commu-
nity scoring function is sensitive, i.e., as the community becomes
more “random” we want the community scoring function to signif-
icantly increase its value.
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Figure 3: Z-scores as a function of the perturbation intensity
of each of the 6 scoring functions for the LiveJournal commu-
nities. Conductance (C) and Triad participation ratio (T) best
detect the perturbations of a ground-truth community.

Scoring function NodeSwap Random Expand Shrink

Conductance (C) 1.06 1.59 0.50 0.45
Flake-ODF (F) 0.51 1.15 0.11 0.41

FOMD (D) 0.18 0.57 0.19 0.12

TPR (T) 0.37 1.85 0.74 0.21

Modularity(M) 0.23 0.14 0.03 0.15

CutRatio (CR) 0.53 0.83 0.13 0.43

Table 3: Average absolute increment of the Z-score between
small and large community perturbations over all the 230 net-
works. We bold the best performing scoring functions.

Figure 3 shows the Z-scores of LiveJournal communities as a
function of perturbation intensity p. We plot the Z-score for each of
the 6 community scoring functions and the four perturbation strate-
gies. As expected, the Z-scores increase with p, which means that
as the community gets more perturbed, and thus more “random”,
the value of the score tends to decrease. However, the faster the in-
crease the more sensitive and thus the better the score is. For exam-
ple, under the NODESWAP perturbation Conductance (C) exhibits
the highest Z-score after p > 0.2, and it has the steepest curve.
Triad participation ratio (T) also exhibits desirable behavior. On the
other hand, Modularity (M) score does not change much as we per-
turb the ground-truth community. This means that Modularity has
a difficult time distinguishing true communities from randomized
sets of nodes. For the RANDOM perturbation, the Z-score of the
Triad participation ratio (T) is the highest when p > 0.4. Conduc-
tance (C) and Flake-ODF (F) also exhibit relatively good sensitivity
towards the RANDOM perturbations. For the EXPAND perturba-
tion, Triad participation ratio (T) clearly performs best followed by
Conductance (C) and Cut ratio (CR). Interestingly, Modularity (M)
shows decreasing Z-score. This means that if we randomly expand
the community (and thus increase its size), then Modularity keeps
increasing. This phenomenon is known as the resolution limit of
modularity [8] as it is unable to detect small communities. Last,
for the SHRINK perturbation we observe a monotonic increase of
Z-scores for all scoring functions. We note very similar results on
all of the remaining datasets considered in this study (Appendix).

Sensitivity of community scoring functions. We also quantify
the sensitivity of community scoring functions by computing the
increase of the Z-score between small (p = 0.05) and large pertur-



bations (p = 0.2). As noted above, we prefer a community scoring
function with fast increase of the Z-score as the community per-
turbation intensity increases. Table 3 displays the difference of the
Z-score between a large and a small perturbation: Z(f, h, 0.2) −
Z(f, h, 0.05). We compute the average increment across all the
230 networks. A high value of increment means that the score is
both robust and sensitive. The score is robust because even at small
perturbation (p = 0.05) it maintains low Z-value, while at large
perturbation (p = 0.2) it has high Z-value and thus the overall Z-
score increment is high. We also observe that the Conductance is
the most robust score under the NODESWAP and SHRINK. The
Triad participation ratio (T) is the most robust under RANDOM and
EXPAND. In both cases it is relatively closely followed by the Con-
ductance.

5. CONCLUSION
The lack of reliable ground-truth gold-standard communities has

made network community detection a very challenging task. In
this paper, we studied a set of 230 different large social, collab-
oration and information networks in which we defined the notion
of ground-truth communities by nodes explicitly stating their group
memberships. The size of the networks ranges from hundreds of
thousand to hundreds of millions of nodes and billions of edges.
The networks represent a wide range of edge densities, numbers
of explicitly defined communities, as well as sizes and amounts of
community overlap.

We then developed an evaluation methodology for comparing
network community detection algorithms based on their accuracy
on real data and compared different definitions of network commu-
nities and examined their robustness. Our results demonstrate large
differences in behavior of community scoring functions. We find
that Conductance and Triad participation ratio perform best, while
the Modularity score gives relatively poor results.

Our work here and the availability of ground-truth communities
allows for a range of interesting future directions. For example, it
would be interesting to investigate network community detection as
a supervised (rather than an unsupervised) problem. The challenge
here is that a network is a single object, which we cannot simply
split into a training and a test dataset. Similarly, further examin-
ing the connectivity structure of ground-truth communities could
lead to novel insights, models and algorithms for network commu-
nity detection. Overall, we believe that the present work will bring
more rigor and increase the standards for the evaluation of network
community detection methods, and the datasets publicly released
as a part of this work will benefit the research community.
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Figure 4: Average metrics of top k communities by the scores.
Sep.: Separability, Coh.: Cohesiveness.
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Figure 5: Z-score of 6 scores versus the perturbation intensity
for each null model. NS: NodeSwap, RA: Random, EX: Ex-
pand, SH: Shrink.


