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PREFACE

IN the present edition I have developed more fully the proof of the
consistency of the postulates of the theory, including the product rule
and therefore the principle of inverse probability. The convergence
principle, otherwise the simplicity postulate for initial probabilities, i
shown to satisfy the conditions. The argument amounts to a proof that
axioms can be stated that will permit the attachment of a high probabi
lity to any precisely stated law given suitable observational data. There
is still room for choice in the precise formulation of the convergence
principle, but 1 regard that as an invitation to others to try. I do not
claim to have done all that is needed, but I do claim to have done a great
deal more than any of my critics have noticed. Where the theory is
incomplete the outstanding questions are mostly either of a sort that
can make little difference to practical applications, or arise from diffi-
culties in stating the likelihood that would affect any theory.

Some mathematical proofs are given more fully than in previous
editions. A proof of the Pitman-Koopman theorem concerning the
existence of sufficient statistics is given in an extended form. The related
invariance theory of Huzurbazar for initial probabilities is described.
The revision of prior probabilities is brought into relation with the
theory of types.

Some points in later chapters have been transferred to the first, in the
hope that fewer critics will be misled into inferring what is not in the
book from not finding it in the first chapter. For instance, the difficulty
mentioned on p. 3 has been repeated as inescapable, whereas the greater
part of the book is devoted to showing how it can be met in a construc-
tive way ; that on p 119 continues to be stated though it was answered
thirty years ago, and arguments based on the assumption of equal
probabilities over an infinite class of laws are still given without mention
of the convergence principle.

Several writers, even recent ones, have described me as a follower of
the late Lord Keynes. Without wishing to disparage Keynes, I must
point out that the first two papers by Wrinch and me in the Philo-
sophical Magazine of 1919 and 1921 preceded the publication of Keynes's
book What resemblance there is between the present theory and that
of Keynes is due to the fact that Broad, Keynes, and my collaborator
had all attended the lectures of W. E Johnson. Keynes’s distinctive
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contribution was the assumption that probabilities are only partially
ordered, this contradicts my Axiom 1 I gave reasons for not accepting
it in a review of Keynes's book and in the first edition of Scientific
Inference Mistakenly thinking that this was no longer necessary I
omitted them from the second Keynes himself withdrew his assump-
tion in his biographical essay on ¥ P Ramsey My own primary in-
spiration came from Pearson’s Grammar of Science, a work that is
apparently unknown to many present philosophers of science

On the other hand, the main conclusion, that scientific method de
pends on considering at the outset the hypothesis that variation of the
data is completely random, and modifying it step by step as the data
are found to support alternatives is a complete reversal of the nature
of induction as understood by philosophers Yet so far as I know no
philosopher has noticed it

Adherents of frequency definitions of probability have naturally
objected to the whole system. But they carefully avoid mentioning my
criticisms of frequency definitions, which any competent mathematician
can see to be unanswerable. In this way they contrive to present me as
an intruder into a field where everything was already satisfactory 1
speak from experience in saying that students have no difficulty in
following my system if they have not already spent several years in
trying to convince themselves that they understand frequency theories

Several authors have recently tried to construct theories that can be
regarded as compromises between the epistemological one and one that
admits intrinsic probabilities only. It seems to me that these are only
elaborate ways of shirking the problems The present formulation is the
easiest that can be constructed.

However, there is a decided improvement in the willingness of
physicists to estimate the uncertainties of their results properly, and
I suppose that I can claim some of the credit for this There is, however,

room for further improvement.
H.J

Cambridge, 1960



PREFACE TO THE FIRST EDITION

THE chief object of this work is to provide a method of drawing infer-
ences from observational data that will be self-consistent and can also
be used in practice. Scientific method has grown up without much
attention to logical foundations, and at present there is little relation
between three main groups of workers Philosophers, mainly interested
in logical principles but not much concerned with specific applications,
have mostly followed in the tradition of Bayes and Laplace, but with
the brilliant exception of Professor ¢ D Broad have not paid much
attention to the consequences of adhering to the tradition in detail.
Modern statisticians have developed extensive mathematical techniques,
but for the most part have rejected the notion of the probability of a
hypothesis, and thereby deprived themselves of any way of saying
precisely what they mean when they decide between hypotheses
Physicists have been described, by an experimental physicist who has
devoted much attention to the matter, as not only indifferent to funda-
mental analysis but actively hostile to it, and with few exceptions their
statistical technique has hardly advanced beyond that of Laplace In
opposition to the statistical school, they and some other scientists are
liable to say that a hypothesis is definitely proved by observation,
which is certainly a logical fallacy, most statisticians appear to regard
observations as a basis for possibly rejecting hypotheses, but in no case
tfor supporting them The latter attitude, if adopted consistently,
would reduce all inductive inference to guesswork, the former, if
adopted consistently, would make it impossible ever to alter the hypo-
theses, however badly they agreed with new cvidence The present
attitudes of most physicists and statisticians ate diametrically opposed,
but lack of a common meeting-ground has, to a very large extent, pre-
vented the opposition from being noticed Nevertheless, both schools
have made great scientific advances, in spite of the fact that their
fundamental notions, for one reason or the other, would make such
advances impossible if they were consistently maintained

In the present book I reject the attempt to reduce induction to
deduction, which 1s characteristic of both schools, and maintain that
the ordinary common sense notion of probability is capable of precise
and consistent treatment when once an adequate language is provided
for it It leads to the result that a precisely stated hypothesis may
attain either a high or a negligible probability a< a result of observa-
tional data, and therefore to an attitude termediate between those

B
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current in physics and statistics, but in accordance with ordinary
thought Fundamentally the attitude is that of Bayes and Laplace,
though it is found necessary to modify their hypotheses before some
types of cases not considered by them can be treated, and some steps
in the argument have been filled in For instance, the rule for assessing
probabilities given in the first few lines of Laplace’s book is Theorem 7,
and the principle of inverse probability is Theorem 10 There is, on the
whole, a very good agreement with the recommendations made in
statistical practice, my objection to current statistical theory is not so
much to the way it is used as to the fact that it limits its scope at the
outget in such a way that it cannot state the questions asked, or the
answers to them, within the language that it provides for itself, and
must either appeal to a feature of ordinary language that it has declared
to’ be meaningless, or else produce arguments within its own language
that will not bear inspection

The most beneficial result that 1 can hope for as a consequence of
this work is that more attention will be paid to the precise statement
of the alternatives involved in the questions asked It is sometimes
considered a paradox that the answer depends not only on the observa-
tions but on the question, it should be a platitude

The theory is applied to most of the main problems of statistics, and
a number of specific applications are given. It is a necessary condition
for their inclusion that they shall have interested me. As my object is
to produce a general method I have taken examples from a number of
subjects, though naturally there are more from physics than from
biology and more from geophysics than from atomic physics It was,
as a matter of fact, mostly with a view to geophysical applications that
the theory was developed It is not easy, however, to produce a
statistical method that has application to only one subject, though
intraclass correlation, for instance, which is a matter of valuable posi-
tive discovery in biology, is usually an unmitigated nuisance in physics
It may be felt that many of the applications suggest further questions.
That is inevitable It is usually only when one group of questions has
been answered that a further group can be stated in an answerable
form at all

1 must offer my warmest thanks to Professor R A Fisher and Dr J
Wishart for their kindness in answering numerous questions from a not
very docile pupil, and to Mr R B Braithwaite, who looked over the
manuscript and suggested a number of improvements, also to the
Clarendon Press for their extreme courtesy at all stages

St John s College, Cambridge

H J.
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1

FUNDAMENTAL NOTIONS

They say that Understanding ought to work by the rules of right
reason. These rules are, or ought to be, contained in Logic; but the
actual science of logic is conversant at present only with things either
certain, impossible, or entirely doubtful, none of which (fortunately)
we have to reason on. Therefore the true logic for this world is the
calculus of Probabilities, which takes account of the magnitude of
the probability which is, or ought to be, in a reasonable man’s mind.

J. CLERE MAXWELL

1.0. TuE fundamental problem of scientific progress, and a fundamental
one of everyday life, is that of learning from experience. Knowledge
obtained in this way is partly merely description of what we have already
observed, but part consists of making inferences from past experience
to predict future experience. This part may be called generalization
or induction. It is the most important part; events that are merely
described and have no apparent relation to others may as well be for-
gotten, and in fact usually are. The theory of learning in general is
the branch of logic known as epistemology. A few illustrations will
indicate the scope of induction. A botanist is confident that the plant
that grows from a mustard seed will have yellow flowers with four long
and two short stamens, and four petals and sepals, and this is inferred
from previous instances. The Nautical Almanac’s predictions of the
positions of the planets, an engineer’s estimate of the output of a new
dynamo, and an agricultural statistician’s advice to a farmer about the
utility of a fertilizer are all inferences from past experience. When a
musical composer scores a bar he is expecting a definite series of sounds
when an orchestra carries out his instructions. In every case the infer-
ence rests on past experience that certain relations have been found to
hold, and those relations are then applied to new cases that were not
part of the original data. The same applies to my expectations about
the flavour of my next meal. The process is so habitual that we hardly
notice it, and we can hardly exist for a minute without carrying it out.
On the rare occasions when anybody mentions it, it is called common
sense and left at that.

Now such inference is not covered by logic, as the word is ordinarily
understood. Traditional or deductive logic admits only three attitudes
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to any proposition. definite proof, disproof, or blank ignorance. But no
number of previous instances of a rule will provide a deductive proof
that the rule will hold in a new instance. There is always the formal
possibility of an exception.

Deductive logic and its close associate, pure mathematics, have been
developed to an enormous extent, and in a thoroughly systematic way
—indeed several ways. Scientific method, on the other hand, has grown
up more or less haphazard, techniques being developed to deal with
problems as they arose, without much attempt to unify them, except
80 far as most of the theoretical side involved the use of pure mathe-
matics, the teaching of which required attention to the nature of some
sort of proof. Unfortunately the mathematical proof is deductive, and
induction in the scientific sense is simply unintelligible to the pure
mathematician—as such; in his unofficial capacity he may be able to
do it very well. Consequently little attention has been paid to the
nature of induction, and apart from actual mathematical technique
the relation between science and mathematics has done little to develop
a connected account of the characteristic scientific mode of reasoning.
Many works exist claiming to give such an account, and there are some
highly useful ones dealing with methods of treating observations that
have been found useful in the past and may be found useful again. But
when they try to deal with the underlying general theory they suffer
from all the faults that modern pure mathematics has been trying to get
rid of. self-contradictions, circular arguments, postulates used without
being stated, and postulates stated without being used. Running through
the whole is the tendency to claim that scientific method can be reduced
in some way to deductive logic, which is the most fundamental fallacy
of all* it can be done only by rejecting its chief feature, induction.

The principal field of application of deductive logic is pure mathe-
matics, which pure mathematicians recognize quite frankly as dealing
with the working out of the consequences of stated rules with no
reference to whether there is anything in the world that satisfies those
rules. Its propositions are of the form ‘If p is true, then g is true’,
irrespective of whether we can find any actual instance where p is true.
The mathematical proposition is the whole proposition, ‘If p is true,
then g is true’, which may be true even if p is in fact always false. In
applied mathematics, as usually taught, general rules are asserted as
applicable to the external world, and the consequences are developed
logically by the technique of pure mathematics. If we inquire what
reason there is to suppose the general rules true, the usual answer is
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simply that they are known from experience. However, this use of the
word ‘experience’ covers a confusion. The rules are inferred from past
experience, and then applied to future experience, which is not the same
thing. There is no guarantee whatever in deductive logic that a rule
that has held in all previous instances will not break down in the next
instance or in all future instances. Indeed there are an infinite number
of rules that have held in all previous cases and cannot possibly all
hold in future ones. For instance, consider a body falling freely under
gravity. It would be asserted that the distance at time ¢ below a fixed
level is given by a formula of the type

s = atut43gt2. (1)
This might be asserted from observations of ¢ at a series of instants

ty, ty,..., t,. That is, our previous experience asserts the proposition
that a, %, and g exist such that

8 = atut,+igr (@)
for all values of r from 1 to n. But the law (1) is asserted for all values
of t. But consider the law

s = atut+3gP+f(E)E—4)(t—15)...0—1y), 3)
where f(f) may be any function whatever that is not infinite at any of
ty, byyeens by, and @, %, and g have the same values as in (1). There are an
infinite number of such functions. Every form of (3) will satisfy the
set of relations (2), and therefore every one has held in all previous
cases. But if we consider any other instant ¢, ,, (which might be either
within or outside the range of time between the first and last of the
original observations) it will be possible to choose f(t,,;) in such a way
as to give s as found from (3) any value whatever at time ¢, ,,. Further,
there will be an infinite number of forms of f(¢) that would give the same
value of f(£,.,), and there are an infinite number that would give differ-
ent values. If we observe s at time ¢,,,, we can choose f(t,,,) to give
agreement with it, but an infinite number of forms of f(¢) consistent
with this value would be consistent with any arbitrary value of s at a
further moment ¢,,,. That is, even if all the observed values agree with
(1) exactly, deductive logic can say nothing whatever about the value
of s at any other time. An infinite number of laws agree with previous
experience, and an infinite number that have agreed with previous ex-
perience will inevitably be wrong in the next instance. What the applied
mathematician does, in fact, is to select one form out of this infinity;
and his reason for doing so has nothing whatever to do with traditional
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logic. He chooses the simplest. This is actually an understatement of
the case; because in general the observations will not agree with (1)
exactly, a polynomial of n terms can still be found that will agree exactly
with the observed values at times ¢,,. ., ¢,, and yet the form (1) may
still be asserted. Similar considerations apply to any quantitative law.
The further significance of this matter must be reserved till we come to
significance tests. We need notice at the moment only that the choice
of the simplest law that fits the facts is an essential part of procedure
in applied mathematics, and cannot be justified by the methods of
deductive logic It is, however, rarely stated, and when it is stated it
is usually in a manner suggesting that it is something to be ashamed of.
We may recall the words of Brutus

But ’tis & common proof
That lowliness is young ambition's ladder,
Whereto the climber upwards turns his face;
But when he once attains the upmost round,
He then unto the ladder turns his back,
Looks in the clouds, scorning the base degrees
By which he did ascend

It is asserted, for instance, that the choice of the simplest law is purely
a matter of economy of description or thought, and has nothing to do
with any reason for believing the law. No reason in deductive logic,
certainly; but the question is, Does deductive logic contain the whole
of reason? It does give economy of description of past experience, but
is it unreasonable to be interested in future experience? Do we make
predictions merely because those predictions are the easiest to make?
Does the Nautical Almanac Office laboriously work out the positions
of the planets by means of a complicated set of tables based on the
law of gravitation and previous observations, merely for convenience,
when it might much more easily guess them? Do sailors trust the
safety of their ships to the accuracy of these predictions for the same
reason? Does a town install a new tramway system, with expensive
plant and much preliminary consultation with engineers, with no more
reason to suppose that the trams will move than that the laws of
electromagnetic induction are a saving of trouble? I do not believe
for a moment that anybody will answer any of these questions in the
affirmative, but an affirmative answer is implied by the assertion that
is still frequently made, that the choice of the simplest law is merely a
matter of convention. I say, on the contrary, that the simplest law is
chosen because it is the most likely to give correct predictions, that the
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choice is based on a reasonable degree of belief; and that the fact that
deductive logic provides no explanation of the choice of the simplest
law is an absolute proof that deductive logic is grossly inadequate to
cover scientific and practical requirements. It is sometimes said, again,
that the trust in the simple law is a peculiarity of human psychology;
a different type of being might behave differently Well, I see no point
whatever in discussing at length whether the human mind is any use;
it is not a perfect reasoning instrument, but it is the only one we have.
Deductive logic itself could never be known without the human mind.
If anybody rejects the human mind and then holds that he is construct-
ing valid arguments, he is contradicting himself, if he holds that human
minds other than his own are useless, and then hopes to convince them
by argument, he is again contradicting himself. A critic is himself
using inductive inference when he expects his words to convey the same
meaning to his audience as they do to himself, since the meanings of
words are learned first by noting the correspondence between things
and the sounds uttered by other people, and then applied in new
instances. On the face of it, it would appear that a general state-
ment that something accepted by the bulk of mankind is intrinsically
nonsense requires much more to support it than a mere declaration.
Many attempts have been made, while accepting induction, to claim
that it can be reduced in some way to deduction. Bertrand Russell
has remarked that induction is either disguised deduction or a mere
method of making plausible guesses.t In the former sense we must look
for some general principle, which states a set of possible alternatives;
then observations are used to show that all but one of these are wrong,
and the survivor is held to be deductively demonstrated. Such an atti-
tude has been widely advocated. On it I quote Professor C. D. Broad.}

The usual view of the logic books seems to be that inductive arguments are
really syllogisms with propositions summing up the relevant observations as
minors, and a common major consisting of some universal proposition about
nature. If this were true it ought to be easy enough to find the missing major,
and the singular obscurity in which it is enshrouded would be quite inexplicable
It is reverently referred to by inductive logicians as the Uniformity of Nature,
but, as it is either never stated at all or stated in such terms that it could not

t Principles of Mathematics, p 360 He said, at the Aristotelian Society summer
meeting in 1938, that this remark has been too much quoted I therefore offer apologies
for quoting it again He has also remarked that the inductivo philosophers of contral
Africe formerly held the view that all men were black My comment would be that
the deductive ones, if there wero any, did not hold that there were any men, black,
white, or yellow

1 Mind, 29, 1920, 11
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possibly do what is required of it, it appears to be the inductive equivalent of
Mrs. Gamp's mysterious friend, and might be more appropriately named Major
Harris.

It is in fact easy to prove that this whole way of looking at inductive argu-
ments is mistaken On this view they are all syllogisms with a common major.
Now their minors are propositions summing up the relevant observations. If the
observations have been carefully made the minors are practically certain. Hence,
if this theory were true, the conclusions of all inductive arguments in which the
observations were equally carefully made would be equally probable. For what
could vary the probabilities? Not the major, which is common to all of them.
Not the minors, which by hypothesis are equally certain. Not the mode of
reasoning, which is syllogistic in each case. But the result is preposterous, and
is enough to refute the theory which leads to it.

Attempts have been made to supply the missing major by several
modern physicists, notably Sir Arthur Eddington and Professor
E. A. Milne. But their general principles and their results differ even
within the very limited field of knowledge where they have been
applied. How is a person with less penetration to know which is right,
if any? Only by comparing the results with observation; and then his
reason for believing the survivor to be likely to give the right results
in future is inductive. I am not denying that one of them may have
got the right results. But I reject the statement that any of them can
be said to be certainly right as a matter of pure logic, independently of
experience; and I gravely doubt whether any of them could have been
thought of at all had the authors been unaware of the vast amount of
previous work that had led to the establishment by inductive methods
of the laws that they set out to explain. These attempts, though they
appear to avoid Broad’s objection, do so only within a limited range,
and it is doubtful whether such an attempt is worth making if it can
at best achieve a partial success, when induction can cover the whole
field without supposing that special rules hold in certain subjects.

I should maintain (with N. R. Campbell, who sayst that a physicist
would be more likely to interchange the two terms in Russell’s state-
ment) that a great deal of what passes for deduction is really disguised
induction, and that even some of the postulates of Principia Mathe-
matica are adopted on inductive grounds (which, incidentally, are false).

Karl Pearsoni. writes as follows:

Now this is the peculiarity of scientific method, that when once it has become

a habit of mind, that mind converts all facts whatsoever into science The field
of science is unlimited ; its material is endless, every group of natural phenomena,

t Physics, The Elements, 1920, p 9
1 The Grammar of Science, 1892 Page 16 of Everyman edition, 1938.
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every phase of social life, every stage of past or present development is material
for science T'he unity of all science consists alone in its method, not in its material.
The man who classifies facts of any kind whatever, who sees their mutual relation
and describes their sequences, is applying the scientific method and is a man of
science. The facts may belong to the past history of mankind, to the social
statistics of our great cities, to the atmosphere of the most distant stars, to the
digestive organs of a worm, or to the life of a scarcely visible bacillus. It is not
the facts themselves which form science, but the methods by which they are
dealt with.

Here, in a few sentences, Pearson sets our problem. The italics are his.
He makes a clear distinction between method and material. No matter
what the subject-matter, the fundamental principles of the method
must be the same. There must be a uniform standard of validity for
all hypotheses, irrespective of the subject. Different laws may hold in
different subjects, but they must be tested by the same criteria; other-
wise we have no guarantee that our decisions will be those warranted
by the data and not merely the result of inadequate analysis or of
believing what we want to believe. An adequate theory of induction
must satisfy two conditions. First, it must provide a general method;
secondly, the principles of the method must not of themselves say
anything about the world. If the rules are not general, we shall have
different standards of validity in different subjects, or different stan-
dards for one’s own hypotheses and somebody else’s. If the rules of
themselves say anything about the world, they will make empirical
statements independently of observational evidence, and thereby limit
the scope of what we can find out by observation. If there are such
limits, they must be inferred from observation, we must not assert them
in advance.

We must notice at the outset that induction is more general than
deduction. The answers given by the latter are limited to a simple
‘yes’, ‘no’, or ‘it doesn’t follow’. Inductive logic must split up the last
alternative, which is of no interest to deductive logic, into a number
of others, and say which of them it is most reasonable to believe on
the evidence available. Complete proof and disproof are merely the
extreme cases. Any inductive inference involves in its very nature the
possibility that the alternative chosen as the most likely may in fact
be wrong. Exceptions are always possible, and if a theory does not
provide for them it will be claiming to be deductive when it cannot be.
On account of this extra generality, induction must involve postulates
not included in deduction. Our problem is to state these postulates,
It is important to notice that they cannot be proved by deductive
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logic. If they could, induction would be reduced to deduction, which
is impossible. Equally they are not empirical generalizations; for in-
duction would be needed to make them and the argument would be
circular, We must in fact distinguish the general rules of the theory
from the empirical content. The general rules are a prior: propositions,
accepted independently of experience, and making by themselves no
statement about experience. Induction is the application of the rules
to observational data.

Our object, in short, is not to prove induction; it is to tidy it up.
Even among professional statisticians there are considerable differences
about the best way of treating the same problem, and, I think, all
statisticians would reject some methods habitual in some branches of
physics. The question is whether we can construct a general method,
the acceptance of which would avoid these differences or at least reduce
them.

1.1. The test of the general rules, then, is not any sort of proof. This
is no objection because the primitive propositions of deductive logic
cannot be proved either. All that can be done is to state a set of
hypotheses, as plausible as possible, and see where they lead us. The
fullest development of deductive logic and of the foundations of mathe-
matics is that of Principia Mathematica, which starts with a number of
primitive propositions taken as axioms; if the conclusions are accepted,
that is because we are willing to accept the axioms, not because the
latter are proved. The same applies, or used to apply, to Euclid. We
must not hope to prove our primitive propositions when this is the
position in pure mathematics itself. But we have rules to guide us in
stating them, largely suggested by the procedure of logicians and pure
mathematicians.

1. All hypotheses used must be explicitly stated, and the conclusions
must follow from the hypotheses.

2. The theory must be self-consistent, that is, it must not be possible
to derive contradictory conclusions from the postulates and any given
set of observational data.

3. Any rule given must be applicable in practice. A definition is
useless unless the thing defined can be recognized in terms of the
definition when it occurs. The existence of a thing or the estimate of
a quantity must not involve an impossible experiment.

4. The theory must provide explicitly for the possibility that infer-
ences made by it may turn out to be wrong. A law may contain
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adjustable parameters, which may be wrongly estimated, or the law
itself may bo afterwards found to need modification. It is a fact that
revision of scientific laws has often been found necessary in order to
take account of new information—the relativity and quantum theories
providing conspicuous instances—and there is no conclusive reason to
suppose that any of our present laws are final. But we do accept
inductive inference in some sense, we have a certain amount of confi-
dence that it will be right in any particular case, though this confidence
does not amount to logical certainty.

5. The theory must not deny any empirical proposition a priort;
any precisely stated empirical proposition must be formally capable of
being accepted, in the sense of the last rule, given a moderate amount
of relevant evidence.

These five rules are essential. The first two impose on inductive logic
criteria already required in pure mathematics. The third and fifth
enforce the distinction between a priori and empirical propositions;
if an existence depends on an inapplicable definition we must either
find an applicable one, treat the existence as an empirical proposition
requiring test, or abandon it. The fourth states the distinction between
induction and deduction. The fifth makes Pearson’s distinction be-
tween material and method explicit, and involves the definite rejection
of attempts to derive empirically verifiable propositions from general
principles adopted independently of experience.

The following rules also serve as useful guides.

6. The number of postulates should be reduced to a minimum. This
is done for deductive logic in Principia, though many theorems proved
there appear to be as obvious intuitively as the postulates. The motive
for not accepting other obvious propositions as postulates is partly
aesthetic. But in the theory of scientific method it is still more impor-
tant, because if we choose the postulates so as to cover the subject with
the minimum number of postulates we thereby minimize the number
of acts of apparently arbitrary choice. Most works on the subject state
more principles than I do, use far more than they state, and fail to
touch many important problems. So far as their assumptions are valid
they are consequences of mine, the present theory aims at removing
irrelevancies.

7. While we do not regard the human mind as a perfect reasoner,
we must accept it as a useful one and the only one available. The
theory need not represent actual thought-processes in detail, but should
agree with them in outline. We are not limited to considering only the
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thought-processes that people describe to us. It often happens that
their behaviour is a better criterion of their inductive processes than
their arguments. If a vesult is alleged to be obtained by arguments
that are certainly wrong, it does not follow that the result is wrong,
since it may have been obtained by a rough inductive process that
the author thinks it undesirable or unnecessary to state on account
of the traditional insistence on deduction as the only valid reasoning.
I disagree utterly with many arguments produced by the chief current
schools of statistics, but I rarely differ seriously from the conclusions;
their practice is far better than their precept. I should say that this
is the result of common sense emerging in spite of the deficiencies of
mathematical teaching. The theory must provide criteria for testing
the chief types of scientific law that have actually been suggested or
asserted. Any such law must be taken seriously in the sense that it can
be asserted with confidence on a moderate amount of evidence. The
fact that simple laws are often asserted will, on this criterion, require
us to say that in any particular instance some simple law is quite likely
to be true.

8. In view of the greater complexity of induction, we cannot hope
to develop it more thoroughly than deduction. We shall therefore take
it as a rule that an objection carries no weight if an analogous objection
would invalidate part of generally accepted pure mathematics. I do
not wish to insist on any particular justification of pure mathematics,
since authorities on its foundations are far from being agreed among
themselves. In Principia much of higher mathematics, including the
whole theory of the continuous variable, rests on the axioms of infinity
and reducibility, which are rejected by Hilbert. F. P. Ramsey rejects
the axiom of reducibility, while declaring that the multiplicative axiom,
properly stated, is the most evident tautology, though Whitehead and
Russell express much doubt about it and carefully separate propositions
that depend on it from those that can be proved without it. I should
go further and say that the proof of the existence of numbers, according
to the Principia definition of number, depends on the postulate that
all individuals are permanent, which is an empirical proposition, and
a false one, and should not be made part of a deductive logic. But we
do not need such a proof for our purposes It is enough that pure
mathematics should be consistent. If the postulate could hold in some
world, even if it was not the actual world, that would be enough to
establish consistency. Then the derivation of ordinary mathematics
from the postulates of Principia can be regarded as a proof of its
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consistency. But the justification of all the justifications seems to be
that they lead to ordinary pure mathematics in the end; I shall assume
that the latter has validity irrespective of any particular justification.
The above principles will strike many readers as platitudes, and if
they do I shall not object. But they require the rejection of several
principles accepted as fundamental in other theories. They rule out,
in the first place, any definition of probability that attempts to define
probability in terms of infinite sets of possible observations, for we
cannot in practice make an infinite number of observations. The Venn
limit, the hypothetical infinite population of Fisher, and the ensemble
of Willard Gibbs are useless to us by rule 3. Though many accepted
results appear to be based on these definitions, a closer analysis shows
that further hypotheses are required before any results are obtained,
and these hypotheses are not stated. In fact, no ‘objective’ definition
of probability in terms of actual or possible observations, or possible
properties of the world, is admissible. For, if we made anything in our
fundamental principles depend on observations or on the structure of
the world, we should have to say either (1) that the observations we
can make, and the structure of the world, are initially unknown; then
we cannot know our fundamental principles, and we have no possible
starting-point; or (2) that we know a priori something about observa-
tions or the structure of the world, and this is illegitimate by rule 5.
Attempts to use the latter principle will superpose our preconceived
notions of what is objective on the entire system, whereas, if objectivity
has any meaning at all, our aim must be fo find out what is objective
by means of obsetvations. To try to give objective definitions at the
start will at best produce a circular argument, may lead to contradic-
tions, and in any case will make the whole scheme subjective beyond hope
of recovery. We must not rule out any empirical proposition a priori,
we must provide a system that will enable us to test it when occasion
arises, and this requires a completely comprehensive formal scheme.
We must also reject what is variously called the principle of causality,
determinism, or the uniformity of nature, in any such form as ‘Precisely
similar antecedents lead to precisely similar consequences’. No two
sets of antecedents are ever identical, they must differ at least in time
and position. But even if we decide to regard time and position as
irrelevant (which may be true, but has no justification in pure logic)
the antecedents are never identical In fact, determinists usually recog-
nize this verbally and try to save the principle by restating it in some
such form as ‘In precisely the same circumstances very similar things
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can be observed, or very similar things can usually be observed.’t If
‘precisely the same’ is intended to be a matter of absolute truth, we
cannot achieve it. Astronomy is usually considered a science, but the
planets have never even approximately repeated their positions since
astronomy began. The prineiple gives us no means of inferting the
accelerations at a single instant, and is utterly useless. Further, if it
was to be any use we should have to know at any application that the
entire condition of the world was the same as in some previous instance.
This is never satisfied in the most carefully controlled experimental
conditions. The most that can be done is to make those conditions the
same that we believe to be relevant—‘the same’ can never in practice
mean more than ‘the same as far as we know’, and usually means a
great deal less The question then arises, How do we know that the
neglected variables are irrelevant? Only by actually allowing them to
vary and verifying that there is no associated variation in the result;
but this requires the use of significance tests, a theory of which must
therefore be given before there is any application of the principle, and
when it is given it is found that the principle is no longer needed and
can be omitted by rule 6. 1t may conceivably be true in some sense,
though nobody has succeeded in stating clearly what this sense is. But
what is quite certain is that it is useless.

Causality, as used in applied mathematics, has a more general form,
such as* ‘Physical laws are expressible by mathematical equations,
possibly connecting continuous variables, such that in any case, given
a finite number of parameters, some variable or set of variables that
appearts in the equations is uniquely determined in terms of the others.’
This does not require that the values of the relevant parameters should
be actually repeated, it is possible for an electrical engineer to predict
the performance of a dynamo without there having already been some
exactly similar dynamo The equations, which we call laws, are inferred
from previous instances and then applied to instances where the relevant
quantities ave different This form permits astronomical prediction.
But it still leaves the questions ‘How do we know that no other para-
meters than those stated are needed ?’, ‘How do we know that we need
considet no variables as relevant other than those mentioned explicitly
in the laws?’, and ‘Why do we believe the laws themselves?’ It is
only after these questions have been answered that we can make any
actual application of the principle, and the principle is useless until we
have attended to the epistemological problems. Further, the principle

+ W H CGeorge, The Scientist in Action, 1936, p 48
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happens to be false for quantitative observations. It is not true that
observed results agree exactly with the predictions made by the laws
actually used The most that the laws do is to predict a variation that
accounts for the greater part of the observed variation; it never accounts
for the whole. The balance is called ‘error’ and usually quickly for-
gotten or altogether disregarded in physical writings, but its existence
compels us to say that the laws of applied mathematics do not express
the whole of the variation. Their justification cannot be exact mathe-
matical agreement, but only a partial one depending on what fraction
of the observed variation in one quantity is accounted for by the
variations of the others. The phenomenon of error is often dealt
with by a suggestion of various minor variations that might alter the
measurements, but this is no answer. An exact quantitative prediction
could never be made, even if such a suggestion was true, unless we
knew in each individual case the actual amounts of the minor varia-
tions, and we never do If we did we should allow for them and obtain
a still closer agreement, but the fact remains that in practice, however
fully we take small variations into account, we never get exact agree-
ment. A physical law, for practical use, cannot be merely a statement
of exact predictions, if it was it would invariably be wrong and would
be rejected at the next trial. Quantitative prediction must always be
prediction within a margin of uncertainty, the amount of this margin
will be different in different cases, but for a law to be of any use it
must state the margin explicitly The outstanding variation, for prac-
tical application, is as essential a part of the law as the predicted
variation is, and a valid statement of the law must express it. But in
any individual case this outstanding variation is not known. We know
only something about its possible range of values, not what the actual
value will be. Hence a physical law is not an exact prediction, but a state-
ment of the relative probabilities of variations of different amounts It is
only in this form that we can avoid rejecting causality altogether as false,
or as inapplicable under rule 3, but a statement of ignorance of the individual
errors has become an essential part of it, and we must recognize that the
physical law itself, if it is to be of any use, must have an epistemological
content.

The impossibility of exact prediction has been forced on the attention
of physicists by Heisenberg’s Uncertainty Principle. It is remarkable,
considering that the phenomenon of errors of observation was discussed
by Laplace and Gauss, that there should still have been any physicists
that thought that actual observations were exactly predictable, yet

c
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attempts to evade the principle showed that many existed. The prin-
ciple was actually no new uncertainty. What Heisenberg did was to
consider the most refined types of observation that modern physics
suggested might be possible, and to obtain a lower limit to the uncer-
tainty; but it was much smaller than the old uncertainty, which was
never neglected except by misplaced optimism. The existence of errors
of observation seems to have escaped the attention of many philo-
sophers that have discussed the uncertainty principle, this is perhaps
because they tend to get their notions of physics from popular writings,
and not from works on the combination of observations. Their criti-
cisms of popular physics, mostly valid as far as they go, would gain
enormously in force if they attended to what we knew about errors
before Heisenberg.t

The word error is liable to be interpreted in some ethical sense, but
its scientific meaning is closely connected with the original one. Latin
errare, in its original sense, means to wander, not to sin or to make
a mistake. The meaning occurs in ‘knight-errant’. The error means
simply the outstanding variation after we have done our best to inter-
pret the whole variation.

The criterion of universal assent, stated by Dr. N. R. Campbell and
by Professor H. Dingle in his Science and Human Experience (but
abandoned in his Through Science to Philosophy), must also be rejected
by rule 3. This criterion requires general acceptance of a principle
before it can be adopted. But it is impossible to ask everybody’s con-
sent before one believes anything, and if ‘everybody’ is replaced by
‘everybody qualified to judge’, we cannot apply the criterion until we
know who is qualified, and even then it is liable to happen that only
a small fraction of the people capable of expressing an opinion on a
scientific paper read it at all, and few even of those do express any.
Campbell lays much stress on a physicist’s charactetistic intuition,}

1 Professor L S Stebbing (Philosophy and the Physicists, 1938, p 198) remarks
‘There can be no doubt at all that precise predictions concerning the behaviour of
macroscopic bodies are made and are exactly verified within the limits of experimental
error ° Without the saving phase at the end the statement is intelligible, and false
With it, it i3 meaningless The severe criticism of much in modern physics contained
in this book is, in my opinion, thoroughly justified, but the later parts lose much of
their point through inattention to the problem of errors of observation Some philo-
sophers, however, have seen the point quite clearly For instance, Professor J H
Muirhead (The Elements of Ethics, 1910, pp 37-38) states ‘The truth is that what is
called a natural law is itself not so much a statement of fact as of a standard or type
to which facts have been found more or less to approximate This is true even m
inorganic nature ’ I am indebted to Mr John Bradley for the reference

1 Aristot Soc Suppl veol 17, 1938, 122
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which apparently enables him always to guess right. But if there is
any such intuition there is no need for the criterion of general agree-
ment or for any other. The need for some general criterion is that even
among those apparently qualified to judge there are often serious
differences of opinion about the proper interpretation of the same
facts, what we need is an impersonal criterion that will enable an
individual to see whether, in any particular instance, he is following
the rules that other people follow and that he himself follows in other
instances.

1.2. The chief constructive rule is 4. It declares that there is a valid
primitive idea expressing the degree of confidence that we may reason-
ably have in a proposition, even though we may not be able to give
either a deductive proof or a disproof of it. In extreme cases it may
be a mere statement of ignorance. We need to express its rules. One
obvious one (though it is very commonly overlooked) is that it depends
both on the proposition considered and on the data in relation to which
it is considered. Suppose that I know that Smith is an Englishman,
but otherwise know nothing particular about him. He is very likely,
on that evidence, to have a blue right eye. But suppose that I am
informed that his left eye is brown—the probability is changed com-
pletely. This is a trivial case, but the principle in it constitutes most
of our subject-matter. It is a fact that our degrees of confidence in
a proposition habitually change when we make new observations or
new evidence is communicated to us by somebody else, and this change
constitutes the essential feature of all learning from experience. We
must therefore be able to express it. Our fundamental idea will not be
simply the probability of a proposition p, but the probability of p on
data ¢q. Omission to recognize that a probability is a function of two
arguments, both propositions, is responsible for a large number of
serious mistakes; in some hands it has led to correct results, but at the
cost of omitting to state essential hypotheses and giving a delusive
appearance of simplicity to what are really very difficult arguments.
1t i3 no more valid to speak of the probability of a proposition without
stating the data than it would be to speak of the value of z-+y for given x,
trrespective of the value of y.

We can now proceed on rule 7. It is generally believed that proba-
bilities are orderable: that is, that if p, ¢, r are three propositions,
the statement ‘on data p, ¢ is more probable than r’ has a meaning,
In actual cases people may disagree about which is the more probable,
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and it is sometimes said that this implies that the statement has no
meaning. But the differences may have other explanations: (1) The
commonest is that the probabilities are on different data, one person
having relevant information not available to the other, and we have
made it an essential point that the probability depends on the data.
The conclusion to draw in such a case is that, if people argue without
telling each other what relevant information they have, they are wasting
their time. (2) The estimates may be wrong. It is perfectly possible to
get a wrong answer in pure mathematics, so that by rule 8 this is no
objection. In this case, where the probability is often a mere guess,
we cannot expect the answer to be right, though it may be and often
is a fair approximation. (3) The wish may be father to the thought.
But perhaps this also has an analogue in pure mathematics, if we con-
sider the number of fallacious methods of squaring the circle and
proving Fermat’s last theorem that have been given, merely because
people wanted = to be an algebraic or rational number or the theorem
to be true. In any case alternative hypotheses are open to the same
objection, on the one hand, that they depend on a wish to have a wholly
deductive system and to avoid the explicit statement of the fact that
scientific inferences are not certain; or, on the other, that the statement
that there is a most probable alternative on given data may curtail their
freedom to believe another when they find it more pleasant. I think
that these reasons account for all the apparent differences, but they
are not fundamental. Even if people disagree about which is the more
probable alternative, they agree that the comparison has a meaning.
We shall assume that this is right. The meaning, however, is not a
statement about the external world, it is a relation of inductive logic.
Our primitive notion, then, is that of the relation ‘given p, ¢ is more
probable than r’, where p, ¢, and r are three propositions. If this is
satisfied in a particular instance, we say that r is less probable than ¢,
given p; this is the definition of less probable. If given p, g is neither
more nor less probable than 7, ¢ and r are equally probable, given p.
Then our first axiom is

Axiom 1. Given p, q is either more, equally, or less probable than r,
and no two of these alternatives can be true.

This axiom may be called that of the comparability of probabilities.
In the first edition of Scientific Inference I took it in a more general
form, assuming that the probabilities of propositions on different data can
be compared. But thisappears to be unnecessary, because it is found that



I§le2 FUNDAMENTAL NOTIONS 17

the comparability of probabilities on different data, whenever it arises in
practice, is proved in the course of the work and needs no special axiom.
The fundamental relation is transitive; we express this as follows.

Axitom 2. If p, q, r, s are four propositions, and, given p, q is more
probable than r and r is more probable than s, then, given p, q is more
probable than s.

The extreme degrees of probability are certainty and impossibility.
These lead to

Axrom 3. All propositions deducible from a proposition p have the same
probability on data p; and all propositions inconsistent with p have the
same probability on data p.

We need this axiom to ensure consistency with deductive logic in
cases that can be treated by both methods. We are trying to construct
an extended logic, of which deductive logic will be a part, not to intro-
duce an ambiguity in cases where deductive logic already gives definite
answers. I shall often speak of ‘certainty on data p’ and ‘impossibility
on data p’. These do not refer to the mental certainty of any particular
individual, but to the relations of deductive logic expressed by ‘q is
deducible from p’ and ‘not-¢ is deducible from p’. In G. E. Moore’s
terminology, we may read the former as ‘p entails ¢’. In consequence
of our rule 5, we shall never have ‘p entails ¢’ if p is merely the general
rules of the theory and ¢ is an empirical proposition.

Actually T shall take ‘entails’ in a slightly extended sense; in some
usages it would be held that p is not deducible from p, or from p and ¢
together Some shoitening of the writing is achieved if we agree to
define ‘p entails ¢’ as meaning either ‘g is deducible from p’ or ‘g is
identical with p’ or ‘q is identical with some proposition asserted in p’.
This avoids the need for special attention to trivial cases,

We also need the following axiom.

Axtom 4. If, given p, g and q' cannot both be true, and if, given p,
r and r' cannot both be true, and if, given p, q and r are equally probable
and q' and r' are equally probable, then, given p, ‘q or "’ and ‘r or r'’ are
equally probable.

At this stage it is desirable for clearness to introduce the following
notations and terminologies, mainly from Principia Mathematica.

~ p means ‘not-p’, that is, p is false.

p.q means ‘p and ¢’; that is, p and g are both true.

» v q means ‘p ot ¢’, that is, at least one of p and q is true.
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These notations may be combined, dots being used as brackets. Thus
~ p.qg means ‘p and ¢ is not true’, that is, at least one of p and ¢
is false, which is equivalent to ~p.v.~gq. But

~p.q means ‘p is false and ¢ is true’, which is not the same pro-
position. The rule is that a set of dots represents a bracket, the com-
pletion of the bracket being either the next equal set of dots or the
end of the expression. Dots may be omitted in joint assertions where
no ambiguity can arise.

The joint assertion or conjunction of p and ¢ is the proposition p.q;
and the joint assertion of p, ¢, 7, s,... is the proposition p.q.r.s...; that
is, that p, g, 7, 8,... are all true. The joint assertion is also called the
logical product.

The disjunction of p and q is the proposition v ¢; the disjunction
of p, q, , 8 is the proposition p v ¢ v r v s, that is, at least one of p, ¢, 7, s
is true. The disjunction is also called the logical sum.

A set of propositions g; (i = 1 to n) are said to be exclusive on data p
if not more than one of them can be true on data p; that is, if p entails
all the disjunctions ~ q; v ~¢q; when ¢ # k.

A set of propositions g; are said to be exhaustive on data p if at least
one of them must be true on data p; that is, if p entails the disjunction
GVGY .y

It is possible for a set of alternatives to be both exclusive and
exhaustive. For instance, a finite class must have some number n;
then the propositions » = 0, 1, 2, 3,... must include one true proposi-
tion, but cannot contain more than one.

The Axiom 4 will read.

If g and q' are exclusive, and r and r’ are exclusive, on data p, and if,
given p, q and r are equally probable and ¢' and r' are equally probable,
then, given p, q v ¢’ and r v »' are equally probable.

An immediate extension, obtained by successive applications of this
axiom, is:

TueoreM 1. If gy, q,,..., ¢, are exclusive, and ry, rs,..., 7, are exclusive,
on data p, and if, given p, the propositions q, and ry, g, and r,,..., ¢, and 1,
are equally probable in pairs, then given p, q, v @ ... Vquandry V7, ... V7,
are equally probable.

It will be noticed that we have not yet assumed that probabilities
can he expressed by numbers. I do not think that the introduction of
numbers is strictly necessary to the further development; but it has the
enormous advantage that it permits us to use mathematical technique.
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Without it, while we might obtain a set of propositions that would have
the same meanings, their expression would be much more cumbrous.
The actual introduction of numbers is done by conventions, the nature
of which is essentially linguistic.

CONVENTION 1. We assign the larger number on given data to the more
probable proposition (and therefore equal numbers to equally probable
propositions).

ConvEeNTION 2. If, given p, q and q' are exclusive, then the number
assigned on data p to ‘q or q"’ 1s the sum of those assigned to q and to q'.

It is important to notice the meaning of a convention. It is neither
an axiom nor a theorem. It is mevely a rule introduced for convenience,
and it has the property that other rules would give the same results.
W. E. Johnson remarks that a convention is properly expressed in the
imperative mood. An instance is the use of rectangular or polar coordi-
nates in Euclidean geometry. The distance between two points is the
fundamental idea, and all propositions can be stated as relations be-
tween distances. Any proposition in rectangular coordinates can be
translated into polar coordinates, or vice versa, and both expressions
would give the same results if translated into propositions about
distances. It is purely a matter of convenience which we choose in a
particular case. The choice of a unit is always a convention. But care
is needed in introducing conventions; some postulate of consistency
about the fundamental ideas is liable to be hidden. It is quite easy
to define an equilateral right-angled plane triangle, but that does not
make such a triangle possible. In this case Convention 1 specifies what
order the numbers are to be arranged in. Numbers can be arranged in
an order, and so can probabilities, by Axioms 1 and 2. The relation
‘greater than’ between numbers is transitive, and so is the relation
‘more probable than’ between propositions on the same data. There-
fore it is possible to assign numbers by Convention 1, so that the order
of increasing degrees of belief will be the order of increasing number.
So far we need no new axiom; but we shall need the axiom that there
are enough numbers for our purpose.

Axiom 5. The set of possible probabilities on given data, ordered in
terms of the relation ‘more probable than’, can be put into one—one corre-
spondence with a set of real numbers tn increasing order.

The need for such an axiom was pointed out by an American reviewer
of Scientific Inference. He remarked that if we take a series of number
pairs u, = (a,,b,) and make it a rule that u, is to be placed after u, if
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a, > a,, but that if @, = a,, u, is to be placed after u, if b, > b, then
the axiom that the u, can be placed in an order will hold, but if ¢, and
b, can each take a continuous series of values it will be impossible to
establish a one-one correspondence between the pairs and a single
continuous series without deranging the order.

Convention 2 and Axiom 4 will imply that, if we have two pairs of
exclusive propositions with the same probabilities on the same data,
the numbers chosen to correspond to their disjunctions will be the
same. The extension to disjunctions of several propositions is justi-
fied by Theorem 1. We shall always, on given data, associate the
same numbers with propositions entailed or contradicted by the data,
this is justified by Axiom 3. The assessment of numbers in the way
Suggested is therefore consistent with our axioms. We can now intro-
duce the formal notation P(q|p)

for the number associated with the probability of the proposition ¢ on
data p, it may be read ‘the probability of ¢ given p’ provided that we
remember that the number is not in fact the probability, but merely
a representation of it in terms of a pair of conventions. The probability,
strictly, is the reasonable degree of confidence and is not identical with
the number used to express it. The relation is that between Mr. Smith
and his name ‘Mr. Smith’. A sentence containing the words ‘Mr Smith’
may correspond to, and identify, a fact about Mr. Smith But Mr.
Smith himself does not occur in the sentence ¥ In this notation, the
properties of numbers will now replace Axiom 1; Axiom 2 is restated
if Plq|p) > P(r|p), and P(r|p) > P(s|p), then P(q|p) > P(s|p)’,
which is a mere mathematical implication, since all the expressions are
numbers Axiom 3 will require us to decide what numbers to associate
with certainty and impossibility. We have

THEOREM 2. If p is consistent with the general rules, and p entails ~q,
then P(q|p) = 0.

For let ¢ and 7 be any two propositions, both impossible on data p.
Then (Ax. 3) if @ is the number associated with impossibility on data p,

P(glp) = P(r|p) = P(gvrip)=a
since ¢, 7, and ¢ v r are all impossible propositions on data p and must
be associated with the same number But gr is impossible on data p,
hence, by definition, ¢ and r are exclusive on data p, and (Conv. 2)
P(gvrip) = P(glp)+P(r|p) = 2a,
+ Cf R Carnap, The Logical Syntax of Language
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whence a = 0. Therefore all probability numbers are > 0, by Con-
vention 1.

As we have not assumed the comparability of probabilities on dif-
ferent data, attention is needed to the possible forms that can be
substituted for ¢ and r, given p. If p is a purely a priori proposition,
it can never entail an empirical one. Hence, if p stands for our general
rules, the admissible values for ¢ and r must be false @ priori proposi-
tions, such as 2 = 1 and 3 = 2. Since such propositions can be stated
the theorem follows. If p is empirical, then ~ p is an admissible value
for both ¢ and r. Or, since we are maintaining the same general prin-
ciples throughout, we may remember that in practice if p is empirical
and we denote our general principles by %, then any set of data that
actually occurs and includes an empirical proposition will be of the
form ph. Then for ¢ and r we may still substitute false a priors pro-
positions, which will be impossible on data ph. Hence it is always
possible to assign q and r so as to satisfy the conditions stated in the
proof.

CoNVENTION 3. If p entails q, then P(q | p) = 1.

This is the rule generally adopted, but there are cases where we wish
to express ignorance over an infinite range of values of a quantity, and
it may be convenient to express certainty that the quantity lies in that
range by oo, in order to keep ratios for finite ranges determinate. None
of our axioms so far has stated that we must always express certainty
by the same number on different data, merely that we must on the
same data; but with this possible exception it is convenient to do so.

The converse of Theorem 2 would be. ‘If P(q |p) = 0, then p entails
~q.” This is false if we use Convention 3. For instance, a continuous
variable may be equally likely to have any value between 0 and 1.
Then the probability that it is exactly } is 0, but } is not an impossible
value There would be no point in making certainty correspond to
infinity in such a case, for it would make the probability infinite for
any finite range. It turns out that we have no occasion to use the
converse of Theorem 2.

Axiom 6. If pq entails r, then P(qr | p) = P(q | p).

Tn other words, given p throughout, we may consider whether q is
false or true. If q is false, then g¢r is false. If g is true, then, since pq
entails r, 7 is also true and thevefore g7 is true. Similarly, if g7 is true
it entails g, and if ¢r is false ¢ must be false on data p, since if it was
true gr would be true. Thus it is impossible, given p, that either g or
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gr should be true without the other. This is an extension of Axiom 3
and is necessary to enable us to take over a further set of rules sug-
gested by deductive logic, and to say that all equivalent propositions
have the same probability on given data.

THEOREM 3. If q and r are equivalent in the sense that each entails the
other, then each entails qr, and the probabilities of q and r on any data must
be equal. Similarly, if pq entails r, and pr entails q, P(q|p) = P(r |p),
since both are equal to P(qr | p).

An immediate corollary is

TueoreM 4. P(q|p) = Plgr | p)+Plg.~r|p).

For qr and q. ~r are exclusive, and the sum of their probabilities
on any data is the probability of gr:v:q. ~r (Conv. 2). But ¢ entails
this proposition, and also, if either ¢ and r are both true or ¢ is true
and r false, ¢ is true in any case. Hence the propositions ¢ and
gr-v:q. ~r are equivalent, and the theorem follows by Theorem 3.

It follows further that P(q|p) > P(gr | p), since P(q. ~r|p) cannot
be negative. Also, if we write ¢ v r for g, we have

Pgvrip)=P@vrr|p+Pgvri~rip)  (Th.4)
and q v 7:7 is equivalent to 7, and ¢ vr: ~7r to ¢. ~ 7. Hence
P(gvr|p) = P(r|p).

THEOREM 5. If q and r are two propositions, not necessarily exclusive
ondatap,  P(q|p)+P(r|p) = Plg vr|p)+Pler |p).

For the propositions gr, ¢. ~r, ~gq.r, ~q. ~r are exclusive; and
q is equivalent to the disjunction of ¢r and q. ~7, and r to the dis-
junction of gr and ~ ¢.r. Hence the left side of the equation is equal to

2P(gr |p)+Plg. ~r|p)+P(~q.r|p)  (Th.4).
Also g vr is equivalent to the disjunction of gr, ¢. ~7, and ~q.r.
Hence
P(g vr|p) = P(gr|p)+Plqg. ~r|p)+P(~q.r|p) (Th.4),
whence the theorem follows.

It follows that, whether ¢ and r are exclusive or not,

P vrip) < Pla|p)+P(r1p),
since P(qr | p) cannot be negative. Theorems 4 and 5 together express
upper and lower bounds to the possible values of P(g v r | p) irrespective
of exclusiveness. It cannot be less than either P(g|p) or P(r|p); it
cannot be more than P(g | p)+ P(r | p).
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THEOREM 6. If q,, gs,... are a set of equally probable and exclusive
alternatives on data p, and if @ and R are disjunctions of two subsets of
these alternatives, of numbers m and n, then P(Q |p)/P(R|p) = m/n.

For if a is any one of the equal numbers P(q, |p), P(g;|p),... We
have, by Convention 2,
P(Q|p)=ma, P(R|p)= na,
whence the theorem follows.

THEOREM 7. In the conditions of Theorem 6, if qy, qs,..., ¢, are
exhaustive on data p, and R denotes their disjunction, then R is entailed

by p and P(R|p)=1  (Conv. 3).
It follows that P(Q |p) = m/n.

This is virtually Laplace’s rule, stated at the opening of the Théorie

Analytique. R entails itself and therefore is a possible value of p; hence

P(Q | R) = m/n.

This may be read: given that a set of alternatives are equally probable,
exclusive, and exhaustive, the probability that some one of any subset is
true 1s the ratio of the number in that subset to the whole number of possible
cases. This form depends on Convention 3, and must be used only in
cases where the convention is adopted. Theorem 6, however, is inde-
pendent of Convention 3. If we chose to express certainty on data p
by 2 instead of 1, the only change would be that all numbers associated
with probabilities on data p would be multiplied by 2, and Theorem 6
would still hold. Theorem 6 is also consistent with the possibility that
the number of alternatives is infinite, since it requires only that Q and
R shall be finite subsets.

Theorems 6 and 7 tell us how to assess the ratios of probabilities,
and, subject to Convention 3, the actual values, provided that the
propositions considered can be expressed as finite subsets of equally
probable, exclusive, and, for Theorem 7, exhaustive alternatives on the
data. Such assessments will always be rational fractions, and may be
called R-probabilities. Now a statement that m and n cannot exceed
some given value would be an empirical proposition asserted a priors,
and would be inadmissible on rule 5. Hence the R-probabilities possible
within the formal scheme form a set of the ordinal type of the rational
fractions.

If all probabilities were R-probabilities there would be no need
for Axiom 5, and the converse of Theorem 2 could hold. But many
propositions that we shall have to consider are of the form that a
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magnitude, capable of a continuous range of values, lies within a speci-
fied part of that range, and we may be unable to express them in the
required form. Thus there is no need for all probabilities to be R-
probabilities. However, if a proposition is not expressible in the
required form, it will still be associated with a reasonable degree of
belief by Axiom 1, and this, by Axiom 2, will separate the degrees for
R-probabilities into two segments, according to the relations ‘more
probable than’ and ‘less probable than’. The cortesponding numbers,
the R-probabilities themselves, will be separated by a unique real
number, by Axiom 5 and an application of Dedekind’s section. We
take the numerical assessment of the probability of a proposition not
expressible in the form required by Theorems 6 and 7 to be this number.
Hence we have
THEOREM 8. Any probability can be expressed by a real number.

If z is a variable capable of a continuous set of values, we may
consider the probability on data p that z is less than z,, say
Plx < | p) = f(2,)-
If f (x,) is differentiable we shall then be able to write
P(xy < 2 < zo-+dxy | p) = f'(x0) dzg+o0 (dp).
We shall usually write this briefly P(dz|p) = f'(z) dx, dx on the left
meaning the proposition that « lies in a particular vange dz. f'(z) is
called the probability density.

THEOREM 9. If Q s the disjunction of a set of exclusive alternatives
on data p, and if R and S are subsets of Q (possibly overlapping) and if
the altcrnatives in Q are all equally probable on data p and also on data
Bp,then  P(RS|p) = P(R|p)P(S | Rp)|P(R| Rp).

For suppose that the propositions contained in @ are of number =,
that the subset R contains m of them, and that the part common to
R and S contains ! of them. Put

P@Qlp) =a.
Then, by Theorem 6,

P(R|p) = ma/n,  P(RS|p) = lajn.
P(S | Rp) is the probability that the true proposition is in the .S subset
given that it is in the R subset and p, and therefore is equal to
({;m)P(R| Rp) Also RSp entails R, hence
P(S|Rp) = P(SR|Rp)  (Ax.6)
and  P(RS|p) = (ifm)(mafn) = P(R|p)P(S| Rp)/P(R| Rp)
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This is the first proposition that we have had that involves probabilities
on different data, two of the factors being on data p and two on data Rp.
Q itself does not appear in it and is therefore irrelevant. It is introduced
into the theorem merely to avoid the use of Convention 3. It might be
identical with any finite set that includes both R and S.

The proof has assumed that the alternatives considered are equally
probable both on data p and also on data Rp. It has not been found
possible to prove the theorem without using this condition. But it is
necessary to further developments of the theory that we shall have
some way of relating probabilities on different data, and Theorem 9
suggests the simplest general rule that they can follow if there is one at
all. We therefore take the more general form as an axiom, as follows.

AxioM 7. For any propositions p, q, r,

Plgr|p) = Plq|p)P(r|qp)/Plggp)-

If we use Convention 3 on data gp (not necessarily on data p),
P(q|gp) = 1, and we have W. E. Johnson’s form of the product rule,
which can be read: the probability of the joint assertion of two propositions
on any data p is the product of the probability of one of them on data p
and that of the other on the first and p.

We notice that the probability of the logical sum follows the addition
rule (with a caveat), that of the logical product the product rule. This
parallel between the Principia and probability language is lost when the
joint assertion is called the sum, as has occurred in some writings.
In a sense a probability can be regarded as a logical quotient, since in the
conditions of Theorem 7 the probability of @ given R is the probability
of @ given p divided by that of R given p. This has been recognized
in the history of the notation, which Keynest traces to H. McColl.
McColl wrote the probability of a, relative to the a priori premiss A,
as afe, and relative to bk as a/b. This was modified by W. E Johnson
to a/h and a/bh, and he was followed by Keynes, Broad, and Ramsey.
Wrinch and I found that this notation was inconvenient when the
solidus may have to be used in its usual mathematical sense in the
same equation, and introduced P(p-‘q), which I modified further to
P(p|q) in Scientific Inference because the colon was beginning to be
needed in the Principia sense of a bracket.

The sum of two classes « and B, in Principia, is the class y such that

1 Treatise on Probability, 1921, p 155 This book is full of interesting historical data
and contains many important critical remarks It is not very successful on the con-
structive side, since an unwillingness to generalize the axioms has prevented Keynes
from obtaining many important results
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every member of « or of 8 is in y, and conversely. The product class of
o and B is the class § of members common to « and 8. Thus Theorem 5
has a simple analogy with the numbers of members of the classes a and
B,y and 8. The multiplicative class of « and B is the class of all pairs, one
from « and one from B; it is this class, not the product class, that gives
an interpretation to the product of the numbers of members of « and 8.

The extension of the product rule from Theorem 9 to Axiom 7 has
been taken as axiomatic. This is an application of a principle repeatedly
adopted in Principia Mathematica. If there is a choice between possible
axioms, we take the one that enables most consequences to be drawn.
Such a generalization is not inductive. What we are doing is to seek for
a set of axioms that will permit the construction of a theory of induction,
the axioms themselves being primitive postulates. The choice is limited
by rule 6; the axioms must be reduced to the minimum number, and
the check on whether we make them too general will be provided by
rule 2, which will reject a theory if it is found to lead to contradictory
consequences. Consider then whether the rule

P(qr|p) = P(g|p)P(r|qp)

can hold in general. Suppose first that p entails ~:gr; then either p
entails ~q, or p and ¢ together entail ~r. In either case both sides of
the equation vanish and the rule holds. Secondly, suppose that p entails
gr; then p entails ¢ and pg entails ». Thus both sides of the equation
are 1. Similarly, we have consistency in the converse cases where p
entails ~g, or pgq entails ~r, or p entails ¢ and pq entails . This
covers the extreme cases.

If there are any cases where the rule is untrue, we shall have to say
that in such cases P(gr |p) depends on something besides P(q|p) and
P(r | gp), and a new hypothesis would be needed to deal with such cases.
By rule 6, we must not introduce any such hypothesis unless need for
it is definitely shown. The product rule may therefore be taken as
general unless it can be shown to lead to contradictions. We shall see
(p- 35) that consistency can be proved in a wide class of cases.

1.21. The product rule is often misread as follows: the joint proba-
bility of two propositions is the product of their probabilities separately.
This is meaningless as it stands because the data relative to which the
probabilities are considered are not mentioned. In actual application,
the rule so stated is liable to become: the joint probability of two pro-
positions on given data is the product of their separate probabilities
on those data. This is false. We may see this by considering extreme
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cases. The correct statement of the rule may be written (using Con-

vention 3 on data pr)
P(pq|r) = P(p|r)P(g|pr) 0

P(pq|r) = P(p|r)P(g]r). (2)
If p cannot be true given r, then p and ¢ cannot both be true, and both
(1) and (2) reduce to 0 = 0. If p is certain given r, both reduce to
P(g|r) = P(g]|r) 3
since in (1) the inclusion of p in the data tells us nothing about ¢ that
is not already told us by r. If ¢ is impossible given r, both reduce to
0 = 0. If ¢ is certain given r, both reduce to
P(p|r)= P(p|r). (4)
So far everything is satisfactory. But suppose that ¢ is impossible
given pr. Then it is impossible for pq to be true given r, and (1) reduces
correctly to 0 = 0. But (2) reduces to
0= P(p|r)P(g|n),
which is false; it is perfectly possible for both p and ¢ to be consistent
with 7 and pq to be inconsistent with r. Consider the following. Let
r consist of the following information: in a given population all the
members have eyes of the same colour; half of them have blue eyes and
half brown, one member is to be chosen, and any member is equally
likely to be selected. p is the proposition that his left eye is blue, ¢ the
proposition that his right eye is brown. What is the probability, on
data », that his left eye is blue and his right brown? P(p|r) and
P(g|r) are both 4, and according to (2) P(pq|r) = }. But according
to (1) the probability that his right eye is brown must be assessed
subject both to the information that his eyes are of the same colour
and that his left eye is blue, and this probability is 0. Thus (1) gives
P(pq|r) = 0. Clearly the latter result is right, further applications of
the former, considering also ~p (left eye brown) and ~gq (right eye
blue) lead to the astonishing result that on data including the pro-
position that all members have two eyes of the same colour, it is as
likely as not that any member will have eyes of different colours.
This trivial instance is enough to dispose of (2); but (2) has been
widely applied in cases where it gives wrong results, and sometimes
seriously wrong ones. The Boltzmann H-theorem of the kinetic theory
of gases rests on a fallacious application of it, since it considers an
assembly of molecules, possibly with differences of density from place
to place, and gives the joint probability that two molecules will be in

and the other one as
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adjoining regions as the product of the separate probabilities that they
will be. If there are differences of density, and one molecule is in a
region chosen at random, that is some evidence that the region is one of
high density, then the probability that a second is in the region, given
that the first is, is somewhat higher than it would be in the absence of
information about the first. Similar considerations apply to Boltz-
mann’s treatment of the velocities. In this case the mistake has not
prevented the right result from being obtained, though it does not
follow from the hypotheses.
Nevertheless there are many cases where (2) is true. If

P(g|pr) = P(g|r)
we say that p is irrelevant to g, given r.
1.22. TureoreM 10. If qy, ¢y,..., q, are a set of alternatives, H the
information already available, and p some additional information, then

the ratio P, |pH)P(q, 4, H)
P(q, | H)P(p|q,H)
18 the same for all the q,.

By Axiom 7
P(pg, | H) = P(p| H)P(q, | pH)/P(p | pH) (1
= P(q,|H)P(p|q, H)/P(g, |9, H), 2
whence Plg, | pH)P(g, |q. H) _ P(p|pH) 3)

Plg,[H)P(plg, H) — P(p[H)

which is independent of q,.
If we use unity to denote certainty on data q,H for all the g,,

(3) becomes P(g, | pH) o P(g, | H)P(p |q. H) )

for variations of ¢,. This is the principle of inverse probability, first
given by Bayes in 1763. It is the chief rule involved in the process of
learning from experience. It may also be stated, by means of the product

rule, as follows: P, | pH) «c P(pg, | H). (5)

This is the form used by Laplace, by way of the statement that the
posterior probabilities of causes are proportional to the probabilities
a priori of obtaining the data by way of those causes. In the form
(4), if p is a description of a set of observations and the g, a set of
hypotheses, the factor P(g, | H) may be called the prior probability,
P(q,|pH) the posterior probability, and P(p|q,H) the likelihood, a
convenient term introduced by Professor R. A. Fisher, though in his
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usage it is sometimes multiplied by a constant factor. It is the proba-
bility of the observations given the original information and the
hypothesis under discussion. The term a priori probability is sometimes
used for the prior probability, but this term has been used in so many
senses that the only solution is to abandon it. To Laplace the a priori
probability meant P(pq,|H), and sometimes the term has even been
used for the likelihood. A prior:i has a definite meaning in logic, in
relation to propositions independent of experience, and we frequently
have need to use it in this sense. We may then state the principle of
inverse probability in the form: The posterior probabilities of the hypo-
theses are proportional to the products of the prior probabilities and the
likelihoods. The constant factor will usually be fixed by the condition
that one of the propositions ¢, to ¢, must be true, and the posterior
probabilities must therefore add up to 1. (If 1 is not suitable to denote
certainty on data pH, no finite set of alternatives will contain a finite
fraction of the probability. The rule covers all cases when there is
anything to say.)

The use of the principle is easily seen in general terms. If there is
originally no ground to believe one of a set of alternatives rather than
another, the prior probabilities are equal. The most probable, when
evidence is available, will then be the one that was most likely to lead
to that evidence. We shall be most ready to accept the hypothesis that
requires the fact that the observations have occurred to be the least
remarkable coincidence. On the other hand, if the data were equally
likely to occur on any of the hypotheses, they tell us nothing new with
respect to their credibility, and we shall retain our previous opinion,
whatever it was. The principle will deal with more complicated circum-
stances also; the immediate point is that it does provide us with what we
want, a formal rule in general accordance with common sense, that will
guide us in our use of experience to decide between hypotheses.

1.23. We have not yet shown that Convention 2 is a convention and
not a postulate. This must be done by considering other possible conven-
tions and seeing what results they lead to. Any other convention must
not contradict Axiom 4. For instance, if the number associated with a
probability by our rules is z, we might agree instead to use the number
e*. Then if x and 2’ are the present estimates for the propositions ¢
and ¢’, and for r and 7', those for ¢ v ¢’ and r v 7" will both be e*+* and
the consistency rule of Axiom 4 will be satisfied. But instead of the
addition rule for the number to be associated with a disjunction we
shall have a product rule. Every proposition stated in either notation

b
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can be translated into the other, if our present system leads to the result
that a hypothesis is as likely to be true as it is that we should pick a
white ball at random out of a bag containing 99 white ones and 1 black
one, that result will also be obtained on the suggested alternative system.
The fundamental notion is that of the comparison of reasonable degrees
of belief, and so long as all methods place them in the same order the
differences between the methods are conventional. This will be satisfied
if instead of the number x we choose any function of it, f(z), such that
z and f(x) are increasing functions of each other, so that for any value
of one the other is determinate. This is necessary by Convention 1
and Axiom 1, but every form of f(z) will lead to a different rule for
the probability-number of a disjunction if it is to be consistent with
Axiom 4. Hence the addition rule is a convention. It is, of course,
much the easiest convention to use. To abandon Convention 1, con-
sistently with Axiom 1, would merely arrange all numerical assessments
in the opposite order, and again the same results would be obtained in
translation. The assessment by numbers is simply a choice of the most
convenient language for our purposes

1.3. The original development of the theory, by Bayes,t proceeds
differently. The foregoing account is entirely in terms of rules for the
comparison of reasonable degrees of belief. Bayes, however, takes as
his fundamental idea that of expectation of benefit. This is partly a
matter of what we want, which is a separate problem from that of what
it is reasonable to believe, I have therefore thought it best to proceed
as far as possible in terms of the latter alone. Nevertheless, we have in
practice often to make decisions that involve not only belief but the
desirability of the possible effect of different courses of action. If we
have to give advice to a practical man, either we or he must take these
into account. In deciding on his course of action he must allow both
for the probability that the action chosen will lead to a certain result
and for the value to him of that result if it happens. The fullest
development on these lines is that of F. P. Ramsey.} I shall not
attempt to reproduce it, but shall try to indicate some of the principal
points as they occur in his work or in Bayes’s. The fundamental idea is

t Phil T'rans 53, 1763, 376-98 It has only recently beon found, by G A Barnard,
A Fletcher, and R L Plackett, that Bayes was born in 1702, was Presbyterian Minister
at Tunbridge Wells from before 1731 till 1752, and died in 1761 Previous searches had
yielded hardly any personal information about him. See Biometrika 45, 1958, 293-315.

1 The Foundations of Mathematics, 1931, pp 157-211 This cssay, like that of Bayes,
was published after the author’s death, and suffers from a number of imperfections in
the verbal statement that he might have corrected.
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that the values of expectations of benefit can be arranged in an order;
it is legitimate to compare a small probability of a large gain with
a large probability of a small gain. The idea is necessarily more com-
plicated than my Axiom 1; on the other hand, the comparison is one
that a business man often has to make, whether he wants to or not, or
whether it is legitimate or not. The rule simply says that in given
circumstances there is always a best way to act. The comparicon of
probabilities follows at once; if the benefits are the same, whichever
of two events happens, then if the values to us of the expectations of
benefit differ it is because the events are not equally likely to happen,
and the larger value is associated with the larger probability. Now we
have to consider the combination of expectations. Here Bayes, I think,
overlooks the distinction between what Laplace calls ‘mathematical’
and ‘moral’ expectation. Bayes speaks in terms of monetary stakes,
and would say that a 1/100 chance of receiving £100 is as valuable as
a certainty of receiving £1. A gambler might say that it is more valuable;
most people would perhaps say that it is less so. Indeed Bayes’s
definition of a probability of 1/100 would be that it is the probability
such that the value of the chance of receiving £100 is the same as
the value of a certain £1. Since different values may be compared, the
uniqueness of a probability so defined requires a postulate that the
value of the expectation, the proposition and the data remaining
the same, is proportional to the value to be received if the proposition
is true. This is taken for granted by Bayes, and Ramsey makes an
equivalent statement (foot of p. 179). The difficulty is that the value of
£1 to us depends on how much money we have already. This point was
brought out by Daniel Bernoulli in relation to what was called the
Petersburg Problem. Two players play according to the following rules.
A coin is to be thrown until a head is thrown. If it gives a head on
the first throw, 4 is to pay B £1; if the first head is on the second throw,
£2; on the third, £4, and so on. What is the fair sum for B to pay 4
for his chances? The mathematical expectation in pounds is

314124 444 S+ = .

Thus on this analysis B should pay 4 an infinite sum. If we merely
consider a large finite sum, such as £220, he will lose if there is a head in
any of the first 20 throws; he will gain considerably if the first head
is on the 21st or a later throw. The question was, is it really worth
anybody’s while to risk such a sum, most of which he is practically
certain to lose, for an almost inappreciable chance of an enormous
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gain? Even eighteenth-century gamblers seem to have had doubts
about it. Daniel Bernoulli’s solution was that the value of £22° is very
different according to the amount we have to start with. The value of
a loss of that sum to anybody that has just that amount is not equal
and opposite to the value of a gain of the same sum. He suggested a
law relating the value of a gain to the amount already possessed, which
need not detain us;t but the important point is that he recognized that
expectations of benefit are not necessarily additive. What Laplace calls
‘moral expectation’ is the value or pleasure to us of an event, its rela-
tion to the monetary value in terms of mathematical expectation may
be rather remote. Bayes wrote after Bernoulli, but before Laplace,
but he does not mention Bernoulli. Nevertheless, the distinction does
not dispose of the interest of the treatment in terms of expectation of
benefit. Though we cannot regard the benefits of gains of the same
kind as mutually irrelevant, on account of this psychological pheno-
menon of satiety, there do seem to be many cases where benefits are
mutually irrelevant. For instance, the pleasures to me of two dinners
on consecutive nights seem to be nearly independent, though those of
two dinners on the same night are definitely not. The pleasure of the
unexpected return of a loan, having a paper accepted for publication,
a swim in the afternoon, and a theatre in the evening do seem
independent. If there are a sufficient number of such benefits (or if there
could be in some possible world, since all we need is consistency), a
scale of the values of benefits can be constructed, which will satisfy the
commutative rule of addition, and then, by Bayes’s principles, one of
probability in terms of them. The addition rule will then be a theorem.
The product rule is treated by Bayes in the following way. We can
write E(a,p |q) for the value of the expectation of receiving a if p is
true, given ¢, and by definition of P(p |qg),

E(a,plg) = aP(plq).

The proportionality of E(a,p|g) to a, given p and g, is a postulate, as
we have already stated. Consider the value of the expectation of
getting a if p and ¢ are both true, given . This is aP(pg|r). But we
may test p first and then g. If p turns out to be true, our expectation
will be aP(q|p), since p is now among our data; if untrue, we know
that we shall receive nothing. Now return to the first stage. If p is

+ It is that the valuo of a gain dz, when we have z already, is proportionel to dz/x,

this is the rule associated in certain biological applications with the names of Weber
and Fechner
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true we shall receive an expectation, whose value is a P(q | pr), otherwise
nothing. Hence our initial expectation is a.P(q | pr)P(p | r); whence

P(pg|r) = P(p|r)P(q]|pr).

Ramsey’s presentation is much more elaborate, but depends on the
same main ideas. The proof of the principle of inverse probability is
simple. The difficulty about the separation of propositions into dis-
junctions of equally possible and exclusive alternatives is avoided by
this treatment, but is replaced by difficulties concerning additive expec-
tations. These are hardly practical ones in either case, no practical man
will refuse to decide on a course of action merely because we are not
quite sure which is the best way to lay the foundations of the theory.
He assumes that the course of action that he actually chooses is the best;
Bayes and Ramsey merely make the less drastic assumption that there
is some course of action that is the best. In my method expectation
would be defined in terms of value and probability; in theirs probability
is defined in terms of values and expectations. The actual propositions
are of course identical.

1.4. At any stage of knowledge it is legitimate to ask about a given
hypothesis that is accepted, ‘How do you know?’ The answer will
usually rest on some observational data. If we ask further, ‘What did
you think of the hypothesis before you had these data?’ we may be
told of some less convincing data, but if we go far enough back we shall
always reach a stage where the answer must be: ‘I thought the matter
worth considering, but had no opinion about whether it was true’
What was the probability at this stage? We have the answer already.
If there is no reason to believe one hypothesis rather than another, the
probabilities are equal. In terms of our fundamental notions of the
nature of inductive inference, fo say that the probabilities are equal is
a precise way of saying that we have no ground for choosing between the
alternatives All hypotheses that are sufficiently definitely stated to
give any difference between the probabilities of their consequences
will be compared with the data by the principle of inverse probability,
but if we do not take the prior probabilities equal we are expressing
confidence in one rather than another before the data are available, and
this must be done only from definite reason. To take the prior probabili-
ties different in the absence of observational reason for doing so would be
an expression of sheer prejudice. The rule that we should then take them
equal is not a statement of any belief about the actual composition
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of the world, nor is it an inference from previous experience; it is merely
the formal way of expressing ignorance. It is sometimes referred to as
the Principle of Insufficient Reason (Laplace) or the equal distribu-
tion of ignorance. Bayes, in his great memoir, repeatedly says that
the principle is to be used only in cases where we have no ground
whatever for choosing between the alternatives. It is not a new rule
in the present theory because it is an immediate application of Conven-
tion 1. Much confusion has arisen about it through misunderstanding
and attempts to reinterpret it in terms of frequency definitions. My
contention is that the frequency definitions themselves lead to no
results of the kind that we need until the notion of reasonable degree
of belief is reintroduced, and that since the whole purpose of these
definitions is to avoid this notion they necessarily fail in their object.
When reasonable degree of belief is taken as the fundamental notion
the rule is immediate. We begin by making no assumption that one
alternative is more likely than another and use our data to compare them.

Suppose that one hypothesis is suggested by one person 4, and
another by a dozen B, C,...; does that make any difference? No; but
it means that we have to attend to two questions instead of one. First,
is p or g true? Secondly, is the difference between the suggestions due
to some psychological difference between A and the rest? The mere
voting is not evidence because it is quite possible for a large number
of people to make the same mistake. The second question cannot be
answered until we have answered the first, and the first must be con-
sidered on its merits apart from the second.

1.5. We are now in a position to consider whether we have fulfilled the
conditions that we required in 1.1. I think (1) is satisfied, though
the history of both probability and deductive logic is a warning against
over-confidence that an unstated axiom has not slipped in.

2. Axiom 1 assumes consistency, but this assumption by itself does
not guarantee that a given system is consistent. It makes it possible to
derive theorems by equating probabilities found in different ways, and if
in spite of all efforts probabilities found in different ways were different,
the axiom would make it impossible to accept the situation as satisfac-
tory We must not expect too much in the nature of a general proof of
consistency.

In a certain sense many logical systems have been proved consistent.
The proofs depend on a theorem that goes back, I believe, to Aristotle,
that if a system contains two contradictory propositions, then any
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proposition whatever in the system can be proved in the system. We

have p entails p vy,

~p.p entails ~p.p vq,

~p.p v q entails g.
Hence ~p.p entails q. Similarly it entails ~g. Then conversely, if we
can find a proposition in the system that cannot be proved or disproved
in the system, the system is consistent. The discovery of such a proposi-
tion, however, is always difficult and the proof that it cannot be proved
is still more so. Godel proved that if any logical system that includes
arithmetic contains a proof of its own consistency, another proposition
can be proved that can be seen (looking at the system from outside) to
mean that the system is inconsistent, consequently if arithmetic is
consistent the consistency can neither be proved nor disproved.t Quine
has found an even simpler system, not even containing the notion of
membership of a class, that contains an undecidable proposition.

In fact if we do not make a further proviso a contradiction can be

derived immediately. From the above argument p.~p entails ¢, and
equally entails ~g. In probability language

Pg|p.~p)=1; Pl~glp.~p)=1
But since ¢ and ~q are exclusive it follows from axiom 4 that
Plgv~q|p.~p)=2,
contradicting Convention 3. Hence a necessary condition for consistency
1s that probabilities must not be assessed on contradictory data.

We can also find a sufficient condition. We assume that there is a
general datum H common to all propositions that we shall consider, it
may be merely the general principles of the theory. We assume that
Axioms 1, 2, 3, 4, 5, 6 hold for probabilities on data H. We use Con-
ventions 1 and 2 on H and assume that Convention 3 is applicable on H.
Then Theorems 1 to 8 follow if the datum is H.

Now if p is any additional datum such that P(p | H) > 0, and g, are
a set of propositions, exhaustive on H, whose disjunction is @, we take

_ Plpg: 1 H)
P(g;1 pH) Plp H) (L
This provides a means of calculating probabilities on data other than H.
They are, of course, unique. Then Convention 1 becomes a rule for the
ordering of probabilities in terms of their numerical assessments instead
of conversely.
1 An outline of the proof 18 in Scientific Inference, 1957, pp. 18-20.
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Since the P(pq; | H) satisfy Axiom 1 and P(p | H) is independent of g,
it follows that the P(q;| pH) satisfy Axiom 1. Similarly they satisfy
Axioms 2, 4, Convention 2 (since if ¢;, g; are exclusive on H they are also
exclusive on plf, and if g;, ¢; are exclusive on pH, py;, pq; are exclusive
on H) and Axiom 5

For Axiom 6 we have, if pg; entails 7,

, _ P(pg;r | H) _ P(pg;\H) _
Plqiri |pH) = Pp|H) = PO H) = P(g;|pH) @)
using Axiom 6 on data H, hence Axiom 6 holds on data pH.

Next, if pH entails q;, P(pq; | H) = P(p | I{) by Axiom 6, and there-
fore P(q;|plI) =1 Convention 3 becomes a theorem, and the first
part of Axiom 3 follows. If pH entails ~q, pg; is impossible given H
and therefore P(pg; | H) = 0, P(q;|pH) = 0, hence we have the second
part of Axiom 3.

For Axiom 7, consider two sets of propositions each exhaustive on H,

say ¢;, 7r, then Axiom 7 will become
Plg;ri | pH) = Plg; |pH)P(r |9 pH)/P(p | g; pH).
By (1) this is equivalent to
Pipg;ry | H) _ P(pg;| H) P(pq;r, | H) [P(pg;p | H)
P(pill)y — P(pIH) Plpg[H) [ Plpg;1H)’

which is an identity Hence Axiom 7 follows

In this presentation we assume that the axioms and conventions on
data I1 are consistent and provide a means of calculating probabilities
onotherdata, which is certainly possible, and derive a proof of the axioms
on data including /1, it follows that there are assessments of probabilities
that satisfy all the axioms and are consistent, and there can, in particular,
be no inconsistency in the use of the principle of inverse probability.
We have, however, the restriction that all propositions used as data must
have positive probabilities on H, this is less severe than the necessary
condition that they must not be self-contradictory, but is similar in
natute  On the face of it this condition may be hard to satisfy; we have
had the instance of a measure whose probability is uniformly distributed
from 0 to 1 when the question is whether it is precisely 4. But we shall
see that the condition is also strongly suggested by other considerations,
and the difficulty can be avoided +

3 For any assessment of the prior probability the principle of inverse

(3)

+ Prof K R Popper, Logic of Scientific Discovery (Appendix viii), maintains that it
cannot be avoided T eannot see however that he has adequately considered the principle
ot convergence discussed m § 162
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probability will give a unique posterior probability. This can be used
as the prior probability in taking account of a further set of data, and
the theory can therefore always take account of new information. The
choice of the prior probability at the outset, that is, before taking into
account any observational information at all, requires further con-
sideration. We shall see that further principles are available as a guide.
These principles sometimes indicate a unique choice, but in many
problems some latitude is permissible, so far as we know at present.
In such cases, and in a different world, the matter would be one for
decision by the International Research Council. Meanwhile we need
only remark that the choice in practice, within the range permitted,
makes very little difference to the results.

4. This is satisfied by definition.

5. We have avoided contradicting rule 5 so far, but further applica-
tions of it will appear later.

6. Our main postulates are the existence of unique reasonable degrees
of belief, which can be put in a definite order, Axiom 4 for the consistency
of probabilities of disjunctions, either the axiomatic extension of the
product rule or the theory of expectation. It does not appear that these
can be reduced in number, without making the theory incapable of
covering the ground required.

7. The simple cases mentioned on pp. 29-30 show how the principle of
inverse probability does correspond to ordinary processes of learning,
though we shall go into much more detail as we proceed. Differences
between individual assessments that do not agree with the results of
the theory will be part of the subject-matter of psychology. Their
existence can be admitted without reducing the importance of a unique
standard of reference. It has been said that the theory of probability
could be accepted only if there was experimental evidence to support
it; that psychology should invent methods of measuring actual degrees
of belief and compare them with the theory. I should reply that without
an impersonal method of analysing observations and drawing inferences
from them we should not be in a position to interpret these observations
either. The same considerations would apply to arithmetic. To quote
P. E. B. Jourdain.t

I sometimes feel inclined to apply the historical method to the multiplication
table I should make a statistical inquiry among school children, before their

pristine wisdom had been biased by teachers. I should put down their answers
as to what 6 times 9 amounts to, I should work out the average of their answers

t The Philosophy of Mr B*rir*nd R*ss*ll, 1918, p 88
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to six places of decimals, and should then decide that, at the present stage of
human development, this average is the value of 6 times 9.

I would add only that without the multiplication table we should not
be able to say what the average is. Nobody says that wrong answers
invalidate arithmetic, and accordingly we need not say that the fact
that some inferences do not agree with the theory of probability
invalidates the theory. It is sufficiently clear that the theory does
represent the main features of ordinary thought. The advantage of a
formal statement is that it makes it easier to see in any particular case
whether the ordinary rules are being followed.

This distinction shows that theoretically a probability should always
be worked out completely. We have again an illustration from pure
mathematics. What is the 10,000th figure in the expansion of e?
Nobody knows; but that does not say that the probability that it is
a 5 is 0-1. By following the rules of pure mathematics we could deter-
mine it definitely, and the statement is either entailed by the rules or
contradicted; in probability language, on the data of pure mathematics
it is either a certainty or an impossibility.} Similarly, a guess is not
a probability. Probability theory is more complicated than deductive
logic, and even in pure mathematics we must often be content with
approximations. Mathematical tables consist entirely of approxima-
tions. Hence we must expect that our numerical estimates of proba-
bilities in practice will usually be approximate. The theory is in fact
the system of thought of an ideal man that entered the world knowing
nothing, and always worked out his inferences completely, just as pure
mathematics is part of the system of thought of an ideal man who
always gets his arithmetic right  But that is no reason why the actual
man should not do his best to approximate it.

1.51. The infinite regress argument. The customary procedure in
a mathematical system is to state a set of definitions and postulates
and to examine what consequences follow from them. It is often said
that all concepts should be defined and all postulates should be proved.
It is worth while to point out that to admit this would invalidate any

+ It is unfortunate that pure mathematicians speak of, for instance, the probability
distribution of prime numbers, meaning a smoothed demlty d\qtnbuuon Systematic
botanists and zoologists are far ahead of h and physicists in tidying up
their language

1 An expert computer does not trust his arithmetic without applying checks, which
would give identities if the work is corrcct but would be expeeted to fail if there is
a mistake Thus induction is used to check the correctness of what is meant to be

deduction The possibility that two mistakes have cancelled is treated as so improbable
that it can be ignored
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argument whatever. Suppose that a system starts with concepts
A,, A,,... and postulates p;, ps,... and that we are required to define 4,.
We may be able (1) to define it in terms of 4,, 4,,..., or (2) to define it
in terms of a concept 4 not included in 4,, 4,,.... If (1) is possible we
reduce the number of concepts; but repetition of the process for 4,
reproduces the same situation. Then if we succeeded in eliminating all
concepts we should have no subject-matter.

Suppose then that we find a set B,, B,,... none of which can be defined
in terms of the others, and that we are asked to define B,. The definition
must be in terms of a further concept €}, which would therefore have to
be defined in terms of D,, and so on for ever. Hence the system could
have no possible starting-point.

Similarly, to prove p, would require a proof from p,, pj,... or the
introduction of a new postulate, and again we should find at some stage
that the proof of a postulate requires the introduction of a new one.

An argument, the application of which would always lead to the
introduction of a new definition or postulate not within the system, is
said to involve an infinite regress.

A famous example is Lewis Carroll’s ‘What the Tortoise said to
Achilles’.t If we accept a proposition p, and p implies g, we say ‘there-
fore ¢’, and proceed to assert ¢ and may use it in further inferences.
In Lewis Carroll’s discussion the Tortoise points out that this needs a
new general principle such as ‘if p, and if p implies ¢, then we may
detach ¢ and assert it separately’. Call this 4. But this has not detached
¢; g remains part of a longer proposition. The Tortoise then says that
we need a further principle: ‘if p, and if p implies ¢, and 4, then we may
detach g and assert it separately’. This is longer than 4, and still has
not detached g. Thus if we look for a formal statement of the principle
that we may assert the conclusion an obstinate objector can drive us
into an infinite regress. We can understand what to do, and act accord-
ingly, but we cannot state it formally in the same language. Whitehead
and Russell deal with the difficulty by prefixing the mark F to any
proposition that is asserted. The mark is not part of the proposition.
Curiously, the point does not appear to be mentioned in any later work
on symbolic logic that I have looked at.

Now instead of F before an asserted proposition we might use a figure 1,
and a proposition declared to be false might be indicated by 0. That is,
for tq and t~q we could write

PglH)=1; P(~q|H) = 0.
t Complete Works, pp 1225-30, Mind, 4, 1895, 278-80



40 FUNDAMENTAL NOTIONS L§Ls

The symbolism says just the same as the propositions ¢ and ~g with
the assertion sign; but it also permits generalization to incomplete proofs
if 1 and 0 are replaced by proper fractions. Thus a probability number
can be regarded as a generalization of the assertion sign.

1.52. The theory of types. This concerns the treatment of certain
logical contradictions. The most direct is due to Russell. Apparently
the class of dogs is not a dog, but the class of all classes is a class. So it
looks as if some classes are members of themselves and some are not.
Consider the class of all classes that are not members of themselves.
Is this a member of itself? If it is, it is a class that is not a member of
itself. If it is not, it is not a class that is not a member of itself, that is,
it is a member of itself. There is a contradiction on either hypothesis.
Russell dealt with this by saying that the proposition we have just
discussed is neither true nor false, but meaningless, and a rule is made
that it is meaningless to say that a class is a member of itself. Since
classes are usually defined by properties of their members (propositional
functions in technical language) the same rule would say that if ¢ is a
property, $(¢) is meaningless. Then propositional functions are classified
into types, a propositional function can take as argument a propositional
function of any lower type, but not of its own type. Some later logicians
have relaxed the restriction a little, but some restriction on the argu-
ments that a propositional function can take is needed in any case.

These considerations have great importance in the logic of pure
mathematics. If properties of individuals are of type 1, each property
defines a class. Number is a property of a class and therefore is of type 2.
Rational fractions express relations between pairs of numbers, and since,
say, 2/3 and 4/6 are regarded as the same number, the rational fraction
is a property of pairs of numbers and is of type 3. An irrational (real)
number is specified by the rationals that it exceeds and is of type 4. In
each type definitions and axioms are stated so that the laws of addition
and multiplication hold, but these cannot be stated directly for all types,
they have to be stated afresh for each type and have somewhat different
meanings for different types

Now since probability theory is an extension of logic it must contain
every principle of logic, and in particular (1) it is impossible to formalize
the detachment of the conclusion, (2) it is legitimate to speak of a proba-
bility that a probability has a particular value, but if it is of probability
type n the probabilities that it describes must be of type n—1 or lower.

Russell himself seems to have just failed to see the first of these points
in his Human Knowledge He is dissatisfied with statements of the form
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‘the probability that ¢ will occur in circumstances p is 099’ on the
ground that they express only a sort of logical relation and say nothing
about what will actually happen He proposes various special rules,
such as that in these circumstances in a long series of trials, ¢ will occur
in about 0 99 of the trials But nosuch escape is possible, because (1) such
a statement would violate the theory of sampling, according to which
large deviations might conceivably occur, though they might be expected
to be rare, (2) it abandons the principle that we need probability to have
meaning in every separate application, (3) for practical application we
should need to attach a quantitative meaning to ‘about’. But this not
all. We can see the meaning of ‘when p occurs, ¢ will occur with proba-
bility 0-99’ and arrange our actions accordingly, but an attempt to
formalize this step leads to the Tortoise paradox.

Carnap proposes a theory formally similar to the present one He has
an epistemological probability, which he calls Probability 1, which can
refer to intrinsic probabilities, which he calls Probability 2. In view of
the relation to the theory of types it would be better to reverse the
numbers. Unfortunately he tries to define Probability 2 in terms of
limiting frequency, which we shall see to be impossible and would be
useless even if it was possible We might refer to the throw of a coin,
in ordinary conditions of throwing, before the throw is made, we say
that the probability of a head is }. This, however, is not quite satisfac-
tory, if enough throws arec made we may find that heads occur a little
oftener than tails, and we may want to re-estimate the probability. We
may still suppose that there is always a definite value x that expresses
the probability of a head, given the constitution of the coin and the
conditions of throwing, but if it is to be estimated from the results of
throws it must be treated as an unknown with a prior probability
distribution over a range of possible values. Thus z will be an intrinsic
probability, and may be called a probability of type 1. When we estimate
x we are comparing epistemological probabilities of different values, and
these will be probabilities of type 2. There is no objection to having the
same rules for probabilities of hoth types. In any case we can calculate
the probability of m heads in n throws given z, but the situation is a
little different according as z is known in advance or estimated from
previousresults Ifitis known already we are working entirely in type 1.
If it is estimated, the process of estimation gives an answer in type 2,
which will give an uncertainty for », and this will be allowed for in the
probability of m.

Most intrinsic probabilities would be capable of being estimated in
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advance by physical methods independently of trials. For instance, it
is possible to design a mechanical thrower that will reproduce the
conditions of throwing so accurately that the coin will give heads every
time. The usual estimate that the probability is § depends on the fact
that a human thrower cannot repeat his movements so accurately that
the coin will always turn over the same number of times in flight.
Believers in determinism have maintained that this situation is in-
variable and that apparent intrinsic probabilities are always the result
of incomplete knowledge of the conditions of the problem. If so, they
contain an epistemological element, but the latter point is carefully
obscured. The present situation in quantum mechanics, however, does
seem to imply that when we get down to an atomic scale there is a
residuum of variation that could not be reduced however much we
tried to reproduce the conditions more accurately. If this is correct,
and there is no evidence to the contrary, probabilities in quantum
theory are genuinely intrinsic.

The theory of types is related to the hierarchy of languages in the
modern theory of symbolic logic. A familiar instance is that of a man
who says ‘I am lying’. Apparently if the statement is true, it is false,
and if it is false, it is true. But what s the statement? Until we have
decided this we do not know what it means to say that it is false, and
the modern theory would say that it means nothing.

Similarly we have the Cretan that said ‘No €retan ever speaks the
truth’. The analysis here would be that ‘the truth’ is an attribute of
statements in some language, say 4, and statements about such state-
ment would be in a more advanced language B. Then the statement
might be a true statement in B that all statements by Cretans in A are
false, and there is no contradiction.

An argument often used to justify induction is ‘Induction has always
succeeded in the past; therefore it will continue to succeed in the future’.
This is often answered by a statement that this inference is itself an
inductive inference and that the argument begs the question. But the
induction about inductions will be of a higher probability type and
there need be no circularity. The real difficulty about the argument is
different. Inductions, as understodd by philosophers, appear to be of
the form of ‘g has always occurred in conditions p in the past; therefore
it will always occur in conditions p’. In this sense induction has not
always succeeded in the past; it is indeed very hard to find general laws
with many instances based on sampling that have had no exceptions.
After much search I suggested ‘all animals with feathers have beaks’,
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which appears to be true at present, but Professor J. B. S. Haldane
pointed out to me that it may well have been false in Jurassic times.
The argument can be restated so as to be useful, but the restatement
must be postponed.

1.6. We can now indicate in general terms how an inductive inference
can approach certainty, though it cannnot reach it. If ¢ is a hypothesis,
H the previous information, and p, an experimental fact, we have by
two applications of the product rule, using Convention 3,

Plg| H)P(py | qH) )

P(p, | H)

since both are equal to P(p,q | H)/P(p, | H). If p, is a consequence of g,
P(p, |gH) = 1; hence in this case

P(g|p H) =

P(g|p H) =

P(g | H)

. 2
Plp, [H) @)
If py, p,,... are further consequences of ¢, which are found to be true,
we shall have in succession

Pl pypyH) = 5— L)

P(p,|H)P(p, |p,H) ™
P(q| H) ®

P(py | H)P(py | pyH) ... P(py [Py - Py H)
Thus each verification divides the probability of the hypothesis by the
probability of the verification, given the previous information. Thus,
with a sufficient number of verifications, one of three things must
happen- (1) The probability of ¢ on the information available will
exceed 1. (2) it is always 0. (3) P(p, |p;Ps...Pn—y H) will tend to 1.
(1) is impossible since the highest degree of probability is certainty.
(2) means that ¢ can never reach a positive probability, however often it
is verified. But if we adopt (3), repeated verifications of consequences of
a hypothesis will make it practically certain that the next consequence
of it will be verified. This accounts for the confidence that we actually
have in inductive inferences.

More in fact is true, as has been pointed out by V. 8. Huzurbazar.t
If the limit of (3) is « > 0, and we take 7 so that (3) is > a—¢, where
e is arbitrarily small, it will follow that for any m > n—1

Pq|pyps.. 0 H) =

a—€

P(PpPnst- Pl Pree PnaH) >

s
o

t Proc Camb Phil Soc 51, 1955, 761-2
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which is arbitrarily near 1. Hence the probability that all future
inferences will be verified tends to 1.

This proposition also provides us with an answer to various logical
difficulties connected with the fact that if p entails ¢. ¢ does not neces-
sarily entail p p may be one of many alternatives that would also
entail ¢. In the lowest terms, if ¢ is the disjunction of a set of alterna-
tives ¢y, Gy, .., ¢, then any member of this set entails ¢, but ¢ does not
entail any particular member Now in science one of our troubles is
that the alternatives available for consideration are not always an
exhaustive set An unconsidered one may escape attention for centuries.
The last proposition shows that this is of minor importance. It says
that if p,,..., p, are successive verifications of a hypothesis g,

Plpa|p1ps pnr H)

will approach certainty, it does not involve ¢ and therefore holds
whether q s true or not The unconsidered hypothesis, if it had been
thought of, would either (1) have led to the consequences p,, p,,... or
(2) to different consequences at some stage. In the latter case the data
would have been enough to dispose of it, and the fact that it was not
thought of has done no harm In the former case the considered and
the unconsidered alternatives would have the same consequences,
and will presumably continue to have the same consequences. The
unconsidered alternative becomes important only when it is explicitly
stated and a type of observation can be found where it would lead to
different predictions from the old one The rise into importance of the
theory of general relativity is a case in point. Even though we now
know that the systems of Euclid and Newton need modification, it was
still legitimate to base inferences on them until we knew what particular
modification was needed The theory of probability makes it possible
to respect the great men on whose shoulders we stand.

The possibility of this procedure rests, of course, on the fact that
there are cases where a large number of observations have been found
to agree with predictions made by a law. The interest of an estimate of
the probability of a law, given certain data, is not great unless those
actually are our data Indeed, a statement of it might lead to highly
uncomplimentary remarks It is not necessary that the predictions
shall be exact. In the case of uniformly accelerated motion mentioned
near the beginning, if the Jaw is stated in the form that at any instant
t the observed s will lie between a+ut+-3gi2+e¢, where e is small com-
pared with the whole range of variation of s, it will still be a legitimate
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inference after many verifications that the law will hold in future
instances within this margin of uncertainty. This takes us a further
step towards understanding the nature of the acceptance of a simple
law in spite of the fact that in the crude form given in applied mathe-
matics it does not exactly agree with the observations.

1.61. If we lump together all hypotheses that give indistinguishable
consequences, their total probability will tend to 1 with sufficient veri-
fication. For if we have a set of hypotheses q¢,,..., ¢,,, all asserting that
a quantity z will lie in a range 4-¢, we may denote their disjunction
by g, which will assert the same. Suppose that ~q would permit the
quantity to lie in a range -+ E, where E is much greater than e. Suppose
further that z is measured and found to be in the range indicated by g.
Then if p denotes this proposition, P(p |gh) = 1, and P(p | ~qh) is of

order ¢/£. Hence
Plgiph) _ O(E\ Plh)
P(~q | ph) €/P(~qh)

Thus if E/e is large and ¢ is a serious possibility, a single verification
may send its probability nearly up to 1. It is an advantage to consider
together in this way all hypotheses that would give similar inferences
and treat their disjunction as one hypothesis. The data give no informa-
tion to discriminate between them so long as the data are consequences
of all, the posterior probabilities remain in the ratios of the prior
probabulities. With this rule, therefore, we can with a few verifications
exclude from serious consideration any vaguely stated hypotheses that
would require the observed results to be remarkable coincidences, while
unforeseen alternatives whose consequences would agree with those
given by hypotheses already included in ¢, within the range of verifica-
tion at any stage, will give no trouble. By the time when any of them
is stated explicitly, all hypotheses not implying values of « within the
ranges actually found will have negligible probabilities anyhow, and all
that we shall need to do is to separate the disjunction ¢ as occasion
arises. It is therefore desirable as far as possible to state hypotheses
in such a form that those with indistinguishable consequences can be
treated together, this will avoid mere mathematical complications
relating to possibilities that we have no means of testing.

1.62. The last two results depend essentially on the prior probability
of the law being positive. Ifit is zero the ratios found will be either zero
or indeterminate. But we found in 1.5 that a sufficient condition for
consistency is that probabilities on the initial data H should be positive ;

thus the two lines of approach have led to similar results. But exclusive
E
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hypotheses that could be considered before we have any observational
data are presumably infinite in number, and their total probability is
not to exceed 1. Now it can be shown (see Appendix A.1) that if a set of
positive quantities is such that the sums of all finite sets are less than a
fixed quantity the set must be finite or enumerable, in other words they
are the terms of a terminating or convergent series. This doesnot directly
say very much. If, for instance, a law contains an adjustable parameter
capable of any value in a continuous set, this set is not enumerable.
We could, however, divide it into a finite or enumerable set of intervals,
and the condition could be satisfied, and we could consider limiting
behaviour when the length of the longest interval tends to 0. Similarly,
if the law concerns a measure capable of any value in a continuous set
we could reduce to a finite or an enumerable set. Then with repeated
verification we could establish a high probability that the correct value
of the parameter lies in a particular interval, which might be arbitrarily
short.

This argument covers most problems of estimation, but does not do
all that is needed. Return to the problem of the falling body (1.0). The

law is in the form s = atut+lgt2. O]

Here ¢ and s are measured, a, u, g are parameters (that is, quantities
common to every observation). a, u, g are adjustable, that is, their
values are initially unknown, and they are to be determined as well
as possible from the observations. If this was all, the above argument
would qualitatively cover the ground, though we shall make it more
precise later. This would be an estimation problem.
But we might consider the hypothesis

s = atut+gt*+azt+...+a, ", 2)
where 7 is greater than the number of observations and all coefficients
are adjustable. For any set of observations the solution is wholly
indeterminate, and gives no information at all about values of s at
times other than those observed. Even for values of n equal to or
smaller than the number of observations the uncertainty of each term
will exceed the whole variation of s. But it would be preposterous to
say on this ground that the observations give no information at inter-
mediate times, when the first three terms, with suitable values of a, u,
and ¢, in fact account for nearly all the variation of s at the observed
times. The conclusion is that including too many terms will lose
accuracy in prediction instead of gaining it. Thus we have the problem,
given a set of measures: what set of coefficients in (2) should be taken as
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adjustable (here not zero) in order to achieve the most accurate pre-
dictions? We certainly must take some as not adjustable; (1) corre-
sponds to taking all of ay, a,,..., @, as zero, and if any of them is taken
as adjustable the result can be regarded as a different law. Then our
problem is to assess probabilities of the different laws. These (if n is
allowed to be arbitrarily large) constitute an enumerable set, and the
prior probability that any one is right can be taken positive, subject to
the condition of convergence. For any particular one the adjustable
parameters can have a continuous probability distribution. Then the
theory will lead to posterior probabilities for the various laws. This
procedure constitutes a significance test.

Precise statement of the prior probabilities of the laws in accordance
with the condition of convergence requires that they should actually
be put in an order of decreasing prior probability. But this corresponds
to actual scientific procedure. A physicist would test first whether the
whole variation is random as against the existence of a linear trend;
then a linear law against a quadratic one, then proceeding in order of
increasing complexity. All we have to say is that the simpler laws have
the greater prior probabilities. This is what Wrinch and I called the
simplicity postulate. To make the order definite, however, requires a
numerical rule for assessing the complexity of a law. In the case of laws
expressible by differential equations this is easy. We could define the
complexity of a differential equation, cleared of roots and fractions, by
the sum of the order, the degree, and the absolute values of the coeffi-

cients. Thus s=a
would be written as dsjdt = 0
with complexity 14141 = 3.
s = at-ut+-4gt?
would become d%s[dt? = 0
with complexity 24141 =4;

and so on. Prior probability 2-™ or 6/7*m? could be attached to the dis-
junction of all laws of complexity m and distributed uniformly among
them. This does not cover all cases, but there is no reason to suppose
the general problem insoluble. Detailed solutions on these lines of some
of the more important problems of statistics are given in Chapters V
and VI.

All the laws of classical physics are in fact expressible by differential
equations, and those of quantum physics are derived from them by
various systematic modifications. So this choice does take account of
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actual physical procedure, such as the change from Greek science, with
velocity proportional to force, to Galilean science, with acceleration
proportional to force.

T do not think that the rule we suggested is satisfactory, it tries to
do too much at once. Nobody can say how many differential equations
of complexity m there are according to the definition, though any
competent mathematician could give an upper bound. One trouble is
that multiplying the whole differential equation by an integer would
apparently increase the complexity, though the result is exactly equiva-
lent to the original equation. We should therefore need a rule that all
differential equations must be cleared of factors common to all terms.
Many differential equations, again, break up into factors, the vanishing
of each factor gives a distinct law, which would appear among the
equations of lower complexity. We do not know how much the number
of equations of given complexity would be reduced by cutting out
equivalent and redundant ones.

Again, it does not apply, apparently, to chances in coin-tossing and
genetics, where there seems to be no question of a differential equation.
It also needs extension to allow for the fact that actual measurements
contain experimental errors, and each additional parameter in the law
of error implies an additional complexity. Experimental error has a
fundamental importance in the present work. I think it fair to state
that biologists show some appreciation of this, but hardly any philo-
sophers or physicists do

One feature of the suggestion is that the solution of a differential
equation of order » contains n adjustable parameters, so that it makes
the number of adjustable parameters needed when the law is compared
with observation an important part of the comparison. This feature
must be retained in any event. Ifa high probability is ever to be attached
to a general law, without needing a change in the form of the law for
every new observation, some principle that arranges laws in an order
of decreasing initial probability with increasing number of adjustable
parameters is essential

Another feature needing comment can be illustrated by laws of the

form y = azm,
where n is restricted to be a particular integer Cleared of the parameter
a this gives the differential equation

dy
™
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the complexity of which is n-+4. On the other hand, if » is wholly
arbitrary and is also eliminated, the differential equation is
d¥y dy dy\?

xyd-xg-i_yzﬂ = x(ﬂ) s
with complexity 8. If then » is 5 or more the law with a precisely stated
value of n will be considered more complex than that with an arbitrary n.
There is no objection to this. In the first place, n = 5, as a result of
observation, would ordinarily imply that » = 0, 1, 2, 3, 4 have been
examined and found to disagree with the observations, and n = 5 is a
selected value; but we shall see in Chapter VI that allowance for selection
is necessary to avoid absurd results and can be made by a suitable
adjustment of the prior probability. In the second place, if # is con-
sidered capable of a continuous set of values with no ground for choice
between them, the rules will never give a high probability to a single
value of n, the most that they will do is to give a high probability to
the proposition that » lies between prescribed limits. But with a pre-
liminary suggestion that n is an integer and suitable observational data
it would be possible to attach a high probability to the propositionn = 5
both against other integral values and against the continuous set.

I should comment also on a possible source of confusion. I do not
know whether the simplicity postulate will ever be stated in a sufficiently
precise form to give exact prior probabilities to all laws, I do know that
it has not been so stated yet. The complete form of it would represent
the initial knowledge of a perfect reasoner arriving in the world with
no observational knowledge whatever. The rule of convergence is useful
only for existence theorems, it does not give numerical answers. But as
a practical scientist I want numerical answers, even if they need revision
at some future date. In Chapters V and VI, I give a large number of
significance tests. These consider a null hypothesis ¢ according to which
a parameter has a precise suggested value, and an alternative ¢, accord-
ing to which the parameter is capable of any value in a continuous set.
If 0 are the observational data the result is usually given in the form

_ P(qi6H) [P(g|H)
P(¢'|6H)/ P(¢'|H)’
K may be either large or small according to the circumstances; and if it
is large and P(q | H) is not small, P(q | §H) is large. This is my answer
to those philosophers that maintain that no method based on the theory
of probability can give a high (or even a non-zero) probability to a precise
value against a continuous background, about twenty-five years after
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examples to the contrary have been given. In the form stated K is inde-
pendent of P(q | H), but for calculation I generally take this as 4. This
amounts to saying that a new adjustable parameter is always as likely
to be needed as not. Then if ¢” is a further modification, making some
parameter adjustable that is fixed on ¢’, and its prior probability is the
same as that of ¢, we should on repetition have an infinite sequence of
hypotheses with equal and therefore zero prior probabilities. This can,
of course, be avoided by the convergence principle; we could quite
satisfactorily take

P(g|H)/P(¢'|H)=2, P |H)/P|H)=2,

and so on. On the other hand, many laws that we have to consider
already contain a large number of adjustable parameters, and if con-
vergence of the prior probability series is slow (e.g. like 3 n-?) it is
possible that P(q|H)/P(¢’|H) is not much more than 1. The cases
where the results are at all decisive are when K is more than 10 or less
than 0-1, and the fact that the rate of convergence is not precisely stated
would seldom affect a decision. If it becomes more precisely stated the
modification will be easy.

One reviewer of Scientific Inference argued that on my theory Schrs-
dinger’s equation would have so high a complexity, and therefore so
low an initial probability, that it could never have acquired a high
probability. This argument overlooks the greater part of the book,
which shows how by consideration of different types of data in turn
and corresponding modification of the laws Schrddinger’s equation is
actually reached. Besides those mentioned as stages in the approxima-
tion hosts of others have been excluded as having negligible posterior
probapbilities, and it may well be true that Schrodinger’s equation is
the simplest of the survivors.

Broad’s missing major is in fact provided by the simplicity postulate.
Part of it is ‘the set of possible scientific laws is enumerable’. But it is
easy to understand why it has been hard to find.

1.7. Taeorem 11. If q,, ¢3,..., ¢, are a set of exclusive alternatives on
data r, and if
P(plgy7) = P(lgsr) = ... = P(p|gar),
then each = P(p|q; ¥V qg... V gy 7).
For if we denote the disjunction g; v g, ... v g,, by ¢, we have

P(pg|r) = P(pg, |r)+P(pgs | )+ 1)
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since these alternatives are mutually exclusive; and this

= P(@|q:n) P |} @)
The first factors are all equal, and the sum of the second factors is
Plglr). Hence  pipg|r) = Plp|ai)Pla ") ®)
But P(pq|r) = P(p|gr)P(¢17), (4)

which gives the theorem on comparison with (3).

This leads to the principle that we may call the suppression of an

srrelevant premiss. If ¢, v q,... v q, is entailed by r,

P(p|gr) = P(pq|r) = P(p|r),
since P(g|pr) = 1; and then each of the expressions P(p | ;) is equal
to P(p|r). In words, if the probability of a proposition is the same
for all the alternative data consistent with one fixed datum, then the
probability on the fixed datum alone has the same value.

The interest of this theorem is primarily in relation to what are called
‘chances’, in a technical sense given by N. R. Campbell and M. S.
Bartlett. We have seen that probabilities of propositions in general
depend on the data. But cases can be stated, and whether they exist
or not must be considered, where the probability is the same over a
wide range of data; in such a case we may speak of the information
not common to all these data as irrelevant to the probability of the
proposition. Thus above we can say that the propositions g,,..., g, are
irrelevant to p, given r. Further,

P(pg;|r) = P(g; |n)P(p|gir) = Plg;1r)P(p]7),
so that the product formula in such a case is legitimately replaced by
the form (2) on p. 27. I shall therefore define a chance as follows: If
15 Qaseee» O, G7e a et of alternatives, mutually exclusive and exhaustive on
data r, and if the probabilities of p given any of them and r are the same,
each of these probabilities is called the chance of p on data r. It is equalt
to P(p|r).

In any case where r includes the specification of all the parameters
in a law, and the results of previous trials are irrelevant to the result
of a new trial, the probability of a given result at that trial is the chance
on data . For the information available just before that trial is made
is composed of » and the results of all previous trials. If we consider the
aggregate of all the results that might have been obtained in previous

1 Bayes and Laplace use both words “‘probability* and ‘chance’, but so far as I know

do_ rfot specify any distinction betweon them. Thero are, however, passages in their
writings that suggest that they use the words with their modorn seases interchanged.
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trials, they constitute a set of alternatives such that one of them must
occur on data r, and are exclusive and exhaustive. Given then that
the probability of an event at the next trial is the same whatever the
results of previous trials, it must be equal to the chance on data r.
It follows that the joint probability on data r of the results of several
trials is the product of their separate chances on data r. This can easily
be proved directly. For if p,, p,, , p,, are the results in order, we have
by successive applications of the product formula

P(pypy v P |7) = P(p1 | 1)P(pe | Py 7)P(Ds | P1P27) oo PP | Py Pra-a 7y
and by the condition of irrelevance this is equal to
P(py |)P(py | ) P(ps 7). . P(py | 7).
This is usually taken for granted, but it is just as well to have it proved.
When the probabilities, given the law, are chances, they satisfy the
product rule automatically Hence our proof of the consistency of the
principle of inverse probability is complete in all cases where the likeli-

hoods are derived from chances. This covers nearly all the applications
in this book.

THEOREM 12. If py, Pg,..., Py and Gy, Q... 4, @7€ two sets of alternatives,
each exclusive and exhaustive on data r, and if

P(p,aitr) = f(p:)g(a)

Sfor all values of s and t, where f(p,) depends only on p, and r, and g(g,)
only on q, and r, then

P(ps|n) o fps);  Plalr) < g(qy)-
For if we denote the disjunctions of the p, and g, by p and ¢, we have

P(pyqir) = Z Plp,al7) = f(p) 3 9(0), 1)
which is proportional to f(p,). But

P(pyqir) = P(p,|)P(q|p,7) (2)

and the last factor is 1 since g is entailed by r. Hence
P(p; |r) < f(ps)- (3)
Similarly, P(g,|r) o g(g,)- (4)

We notice that

P(pg|r) = 2 2/ (pJoa) = ZS(p) 3 9(a) (5)

and is equal to 1 since p and g are both entailed by r. It is possible to
multiply f(p,) and g(g,) by factors such that both sums will be equal
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to 1; these factors will be reciprocals; and if this is done, since p and ¢
separately are entailed by r, we shall have

P(pa |7) =f<Ps)’ P(ql | ) = g(ql)
Also P(pslqr) = P(psq, 1)/ Plg,|7) = f(ps) (6)
and g, is irrelevant to p,.

This theorem is useful in cases where a joint probability distribution
breaks up into factors.

1.8. Expectation of benefit is taken as a primitive idea in the Bayes-
‘Ramsey theory. In the present one we can define the expectation of
a function f(z) on data p by the equation

E{f(z)|p} = 2 f(z) P(z | p)
taken over all values of z. For expectation of benefit, if benefits inter-
fere, there is no great trouble. If z is, for instance, a monetary gain,
we need only distinguish between « itself, the expectation of which
will be 3 z P(z | p), and the benefit to us of z, which is not necessarily
proportional to z. If it is f(z), the expectation of benefit will be

2 f(@) P(z | p).

The expectations of functions of a variable are often required for our
purposes, though we shall not have much more to say about expecta-
tion of benefit. But attention must be called at once to the fact that
if the expectation of a variable is @, it does not mean that we expect
the variable to be near a. Consider the following case. Suppose that
we have two boxes 4 and B each containing n balls. We are to toss
a coin; if it comes down heads we shall transfer all the balls from 4 to
B, if tails, all from B to A. What is our present expectation of the
number of balls in 4 after the process? There is a probability } that
there will be 2z balls in 4, and a probability } that there will be none.
Hence the expectation is n, which is not a possible value at all. Incor-
rect results have often been obtained by taking an expectation as a
prediction of an actual value, this can be done only if it is also shown
that the probabilities of different actual values are closely concentrated
about the expectation. It may easily happen that they are concen-
trated about two or more values, none of which is anywhere near the
expectation.

1.9. It may be noticed that the words ‘idealism’ and ‘realism’ have
not yet been used. I should perhaps explain that their use in everyday
speech is different from the philosophical use. In everyday use, realism
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is thinking that other people are worse than they are; idealism is
thinking that they are better than they are. The former is an expres-
sion of praise, the latter of disparagement. It is recognized that nobody
sees himself as others see him; it follows that everybody knows that
everybody else is either a realist or an idealist. In philosophy, realism
is the belief that there is an external world, which would still exist if
we were not available to make observations, and that the function of
scientific method is to find out properties of this world. Idealism is the
belief that nothing exists but the mind of the observer or observers
and that the external world is merely a mental construct, imagined to
give us ourselves a convenient way of describing our experiences. The
extreme form of idealism is solipsism, which, for any individual, asserts
that only his mind and his sensations exist, other people’s minds also
being inventions of his own. The methods developed in this book are
consistent with some forms of both realism and idealism, but not with
solipsism; they contribute nothing to the settlement of the main ques-
tion of idealism versus realism, but they do lead to the rejection of
various special cases of both. I am personally a realist (in the philo-
sophical sense, of course) and shall speak mostly in the language of
realism, which is also the language of most people. Actually present
idealist language is miserably inadequate for what we need to say, but
if anyone wants to construct such a language I think it can be done
and that anything in this book could be translated into it. To such an
idealist I offer the bargain of the Unicorn with Alice* ‘If you’ll believe
in me, I'll believe in you.’

Solipsism is not, as far as I know, actively advocated by anybody
(with the possible exception of the behaviourist psychologists). The
great difficulty about it is that no two solipsists could agree. If 4 and
B are solipsists, 4 thinks that he has invented B and vice versa. The
relation between them is that between Alice and the Red King; but
while Alice was willing to believe that she was imagining the King, she
found the idea that the King was imagining her quite intolerable.
Tweedledum and Tweedledee solved the problem by accepting the
King’s solution and rejecting Alice’s; but every solipsist must have his
own separate solipsism, which is flatly contradictory to every other’s.
Nevertheless, solipsism does contain an important principle, recognized
by Karl Pearson, that any person’s data consist of his own individual
experiences and that his opinions are the result of his own individual
thought in relation to those experiences. Any form of realism that
denies this is simply false. A hypothesis does not exist till some one
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person has thought of it; an inference does not exist until one person
has made it. We must and do, in fact, begin with the individual. But
early in life he recognizes groups of sensations that habitually occur
together, and in particular he notices resemblances between those
groups that we, as adults, call observations of oneself and other people.
When he learns to speak he has already made the observation that some
sounds belonging to these groups are habitually associated with other
groups of visual or tactile sensations, and has inferred the rule that we
should express by saying that particular things and actions are denoted
by particular words; and when he himself uses language he has general-
ized the rule to say that it may be expected to hold for future events.
Thus the use of language depends on the principle that generalization
from experience is possible; and this is far from being the only such
generalization made in infancy. But if we accept it in one case we
have no ground for denymng it in another. But a person also observes
similarities of appearance and behaviour between himself and other
people, and as he himself is associated with a conscious personality, it
is a natural generalization to suppose that other people are too. Thus
the departure from solipsism is made possible by admitting the possi-
bility of generalization. It is now possible for two people to understand
and agree with each other simultaneously, which would be impossible
for two solipsists. But we need not say that nothing is to be believed
until everybody believes it. The situation is that one person makes an
observation or an inference; this is an individual act. If he reports it
to anybody else, the second person must himself make an individual
act of acceptance or rejection. All that the first can say is that, from
the observed similarities between himself and other people, he would
expect the second to accept it. The facts that orgamzed society is
possible and that scientific disagreements tend to disappear when the
participants exchange their data or when new data accumulate are con-
firmation of this generalization. Regarded in this way the resemblance
between individuals is a legitimate induction, and to take universal
agreement as a primary requisite for belief is a superfluous postulate.
Whether one is a realist or an idealist, the problem of inferring future
sensations arises, and a theory of induction is needed. Both some
realists and some idealists deny this, holding that in some way future
sensations can be inferred deductively from some intuitive knowledge
of the possible properties of the world or of sensations. If experience
plays any part at all it is merely to fill in a few details. This must be
rejected under rule 5. I shall use the adjective ‘naive’ for any theory,
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whether realist or idealist, that maintains that inferences beyond the
original data are made with certainty, and ‘critical’ for one that admits
that they are not, but nevertheless have validity. Nobody that ever
changes his mind through evidence or argument is a naive realist,
though in some discussions it seems to be thought that there is no
other kind of realism. It is perfectly possible to believe that we are
finding out properties of the world without believing that anything we
say is necessarily the last word on the matter.

It should be remarked that some philosphers define naive realism
in some such terms as ‘the belief that the external world is something
like our perception of it’, and argue in its favour. To quote a remark
I once heard Russell make, ‘T wonder what it feels like to think that.’
The succession of two-dimensional impressions that we call visual
observations is nothing like the three-dimensional world of science,
and I cannot think that such a hypothesis merits serious discussion.
The trouble is that many philosophers are as far as most scientists
from appreciating the long chain of inference that connects observation
with the simplest notions of objects, and many of the problems that
take up most attention are either solved at once or are seen to be
insoluble when we analyse the process of induction itself.



I

DIRECT PROBABILITIES

‘Having thus exposed the far-seeing Mandarin’s inner thoughts, would
it be too excessive a labour to penetrate a little deeper into the rich
mine of strategy and disclose a specific detail ?”

ErNEST BrRaMaH, Kai Lung Unrolls his Mat

2.0. Wk have seen that the principle of inverse probability can be
stated in the form

Posterior Probability cc Prior Probability X Likelihood,

where by the likelihood we understand the probability that the observa-
tions should have occurred, given the hypothesis and the previous
knowledge. The prior probability of the hypothesis has nothing to do
with the observations immediately under discussion, though it may
depend on previous observations. Consequently the whole of the in-
formation contained in the observations that is relevant to the posterior
probabilities of different hypotheses is summed up in the values that
they give to the likelihood. In addition, if the observations are to tell
us much that we do not know already, the likelihood will have to vary
much more between different hypotheses than the prior probability
does. Special attention is therefore needed to the discussion of the
probabilities of sets of observations given the hypotheses.

Another consideration is that we may be interested in the likelihood
as such. There are many problems, such as those of games of chance,
where the hypothesis is trusted to such an extent that the amount of
observational material that would induce us to modify it would be far
larger than will be available in any actual trial. But we may want to
predict the result of such a game, or a bridge player may be interested
in such a problem as whether, given that he and his partner have nine
trumps between them, the remaining four are divided two and two.
Thus is a pure matter of inference from the hypothesis to the probabili-
ties of different events. Such problems have already been treated at
great length, and I shall have little to say about them here, beyond
indicating their general position in the theory.

In Chapter I we were concerned mainly with the general rules that a
consistent theory of induction must follow. They say nothing about
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what laws actually connect observations; they do provide means of
choosing between possible laws, in accordance with their probabilities
given the observations. The laws themselves must be suggested before
they can be considered in terms of the rules and the observations. The
suggestion is always a matter of imagination or intuition, and no general
rules can be given for it. We do not assert that any suggested hypo-
thesis is right, or that it is wrong, it may appear that there are cases
where only one is available, but any hypothesis specific enough to give
inferences has at least one contradictory, in comparison with which it
may be considered. The evaluation of the likelihood requires us to
regard the hypotheses as considered propositions, not as asserted pro-
positions; we can give a definite value to P(p | g) irrespective of whether
¢ is true or not. This distinction is necessary, because we must be able
to consider the consequences of false hypotheses before we can say that
they are false.t We get no evidence for a hypothesis by merely working
out its consequences and showing that they agree with some observa-
tions, because it may happen that a wide range of other hypotheses
would agree with those observations equally well. To get evidence for
it we must also examine its various contradictories and show that they
do not fit the observations. This elementary principle is often over-
looked in alleged scientific work, which proceeds by stating a hypo-
thesis, quoting masses of results of observation that might be expected
on that hypothesis and possibly on several contradictory ones, ignoring
all that would not be expected on it, but might be expected on some
alternative, and claiming that the observations support the hypothesis.
Most of the current presentations of the theory of relativity (the essen-
tials of which are supported by observation) are of this type, so are those
of the theory of continental drift (the hypotheses of which are contra-
dicted by every other check that has been applied). So long as alter-
natives are not examined and compared with the whole of the relevant
data, a hypothesis can never be more than a considered one.

In general the probability of an empirical proposition is subject to
some considered hypothesis, which usually involves a number of quanti-
tative parameters. Besides this, the general principles of the theory and
of pure mathematics will be part of the data. It is convenient to have
a summary notation for the set of propositions accepted throughout an
investigation; I shall use H to denote it. H will include the specification

+ This is the reason for rejecting the Principia definition of implication, which leads
to the proposition, ‘If ¢ is false, then g implies p * Thus any observational result p could
be regarded as confirming a false hypothesisg In terms of entailment the corresponding
proposition, ‘If g is false, g entails p’, does not hold irrespective of p



I1,§2.0 DIRECT PROBABILITIES 59

of the conditions of an observation. 6 will often be used to denote the
observational data.

2.1. Sampling. Suppose that we have a population, composed of
members of two types ¢ and ~¢, in known numbers. A sample of given
numberisdrawn in such a way that any set of that number in the popula-
tion is equally likely to be taken. What, on these data, is the probability
that the numbers of the two types will have a given pair of values?

Let r and s be the numbers of types ¢ and ~¢ in the population,
1 and m those in the sample. The number of possible samples, subject
to the conditions, is the number of ways of choosing /+m things from
r+-s, which we denote by 7+°C},,,. The number of them that will have
precisely ! things of type ¢ and m of type ~¢ is 7C;°C,,. Now on data
H any two particular samples are exclusive alternatives and are equally
probable; and some sample of total number /+m must occur. Hence
the probability that any particular sample will occur is 1/7+C,,,,; and
the probability that the actual numbers will be ! and m is obtained,
by the addition rule, by multiplying this by the total number of samples
with these numbers. Hence

P(l,m | H) = "C*Cof **Ci - 1)

It is an easy algebraic exercise to verify that the sum of all these ex-
pressions for different values of /, I+m remaining the same, is 1.

Explicit statement of the data H is desirable because it may be true
in some cases that all samples are possible but not equally probable.
In such cases the application of the rule may lead to results that are
seriously wrong. To obtain a genuine random sample involves indeed
a difficult technique. Yule and Kendall give examples of the dangers
of supposing that a sample taken without any particular thought is
a random sample. They are all rather more complicated than this
problem. But the following would illustrate the point. Suppose that
we want to know the general opinion of British adults on a political
question. The most thorough method would be a referendum to the entire
electorate. But a newspaper may attempt to find it by means of a vote
among its readers. These will include many regular subscribers, and
also many casual purchasers. It is possible that on a given day any
individual might obtain the paper—even if it was only because all the
others were sold out. Thus all the conditions in H are satisfied, except
that of randomness, because on the day when the voting-papers are
issued there is not an equal chance of a regular subscriber and an occa-
sional purchaser obtaining that particular number of the paper. The
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tendency of such a vote would therefore be to give an excess chance
of a sample containing a disproportionately high number of regular
subscribers, who would presumably be more in sympathy with the
general policy of the paper than the bulk of the population.

2.11. Another type of sampling, which is extensively discussed in
the literature, is known as sampling with replacement. In this case
every member, after being examined, is replaced before the next draw.
At each stage every member, whether previously examined or not, is
taken to be equally likely to be drawn at any particular draw. This is
not true in simple sampling, because a member already examined cannot
be drawn at the next draw. If » and s as before are the numbers of the
types in the population, the chance at any draw of a member of the first
type being drawn, given the results of all the previous draws, will always
be r/(r+s), and that of one of the second type s/(r+s). This problem is
a specimen of the cases where the probabilities reduce to chances.

Many other actual cases are chances or approximate to them. Thus
the probabilities that a coin will throw a head, or a die a 6, appear to
be chances, as far as we can tell at present. This may not be strictly
true, however, since either, if thrown a sufficient number of times,
would in general wear unevenly, and the probability of a head or a
six on the next throw, given all previous throws, would depend partly
on the amount of this wear, which could be estimated by considering
the previous throws. Thus it would not be a chance. The existence of
chances in these cases would not assert that the chance of a head is }
or that of a six §; the latter indeed seems to be untrue, though it is
near enough for most practical purposes.

If the chance of an event of the first type (which we may now call
a success) is 2, and that of one of the second, which we shall call a failure,
is 1—z = y, then the joint probability that +m trials will give just I
successes and m failures, in any prescribed order, is 2'y™. But there will
be #mC, ways of assigning the ! successes to possible positions in the
series, and these are all equally probable. Hence in this case

pumit) = S gy, @
which is a typical term in the binomial expression for (z+y)"*™. Hence
this law is usually known as the binomial distribution. In the case of
sampling with replacement it becomes

P(,m|H) = M(L)'(r_";g)'" @)

I'm! \r+s
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It is easy to verify that with either type of sampling the most probable
value of ! is within one unit of r(I+4m)/(r+s), so that the ratio of the
types in the sample is approximately the ratio in the population sampled.
This may be expressed by saying that in the conditions of random
sampling or sampling with replacement the most probable sample is a
fair one. It can also be shown easily that if we consider in succession
larger and larger populations sampled, the size of the sample always
remaining the same, but » and ¢ tending to infinity in such a way that r/s
tends to a fixed value z/y, the formula for simple sampling tends to the
binomial one. What this means is that if the population is sufficiently
large compared with the sample, the extraction of the sample makes
a negligible difference to the probability at the next trial, which can
therefore be regarded as a chance with sufficient accuracy.

2.12. Consider now what happens to the binomial law when ! and
m are large and z fixed. Let us put

1 C+m) , .
O Tm aym, (4)

I4+m = n; ! = nx4-n'lo; m = ny—n'ta, (5)

and suppose that « is not large. Then

log f(l) = logl! 4 logm! — logn! — llogx — mlogy. (6)
Now we have Stirling’s formulat
1 1
1= — —-—0|=]
logn! = (n+4)logn—n-+43log 274 i O(n ) (7)

Substituting and neglecting terms of order 1/I, 1/m, we have

2alm

logf() = log=_

! m
-l-llogﬁ-f—mlogn—y. (8)

1 The closeness of Stirling’s approximation, even if 1{12n is neglected, is remarkable.
Thus for n = 1 and 2 it gives
1! = 09221; 2' =19190;
while if the term in 1/12n is kept it gives
1" = 10022; 2! = 2 0008.
Considered as approxi ions on the hypothesis that 1 and 2 are jarge numbers they are
very creditable The use of the logarithmic serics may lead to larger errors
Proofs of the formula and of other properties of the factorial function, not restricted

to integral argument, are given in H and B S Jofireys, Methods of Mathematical Physics,
chapter 15

F
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Now substituting for ! and m, and expanding the logarithms to order
o* we have

logf() = %10g(21mxy)+%/+ O(e2-%, o3m-8), )
1. 1 (—nay?
- <2my)‘h°"p{ Sy } (1)

This form is due to De Moivre.} From inspection of the terms neglected
we see that this will be a good approximation if I and m are large and
o is not large compared with 1" or m'. Also if nxy is large the chance
varies little between consecutive values of I, and the sum over a range
of values may be closely replaced by an integral, which will be valid as
an approximation till [—nx is more than a few times (nzy)'2. But the
integrand falls off with /—aa so rapidly that the integral over the range
where (10) is valid is practically 1, and therefore includes nearly all the
chance. But the whole probability of all values of Zis 1. It follows that
nearly the whole probability of values of I is concentrated in a range
such that (10) is a good approximation to (4).

It follows further that if we choose any two positive numbers g8
and y, and consider the probability that I will lie between n(z+B) and
n{x—y), it will be approximately

B
. 2

(o) [ o) a

-7
which, if 8 and y remain fixed, will tend to 1 as n tends to infinity.
That is, the probability that (!—nz)/n will lie within any specified limits,
however close, provided that they are of opposite signs, will tend to

certainty.

2.13. This theorem was given by James Bernoulli in the Ars Con-
jectands (1713). It is sometimes known as the law of averages or the
law of large numbers. It is an important theorem, though it has often
been misinterpreted. We must notice that it does not prove that the
ratio I/n will tend to limit x when n tends to infinity. It proves that,
subject to the probability at every trial remaining the same, however
many trials we make, and whatever the results of previous trials, we
may reasonably expect that l/n—a will lie within any specified range
about 0 for any particular value of n greater than some assignable one
depending on this range. The larger = is, the more closely will this
probability approach to certainty, tending to 1 in the limit. The

1 Miscellanea Analytica, 1733
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existence of a limit for I/n would require that there shall be a series of
positive numbers «,, depending on » and tending to 0 as n —> 0, such
that, for all values of n greater than some specified n,, !/n—2x lies
between +«,. But it cannot be proved mathematically that such series
always exist when the sampling is random. Indeed we can produce
possible results of random sampling where they do not exist. Suppose
that x = 4. It is essential to the notion of randomness that the results
of previous trials are irrelevant to the next. Consequently we can never
say at any definite stage that a particular result is out of the question.
Thus if we enter 1 for each success and 0 for each failure such series as
the following could arise:

100110010100100111010...,
100100100100100100100...,
000000000000000000000...,
111111111111111111111...,
10110000111111110000000000

The first series was obtained by tossing a coin. The others were
systematically designed; but it is impossible to say logically at any
stage that the conditions of the problem forbid the alternative chosen.
They are all possible results of random sampling consistent with a
chance 4. But the second would give limit }; the third and fourth
limits 0 and 1; the fifth would give no limit at all, the ratio //n oscil-
lating between } and §. (The rule adopted for this is that the number
of zeros or units in each block is equal to the whole number of figures
before the beginning of the block.) An infinite number of series could
be chosen that would all be possible results of random selection, assum-
ing an infinite number of random selections possible at all, and giving
either a limit different from 4 or no limit.

It was proved by Wrinch and me,} and another version of the proof
is given by M. S. Bartlett,} that if we take a fized « independent of =,
ny can always be chosen so that the probability that there will be no
deviation numerically greater than «, for any n greater than n,, is as
near 1 as we like. But since the required n, tends to infinity as « tends
to 0, we have the phenomenon of convergence with infinite slowness
that led to the introduction of the notion of uniform convergence. It
is necessary, to prove the convergence of the series, that «, shall tend
to 0; it must not be independent of n, otherwise the ratio might oscillate
finitely for ever.

t Phil Mag 38, 1919, 718-19 1 Proc Roy Soc A, 141, 1933, 520-1
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Before considering this further we need a pair of bounds for the
incomplete factorial function,
I = J.u"e"“ du, (1)
z

where z is large. Then

1> azn f et du = xmezft, (2)
z

Also, if u = z+v, ufx < expv/x

®3)

=]

Now let P(n) be the chance of a ratio in » trials outside the range
z+4a. This is asymptotically

e f {2,,x(71b_x)}lhexr'[~2x$a i’”’] -

Hence, if z/n is large,

_ [2x(1—x)\1 1
= (—ﬂ-n ) &exp{ o (l }{l+0(n 2)} (5)
by putting «? = u and applying (4).

Now take o, = nY, (6)

The total chance that there will be a deviation greater than «,, for some
n greater than n,, is less than the sum of the chances for the separate =,
since the alternatives are not exclusive. Hence this chance

om < > (=" wotexp— ]

et 2x(1—x)
[ (2z1—a)\"__, n'h ]
NJ‘{—-————-‘” } n ‘exp[ S2(1—2) dn. (7)
Put " n = u?;

then

Q(ng) < f 2{?50(;"—_“:)}]/214"2 exp[— ix(%a_:}] du

2{2z(1 —2)}* _,, n?
< —{—“Tr‘/_z_}“ ; exp[-—h lo——z)] ®
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with a correcting term small compared with the first for large n,. Suppose
that there is probability e > 0 that the ratios do not converge to z. If
they do not, for any n, however large there are n > n, such that the
deviation exceeds a,, since a,, > 0 But n, can always be chosen so that
@(ny) < %¢,and we have a contradiction Hence ¢ = 0. Hence it may be
expected, with an arbitrarily close approach to certainty, that subject
to the conditions of random sampling the ratio in the series will tend to
z as a limit.}

This, however, is still a probability theorem and not a mathematically
proved one, the mathematical theorem, that the limit must exist in
any case, is false because exceptions that are possible in the conditions
of random sampling can be stated.

The situation is that the proposition that the ratio does not tend to
limit  has probability 0 in the conditions stated. Ths, however, does
not entail that it will tend to this limit. We have seen (1) that series
such that the ratio does not tend to limit x are possible in the conditions
of the problem, (2) that though a proposition impossible on the data
must have probability 0 on those data, the converse is not true, a
proposition can have probability 0 and yet be possible in much simpler
cases than this, if we maintain Axiom 5, that probabilities on given
data form a set of not ligher ordinal type than the continuum. If a
magnitude, limited to a continuous set of positive values, is less than
any assignable positive quantity, then it is 0. But this is not a contra-
diction because the converse of Theorem 2 is false. We need only
distinguish between propositions logically contracdicted by the data,
in which case the impossibility can be proved by the methods of deduc-
tive logic, and propositions possible on the data but whose probability
is zero, such as that a quantity with uniform distribution of its prob-
ability between 0 and 1 is exactly .

The result is not of much practical importance, we never have to
count an infinite series empirically given, and though we might like
to make inferences about such series we must remember the condition
required by Bernoulli’s theorem, that no number of trials, however
large, can possibly tell us anything about their immediate successor
that we did not know at the outset. It seems that in physical conditions
something analogous to the wear of a coin would always violate this
condition. Consequently it appears that the problem could never arise.

1 Another proof is given by F P Cantelli, Rend d circ matem . Palermo, 41, 1916,
191-201, Rend d R Acad d Lucei, 26, 1917, 39-45 See E C Ficller,J R Stat Soc
99, 1936, 717
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Further, there is a logical difficulty about whether the limit of a ratio
in a random series has any meaning at all. In the infinite series con-
sidered in mathematics a law connecting the terms is always given, and
the sum of any number of terms can be calculated by simply following
rules stated at the start. If no such law is given, which is the essence
of a random process, there is no means of calculation. The difficulty is
associated with what is called the Multiplicative Axiom; this asserts
that such a rule always exists, but it has not been proved from the
other axioms of mathematical logic, though it has recently been proved
by Godel to be consistent with them. Littlewoodt remarks, ‘Reflection
makes the intuition of its truth doubtful, analysing it into prejudices
derived from the finite case, and short of intuition there seems to be
nothing in its favour.’” The physical difficulty may arise in a finite
number of trials, sc that there is no objection to supposing that it may
arise in any case even if the Multiplicative Axiom is true. In fact I
should say that the notion of chance is never more than a considered
hypothesis that we are at full liberty to reject. Its usefulness is not
that chances ever exist, but that it is sufficiently precisely stated to
lead to inferences definite enough to be tested, and when it is found
wrong we shall in the process find out how much it is wrong.

2.14. We can use the actual formula 2.12 (10) to obtain an approxi-
mation to the formula for simple sampling when [, m, r—I, and s—m
are all large. Consider the expression

F = rCaty = x*C amy—, m
where z and y are two arbitrary numbers subject to z+y = 1. 7, s, and
l+m are fixed. Choose z so that the maxima of the two expressions

multiplied are at the same value of /, and call this value I, and the
corresponding value of m, m,. Then

ly=rx, r—ly=ry, my=sx; s—m,=sy, (2)

whence (r4-8)x = ly+my = I4+m. (3)
Then, by 2.12(10),

F = (2nrzy)-'" exp{—-(lz_l")z}(2nsxy)—‘/'3exp{_(m—_m_°)_2}

rey 28xy
= (2nzy)-Y(rs)~ Y exP{-(l_é’r)s—%gy—Fi),. @
Also = rey,  admyras—l-m — (9m(r 4 g)zy}-th, ®)

+ Elements of the Theory of Reul Functions, 1926, p 25
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Hence by division

_"CC, . [ s \* (I—1p)%(r+s)

P(l,m|H) = '*‘ITH". = (21rrsxy) exp{— 2‘;*sxy . (6)

But (r+8)2xy = (IH+m)(r4+-s—1l—m), (7)
whence

_ (r+sP G (A=L)r+a)?

Plym|H) = {2nrs(l+m)(r+s—l~m)} exP‘—_2rs(l+m)o(r+s——l-—m)}’

(8)

where ly= ri4m) (9)

r+s
Comparing this with 2.12(10) we see that it is of similar form, and the
same considerations about the treatment of the tail will apply. If r
and s are very large compared with ! and m, we can write

r=(r+s8)p, s=(r+3)g, (10)
p and ¢ now corresponding to the  and y of the binomial law, and the
result approximates to

1 ta {l—p(l4+m)}?

R el an
which is equivalent to 2.12 (10). In this form we see that the probabilities
of different compositions of the sample depend only on the sample and
on the ratio of the type numbers in the population sampled; provided
that the population is large compared with the sample, further informa-
tion about its size is practically irrelevant. But in general, on account
of the factor (r+s)/(r-+s—l—m) in the exponent, the probability will
be somewhat more closely concentrated about the maximum than for
the corresponding binomial. This represents the effect of the with-
drawal of the first parts of the sample on the probabilities of the later
parts, which will have a tendency to correct any departure from fairness
in the earlier ones.

2.15. Multiple sampling and the multinomial law. These are
straightforward extensions of the laws for simple sampling and the
binomial law. In the first case, the population consists of p different
types instead of two, the numbers being r,, ,,..., 7,,; the corresponding
numbers in the sample are n;, n,,..., 7, with a prescribed total. It is
supposed as before that all possible samples of the given total number
are equally probable. The result is

P03, Ry 1y | H) = 1Cy, 7Chp .. 7C, [ m
In the second case, the chances of the respective types occurring at
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any trial are z,, &,,..., %, (their total being 1) and the number of trials
> n is prescribed. The result is
!
P(ng,ng,...,ny | H) = ;LF(%%;';’;' g .., 2pr. (2)

It is easy to verify in (1) that the most probable set of values of the
n’s are nearly in the ratios of the 7’s, and in (2) that the most probable
set are nearly in the ratios of the z’s. Consequently we may in both
cases speak of the expectations or calculated values; if N is the pre-
seribed total number of the sample, the expectation of n, for multiple
sampling will be N#,/3 r, and the expectation of n, for the multinomial
will be Nz,. The probability will, however, in both cases be spread over
arange about the most probable values, and we shall need to attend later
to the question of how great a departure from the most probable values,
on the hypothesis we are considering, can be tolerated before we can say
that there is evidence against the hypothesis.

2.16. The Poisson law.t We have seen that the use of Stirling’s
formula in the approximation used for the binomial law involves the
neglect of terms of order 1/l and 1/m, while the result shows that there
is a considerable probability of departures of ! from nz of amounts of
order (nxy)'>. If then (nxy)" > nz, the result shows that Il =0 is a
very probable value, and the approximation must fail. But if n is
large, this condition implies that  is small enough for nz to be less
than 1. Special attention is therefore needed to cases where n is large
but nz moderate. We take the binomial law in the form

— n! — )=l
P(l|H) = mz‘(l z)n-t, 1)
Take nz = 7, keep ! and r fixed, and let n — c0. Then
nt  [r\} r\nd o
P(|H) = m'(ﬁ) (1*77) > Te. @

The sum of this for all values of ! is unity, the terms being e~ times the
terms of the expansion of e". The formula is the limit of the binomial
when 7 tends to infinity and x to 0, but nz to a definite value. If nx?
is small but nx large, both approximations to the binomial are valid.
The condition for the Poisson law is that there shall be a small chance
of an event in any one trial, but there are so many trials that there is
an appreciable probability that the event will occur in some of them.
One of the best-known cases is the study of von Bortkiewicz on the
number of men killed by the kick of a horse in certain Prussian army
t+ S D Poisson, Recherches sur la probabilité des jugements, 1837, pp. 205-7.
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corps in twenty years. The unit being one army corps for one year, the
data for fourteen corps for twenty years gave the followingeummary.}

Number of deaths | Number of units | Ezpected
) 144 1390
1 91 973
2 32 341
3 11 80
4 2 14
5 and more 0 02

The analysis here would be that the chance of any one man being killed
by a horse in a year is small, but the number of men in an army corps
is such that the chance that there will be one man killed in an entire
corps is appreciable. The probabilities that there will be 0, 1, 2,...
men killed in a corps in a year are therefore given by the Poisson rule;
and then by the multinomial rule, in a sample of 280 units, we should
expect the observed numbers to be in approximately the ratios of these
probabilities. The column headed ‘expected’ gives the expectations
on the hypothesis that » = 0-70. They have been recalculated, the
calculated values as quoted having been derived from several Poisson
laws superposed.

Another instance is radioactive disintegration. The chance of a par-
ticular atom of a radioactive element breaking up in a given interval
may be very small; but a specimen of the substance may contain some-
thing of the order of 10%° atoms, and the chance that some of them
may break up is appreciable. The following table, due to Rutherford
and Geiger,} gives the observed and expected numbers of intervals of
} minute when 0, 1, 2,... a-particles were ejected by a specimen.
Number 0 1 2 3 4 & 6 7 & 9 10 11 12 13 I4
Obs. 57 203 383 525 532 408 273 139 45 27 10 4 0 1 1
Exp. 54 211 407 525 508 393 254 140 68 20 11 4 1 0 0
O-E 43 —8 —2¢ 0 424 +15 419 —1 —23 —2 —1 0 —1 +1 +1
r is taken as the total number of particles divided by the total number
of intervals = 10097/2608 = 3-87. It is clear that the Poisson law
agrees with the observed vanation within about one-twentieth of its
range; a closer check will be given later.

The Aitken dust-counter provides an example from meteorology.§
The problem is to estimate the number of dust nuclei in the air. A
t von Bortkiewicz, Das Gesetz d. kleinen Zahlen, 1898. Quoted by Keynes, p 402.

1 Rutherford, H Geiger, and H. Bateman, Phil Mag 20, 1910, 698-707.

§ John Aitken, Proc. Roy. Soc Edin. 16, 1888, 135-72; F. J Scrase,Q J R Met. Soc.
61, 1935, 368-78.
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known volume of air is admitted into a chamber containing moisture
and filtered air, and is then made to expand. This causes condensation
to take place on the nuclei. The drops in a small volume fall on to a
stage and are counted. Here the large number is the number of nuclei
in the chamber, the small chance is the chance that any particular one
will be within the small volume at the moment of sampling. Scrase
gives the following values.

Number 0 1 2 3 4 5 6 7 8

Obs. 23 56 88 95 73 40 17 5 3
Exp 25 65 88 82 61 38 21 10 4
O—-E -2 =9 0 +13 +12 42 -4 —5 -1

The data are not homogeneous, the observations having been made on
twenty different days; r was estimated separately for each and the
separate expectations were calculated and added. It appears that the
method gives a fair representation of the observed counts, though there
are signs of a systematic departure. Scrase suggests that in some cases
zero counts may have been wrongly rejected under the impression that
the instrument was not working. This would lead to an overestimate
of r on some days, therefore to an overestimate of the expectations
for large numbers, and therefore to negative residuals at the right of
the table. Mr. Diananda points out that the observed counts agree
quite well with r = 2-925.

2.2. The normal law of error. Let us suppose that a quantity that
we are trying to measure is equal to A, but that there are various pos-
sible disturbances, n in number, each of which in any particular case
has equal chances } of producing alterations 4e in the actual measure;
the sign of the contribution from each is independent of those of the
others. This is a case of the binomial law. If [ of the components in an
individual observation are positive and the remaining n—I negative,
the measured value will be

z = Ale—(n—1)e = A (2l—n)e. (1)

The possible measured values will then differ from A—ne by even

multiples of e. We suppose n large. Then the probabilities of different

values of ! are distributed according to the law obtained by putting
=y = 4 in 2.12(10), namely,

PUIH) = (;i)"’exp{%(l—%n)*}, @
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and the probability that I will be equal to I;, I, (> [,), or some inter-
mediate value will be .
Lo (2\k 2(l—3n)?
P> ISLID = > () e~ HAnl), @
=t
But this is the probability that the measure « will be in the range from
A+(2l,—n)e to A+(2l,—n)e, inclusive. If, then, we consider a range
z, to z,, long enough to include many possible values of I, we can
replace the sum by an integral, write

I—3n = (x—A)/2¢, (4)
& 1 )2
and get Pr,>2 >z |H)= Z (;2—”) exp{—(fz-—ng)—}. (5)

This range will contain (z,—%,)/2¢+1 admissible values of x. Now
suppose that x,—x,, which is much larger than ¢, is also much less than
evn. The sum will then approximate to

2y
2 \"» (x—2A)?) dz
J ) ol 5 @
1
Now let n be very large and e very small, in such a way that evn is finite.
The possible values of x will then become indefinitely closely packed,

and if we now consider a small range from x, to x,+ 8z, the chance that
« lies within it will approximate to

1 —A)2
Pz, <z < 2,+8x |H) = (Znn)l/2€°xp‘—(x;ﬂ»€z) }Sx. (7)

This is an instance of the normal law, which we can write in its general
form
__1 (z,—A)?

Play < & < ytdz | H) = 47(.2_");“1)(_T & (8)

or, more briefly,
_ 1 (x—A)?
P(dz |H) = J(—%—)aexp{— 5o }dx,

in the sense that when dz tends to zero the ratio of the two sides tends
to 1. In practice we are always concerned with finite ranges, so that
strictly we always require the integrals of these expressions over some
finite range, and the transition from 8z to dx involves only a step that
we shall always undo before we make any use of the results.

It will be noticed that whereas we started with three parameters A,
n, and ¢, in the result we are left with two, A and evn, the latter being
replaced by o. This is similar to what happens in sampling, where the
size of the population sampled becomes irrelevant when it is large. The
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form of the normal law, in application to errors, seems to have been
given first by Laplace in 1783, though it is usually attributed to Gauss.t
The law can also be written

P, < & < 2y+da | H) = 7’; exp{ X (z—A)} d, ©)
where 2h2%?% = 1. (10)

o is usually called the standard error, but sometimes the mean square
error or simply the mean error. % is called the precision constant. If
we introduce the error function
z
erfx=%fe"’dt, (11)
(]
the probability that « will be less than x, is }{1+erfh(x,—A)}. Tables
of the probability that 2—A will be less than given multiples of o are
given by Sheppard and by later writers. The error function, which has
other applications in heat conduction and diffusion, is tabulated by
Milne-Thomson and Comrie. In statistical applications (8) is more
convenient than (11), since o usually arises more directly than k. The
curve y o exp{— (—A)?/20%} has inflexions at A+o. There is a proba-
bility 0-683 that an observation will lie between A4-¢. There is a
probability } that it will lie between A4-0-67450. In this sense 0 67450
is often called the probable error, and is the uncertainty usually quoted
in astronomical and physical works. This practice would be better
abandoned. In applying any significance test or the x? or ¢ rules what
arises is o, and if uncertainties are given in terms of the probable error,
the multiplication must first be undone, with unnecessary trouble and
some loss of accuracy due to accumulation of rounding-off errors
The conditions contemplated in the normal law of error have often a
rough justification. In many cases we have adequate reason to suppose
that the quantity we are trying to measure has a ‘true value’, though
we must reserve a further discussion of what that can mean in relation
to our general theory. But several minor disturbances may affect any
individual measure, such as wandering of the observer’s attention, the
fact that he must round off his measures to the nearest multiple or
tenth of the scale interval, disturbance of the apparatus through vibra-
tion of the ground or wind, and so on. These can often be regarded as
independent. They are not in general capable of producing only two
equal and opposite values of the disturbance; most of them are capable
of a continuous range of values, and in general there is not much reason
1 Pearson, Biometrika, 13, 1920, 25
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to suppose that these are equally spread for all the disturbances. The
general application of the above argument must therefore be mistrusted.
It can be regarded only as an indication that there may be cases where
the chance of error is distributed according to the normal law, which
sums up the whole information with regard to the possible variation in
two parameters A and o. A is also often called the population mean and
o the population standard deviation. The latter term is rather cambrous,
and if the word ‘population’ is omitted it is liable to be confused with
the standard deviation of a given finite set of observations, which is not
the same thing.
‘Where we are dealing with a law of the form

pax 1) =150 %,

o (4
of which the normal law is an instance, we may speak of A as the
location parameter and o as the scale parameter, to use Fisher’s terms.
These correspond to epistemological needs better than ‘true value’ and
‘standard error’ do. But the latter terms are convenient; we have only
to remember that ‘true value’is not to be understood in an absolute
sense, but in the sense that any law relating measures, if it is to be of
any use, must be clearly stated, in probability terms, and that a possible
way of progress (apparently the only possible way) is to treat the
variation as the resultant of a part that would be exactly predictable,
given exact statements of the values of certain parameters, and a
random error. The law in its naive form would deal only with the
former part. The parameters in this part may be called the true values
of the parameters, and the observed values that they would lead to if
the random part was neglected the true values The actual observed
values will differ somewhat. By the principle of inverse probability we
shall be able then to proceed from the observations to estimates of the
true values of the parameters, which, however, will not be exact deter-
minations, but will have ranges of uncertainty corresponding to the fact
that the individual random errors in the observations are not definitely
known.

In actual fact there are some cases where the normal law of error
appears to represent the outstanding variation as well as we can tell.
There are others where, though we find that it is probably incorrect
when we study a sufficient number of observations, this number is
large, of the order of 500, and the use of the normal law in such cases
as if it was correct would not lead to serious mistakes. There are others
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where it is glaringly wrong, and the only proper treatment is to obtain
a sufficient number of observations to give us some idea of what the
corresponding distribution of chance can be. Meanwhile we shall con-
sider an important series of generalized laws of error.

2.3. The Pearson laws.} If we write the normal law of error in the

form
1 (:c-—z\)’} dx
P(dz | o, H) = —— AL Bl
@[ 0, H) V«zw)exP{ 2 | o M
where we have now made the parameters A and o explicit (they were
formerly understood in H), we see that it is an instance of the general

form P(dz | H) = ydz, @)

where y > 0 and the integral of y over all possible values must be 1.

In this case we find easily
1dy z—A ®)

The law, therefore, has the properties that dy/dz vanishes in the limit
when y tends to 0, and at one intermediate value of , namely, A. If we
consider the generalized form

1dy z—a )

ydz~  botbatb,a
the same will usually hold, but we have two more parameters and shall
be able to represent laws of a much wider range of form. They will have
one point where y is stationary; if the range of z is infinite y and dy/dx
will tend to zero at the end or ends; if the range is limited in one or
both directions there will still be cases where this holds. The integral
of (4) can in general be written in the form

y = Alg—cy)™(cy—a)™, (3)

where 4 will be fixed by the condition that the integral of y is 1, and
¢, and c, are the zeros of the denominator in (4). There are three main
types of solution and a number of transitional and degenerate cases.

1. ¢, and c, complex. Then they must ke conjugate complexes, and
for y to be real m, and m, must also be conjugate complexes. y cannot
vanish or become infinite for any real value of z, and the admissible
values of z range from —oo to 0o, with a maximum of y at some inter-

1 A detailed account of these is given by W. P. Elderton, Frequency Curves and
Correlation, C. and E Layton, 1927.
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mediate value. Forms with one maximum are designated bell-shaped by
Poarson. We may write these laws in the forms}

y = A(x—A—if)-m+ie(z—2+1p)-m-i

= (2B)m-1 (m— 1'2':(‘12):;.’1"2_)'1 —iq)! {(z—2A)* 42" x

X exp(—2q tan-t 1_;5) (6)

These are Pearson’s Type IV. In general they are asymmetrical or
skew, but if ¢ = 0 they reduce to the symmetrical form

y= (g D a4y ™
=t (e ®

which is Pearson’s T'ype VII. In both cases m must be greater than
for convergence. These laws resemble the normal law in having an
infinite range of  in both directions, which is true of no other Pearson
type, but y falls off less rapidly. With the normal law the expectation
of any power of z is finite; with Type VII that of any even power
equal to 2m—1 or more is infinite (,m need not be integral), with Type IV
expectations of odd powers > 2m—1 are also infinite. This is a useful
property in representing errors of measurement, since it is usually found,
when sufficient observations are available, that there are more outlying
large residuals than the normal law would suggest. The fact that these
laws, like the normal law, give a non-zero chance of an error greater than
any finite amount is an apparent drawback, since we might say that
however bad the observations are there is some limit to the error; but
to harmonize this belief with the observed distributions would require
us to go beyond the range of the Pearson types, which do give satis-
factory agreement within the ranges where observations exist.

If ¢, and ¢, are real (c, > c,) we must distinguish three cases. (4) has
singularities at ¢, and c, and the solution is applicable only in ranges
that do not include a singularity. Hence we must consider separately
cases where the admissible values of x are less than c,, between ¢, and
¢y, or greater than c,. The difference between the first and third can
be removed by merely reversing the direction of measurement.

1 The constant factor is most easily found by integration round a contour consisting

of the real axis, a large semicircle above it, and a loop about A4+i8 The result was
originally found by Forsyth by a more difficult method
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2. Admissible values of  between ¢, and ¢, We can take the law in

the form (gt my 1)1

= Ty (e &) G )™, (9)

which will be possible if both m, and m, are greater than —1. If both
are positive, the curve is bell-shaped. If 0 > m; > —1, y is infinite at
¢,. If at the same time m, is positive, dy/dz is negative throughout the
range and the curve is called J-shaped. In this case a does not lie
between ¢, and ¢,, and is not an admissible value of . If m, and m,
are both negative, y is infinite at both limits and a lies between them.
The curve is then called U-shaped. These cases cover Pearson’s Type I.
It will be seen that the possibility of U-shaped and J-shaped curves
gives it greater generality than was originally attempted.
There are several special cases

my = m,. The law is then symmetrical. This is Pearson’s Type I1.

Further degenerations give

m; = my = 0. This makes y uniform between ¢, and c,, and zero
outside that range. This is the rectangular distribution, not given
a number by Pearson.

m, = m, = 1. This, with a change of scale and origin, gives y oc 1 —22,
the parabolic distribution.

m, = 0. Thisis a J-shaped curve with y proportional to (¢c,—z)™ for
z between ¢, and ¢,. If m, > 0 it is Pearson’s Type IX. If my < 0
it is T'ype VIII. It starts from a finite ordinate at c,.

z—¢;

m
) with —1 < m < 1.
Co—2

m, = —my. y will be proportional to (

This is Pearson’s T'ype XII. The curve is always J-shaped.
3. Admissible values of z all > ¢,. We can take the law in the form
(—my—1)!

my! (—my—my—2) (cp—cy)™+me+ (@—e)me—cl™,  (10)

Y=

where for convergence m, > —1, m,+m, << —1. These are the laws
of Type VI. If m, > 0 they are bell-shaped, if m, < 0, J-shaped. They
are never U-shaped. These laws will give the kind of distribution shown
by the times of arrival of a train; there is a concentration at values a
little greater than c,, values less than c, do not occur, and there is a
long train of large values, which may rarely occur but are serious when
they do.
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A particular case is

my = 0. This makes y proportional to (x—c,)™ for values of x greater
than c,; evidently m, << —1. This gives Pearson’s Type XI. It
starts from a finite ordinate at c,.

Types IV, I, and VI, to take them in what seems to me to be their
natural order, are the only ones that involve the full number of adjust-
able parameters, four. There are also three transitional cases between
them.

4. There will be a transition from Type I to Type VI expressed by
making ¢, in I tend to 4-co or ¢, in VI to —co. In either case the limiting

form is y o (x—c)e~® (m > —1, a > 0).

This is Type II1. It resembles Type VI in appearance but is more
closely concentrated to small departures from c¢. A particular case is
m = 0; thisis Type X, an exponential law, which can also be regarded
as the transition between Types IX and XI.
5. The transition from Type VI to Type IV is the case of equal roots,
the roots of the denominator in (4) being equal, real, and finite. Then
we can write (4) in the form

1dy o

g —_ = -——;.__c_l._ (m c)z’

= A(z—c)-® B
whence y = A(z—c) exp( =)

This is T'ype V. To give convergence at oo, o must be > 1; for con-
vergence at ¢, 8 > 0 for any « > 1. It is always bell-shaped, since y
must vanish at £ = ¢. Otherwise it resembles Type VI. It differs from
Type III in the interchange of the two types of convergence at the
extremes; indeed, the change of (x—c) to (#—c)-! transforms one into
the other.

6. The transition from Type IV to Type I requires the roots to be
4-00; then b, and b, both vanish and we are back to the normal law.

This analysis covers the range of the Pearson types, and is, I think,
considerably shorter and more systematic than has been given pre-
viously. My own experience with them has been rather small, though
I have had to deal with Types II, III, VII, and XI. For purposes of
exposition I think it would be a great convenience if those who use
them extensively could agree on a more systematic numbering in place
of the present haphazard one, which places III, the transition between

[
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I and VI, between II, which is the symmetrical case of I, and IV, which
is a different main type from any; and VI, a main type, between V, a
transitional case, and VII, a degenerate case of IV. I should suggest
the following.

Number
Main types Pearson’s number Special cases Pearson’s Suggested
1 v =0 VIL la
2 1 my = m, 1I 2a
my=my =20 Rect 2b
my=my =1 Parab. 2¢
my =0, my<0 VI 2d
my =0, my>0 IX 2e
my = —my XI11 of
3 Vi my = XI 3a
Transitions
2to3 I m=0 X 23a
3tol v
1to2 Normal

I think that special numbers for the rectangular and parabolic laws are
worth while as they are likely to be at least as important as XII in
practice, and the rectangular law has great theoretical interest. Both,
like the normal law, involve only a scale parameter and a location
parameter. The main types involve two others.

It may be remarked that Pearson distinguished Types I and VI
according as the roots are real and of opposite sign or real and of like
sign. This appears to make the type depend on the arbitrary position
of the origin. The important point is whether the admissible values of
 lie between the roots or not. In fact Pearson does make his decision
according to the latter criterion.

2.4. The negative binomial law. Suppose that a distribution of
chance follows the Poisson law

P(|rH) = ;e-' (1)

but that r itself is unknown, having a distribution of chance given by
the Type III Jlaw

P(dr | H) = ,gauge—ﬂr dr @

(where, since a may be fractional, we must understand o' to be defined
@

by of = [ t%e-2d¢). Then
0

PQ,dr|H) = B“+1% e-iPr gy, )
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To get the total probability for any value of I, we must add for all
possible values of r; which means in this case that we must integrate.
Then
prtiptre B=1(l+-a)!
frar ¢ A = ey )

P(|H) =

0
1
Apart from the factor (ﬁ?f.—])u , this is the coefficient of 2! in the

—a-1
expansion of (l—-——x——) . The sum over all values of  is 1, as it

B+1

must be since the conditions stated are exhaustive. If we put

ﬂi = l—a,
we have P H) = (l-—a)““%l!«)—!a', ®)

which puts the negative binomial form more clearly in evidence. This
result is due to M. Greenwood and G. U. Yule.t The immediate applica-
tion was to problems of factory accidents. The conditions of the Poisson
law were satisfied in respect of the total chance of an accident in a
factory in a given period being the sum of a large number of small
chances, but it was not clear that these chances were the same for all
employees. The chance of a particular workman having an accident on
a particular day, for instance, would have to be regarded as the analogue
of z in the derivation of the Poisson law, and the number of days in
the period considered as the analogue of n. Then for each individual the
chances of 0, 1, 2,... accidents in the period would follow a Poisson law
—subject to the condition that having one accident does not stimulate
him to have another—and if the values of = nz for the different work-
men are distributed, as nearly as can be for a finite number, in a Type I1T
law, the negative binomial follows as the resultant for all workmen.
The following alternative development shows that the condition that
the probabilities of accidents to the same workman must be independent
is not strictly necessary. It can at any rate be replaced by other condi-
tions. Suppose that the total number of events is recorded, but that in
fact some of the events are composite, two or more being associated.
These are each only one independent event, but will be counted as two
or more each in the totals. Let r,, r,,... be the appropriate values of r
for the simple, double,... events in the interval considered. Each type

tJ R Stat Soc. 83, 1920, 255-79
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separately will satisfy the Poisson rule, and the chance that there will

be m, simple, m, double events, and so on, will be

Py, My | 73 Py H) = fn!—, ,% cexp{—(ritreb ) (6)
The probability that the total number of events as counted will be m
is the sum of these expressions, subject to

my+2my+3myt-... = m. (7)
But this sum is the coefficient of z™ in the expansion of
f(x) = exp(ryztrya®+...—r—r,—..). (8)

Now in practice, if we have no record of the individual events, there
will not be much hope of determining the r’s separately. But if we
want to find a law that will take into account the extra complication
we must have at least one new parameter, though there may not be
much point in introducing more than one. Let us take the form:

ry = rya®"Ys. 9)
Then logf(x) = ryx(1+}ax+ da?x®+...)—n (14 3a+...)
= (ry/a){—log(1 —ax)-+log(1—a)}, (10)
rja
1) = (=)™, (1)
and the coefficient of 2™ is
Pemirya, 1) = (1=ayie B2 1) (Bam—r)Z, (2

which again is a negative binomial law, with 7,/a replacing the a+-1 of
Greenwood and Yule’s derivation.}
It is convenient to take the law in the form

P(mlr’n’H)=(r%)”n(n—(—1)...(n+m—l)(n_—rp;>'”' (13)

m!
When 7 -> oo this tends to the Poisson law with parameter ». We shall
see later that it has other advantages. The series converges for all
positive n. The expectations of m and m(m—1) are r and (1-+4+1/n)r%.
That of (m—7)? is r-+r2/n. When n — 0, all the chances of non-zero m
tend to 0, while that of m being zero tends to 1. In the latter case as
we approach the limit, keeping r fixed, the chances of m become more
and more widely spread to wide values, and the concentration at 0 is
needed to keep the total expectation equal to . Thus the negative
binomial law, for small n, will resemble the distribution of the scores

1 This derivation has already been given by R Luders, Biometrika, 26, 1934, 108-28.
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of a first-class cricket or billiards player, whose commonest score may
be 0 though his average is about 60. On the Poisson law the commonest
score and the average should approximately agree, and the chance of
a score of 1 would be 60 times that of a score 0.

Here we have a case where two different types of departure from the
Poisson law both lead to results of the same form, and modify it in the
same direction. If the law is nevertheless found to agree with the facts,
it is reasonable to reject both types of departure. Thus the agreement
of the data about deaths from kicks of a horse in the Prussian army
may be taken to mean both (1) that nobody can be killed twice by the
kick of a horse, (2) that the fact that one man has been so killed does
not indicate an extra liability for others in the same unit to be. The
agreement in the radioactivity data would mean that (1) the chances
of disintegration of different atoms of the same radioactive substance
are approximately equal, (2) the disintegration of one atom does not
lead immediately to the disintegration of another.

2.5. Correlation. This can be treated on lines analogous to the deriva-
tion of the normal law from the binomial. Suppose that two quantities
z and y are to be measured simultaneously, and that there are m—+n
independent component variations, each contributing +a to x and 4-8
to y. m of them are constrained to give the same sign in both z and y,
7 to give opposite signs. Suppose that in a particular case the number
making positive contributions to x that give the same sign is p, the
number giving opposite signs ¢. Then
z = pa—(m—platga—(n—gla = (2p—m)at(2g—n)e, (1)
y = pB—(m—p)f—gf+(n—q)B = (2p—m)B—(2g—n)p.  (2)
We are taking each component to be as likely as not to give a positive
contribution to z. Then

P(p’q Im»n’a»ﬁ! H) = 2—m-nm0pnoq
= o R =i a—in @)

by the previous argument. We have to transform to the observed
variables z and y. Now
Az, y) = 8af; 2p—m = l(f-{-?l); 2q—n = E(E—Q). (4)
ap,q) ’ 2\ B
Remembering that p and ¢ are capable of integral values only, and that
the total chance in any region must be the same whether the observation
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is expressed in terms of p and ¢ or of z and y, we see that we must
replace the sum with regard to p and ¢ by the integral with regard to
dxdy/8«B. Hence

P(dzdy |m,n,a,p,H) = dzdy

1{x y\*2 1fz y\?
s ™ snle ) )| ©
Now put
(m+n)a? = o? (m+n)B% = 7% (m—n)af = por. (6)
Then we find

P(dxdy|m,n,a,B,H) =

dady 1 [z 2pxy  y°

2mor,/(1—p?) exP{ 2(1 -—pz)(a'2 or + ﬁ)}’

(7)
8o that the four original parameters are now reduced to three, and we
can assert that this is also equal to P(dzdy | 0,7, p, H). Of course, every-
thing that can be said against the normal law of error for one variable
can be said twice against this form, which is the generalization to two
variables. But on the other hand the chief thing that can be said in
favour of the normal law, that of all laws that are anywhere near the
truth it is far the easiest to apply, can also be said with greater force
of normal correlation. The new parameter p is called the correlation
coefficient.

The law (7) was obtained first by Sir Francis Galton empirically, by
studying observed frequencies.t As Pearson remarks } ‘That Galton
should have evolved all this from his observations is to my mind one of
the most noteworthy scientific discoveries arising from pure analysis
of observations.” Galton had not, at this stage, noticed that negative
correlations exist, since he remarks: ‘Two variable organs are said to
be correlated when the variation of one is accompanied on the average
by more or less variation of the other, and in the same direction’,§ and
he speaks of correlation arising when two variations are the resultant
of several causes, some common to both and some independent. The
above analysis permits negative correlations. The more restricted one,
however, is often valid and leads in particular to an account of intra-
class correlation.

By integration we find

1 x?
P(dz|o,7,p,H) = mexp(——z:z) dz. (8)
+ B A Report, Aberdeen, 1885

i Biometrika, 13, 1920, 25-45 This is a most interesting historical study
§ Proc Roy Soc 45, 1889, 135
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Therefore
P(dy | o7, p, 2, H) = P(dzdy|o,7,p, H)

Pldz|o,7,p, H)

~ i ) |

That is, the probability of z is normally distributed with standard error
o, and for given x the probability of y is normally distributed about
prz/o with standard error ,/(1—p?). The line y = pra/o is known as
the line of regression of y on z. Similarly the probability of y is normally
distributed with standard error =, and that of z given y is normally dis-
tributed about z = poy/r, the line of regression of  on y. The lines of
regression coincide only if p = 4-1.

The expectations of 22, 2, and xy, given o, p, 7, H, are respectively
a2, 12, por.

2.6. Distribution functions.t Suppose that on a given law the chance
of the variable being less than z is F(z). Then F(z) is called the distri-
bution function.} It has the properties that (1) it is a non-decreasing
function of z, (2) it tends to 0 as z tends to —o0, (3) it tends to 1 as z
tends to +co. Conversely, for any function with these properties it
would be possible to specify a law that would have it as the distribution
function, and hence any function with these properties will be called a
distribution function, usually abbreviated to d.f. (I think it will always
be clear whether d.f. in the context means distribution function or
degrees of freedom.)

For a law with finite concentrations of chance at some values of z,
F(z) will have discontinuities. It has, however, the following properties.
All discontinuities are simple, that is, if there is a discontinuity at z =¢,
then F(c+h) and F(c—h), where h is positive, have definite limits as
h tends to 0. We denote these limits by F(c+) and F(c—). The dis-
continuities form a finite or enumerable set (MM P, § 1.093). If x, > x,,
F(z,) = F(z,). It has a derivative almost everywhere.

2.601. If {F,(x)} is a sequence of distribution functions tending to a
limit function F(x), except possibly at discontinuities of F(x), then F(z)
8 @ non-decreasing function; and for any e, 8 we can choose m so that for
all n =m and all z, |F,(x)—F ()| < ¢, except possibly in a finite set
of intervals of total length < 3.

1 References MMP are to H. and B. S Jefiroys, Methods of Mathematical Physics,
3rd edition

{ Refernng to the dlstribuhon of the proba.bxhty of z, not the distribution of z The
latter usage is in ngs and increases the confusion.
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F(x) must be a non-decreasing function, 0 < F(z) < 1. Call its limits
F(—o0), F(c0) For any positive w, X exists such that
F(—X) < F(—0)+w, F(X) > F(c0)—w.
There cannot be more than 1/w discontinuities in (— X, X) where the
leap is > w. Enclose these in a finite set of intervals of total length < §.
Call these and (—o0, —X), (X, 00) B intervals Then by the Heine~Borel
theorem, the range of z, excluding the B intervals, can be divided into a
finite set of intervals in eachof which the leap is < w. Call these 4 intervals
and let one of them be (z,, ,,,). Take m so that forallrand alln > m
[F(@y)— F(z,)| < .
Then for 2, < = < 2,44
0< F(:c,“)—F(a:,) < w,
F,,(Z’,) < Fn(z) < F”(Z,+l),
F(Z’,) < F(x) < F(xri-l)'
Then
F(2)—F(z) < Fy(@,11)—F (%) < F(ap)+o—F,) < 20
and similarly is > —2w. Hence, in all 4 intervals,
|Fo(2)—F(2)] < 20
which is < e if we take w = }e.
Note that we cannot dispense with the B intervals; take
F,(x) = }+4tanhnz.
For z < 0, as n - o0, F,(z) - 0. For z > 0, F (z) > 1. But for any n
there are values of x near 0 where } < F,(z) < }; convergence is not
uniform in any interval including = 0.
Also it does not follow from F,(x) — F(x) that as  —» o0 or —oo,
F(z) -1 or 0 1espectively. Take

F@)=0 (z<—n); F@=}+ (—n<z<n)
F(x)=1 (x> n).
For any given 2, when n — oo, F,(z) - }. Thus the limit of a sequence
of distribution functions, even if it exists, is not necessarily a distribu-
tion function. But if it exists and can be shown to tend to 0 and 1 at

the termini it is one.
2.602. If F(z) is a distribution function the integral

[ (F@otn)—Fatn)}dr

converges.
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The integral is
lim j {F(@y+7)— Fz,+7)} dr

X;—»— o, Xy o

Xy+zy Xs+z;
= hm{

X3+ —anz: F(T) d"'}
Xa+zs Xi+zs
_ hm! J F(r) d,}.

X.+z. Xtz
Take z, > z,; take X; so that F(X,+2,) < w, and X, so that
1-F(X,+42) < w.

Then X+ Ty
| F@o)dr = @—z)(1—60),
Xyt
Xa+zs
[ F@)dr = @20,
Xi+z

where 0 < 6, <1, 0<6, <1 Hence as X, > —00, X, > 400 the
integral tends to x,—=x,. Further, since the integrand is > 0, con-
vergence is absolute.

2.61. Characteristic functions. If f(z) is any continuous function
and F(z) is a distribution function, the expectation of f(z) is

| f@ dF@). m
==
In particular if f(x) = €%, the characteristic function is
g = [ eedrF(). 2)
T=—0

Evidently |¢(f)] < 1, equality holding for ¢ = 0.
We may also replace it by « and understand « to be purely imaginary;
and take

Q) = f % d F(x). (3)
Evidently Q(x) = qS(-—u(), b(t) = Qit). (4)
We shall use both forms, since sometimes one and sometimes the
other is more convenient. The ¢ in the exponent will always ind:cate
which is being used.
The characteristic function has several important properties. First,
the characteristic function of the sum of two independent variables is the
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product of their separate characteristic functions. Let z and y have distribu-
tion functions F(z), G(y). The expectation of ex=+¥ jg
[ | e dF@)dGy) = | e=dF@ [ evacy) (s)
Z=—00 y=—o Z=—c Yy==-

(since the double integral, being absolutely convergent, can be evaluated
by repeated integration) (MMP, § 1.111 and 5.051), and this is the
product stated.

2.62. The characteristic function is intimately related to the expecta-
tions of the powers of z, where these exist. If we write

o = j am dF(x), (6)

we can call i, the mth moment of the law about the origin. If absolute
moments up to order m exist, we can differentiate (3) m times under the
integral sign with regard to «, and then for x = 0

am
W"Q(K) = e (7)
Thus, by Taylor’s theorem,
2 m
Q) = Ty ket piy gt — 0 (™), (®)

even though the complete Taylor series may not exist. For this reason
Q(x) is also called the moment-generating function. If we take the
origin of z at its expectation, u, will be 0. Inspection of (3) shows that
decreasing all values of z by p, will multiply Q(x) by e~*#, and there-
fore if {2y(x) is the characteristic function of z—p,,

Qo(r) = e=*#1Q(x). ©

The coefficients of «*/n' in the expansion of log Q(«) are called the

semi-invariants or cumulants, when they exist, since the second and

higher ones are independent of the origin and are additive for the sum

of several independent variables. Also if y has a distribution function

G(y) such that G(y) = F(x) if y = ax, where a is constant, the charac-
teristic function of y is

E(ev) = j evdGly) = j e dF(x) = Q(a). (10)

The moment and the semi-invariant of y of order m are a™ times

those of z.
If Q(x) can be expanded in powers of «, it will follow that the series

represents an analytic function near x = 0. But if any moment of the
law diverges, the integral (3) defining Q(«) will not exist for x on at
least one side of the imaginary axis, however close to it, since the
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integrand will contain a factor e°*, where ¢ is real and not zero. It may
be the value on the imaginary axis of some function analytic in the half-
plane, but such a function, if it exists, will not be given off the axis by
the integral. This applies to laws of Pearson’s Types IV, VII, and VI.

The integral may exist for all real «; this applies in all cases where
the law has a finite range, such as the binomial and Type I laws. It is
also true for the normal law. In that case the integral will exist for all
« and be uniformly convergent in any bounded region of the « plane.
It can therefore be integrated under the integral sign about any contour
in the « plane, and this integral will be 0 since f e<®dk = 0. Hence

s}

by Morera’s theoremt Q(x) is an analytic function within any contour
in the « plane, and must therefore be an integral function.} Then Q(x)
is expansible in powers of « over the entire plane.

There are cases where the integral exists for some complex values of
x and not for others; for instance, the median law

df = }exp(—|z|/a) dz/a. (11)
Within the belt —1/a < R(x) < 1/a the integral will define an analytic
function. Outside this belt it diverges.

Thus we have two main types of case. If all the moments of the law
exist and the expectations of e+°* also exist, where c is real and not zero,
Q(x) will be analytic near 0 and the coefficient of «* will be pu,/n' for
all n. If moments up to order m converge. but those of higher orders
diverge, the integral does not define a function except for purely imagi-
nary values of «. Its derivatives at « = 0 for imaginary « will give the
moments correctly up to order m; but higher derivatives, if they exist,
will not give the higher moments. We shall see that they do not neces-
sarily exist.

2.63. The characteristic function is sometimes useful for actually
calculating the moments. Thus consider the binomial law, according to
which the chance of a sampling number less than [ is

10 =3 " 1—ay-. 0
Then Q) = tior-o,xlu_z)ww = (@ 1—2)n, @)

The coefficient of « is nz, which is therefore the expectation of . The

t E C Titch h, Theory of F ions, 1932, p 82, MMP, § 11 20
1 I am indebted to Professor Littlewood for calling my attention to this point, in
answer to & query.
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moments about nz can then be derived by considering
Qo(k) = (1 —x+xex)re—nax

3 4
— expfg mtay+ e syl —)+ 2 ay(1—6a) .

ni? nid 4
= 1455 ay+ 5 ay(y—2)+ 5 3%y nay(1—6zy)}+-., (3)
where y = 1—x; whence the moments to order 4 about the mean are

py=mxyY;  pg=nay(y—=2);  py = In’2PyP+nay(l—6ay). (4)
Pearson’s parameters vB; and B, are given by

M _ Y—T o 1—6xy
R T
B, and B, are the characteristic form parameters (as distinct from those
of location and scale) used by him in fitting his characteristic laws and
other types of law. They are otherwise useful as a general indication
of the features of a law. If 2 < }, the positive sign of B, indicates the
skewness due to the longer range on the upper side of the mean. If
z = }, the law is symmetrical and B, = 3—2/n. In the limit when n
is large and the law tends to the normal, therefore, the fourth moment
tends to three times the square of the second. The fact that B, < 3
for the symmetrical binomial is an indication of the effect of the finite
range. The law is lower in the middle and at the tails than the normal
law with the same p,.
In (1) put & = r/n and let n tend to infinity; then the law tends to the
Poisson form and Q(«) - exp{r(ex—1)}. In this case the mean of the
law is ; shifting the origin to the mean we have

k? | «®
Qq(x) = exp{r(ex—1—«)} = expr(§+3—!+...) (6)
2 3 4
= 1+f2"_'+%"7+(372+r)%+..., ™
whence pe =1, Hy =T, By = 3134 (8)

The semi-invariants are all equal to r, by (6).
For the negative binomial law

o) = () > Mttt e (o)

e e xR
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The coefficient of « in the expansion is r, which is the expectation of m;
and

Q) = (1= e, an
1°gQ"(")="ﬂ(§"'azr2 ) ( ton +3n=)+ ‘(24+274::+2n3+4n3)+
(12)

The second moment is therefore r-r2/n, as we found directly in 2.4;
the third and fourth are

6
b=t 0 = (st DB Brr(S+2)

For the normal law

fla) = J(z o f °XP(—§€§) dx

we find easily Q(x) = exp(}o??). (13)
All the moments converge, and
2:
Pam = (2,:':,2, 5 Memnn =0. (14)
For the median law
af = gexp( "") L (15)
we find Q(x) = e (16)

The second moment is 2a2, as we can see at once otherwise.

For the binomial, Poisson, and normal laws all the moments exist
and the characteristic function is an integral function. For the negative
binomial and the median law all the moments exist, but the charac-
teristic function has poles and is not defined over the whole « plane
by 2.61(3).

2.64. Consider now a case where the second moment is infinite, the
Cauchy distribution (the Type VII law with index 1)

af 1

dz~ w(l+z%)’ m
The integral for Q(x) must be found by contour integration. When
I(x) is positive the infinite semicircle must be taken on the positive
side of the axis of x, and the contour encloses the pole at x = . When
I(x) is negative, on the other hand, the suitable contour encloses the
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pole at —i. Thus Q(«) has different analytic forms according to the
sign of I(«). They are

Q) = {e‘x {I(x) > o}, (2

e {I(x) < 0}. (3)

The first derivative of Q(«x) does not exist at « = 0, and no function
analytic in any region about x = 0 can represent Q(«).
For the Type VII law with index 2,

af 2

. Tx=ﬁ-iT”)3’ (4)

find similar]

e Ay Q) = ‘(l-——ix)eix {I(x) > o}, (5)
T (1 dr)emic {I(x) < 0} (6)

Derivatives to order 2 are continuous at « = 0, corresponding to the
existence of the second moment. But the third derivative at x = 0
has different values on the two sides, and Q(«) is not the form taken
by any function analytic in a region about « = 0.

2.65. The inversion theorem. Given the characteristic function it
is possible to recover the distribution function by a theorem similar to
Fourier’s integral theorem. The latter cannot be used directly because
it requires the function to be integrable from —oo to co, which is not true
for any distribution function. The theorem required was first proved
in its general form by P. Lévy.} The following proof is, I think, a little
simpler than Lévy’s.

If F(z) is a d.f. and .
H= [ ekare,
f=-
fen Fee)—F@) = 5P f By T gy

at all points x,, z, of continuity, where P denotes the principal value.
We have x

p)e ey = lim [ evh(emtn—eitm) dF(E)
1—>— @0, X3~ £=x,

Xa-z Xa—zs
= lim f T dF(r+x,) — lim f e dF (1-4-2,)

X~z Xy—xs

t Calcul des probabilités, 1925, pp 166-7.
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gince both limits exist,
= T e d{ F(r+2,)— F(r+x5)}. (1)
On integration by parts the terms at the limits vanish, and the result is
T {F(r+,)— F(r+42,)}ite¥ dr. (2)
o
In the proposed formula first take the limits for ¢ finite; then

I= j dat j {F(r+ap)— F(r+a,)}ev dr 3)
T= =
is absolutely convergent, by 2.602, and we can invert the order of

integration; then
@

1= j {F(r+,)— F(r+,)}

-

iTs7 . oiT
e"_____“__'f dr. @)

Consider an interval (—3,8) for = with 8 fixed. Then as T,—» -—
T, — oo integrals over (—o0, —8) and (3,00) tend to 0 by Riemann’s
lemma, and

lim I = lim f {F(r+z,)— F(-r-i-x,)}

T.f_efov
————dr=5L+L, (5)

where

8
L = lim [ {F(zy+7)+ F(zg—7)— F(zy+7)— F(z—n)} X
0

sinTy7 —sinTyr
x.._.z_—ld-r’
T

(6)

8
I, = lim f {F(zy+7)— F(wg—1)— F(&,+7)+ F(z,—7)} X
0

% cosT,'ri—T cosTl-rdm ™
As T} » —c0, Ty > o0,
L > n{F(xy+)+ F(zp—)— F(2,+)— F(a,—)} = 2n{F(x))—F(z1)} (8)
at all points of continuity, as in the proofs of Fourier’s theorem.
If Ty = —T,, I, = 0 and the result follows.
It is of some interest to know whether the result can still hold if the
principal value is replaced by an ordinary infinite integral, where 73, T,
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can tend to their limits in any manner. I, is unaltered. We can write

3

L=, lm f f—‘:_) (sin? 47}~ — sin? 3T, 7) dr, ©)
0

whero  f(r) = H{Flayt)— Fley—r)—Fatn)+ Floy—r).  (10)

1, is the difference of two convergent intesgrals, since f(r) is bounded.

A sufficient condition that I, > 0 is that f[i—f) dr shall be absolutely

0
convergent. For then we can take 3 so that

]
j ftr)
T
0
then || < e and by choice of 8 it can be made arbitrarily small at the

outset for all Ty, Ty.
It is not difficult to show that if

dr < ¢; (11)

8
| F@ytm)—Fay—n)} drfr (12)
0

)
converges, but J {F(2g+7)—F(x,—7)} dr/r (13)
H

does not, the double integral does not exist and the principal value
cannot be replaced by an ordinary infinite integral.

Since a function of bounded variation is differentiable almost every-
where, the sufficient condition is satisfied for almost all z,, z,, and then,
since it is a bounded increasing function, the missing values can be
filled in by a limiting process Thus it is ‘nearly’ true that the principal
value can always be replaced by an infinite integral.

Note that the condition F(z)-> 0 or 1 as x -> +00 has been used
only through the theorem of 2.602, which would apply equally to the
difference of two d.f.’s. Now if F, @ are two d.f.’s with corresponding
c.£.’s $(t), Y(t), d —y would satisfy the conditions and ¢ = i would entail
that F—G = 0. Hence it is impossible for two different d.f.’s to have
the same c.f.

In the Q form the theorem is

eKT1 g —KT2

i
F(xz)—F(x1)=§l;P f Q(x) dx. (14)

—i



1L, § 2.6 DIRECT PROBABILITIES 93

2.66. Theorems on limits

2.661. Let {F,(z)} be a seq of d.f’s, tending to a d.f. F(x). The c.f.
of F,(x) is $,(t); that of F(x) is (t). Then ¢,(t) — $(t) uniformly in any
finite interval (—T,T) of t.

©

Wehave  $,(0)—¢(t) = [ ¥ d{F,(@)—F()}. )
Take —X, X points of continuity of F(x) such that
F(—X)+1—F(X) < w. (2)
Choose m, so that
P X)—F(X)| <o, |F(~X)—F(-X)| <o 3)
for all n > m,. Then, foralln > m,; and z < —X,
Fy(z) < Fi(—X) < F(—X)+o < 20, (4)
and, for z > X, 1—-F, () < 2w. (5)
-X ©
Then l f + f ez d{F, (z)— F(2)}| < 6w. (6)
- X

Subdivide (— X, X) into intervals (z,, z,,,) such that all z, are points
of continuity of F(z) and no x,,,—z, exceeds . Write

D, F = F(z,,,)—F(=,). M
x

Then f ez d{F,(x)— F(z)} = lim ¥ e#.D,(F,— F) (8)
when 7 - 0 and «, < ¢, < =,4,. If we take £, = z, we have

S o= D (F,—F), ©)
which is a finite sum with each term tending to 0 as n - co. Then we
can take m, > m; so that this sum has modulus < w for all n = m,.

Again, et —ev=r| < |t](¢,—2,) < 9lt] < 9T, (10)
and 3 [(e¥—e#)D{Fy(x)— F(z)}| < X #T|DAF,—F)| < 29T. (11)
Hence [$a(t)— ()] < Tew+29T. (12)

We can take w so that 7w < 4¢, and then 7 so that 29T < }e; then for
alln >myand —T <t < T
[$al)—(t)] < e (13)
2.662. The smoothed distribution function. Write
x+h

6@ =; [ Foyan, u)

H
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where F isa d.f. G(x)is continuous, non-decreasing, and satisfies Lip 1
(MMP, § 1.15): G(—x0) = 0, G(c0) = 1. Hence G(z) is a d.f. Also
. 1
@) = 3{F+h)—F@) @

at all points of continuity of F.
The c.f. of G is

W) = f euzda=% J' ete{F(z-t h)— F(2)} dz

Z=—o -

F(z+h)—F(z) 1 [ B
h[_'u—]_m % f o4 dF(z4h)— F(z)}

Z=—o

”ih (6% dF (z)—ee-» dF(z)) = () 25—

Z=—

«©
1—e—ith
ath

G(x)—G—h) =% J' ¢(t)e_—__'“'";'"(z'm dt

4sm ith itz gy

Sl o

2.663. If {$,(1)} is @ seq e of c.f.’s tending to $(t) uniformly in
—T < ¢ < T, the corresponding d f.’s {F,(x)} tend to a d.f. F(x) whose
c.f. is $(t).

Given {F,(x)} we can pick out a subsequence {F,(z)} tending to a
non-decreasing limit function F(x) (sec Appendix A.2) Take the
corresponding @,.(z) and z = 0. Then

h [
G, (0)— Gy (—h) = }lb J' Fo(u) du-—;i f Fo(w) du
[ —-h

Th

LTty o

~iTh
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since ¢,.(¢) is bounded. Since ¢,(t) = ¢(f) uniformly in (— T, T), ¢,(¢)
does so. Hence by taking n' large we have
1 h 1 ¢ 1
: f Flu)du—1 f Flu) du = ‘+0(z); @
0 -h
and making 4 — c0 we have
F(c0)— F(—o0) = 1. (3)

Hence F(z) is a d.f.; and since F,,.(x) - F(x) we must have ¢,.(¢) > ¢(t),
and ¢(¢) is the c.f. of F(z).

If F,(z) does not tend to F(z) at all points of continuity of F(x) we
can pick out another sequence {F,.(x)} tending to a different limit
function, say K(z). But this will also be a d.f. and has c f. §(z) # ¢(z);
hence there is a subsequence of ¢,(t) that does not tend to ¢(t), contrary
to hypothesis.

2.664. The central limit theorem. The interest of the inversion theo-
rems lies chiefly in their relation to the resultant of several independent
disturbances. In many cases, if the number is large, it can be shown
that the chance of the resultant is approximately normally distributed.
We notice first that if there are two components both following the
normal law with standard errors o and 7, the respective values of Q(«) are
e'2x*e* and ¢'2*'r*; and hence by 2.61 the characteristic function of their
sum 18 exp ix*(o?+12).

Hence the distribution of the chance of the sum is normal with standard
error (o2-+72)":. This can be extended to the sum of any number of
normal errors. This is called the reproductive property of the normal law.

If the separate components e, have not normal distributions of chance,
but nevertheless all follow the same law with standard error 1, we have

for small |«| Q) = 14 b+ g (), )

where g(x) - 0 with «, since the second derivative exists at the origin.
If instead we take ¢,/n'z, the second moment is divided by =, and

K2

Q,(x/vn) = 1+2n+’§g(:/";). @)

Then the c.f. of 3 ¢,/vn will be
k?  k® e \\"
Q) = {l+§/_1,+;l:g(«/—n)} . (3)

For any interval —T' < «/i < T we can take n so that [g(x/Vn)! < €
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where e is arbitrarily small. Hence in such an interval log Q(«) tends
uniformly to }x? and Q(«) to exp 4«x2. Hence the d.f. of

z= zl &/vn (4)
U e
tends to :/(—2;);[ e~ dy, (5)

Hence if the law is the same for every component and has a second
moment, the sum of a large number of components will follow the
normal law approximately.

Even if the components follow different laws the result may still
hold. We note that if they all follow the normal law, even with different
second moments, the resultant follows the normal law exactly. Any
departure will be a consequence of departures from the normal law for
the components.

We take the second moments to be o2, the means 0, and put

o? = z oZ. (6)

Now a moderate deviation, say < o, may arise in many ways through
combination of components of different signs; but a large one can arise
only through the occurrence of large deviations in the components,
many of which are unlikely to give anything but small ones. Thus it
may be expected that substantial departures from the normal law for
the sum will correspond to excess chances of large departures in some
of the components. These considerations have been put in a precise
form by various writers; a sufficient condition given by Lindeberg,
modified by Cramér, that the d.f. for the sum will tend to the normal
law is that, for any € > 0,
n
lim —1§ 22 dF, = 0. (7)
n—+o 0’ —1
lz>eo
This is possible only if o2 - c0 and the largest o?/0® — 0. For if o® does
not tend to co it must, being a sum of positive terms, tend to a finite
limit, and eoc would be bounded. Then the integrals would be positive
for some € > 0. Also, if the largest o?/0? did not tend to zero, suppose
that there was a sequence of values of r such that o, > ko, k > 0.
Take € = 3k. Then
a2 dF, > of—}k%? > }k%? (8)
Iz1> tko
and (7) would be > k2 for such r. But since these conditions could hold
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even if all components were normal we need also a restriction on the
amounts of departures from the normal law irrespective of the values of
the second moments.

Consider

Q(fo) = | esiodF, ®)
= f + ezl g F, (10)
Izl>eo xi<ea

In the two intervals expand the exponential with Lagrange’s remainder.
We shall use 6 to denote any quantity with modulus < 1, not always
the same quantity. Then

o) = [ (144055 R + [ (r+Erigmrois) e,

lx1>e0 Izi<ea (1 ])
Since E(z) = 0 this is
K a,. g K e
145 f (1052 dF, + J' 6% dF,. (12)
izl >e0 Iz <eo
But | PR | <eo J’ 22 dF, < eoo?. (13)
lz|<eo lzi< e

Hence, for some K and |«| < K
soz

«20?

K2
o fx’dF K
o 20

(/o) = 1457 (19)

lzi>ea
Summing, we have for the resultant

log Q(x/o) = 3 log Q.(«/0). (15)
The contribution from the integral tends to 0 by our condition (7), € is
arbitrarily small; and hence, since all 6%/0% - 0,
log Q(x/a) — 3«2, (16)
uniformly in —K < «/i < K, which gives the result.

Cramért also shows that if 0% — 00, o?/0% — 0, the condition (7) is a
necessary one that the limiting law should be normal.

2.67. If one or more of the components have an infinite mth moment,
(m > 2) and the number of components is finite, the normal law can
be approximate only in a rather peculiar sense, for it makes all the
moments finite, whereas in such a case the mth moment for the resultant
is infinite. An investigation of a special case is desirable to see what

t Random Variables and Probability Distributions, 1937, p 57 Camb Univ Press
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this sense can be. But it is convenient to take first the Cauchy law of
2.64. For the resultant of k¥ components
_ [ {I(k) >0} (1)
) = {e"““ {I(x) < 0}. @)
and the probability density is

i
= f e Q) dic = @)

k
J w(ki+a?)’
which is of the form for one component, but with the scale multiplied
by k. The mean of k components from this law follows exactly the
same law as for one component, a fact emphasized by Fisher. What
would happen with a large number of observations in this case would
be that larger and larger deviations would occur, the extremes increas-
ing so rapidly that the mean will fluctuate by quantities of order 1.
For a component z, satisfying the law

af

P(dz, |H) = mdxr 4

b, +ia
we have Q,(x) = :ﬁb,tf::)'( gz:; Z gi, @

For the sum of k such components

_ eEb+iZan  {J(x) > O},
Q) = {eu: biZapk  {](k) < O} ©
Hence the sum follows the law s
PAS = |H) = % i

@2z | H) w{(X ¢,)*+ (X x, — 3 b,)3 2% @

Thus the a, and b, are both additive. This can also be proved by direct
integration for the combination of two components and generalized by
mathematical induction.

For the Type VII law with index 2, if we reduce the scale in the ratio
k- and combine k£ components, we have for the resultant

_ [(L—ix[k)ketvk  {I(k) > O},
Q) = ‘(l+i«/\/k)"e-‘“‘”‘ {I(x) < 0}, ®
and the probability density is
ﬂ‘ e—XT(] — Kkoixvk
i = G = -——f (1 —1x/vk)*eixV* dx +

0
[ e—<(14-ix[Vk)ee=ixk dic,  (9)

1
m -
~iw
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Apart from the factor in z the integrands are real and positive and
become exponentially small within a distance from the origin of order
k"2, We can approximate to the logarithm of the integrand in powers
of k~'» and find

i
1 3
=55 f exp{—xx+§x2+0(%)} d, (10)
and the term in «? is negligible. Then
. 1
G = mexp(—éz*). (11)

This will be valid provided  is not comparable with £%. If it is of order
k'z or larger, xz and the neglected terms in «® will be comparable. We
have therefore for large k an approximation of the same nature as that
found for the binomial; the normal law is a good approximation over
a range that includes most of the chance.

If = is comparable with k'2 or larger, a different form of approxima-
tion is necessary. The method of steepest descents is also unsuitable
because there is a branch-point at the origin and the paths of steepest
descent from it do not go near the saddle-points. But for the two parts
the integrands fall off most rapidly in directions in the first and fourth
quadrants respectively, and we can replace the integrals by those along
the real axis and then apply Watson’s lemma.} Then
f em{(1—in/VE)esk — (1L in/ vk} dic  (12)
0
and we want the integral for x large, the greater part of which will
come from small x. The first non-zero term is

1

G’=%

mka _ 2
w_[ﬁe e = a3
0

@~

This is proportional to 2.64 (4) for = large, but it is divided by wk;
higher terms will involve higher powers of k-'2. The effect of combining
several components is therefore to give an approach to the normal up
to an indefinitely increasing multiple of the standard error; beyond this
multiple the law retains the original form except that all ordinates are
reduced in approximately the same ratio. The higher moments do in
fact remain infinite, but the area of the tails is greatly reduced.

1 H and B. 8. Jefireys, Methods of Mathematical Physics, pp. 471, 668
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2.68. We can make a little further progress by considering cases
where the fourth moment is finite. We shall have

Q) = 1444 fpeg kP Jpg et +o (%) (1)

and if we contract the scale in the ratio k~'2 and combine k components,
#3" 4"4 K_‘ u —xz 9

= m f < +om o ( 2): e dr. @

If some higher moment is infinite, the corresponding derivative of
Q(x) will not exist at « = 0, and we cannot immediately apply the
method of steepest descents to (2) because the integrand is not analytic.
But (2) is a valid approximation when « = O(k'?), and for large « the
integrand is small. Hence if we drop the last term the error will be
negligible, and we can apply steepest descents because without this
term the integrand is analytic. Then, for large k,

par® | (pg—3)!
G~ 5 f exp{ Kx+ + B + "—2‘4—,‘;—’ dx (3)
and if we take the path through = we shall have, nearly,
3 2% (py—3)2t
Y = 2 pant St Audh
0 = g enp(— i explial + Lot @

The correcting factor will become important if z is of order k's(6/u,)" or
{24k '(uy—3)}"s, whichever is the smaller. Thus symmetry and approxi-
mate normality for the separate components will favour rapid approach
to normality for the resultant. There is evidence that some errors of
observation follow a Type VIT law with index about 4.1 For this, if
pe = 1, uy = 0, p, = 5, and the correcting factor is exp(z4/12k), for x
not too large.

The conditions for the normal law to hold are fairly well satisfied
in some cases, especially where the observed value is the mean of several
crude readings. Thus in the standard method of determining the mag-
netic dip both ends of the needle are read, the needle turned over, the
case rotated, and the magnetization reversed to eliminate various
svstematic errors. The error of the mean is then the resultant of six-
teen components, presumably with the same finite second moment, and
the normal law should be right up to about (12x 16)" = 3-8 times the
standard error. In Bullard’s observations of gravity in East Africa,}
two separate swings of the pendulums in the field were compared with
two in Cambridge taken at the same time; the error is therefore the

t Sce later, pp 145-6 t Phil Trans A, 235, 1936, 445-531.
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resultant of four components, and if the separate laws have index 4
the normal law should hold up to about 2-6 times the standard error.
But where there is a dominating source of error there may well be
considerable departures from the normal law.

The normal law of error cannot therefore be theoretically proved.
Its justification is that in representing many types of observations it is
apparently not far wrong, and is much more convenient to handle than
others that might or do represent them better. Various theoretical
attempts at justification have been made, notably Gauss’s proof that if
the mean is the most probable value, the normal law must hold. But the
argument would equally imply that since we know many cases where
the law does not hold the mean is not the best estimate. Indeed, we have
had Cauchy’s case where the mean is no better than one observation;
but with a different way of making the estimate we could get much
higher accuracy from many observations than from one even with this
law. Whittaker and Robinson (p. 215) give a theoretical argument for
the principle of the arithmetic mean, but this is fallacious. It depends
on confusion between the measurement of two different quantities in
terms of the same unit and of the same quantity with respect to two
different units, and between the difference of two quantities with regard
to the same origin and the same quantity with regard to different
origins. The irrelevance of the unit and origin may be legitimate axioms,
but are replaced by the former pair in the course of the argument.}

2.69. When several components following the same symmetrical law
with a finite range are combined, the approach to the normal is very
rapid. Thus an elementary law may consist of chances } at each of
4-1. If we combine three such components the second moment for the
resultant is 3, the possible values being —3, —1, 41, 43. Compare
the expectations for eight observations with those corresponding to the
normal law with the same second moment, supposed rounded to the
nearest odd integer.

<-4 =3 -1 +1 +3 >44
Binomisl 0 1 3 3 1 0
Normal 0084 0908 3008 3008 0908 0084

For four components and sixteen observations the expectations in
ranges about the even numbers are as follows:
<=5 —4 =2 0 +2 44 >+5

Binomial 0 1 4 6 4 1 0
Normal 010 097 386 613 38 097 010

t Calculus of Observations, pp. 216-17
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In neither case do the probabilities of one observation falling in a
particular range differ by more than 0-012, It can be shown that if
the observations were in fact derived from a binomial law with three
components, and we were given only the totals by ranges to compare
by the y? test, used in Pearson’s way, with the postulate that they are
derived from the normal law, it would take about 500 observations to
reveal a discrepancy.t

If the primitive law is a rectangular one from —1 to 41, we have

Pdz|H) =}z (—1<z<1) 1)
1

and Q) =1} [ ewde = -217((e"-—e-"). @
-1

For two components the law will be

-z O<zx<?2),
+iz (—2<z<0).

1 1
HYdr = — | = (e2%—21-e-2%)e—*Z dy —
P(dx | H)[dx 8ﬂf«’(e +-e-2¢)e—xz gy {
L
3)
This is known as the triangular distribution.

For three components it is
&B+2)2 (—3<z< —1),
Pz |H)/dz = { 5(6—22%) (—l<z<]1), (4)
HB—2)? (I1<z<3).
The second moments for (1), (3), and (4) are 4, 4, and 1. Rescaling to
give unit second moment in each case we have from (1) and (3)

P(dz |H) = %dx (—v3 <z < 3), ()
1 z
-2 W
Pz |H) ~/6(1 ~/e) (0 <z <Ab) ©
dz |1

2/?5(1“""«%) (=8 <z <0),

while (4) needs no change.

We see at a glance from Fig. 1 that (6) already gives a fair approach
to the normal, though it has combined only two rectangular distribu-
tions; while (4) is very close, even at the tails.

The approach to the normal is much less rapid if the component laws
are asymmetrical. Thus if three components each give chances § of

t Phil Trans A, 237, 1938, 235
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~1 and } of 4%, the expectations from the results of 27 observations
are —1 0 +1 +2
8 12 6 1

and plainly no normal law can fit all the chances within a little under
0-04.

5
4
3
2
| \
-4 -3 -2 -1 0 1 A 3 4
F1e. 1. Laws of equal (unit) second btained by bining 1, 2, 3, c©

rectangular distributions.

2.7. The x* distribution. Suppose that we have n independent
variables with normal distributions of chance about zero, so that we
can write

P(dz, dz, ... dx, | H)

=(21r)'—’”'ol;-;:—— xp{——(§+z’+ .+ )}dxldx,...dx,,. (1)

Consider the total chance that the function
2 2 2

X = b et @
may fall in a given range. This can be got by integrating over all values
of z; to x,, that correspond to x? in this range. First put

Ty =019, X = oyl etc.

Then =3y 3)
and P(dy? | H) = (2m)-"hn f f j exp(—1ix?) 4y ... dyn. (4)
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If we like we can regard the y’s as Cartesian coordinates in n dimen-
sions and the integral with regard to them as a volume integral. But
in any case in a range between two neighbouring values of y we can
neglect the variation of x, while all the y’s are proportional to x. The
integral from 0 up to a given x, omitting the factor exp(—}x?), would
be proportional to y*; hence the change in it due to a change in y is
proportional to x»~'dy, and now, since we can neglect the variation of
exp(—3}x?) in the shell, we have

Pdy® | H) e x"texp(—}x®)dx. (5)
The constant factor can be found by using the condition that x? is
certain to lie between 0 and oo, or the Dirichlet integral may be used.
Then 1
Pldy? | H) = T 1) x"texp(—1x®)dy. (6)

It is easy to verify that the expectation of 2 is #, as is obvious from
its definition. The maximum of the integrand is near x2 = n. If we
neglect a factor xy~! and take logarithms,

dz
d—xz(nlogx—%xz) = -2 (7)

near the maximum, whence if n is large P(dy? | H) is nearly proportional
to exp{—(x—~n)?} dx or to exp{—(x2—n)?/4n}dx®. Thus, roughly, we
can write ¥ = n-4(2n) (8)
as a summary expression of the rule. Tables giving P(y?), the chance
that x? will exceed a given value, are given by Pearson, Fisher, and
Yule and Kendall.

The interest of this rule is that it often enables us to see very easily
whether a set of data are consistent with a hypothesis. It is required
that we shall have a set of estimates, obtained independently, on a
hypothesis that gives estimates of the standard errors, and that we
compare them with a set of values predicted by the hypothesis In
general the observed and theoretical values will differ by quantities of
the order of the standard errors, but if we form yx? we have a quantity
that would be increased either by an unexpected systematic variation
(the random variation remaining the same), by the actual random
variation being larger than that expected, or by some internal correla-
tion that makes errors tend to repeat themselves, when the means will
vary more than expected. If x?is less than n+./(2n) we can usually
say at once that the observations agree with the theory as well as could
be expected, and if it is less than n+-2,/(2n) there is no immediate need
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to discard the hypothesis. The matter will be treated in more detail
later, but these simple considerations so often cover all that is wanted
that they may as well be stated at the outset.

2.71. It often (or rather usually) happens that the hypothesis
investigated contains some adjustable parameters, and that these are
determined in such a way as to make x? a minimum. If they are fewer
than the z’s there will still be an outstanding variation, but we should
naturally expect it to be smaller than the original one. Instead of all
the 2’s being independent, we must now suppose that the information
with respect to them can be written

z, =l ato, )
where the I, are known, but « is to be found, and z,—1,« can be con-
sidered random. Then on this hypothesis

P2, ... dz, |oH) = ‘2") " e { Z"‘"l"‘)}d,...dx,,. (10)

Now suppose that we debermme the value of «, a say, that makes
> (¢,—!, «)?/o? a minimum. Then

Z lr(xr;lra') =0, (ll)

__l 2 — 2 l2
and > (’”'20;") =5 (x,zal;a) Ha—al > o (12)

The first term on the right is the value of {x? that would be found by
comparing the z, with /. a instead of with 0 or [,o. Hence

— ]2
Pz, ...dz, |afl) = ﬁl_exp{ «}XZ—-—(a—a)”Z%} dz, ..dz,.
(13)
The form of this shows that the information about the z, can be
regarded as composed of three independent parts. For they would all
be determined by a, x, and n—2 direction parameters of the form
m, = (¥,—!,a)/o, x. If we change to these as new variables the three

groups of chances will be independent, and by applying Theorem 12
we have

P(dy |, a,m, H)
oc exp(—$x?)

o(x;, Xg,..r, X,)
@, x, My, My o)
Thus the determination and elimination of each adjustable constant
reduces the index of x in the chance for the outstanding variation by 1.
The difference between the number of separate data and the number

dy oc x*2exp(—3x%)dyx. (14)
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of parameters allowed for is usually called the number of degrees of
freedom. 1If this is identified with the n of (6) the formula will always
hold.

It may be noticed that on the left dy means the proposition that x
will lie in a particular range dyx; dy? means that y? will lie in the corre-
sponding range dx2. These propositions are equivalent and can there-
fore be interchanged in the expression on the left by Theorem 3.

2.72. If there is a linear constraint on the data, so that

z m,z, = 0,

this also will remove one variable from the integration and reduce the
degrees of freedom by 1 and also the index of the distribution.

2.73. x? was first obtained by Pearson in relation to a problem of
sampling.t In the latter case it can be simply derived from the last
remark. Suppose that we are sampling an enormous population of
several different types, and that the expectations in a sample, given
the time of sampling and the proportions in the population, are m,,
My,..., m,. Then if these are moderate numbers and the occurrences
of members of different types do not interfere, each type will give an
independent Poisson distribution and the expected number may be
written m,4-+m,. If the observed numbers are n, we have therefore

Xz = z (n,—m,)*m,
taken over all types. The degrees of freedom will be p. Such a case
might be realized if we were observing a phenomenon for a finite time,
80 that the total number of events was subject to a sampling variation,
besides the separate variations of the numbers of the types.

2.74. But if we are extracting from a population a sample of given
size, the total number of the sample is known as N = ¥ n,. If the ex-
pectations are assessed in given ratios, but now are subject to the total
of m, being N, we have introduced a linear constraint and the number
of degrees of freedom will be p—1. A detailed treatment, following
Pearson, is as follows. We return to the multinomial rule. If N is pre-
scribed, and subject to N the expectations are m;,..., m,, the probability
of a sample ny,..., n, is

_ N! my\™ 12 n2 1
Plng, 1.y | NH) = m(w) (N) )
Put y = m,+a, N, @)

t Phil Mag 50, 1900, 157-75
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where Y o, = 0. Then

log TT (»,!) = 4plog2m — I m, + 3 (n,+4)logmn,, 3
log N! = }log 2mn—N--(N+4)log N, (4)
NN+ l'I m;»

P(nl,n,,...,np INH) = W W

Nt
= @nyRoD TT (u) T (1o, Ntjm s (%)
which gives, on approximating to order oZ,

(2”).,,<,,fvl;li—l m l,2)e>xp( 3 z ) (6)
and z%=z(l‘%mr)z=x2. ")

The probability distribution of x, given the m,, is now to be found by
integration. But only p—1 of the n, can be varied independently, and
the result will be
P(dy [my ... m, H) oc xP-2exp(—1x*)dy. (8)
2.75. If the analysis refers to a rectangular contingency table and
we wish to test whether the elements agree with the hypothesis that the
chances in different rows are in proportion, further degrees of freedom
disappear. For in such a case the ratios of the total chances in the
rows or in the columns are not fixed initially and must be estimated
from the data. Thus if there are m rows and n columns, we fix m
parameters from the numbers in the rows and n—1 from the columns.
The expectations being made in proportion, consistently with the row
and column totals, the number of degrees of freedom that remain in

x'is mn—m—(n—1) = (m—1)n—1).

If m = n = 2 the number therefore reduces to 1.

2.76. The x? analysis is of enormous use. It is easy to apply, and
very often is enough to answer the question asked. This means really
that the hypothesis stated is very often right and the predictions made
by it come off. It does not, however, always go into sufficient detail.
More will be said about this under significance tests. The trouble is that
it combines all degrees of freedom together as if they were all relevant
to the same question, whereas only part of the information in them may
be relevant. If, for instance, we have a set of data with 32 degrees of
freedom, the expected x2 on the hypothesis of complete randomness
will be 324-8, which means that in the ordinary course of events it may
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be anything from 24 to 40 and might go beyond this range without any-
thing but random error being involved. If there is actually a systematic
variation whose amount is four times its standard error, it will con-
tribute 16 to x2, but if the other degrees of freedom happen to contribute
only 24 the total will still be 40, which would pass as entirely random.
But a systematic variation of 4 times its standard error would be
accepted as genuine by any significance test if it was tested directly.
The trouble is that with regard to a large number of data we may want
to ask several questions. To some of them the answer will be ‘yes’, to
others ‘no’. But if we try to sum up all the information in one number
we shall not know what question we have answered. It is desirable to
arrange the work, when several questions arise simultaneously, so as to
provide answers to each of them separately. When this is done it is still
found that the x® form persists, but it is now broken up into separate
parts each of which has its own message.

The passage from (5) to (6) above involves the neglect of cubic terms.
In Pearson’s earlier work he ignored the resulting errors, sometimes
applying the result when the expectation was considerably less than 1.
Later he recommended grouping the small expectations together so
that the expectation in no group would be less than 5. This has the
disadvantage that in, for instance, a test of the normal law of errors,
an observation in a range where there might be a 0-001 chance that
any would occur on the normal law, and taken by itself would be strong
evidence against the law, cannot be considered except in combination
with several others, and there is considerable loss in sensitiveness. Both
methods have drawbacks in dealing with small groups, but where the
expectations are over 1 the earlier method seems to be the better;
where they are under 1 the only solution seems to be to introduce a new
parameter explicitly and estimate it. Then the relevant part of x? is
the square of the ratio of the new parameter to its standard error.

2.8. Thet and z distributions. Suppose that we have n observations
derived from the normal law with true value z and standard error o.
Their joint chance is

1 1
P(dz,...dx, |z,0,H) = (—ém%;exp{——z—ﬂ—2 z (x,—-a:)’} dzy ...dx,. (1)

Put nE =3 x,; (n—1)8% = n8’? = > (x,—F)% (2)
Then Z is the arithmetic mean and s is the standard deviation as usually
defined. We shall call s’ the mean square deviation. Z, s, and &’ are all
determinate functions of the observed values. In the present problem



1I,§2.8 DIRECT PROBABILITIES 109

writing is simplified by using s’ rather than s, but when we come to the

method of least squares we shall find that s has advantages. Also

z (=) = E {(zr—i)'i'(i_z)}z

=2 (@, —%)*+2(F—2) X (,—Z)+n(@—2) 3

The second term vanishes by the definition of #, and the result is

ns'24-n(E—zx)2.
Hence
P(dz, ...dz, |2,0,H) = exp[_ég{(f—x)us*}] d, ... dz,.

(4)
For various purposes we require to know the joint probability distri-
bution of Z and ¢, given z and . Then we must consider a pair of ranges
of Z and s’ and form the integral of (4) over all values of the observable
values z, that give £ and s’ in these ranges. Thus is easily done as follows,
by translating into analytic language a geometrical argument due to
Fisher. We can regard z, as a set of rectangular coordinates of a point
in n-dimensional space, and then > (z,—z)? is the square of the distance
of this point from a point all of whose coordinates are . But we can
rotate the axes in any way, and this will still hold for the new axes.
In analytic language, we can form = linear functions of the z, such that
if a new function is z, % =Y ayz, )

(27)engn

where
Jah =1, Jat =1, Ya,a,=0 (i#]), (6)
1 r r

and this can be done in an infinity of ways.f We can choose one of the

Z; to be z) = 3 x,/vn = Evn. (7)
r

Applying this to the point (z,z,z,...) gives (zvn,0,0,...).
Then

ffff exp{—%2 Z (z,_r)z} dz, ... da,
= [[[] ool gty 3 ) ari a5 ®)

through any region, where 3’ denotes summation for all 7 except 7 = 1.
Also Sz =3 (2,—F) = ns'. 9
Hence if we consider a region between two fixed values of #; and two

t A particular set satisfying the conditions is given explicitly by J Wishart, J Inst
of Actuaries Students’ Society, 7, 1947, 98-103.
1
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fixed values of s', the integral breaks up into two factors
xj+dzg

I = f exP{—é}—,(xi—Wn)z} da, (10)
zi

L= ”f exp(—%f) ddy ... de,, (11)

integration in the latter case being over all values such that

n8'? < 3 2 < n(s'+ds')2 (12)

Within short ranges of z} and s, therefore, the integral
oC exp —L(::c'—am/n)2 dz.s'"2exp _ns® ds' (13)

252! r 20°
o exp{——(x-—-x)’} dz. s”“zexp(—n—s—z)ds' (14)

The constant factor is determined by the condition that Z is certain to
be between 400 and s’ between 0 and oo, Hence

P(dZds’ | 2,0, H)

nlan-lag'n-2 ,
B e e e e e
(15)
The argument fails if n = 1, for then s’ is necessarily 0 and the factor
I, does not arise.

Now put T—x =82 (16)
and transform to variables s’ and z. We have now
nlen g'n-1 ns'? . X
P(dzds' |x,0,H) = T g o exp{——z—a?(l-f—z )}dsdz,
(17
and finally, on integrating with regard to s’,
Pldz|z,0,H) = — 3= (1| oy sng, (18)

V. (3n—3)!
This rule was first obtained by W. S. Gosset, a prominent statistical
writer who used the nom de plume of ‘Student’.} Its remarkable feature
is that it is independent of z and o, which may therefore be suppressed;
their actual values are irrelevant to z, and their existence is implied
by H, which includes the statement that the normal law holds in the

t Biometrika, 6, 1908, 1-25.
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problem under discussion. It may be transformed by introducing the

quantities . s s Z(Ir“i)z}"’ (19)
T =) @ | n(n—1) |’

t=T7% (12, (20)
Sz

Then s; is the usual conventional estimate of the standard error of a
meant and ¢ is the ratio of the actual error of the mean to the estimated
standard error. We shall then have

—1)! 2 \~lan
Pt |0, H) = P(dt|H) = m%(‘*&i_‘x) dt
(21)

This is now the usually adopted form, and is called the ¢ distribution.
If n is large it tends to the normal with standard error 1, but for
moderate values of # it is more widely spread to large values of £. This
represents the fact that, given z and o, the probabilities of different
values of # and s’ are independent. Consequently, while those of &
follow the normal law with standard error o/vn, in any individual case
the error of z may be associated with a value of s either more or less
than o, and s; as calculated from s may be either more or less than
a/vn. The result is that there is a considerable chance that an error of
z larger than o/vn will be associated with a value of s; less than o/vn,
and the result will be to give an excess chance of large values of ¢ in
comparison with that for #/o on the normal law.

2.81. Suppose now that we have two separate samples of n, and
n, derived from a normal law with the same parameters, and that their
means and mean square deviations are &, and &,, s; and s;. What is the
joint chance of these four quantities lying in prescribed ranges, given
zand o? Since the law is one of chance neither set can give any informa-
tion about the other when z and o are given, hence by the product rule

P(d#,dZ,ds)dsy | 2,0,H)

nyny)'P ny - - Ny o -
= (mm)™ exp‘—iﬁ(xl—x)z}dxlexp{—-2—:§(x2—x)2}dz,x

2na?
HYom1=lfpg'n1-2 2
™ Sy Ny 81\ 500
X Sim=9(Jn, 1) gm1 exp( 252 ) 1X
nlzlqm_l/,s;m-z n, S;z i
X Q9 Jn,—3)Tom10 P T 202 dsy,  (22)

1 It has no unique standard error since the posterior probability of the true value,
given the mean and standard deviation, is not normally distributed
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which is the product of four independent factors. Now consider the
chance that s; will lie between syy and sy(y+dy). For all values of &,
and #, we have, by Theorem 12,

P(dy ds’z | ilr 52’ z,0, H)
n;/zm —’Im’zlzm—’la‘g;m +na—3ym-—2
= P01, —3)1 (3np—3) o tm—2
and, integrating with regard to s;,
nfmerfma=e(hn, + g —2) g2

exp(— ”2_;:21 i 3'22) dydsy (23)

Py |2y B0, H) = (An—3)' (30, —8)! (nyt-my y?) lemsm=2 d. 4
Now put y = €2.
P(dZ | &y, %y, %,0,H)
_ 2niem—tepgfema—th(in, 4 fn,—2)! emV247 . (25)
(3n—3)" (dnp— ) (ng-+n, €22)lerrna=2)

This, with a change of variable, is Fisher’s z distribution.t If we take
v, = n,—1, vy, = n,—1 (following Yule and Kendall in this notation),
we have vy st = n 8%, v, 53 = n, 82, log(s,/s,) = 2,
2":’”'"‘2,:"'(%"1‘*’ Jvy—1)! ez dy (26)
A1) Gy = DT vy ey’

This is Fisher’s form. It is curious that the factors that arise in the
transformation should cancel so completely. In practice there is an
arbitrariness as to which of the standard deviations we should call s,;
the larger is taken, so that z in actual use is always positive. It is easy
to verify that interchanging s, and v, with s, and v, and reversing the
sign of z leaves (26) unaltered. But apart from this conventional restric-
tion z can range from —oo to + o0, unlike y, which can only range from
0 to oo, and the law for z is therefore much more symmetrical. The law
is in fact nearly normal for moderate departures of z from 0, and may
be conveniently represented by

z =04 {é(l_]_ .1_2)}%.
V1 v,

Detailed tables of the values of z with 5, 1, and 0-1 per cent. chances of
being exceeded on the hypothesis of random variation are given by
Fisher.t

2.82. The z rule may be regarded as a generalization of x2. The x?
rule assumes that the data are either derived from the normal law with

P(dz| 2y, &, 2,0,H) =

+ Proc Roy Soc A, 121, 1928, 669.
1 Statistical Methods for Research Workers, table vi
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known standard errors, or approximately so derived with standard
errors calculable from frequencies, and the probable scatter of the data
is compared with the known standard errors. In the z rule, the scatter
of one set of estimates is compared with that of another set, each being
measured by the standard deviation and not by the standard error,
and consequently both numbers of degrees of freedom appear in the
result. But it is supposed that each estimate of either set has the same
standard error. This is achieved in biological experiments by what is
called a balanced design (cf. 4.9). In physics it is hardly ever achieved;
the essence of comparison of physical estimates is usually that they have
been obtained by different methods and consequently have different
standard errors. We therefore need a method to replace the z rule in
such conditions; we can hope only for an approximate answer, but some
answer is necessary.

If we have several series of estimates 2, with estimated standard
errors ¢, based on v, d.f., we might suggest forming the sum

P )

for the series together, measuring each z, from a weighted mean of the
z,. This is the simplest analogue of x2. When all the v, are large it is
fairly satisfactory. If there are n estimates the number of degrees of
freedom is n—1. But if the v, are not large this function will not follow
the same rule as x2. The expectation of #2 from (1) is not 1 but v,/(v,—2)
for v, > 2, for v, < 2 it is infinite. Consequently, if we estimate x2,
using the estimated standard errors, the estimate will be about

Z v,22_ ! @

instead of n—1. This may be serious. Suppose that we have 10 series
of 5 observations each, and form x? in this way from the means. The
expectation of x2 will be 19 instead of 9. But on 9 d.f. 2 = 19 is nearly
up to the 2 per cent. point, and such a set of means will habitually be
judged discordant even if the variation is wholly random.

A better method is suggested by the central limit theorem. We have,
if E denotes an expectation,

— B (Bep = 201
B@—BR) = Bt —(B0) = = ®
. 1o _ ppv—2 [v—4
and if v = ‘ZTA/T_T 4

the expectation of (¢'2— Et'?)? is always 2 for v > 4, and 3 (42— Et?)
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will have a nearly normal probability distribution for » more than
about 3 or 4. Then

= 223 ze=3 [elien ®)

v,—1 ’ v,—1

if the true value is taken as 0. If one weighted mean is determined
it will be allowed for approximately by multiplying the first term by
(n—1)/n and replacing 4/ (2n) by 4/(22—2) in the second. It now becomes
impossible to include in the test any estimates based on fewer than 4
d.f., but if those with v, > 4 are found accordant they can be combined,
and then those with v, < 4 can be compared with them individually.

The method is necessarily rough, but should serve as a useful compro-
mise capable of being used in the same way as x2. Like x? and z, it will
not always be the end of the matter, but will provide a simple way of
seeing whether it is worth while to go into greater detail.

2.9. The specification of random noise. Ifa finite set of » values of z
at equal intervals of the argument ¢ have independent normal errors,
with the same standard error, it is easy to show that the n determinable
Fourier coefficients also have equal independent normal errors.

However, many instruments give a continuous record. We take the
interval to be finite. It would be impossible now for the Fourier coeffi-
cients to have independent errors with the same standard error, since
an infinite number would be determinate and the mean square displace-
ment would also be infinite, by Parseval’s theorem (MMP, § 14.09).
If the analysis is

f) =73 (a,cosnt+b,sinnt) (1)
and the mean of {f(¢)}? is finite, 3 (¢2-+52) must converge, and hence
@+8 = o(n ). @

This, however, is only a necessary condition that f2() shall have a
Lebesgue integral, and permits wild irregularities of f(f). A more
reasonable condition is that f(¢) shall be continuous. But continuity is
not a sufficient condition for convergence of the Fourier series. The
simplest sufficient condition is that f(¢) shall be of bounded variation
(MMP, § 14.04). Then a, and b, are O(1/n). But f(#) might still be
discontinuous, this can be avoided if f(¢) is the integral of a function
of bounded variation, when a, and b, will be O(1/n?). But thisin turn is
a sufficient condition that the sum of the Fourier series shall be equal
everywhere to f(¢), and f(f) will be continuous, since ¥ 1/n? is con-
vergent and the Fourier series therefore uniformly convergent.
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In works on random (or white) noise that I have seen, » is supposed
restricted to a finite range. The above condition at any rate is less
restrictive. We shall modify it to the form

P(IT dandby |7H) = T1 5 nt exp( ] +b$,))da b, (3

80 that the probability of each Fourier coeﬂ‘iclent is normally distributed
with standard error 7/n? and the phase of each Fourier component is
random.

It is of interest to examine the probability of the expectation of
0% =3 (a3 }b2). Its expectation is evidently

i2§=2’%=2'2ﬂ (4)
nearly. For more detail lwca use the characteristic function
Q(x) = EexTai+ol) — n — m’/n‘ (5)
But Ij (1_7%) - m’h:f__g‘zi’f, )
»e
whence Q) = mH2er) )

sinh{m(2«cr2)"} sin{m(2er?)} )
The probability density for

o =3 (a}+5}) (8)
i
is then L f e Q(x) dic. (9)
2m¢
—tio
If we put K = 24/2r2 (10)
and use a loop about the positive real axis we find that this reduces to
—riaY) 127‘r5
ey
P(do? |H) = Z( 1yt ()
The integral of this with regard to o2, which should be 1, is
(=11
i z “sinhrr (12)
and the expectation of o2, which should be n%r?/45, is
2 O (1)
B sinhrr (13)

As sinh 7 = 11-55 it is clear that most of the sums are contributed by
the first terms, just as in the series 3 1/2%; but in the latter case the
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first term gives an underestimate and in (12) and (13) it gives an over-
estimate.

This analysis is at any rate an illustration of the use of the characteristic
function. As a definition of random noise it is not quite satisfactory,
though it is certainly free from the defect of cutting out altogether
frequencies above a certain one. Its fault is that the greater part of the
variation is concentrated in the lowest frequency. In fact if the ampli-
tudes just reach their expectations that of the first term is 7+/2, and even
if all others add up at some point they will only reach

Z «/21%2 = V27(3n%—1) = 0-64v2 1.
2

Thus the first term would be dominant and obvious on inspection.

It appears that a satisfactory definition of random noise for practical
purposes must preserve the decrease of amplitude like n-2 for large =,
but must also be capable of expressing smaller amplitudes for small n.
It seems likely that the requisite modification will involve at least one
additional parameter.

The analysis illustrates one advantage of using Q(«) rather than $(t).
It is obvious from the form (9) that the integrand is small for R(«)
large and positive, and that the requisite modification of the path will
enclose the positive real axis If « is replaced by it the relevant singu-
larities are on the negative imaginary axis, and it is less obvious that
these are the only relevant ones.
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ESTIMATION PROBLEMS

‘We've got to stand on our heads, as men of intellect should.’
R. AUsTIN FREEMAN, The Red Thumb Mark

3.0. In the problems of the last chapter we were considering the proba-
bilities that various observable events would occur, given certain laws
and the values of all parameters included in these laws. The usual use
of these results is that they provide the likelihood for different values
of the parameters; then, taking the observed results as given, and using
the principle of inverse probability, we can assess the relative probabili-
ties of the different values of the parameters. A problem of estimation
is one where we are given the form of the law, in which certain para-
meters can be treated as unknown, no special consideration needing to
be given to any particular values, and we want the probability distribu-
tions of these parameters, given the observations.

3.1. Our first problem is to find a way of saying that the magnitude of
a parameter is unknown, when none of the possible values need special
attention. Two rules appear to cover the commonest cases. If the
parameter may have any value in a finite range, or from —oo to 4o,
its prior probability should be taken as uniformly distributed. If it
arises in such a way that it may conceivably have any value from 0 to
o, the prior probability of its logarithm should be taken as uniformly
distmbuted. There are cases of estimation where a law can be equally
well expressed in terms of several dufferent sets of parameters, and it is
desirable to have a rule that will lead to the same results whichever set
we choose. Otherwise we shall again be in danger of using different
rules arbitrarily to suit our taste. Itis now known that a rule with thus
property of invariance exists, and is capable of very wide, though not
universal, application.

The essential function of these rules is to provide a formal way of
expressing ignorance of the value of the parameter over the range
permitted. They make no statement of how frequently that parameter,
or other analogous parameters, occur within different ranges. Their
function is simply to give formal rules, as impersonal as possible, that
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will enable the theory to begin. Starting with any distribution of prior
probability and taking account of successive batches of data by the
principle of inverse probability, we shall in any case be able to develop
an account of the corresponding probability at any assigned state of
knowledge. There is no logical problem about the intermediate steps
that has not already been considered. But there is one at the beginning:
how can we assign the prior probability when we know nothing about
the value of the parameter, except the very vague knowledge just indi-
cated? The answer is really clear enough when it is recognized that a
probability is merely a number associated with a degree of reasonable
confidence and has no purpose except to give it a formal expression. If
we have no information relevant to the actual value of a parameter, the
probability must be chosen so as to express the fact that we have none.
It must say nothing about the value of the parameter, except the bare
fact that it may possibly, by its very nature, be restricted to lie within
certain definite limits.

The uniform distribution of the prior probability was used by Bayes
and Laplace in relation to problems of sampling, and by Laplace in some
problems of measurement. The problem in sampling would be, given
the total number in the population sampled, to use the sample to esti-
mate the numbers of different types in the population. We are prepared
for any composition if we know nothing about the population to start
with. Hence the rule must be such as to say that we know nothing
about it; and Bayes and Laplace did this by taking the prior probabili-
ties of all possible numbers in the population the same and leaving the
entire decision to the sample.

Bayes and Laplace, having got so far, unfortunately stopped there,
and the weight of their authority seems to have led to the idea that the
uniform distribution of the prior probability was a final statement for
all problems whatever, and also that it was a necessary part of the
principle of inverse probability. There is no more need for the latter
idea than there is to say that an oven that has once cooked roast beef
can never cook anything but roast beef. The fatal objection to the
universal application of the uniform distribution is that it would make
any significance test impossible. If a new parameter is being considered,
the uniform distribution of prior probability for it would practically
always lead to the result that the most probable value is different from
zero—the exceptional case being that of a remarkable numerical coinci-
dence. Thus any law expressed in terms of a finite number of parameters
would always be rejected when the number of observations comes to
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be more than the number of parameters determined. In fact, however,
the simple rule is retained and the new parameter rejected, at any rate
until the latter exceeds a few times its standard error. I maintain that
the only ground that we can possibly have for not always rejecting the
simple law is that we believe that it is quite likely to be true—that is,
that when we have allowed for the variation accounted for by the
functions involved in it the rest of the variation is legitimately treated
ag random, and that we shall get more accurate predictions by proceed-
ing in this way. We do not assert it as certain, but we do seriously
consider that it may be true—in other words, it has a non-zero prior
probability, which is the prior probability that the new parameter,
which is the coefficient of a new function, is zero. But that is a recogni-
tion that for the purpose of significance tests, at least, the uniform
distribution of the prior probability is invalid.

The uniform distribution of the prior probability was applied to the
standard error by Gauss, who, however, seems to have found something
unsatisfactory about it. At any rate there is an obvious difficulty. If

we take P(do | H) o« do )

as a statement that ¢ may have any value between 0 and co, and want
to compare probabilities for finite ranges of o, we must use co instead
of 1 to denote certainty on data H. There is no difficulty in this
because the number assigned to certainty is conventional. It is usually
convenient to take 1, but there is nothing to say that it always is. But if
we take any finite value of o, say «, the number for the probability that
o < a will be finite, and the number for ¢ > « will be infinite. Thus
the rule would say that whatever finite value « we may choose, if we
introduce Convention 3, the probability that o < « is 0. This is incon-
sistent with the statement that we know nothing about o.

This is, I think, the essence of the difficulty about the uniform assess-
ment in problems of estimation. It cannot be applied to a parameter
with a semi-infinite range of possible values. Other objections that have
been made at various times turn on the point that if a parameter is
unknown then any power of it is unknown; but if such a parameter is v,
then if v lies between v, and »,+4-dv, we should have according to the

rule P(v, < v < vy-+dv | H)oc dv, @)
and if we try to apply the rule also to v™ we should say also
Plo} < v" < (v, +dv)* | H} o dv” o v}~ 1d. (3)
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The propositions considered on the left are equivalent, but the assess-
ments on the right differ by the variable factor v7-!. There are cases
where this problem has arisen. For instance, in the law connecting the
mass and volume of a substance it seems equally legitimate to express
it in terms of the density or the specific volume, which are reciprocals,
and if the uniform rule was adopted for one it would be wrong for the
other. Some methods of measuring the charge on an electron give e,
others e?, but de and de? are not proportional. In discussing errors of
measurement we do in fact usually represent them in terms of the
standard error, but there is no conclusive reason why we should not
use the precision constant k = 1/0+2, and do is not proportional to dh.
But while many people had noticed this difficulty about the uniform
assessment, they all appear to have thought that it was an essential
part of the foundations laid by Laplace that it should be adopted in
all cases whatever, regardless of the nature of the problem. The result
has been to a very large extent that instead of trying to see whether
there was any more satisfactory form of the prior probability, a succes-
sion of authors have said that the prior probability is nonsense and
therefore that the principle of inverse probability, which cannot work
without it, is nonsense too.
The way out is in fact very easy. If vp is constant, then

dv  dp
CRIrY

=0. 4)

If then v is capable of any value from 0 to oo, and we take its prior
probability distribution as proportional to dv/v, then p is also capable
of any value from 0 to oo, and if we take its prior probability as pro-
portional to dp/p we have two perfectly consistent statements of the
same form. Similarly, for any other power, dv/v and dv™/v™ are always
proportional, and the constant ratio will be absorbed in the adjustable
factor. If we have to express previous ignorance of the value of a
quantity over an infinite range, we have seen that to avoid dealing with
ratios of infinitesimals we shall have to represent certainty by infimty

«©
instead of 1; thus the fact that [ dvfv diverges at both limits is a satis-
o

factory feature. This argument is equally applicable if v is restricted
to lie between values v,, v,, for

dv _ dvm . (5
vlog(vy/v;) ~ v"log(vg/v})
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This point is relevant to the fact that in many practical problems we
are not totally ignorant of the standard error when we start. Some
knowledge of it is implied by our choice of measuring instruments,
which must be capable of reading to less than the standard error and
must cover ranges greater than that likely to be covered by the observa-
tions. Thus we usually have some vague knowledge initially that fixes
upper and lower bounds to the standard error. But dv/v remains the
only rule that is invariant for powers. If in an actual series of observa-
tions the standard deviation is much more than the smallest admissible
value of o, and much less than the largest, the truncation of the distribu-
tion makes a negligible change in the results.

The point may be put in another way. Ifa parametervisa dimensional
magnitude and not a number, and we want to assess P(dv | H), where
H contains no information about v except that it is positive, this can
only be of the form Av"dv, where 4 and = are constants. For the ratio
of two probabilities must be a number, which would not be satisfied if
we took the first factor, say, as sin v—the sine of a length means nothing.
Nor could it be, say, e~?/2, where a is some constant of the same dimen-
sions as v. For then it would assign a definite value to the ratio of the
probabilities that v is less or greater than a. If, then, a is known, it
contradicts the condition that we know nothing about v except its
existence and that it lies between 0 and +-co; if it is not known we should
have to provide a rule for estimating it or for saying that it is unknown,
and in either case we are no further forward. The coefficient of dv must
be something that involves no magnitude other than », and if v is
dimensional this can be satisfied only by a power of ». But now if we
consider some fixed value @ the ratio of the probabilities that v is less

or greater than a is
a @
J.v" dv / I v" do. (6)
I a

If » > —1, the numerator is finite and the denominator infinite. We
could therefore introduce Convention 3 and say that the probability
that v is less than any finite value is 0. If n < —1, the numerator is
infinite and the denominator finite, and the rule would say that the
probability that v is greater than any finite value is 0. Both of these
would therefore be inconsistent with saying that we know nothing
about v. Butifn = —1, both integrals diverge and the ratio is indeter-
minate. We cannot now use Convention 3. Thus we attach no value
to the probability that v is greater or less than a, which is a statement
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that we know nothing about v except that it is between 0 and 0. Thus
the form P(dv| H)y < dojv )

is the only satisfactory one.

I have had an objection to it, that if we fix two possible values a
and b the rule will lead to the statement that the probability that v lies
between a and b is 0; and it is inferred from this that the rule says that
v is either 0 or co and can have no finite value at all. To the first point
Ishould answer that if we know nothing about » except that it may have
any value over an infinite range we must in any case regard it as a re-
markable coincidence if it should be found in a particular arbitrary
finite range. If a and b are not arbitrary but are suggested by some
previous information, then v is not initially unknown and the previous
information should be allowed for. To the second point I should say
that what the rule says is that we attach co as the number to represent
the total probability of all finite values; it says nothing at all about the
probability of an infinite or zero value. It is easy to invent mathematical
functions that are everywhere finite but whose integrals diverge, such
® f@ =1z @#0),

f@y=1 (2=0)
Fundamentally the fallacy in the argument is that it assumes the con-
verse of Theorem 2 in the type of case where zero probability does not
imply impossibility.

A more serious objection, I think, is that if we abandon Convention 3
and take infinity to denote certainty, all non-zero probabilities on Con-
vention 3 become infinite and their ratios become meaningless. Thus
apparently if we were considering an unknown standard error, we would
have to forget everything we already knew until we had estimated it.
On this ground I think that we must maintain Convention 3. Then the
argument for the dv/v rule would be that based on invarance with
respect to powers; Convention 3 would require the device of taking the
unknown to lie between two given values as in (5). This really makes
little change in the further development, since (1) an intermediate range
contributes most of the values of the various integrals in any case, and
the termini would make a negligible contribution; (2) in the mathe-
matical definition of an infinite integral a finite range is always con-
sidered in the first place and then allowed to tend to infinity. Thus
the results derived by using infinite integrals are just equivalent to
making v, of (5) tend to 0 and v, to infinity.
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The rule seems to cover all dimensional magnitudes that might con-
ceivably have any value from 0 to co; and all cases where it appears
equally natural to take a quantity or some power of it as the parameter
to be estimated. The extension to all cases where we want to say that
& quantity is initially unknown except that it must lie between 0 and
oo is done by rule 6, that we must introduce the minimum number of
independent postulates. If we used a different rule in other such cases
we should be making an unnecessary postulate.

If P(dv | H) oc dv/v, it is also proportional to d log v, and log v can have
any value from —oo to +c0. The rule is therefore consistent with the
adoption of a uniform distribution for the prior probability of a quan-
tity restricted only to be real. It appears inconsistent at first sight with
the uniform assessment for a quantity with a finite range of possible
values. If such a quantity is 2 and must lie between 0 and 1, z/(1—=z)
is a quantity restricted to lie between 0 and co; which suggests taking
a rule suggested by Haldane:

l—x, dx
P(dx | H) oc le—_—a—:oc =)

(8)

Laplace’s and Bayes’s assessments in the sampling problem were simply
dz. Haldane’s form gives infinite density at the limits. In spite of the
apparent inconsistency I think that the dv/v rule is right; there are
better grounds for believing that it says what it is meant to say—that
is, nothing—than for the Bayes-Laplace rule. I should not regard the
above as showing that dz/x(1—x) is right for their problem. Other
transformations would have the same properties and would be mutually
inconsistent if the same rule was taken for all.

I think that at this point we come up against one of the imperfections
of the human mind that have given trouble in the theory: that it has
an imperfect memory. If everything that attracted its attention was
either remembered clearly or completely forgotten it would be much
easier to make a formal theory correspond closely to what the mind
actually does, and therefore there would be less need for one. Data
completely forgotten would then be totally ignored, and we know how
to do that; those perfectly remembered could be used in the theory in
the usual way. But the mind retains great numbers of vague memories
and inferences based on data that have themselves been forgotten, and
it is impossible to bring them into a formal theory because they are not
sufficiently clearly stated. In practice, if one of them leads to a sugges-
tion of a problem as worth investigating, all that we can do is to treat
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the matter as if we were approaching it from ignorance—the vague
memory is not treated as providing any information at all. If the com-
ment on a competent piece of experimental work, leading to a definite
conclusion is, ‘Everybody knew that’, the answer is, ‘Yes, but nobody
knew enough about it to convince anybody else.” Now I am not at all
sure that the difficulty about the Bayes-Laplace assessment is not of
this kind. Is it a pure statement of ignorance, or has observational
evidence, imperfectly catalogued, about the frequency of different
sampling ratios in the past somehow got mixed with it? Edgeworth and
Pearson held that it was based on the observed fact that sampling ratios
had been about uniformly distributed. This might appeal to a meteoro-
logist studying correlations in weather, which do seem to be roughly
uniformly distributed over the possible range, but hardly to a Mendelian.
Again, is thtre not a preponderance at the extremes ? Certainly if we take
the Bayes-Laplace rule right up to the extremes we are led to results that
do not correspond to anybody’s way of thinking. The rule dz/x(1—z)
goes too far the other way. It would lead to the conclusion that if a
sample is of one type with respect to some property there is probability 1
that the whole population is of that type.

It is at least clear that some special hypothesis is needed for quanti-
ties that must lie between 0 and 1, for even if we try to obtain a rule
by transforming the dv/v rule the transformation is not unique. A
chance or a ratio in a population, if it is treated as unknown, is an
adjustable parameter. Now our general considerations showed that an
adjustable parameter usually presupposes a significance test that has
excluded some suggested value. Is this so here? It appears that it is.
Naive notions of causality would make all population ratios either 0
or 1. On our analysis such a suggestion would never be certain, but we
must give it a finite prior probability at the outset. Not to do this goes
too far in the opposite direction. Further, though it has been disposed of
in many cases, there are, even in our present state of-knowledge, many
where it appears to be true; apples and oranges do not grow on the same
tree. In genetics the suggested values are usually intermediate, such as
4, 1, and §; in such questions as bias of dice they may be § or . What
the suggested values will be in any specific case will depend on the cir-
cumstances of the particular problem; we cannot give a universal rule
for them beyond the common-sense one, that if anybody does not know
what his suggested value is, or whether there is one, he does not know
what question he is asking and consequently does not know what his
answer means. But then the problem of sampling, as a pure estimation
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problem, is limited to the case where there is no suggested value and
the prior probability has no singularities. Then there is no objection
to the uniform distribution, and no other satisfying this condition has
ever been seriously suggested, though there is something to be said for
the rule Pl | H 1 de
@) = Je—ay

‘With this limitation, then, we may as well use the uniform distribution.
Even at the present state of knowledge, sampling ratios do seem to be
very uniformly distributed except for problems of certain specific types,
where suggested values exist. It is not asserted that such a rule will
hold for all time, nor can it if the work is done correctly. But we can
test what the form suggested would lead to, and say that in the present
state of knowledge that is good enough to be going on with.

3.2. Sampling. At first I shall extend the Bayes—Laplace theory to
the sampling of a finite population. The total number of the population
is N, which will be the sum r+s of the theory of random sampling,
But our problem is now to infer something akout », given N and the
sampling numbers ! and m. Hence we must treat N as given and replace
8 by N—r. Then the probability of the observed numbers, given N

and 7, will be P(l,m | NrH) = CN="C, NG, . 1)

We have no information initially to say that one value of », given N,
is more likely than another. Hence we must take all their prior proba-

bilities equal, and P(r|NH) = 1/(N+1). @
Then, by the principle of inverse probability,
P(r|l,m,N,H) < "C,N+C,, (3)

factors independent of » having been dropped. But some value of r
in the range 0 to N inclusive must be the right one, whence

S Pl it m N, H) =1 @
r=0 I

and P(r|l,m,N,H) = rc,N—ro,,,/ > rCN-rC, (5)
=0

The summation is done by algebraic methods in the first edition of
Scientific Inference. A simple alternative way of doing it, suggested to
me by Dr. F. J. W. Whipple, is as follows. Suppose that we have a class
of N+1 things arranged in a definite order, and that we wish to select
l+m+1. This can be done in ¥+1C,,,,,, ways. But we may proceed as
follows. First select an arbitrary member of the class, let it be the
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(r+1)th in order. From the remainder we may select I from those before
the (r+1)th and m from those after it in *C;¥-"C,, ways. But we might
choose any value of 7, and all selections for different values of = are
different, since the (r4-1)th of the class must be the (!4 1)th of the
sample. Hence N
;0'01 N—'Cm = N+lCl+m+l' (6)
If the sample is large and N is large, the application of Stirling’s
formula leads to the approximation

n 1y nNez
Pritm, N1 = o) o e @
where n=Il+m, p=In, 0= 1—:,_% (8)

Thus § measures the departure from proportionality. Its probability
is distributed about 0 with standard error {(N—n)p(1—p)/nN}', which
approaches {p(1—p)/n}'2 if the population is large compared with the
sample. This might be expected from the corresponding result in the
direct problem. Further, if N/n is large the probability of l/n given
7/N is nearly independent of N. The sample can therefore give us no
information about the size of the population, and the latter is irrelevant
to r/N given the sample, when IV is large. But if N is such that we must
take into account the difference between N—n and N, the standard
error of § is a little smaller than for a larger population; the solution
for the latter would also be applicable to problems of sampling with
replacement or of estimating chances. This represents really only the
fact that we regard the sample as part of the population, and our defi-
nite knowledge of it reduces the standard error of the ratio for a finite
population of which the sample is a part.

This may be seen by considering the probability that the next specimen
will be of the first type. The population being of number N, of which »
have already been removed, and the members of the first type being rin
number, of which ! have been removed, the probability of the proposi-
tion p, that the next would be of the type, given r, N and the sample, is

r—l1
Ppilm,N,rH) = 5—. 9)
Combining with (5) by the product rule,
P(r,p|l,m,N,H) = f—i'C,N—fC,,,/NHC,,ﬂ. (10)

N-—-n
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The total probability of p on the data is got by summing over all values
of r. But

e T~ el =Hlg, w
N=nll(r=)! (WN—n)Il+1)'(r—I—1)! N—n
N
and 3 7y MTC,, = NG, . (12)
=0
Hence
N+l
P(p|l,m N,H) = I+1 Mg L, . 141 _ 1+1 as)

N—n "1C,,, = n¥2 = ITm¥3’
which is independent of N. It is usually known as Laplace’s rule of
succession.} Neither Bayes nor Laplace, however, seems to have con-
sidered the case of finite N. They both proceed by considering a chance
z, which would correspond to r/N, taking the prior probability of =
uniform between 0 and 1, and using the binomial law for the likelihood.
The formal result is naturally the same; but I think that the first person
to see that the result is independent of N was Professor C. D. Broad.}
Having got so far, we can see at once that the probability, given the
sample, that the next n’ will consist of I’ of the first type and n’'—U’
of the second is also independent of N. For we can construct in turn
the probabilities of the second further member being of the type, given
the sample and the (n+1)th, of the third given the sample and the
(n+1)th and (n4-2)th, and so on indefinitely. All of these are indepen-
dent of N, and the probability of a series of I’ and m’ in any prescribed
order will be built up by multiplying the results. This is found to be

@+ 1)0+2).. (V) m+1)(m+-2)..(m+m') (14)
(+m+-2)(l+m+3)...0+m+V +m'+1)
irrespective of the order; and the number of possible orders is ¥+mC,.
Hence the probability given the sample that the next I'+m’ will con-
tain just I’ of the first type, in any order, is
(4m)! (4 D)... (D) mt D). (om0 (15)
U'm't (4+m+2)...0+m+U+m'+41)

This leads to some further interesting results. Suppose that m = 0,
so that the sample is all of one type. Then the probability given the
sample that the next will be of the type is (I+1)/(!+2), which will be
large if the sample is large. The probability that the next I’ will all be
of the type (m' = 0) is (4 1)/(!+1'+1). Thus given that all members

Pl',m'|l,m,N,H) =

t Mém del’Acad R d Sci, Paris, 6, 1774, 621 ; GBuvres complétes, 8, 30 Curiously, it
is not reproduced in the T'héorie analytique
1 Mind, 27, 1918, 389-404



128 ESTIMATION PROBLEMS II1,§32

yet examined are of the type, there is a probability } that the next
I+1 will also be of the type, a result given by Pearson by an extension
of Laplace’s analysis. But if ' = N —, the result is (I4-1)/(N+1). This
can be obtained otherwise. For I’ = N—1 is the proposition that the
entire population is of the same type, and is equivalent tor = N. But
1+1

N+1

It follows that with the uniform distribution of the prior probability
(1) a large homogeneous sample will establish a high probability that
the next member will be of the same type, and a moderate probability
that a further sample comparable in size with the first sample will be
of the type, (2) sampling will never give a high probability that the
whole population is homogeneous unless the sample constitutes a large
fraction of the whole population.

3.21. The last result was given by Broad in the paper just mentioned,
and was the first clear recognition, I think, of the need to modify the
uniform assessment if it was to correspond to actual processes of induc-
tion It was the profound analysis in this paper that led to the work
of Wrinch and myself  We showed that Broad had, if anything, under-
stated his case, and indicated the kind of changes that were needed to
meet its requirements. The rule of succession had been generally
appealed to as a justification of induction, what Broad showed was that
it was no justification whatever for attaching even a moderate proba-
bility to a general rule if the possible instances of the rule are many
times more numerous than those already investigated. If we are ever
to attach a high probability to a general rule, on any practicable amount
of evidence, it is necessary that it must have a moderate probability
to start with. Thus I may have seen 1 in 1,000 of the ‘animals with
feathers’ in England, on Laplace’s theory the probability of the pro-
position, ‘all animals with feathers have beaks’, would be about 1/1000.
This does not correspond to my state of belief or anybody else’s. We
might try to avoid the difficulty by introducing testimony, through the
principle that if there were animals with feathers and without beaks,
somebody would have seen them and I should have heard of it. This
is perhaps questionable, but it only shifts the difficulty, because it
raises the need to consider the proposition, ‘all other people mean the
same thing by words as I do’, and this would itself be an inductive
generalization as hard to accept, on Laplace’s theory, as the first. The

P(r = N |1,m, N, H) = N0,C,¥+1G,,, — (16)

t Phil Mag 42, 1921, 369-90; 45, 1923, 368-74
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fundamental trouble is that the prior probabilities 1/(N+1) attached
by the theory to the extreme values are so utterly small that they
amount to saying, without any evidence at all, that it is practically
certain that the population is not homogeneous in respect of the
property to be investigated, so nearly certain that no conceivable
amount of observational evidence could appreciably alter this position.
The situation is even worse in relation to quantitative laws, as Wrinch
and I showed; the extension to continuous magnitudes would make the
probability that a new parameter suggested is zero always genuinely
infinitesimal, and there would be no way out of the difficulty considered
on p. 118. Now I say that for that reason the uniform assessment must
be abandoned for ranges including the extreme values, by rule 5 and
by the considerations already quoted from Pearson. An adequate
theory of scientific investigation must leave it open for any hypothesis
whatever that can be clearly stated to be accepted on a moderate amount
of evidence. It must not rule out a clearly stated hypothesis, such as
that a class is homogeneous, until there is definite evidence against it.
Similarly, it must not rule out a quantitative law stated in terms of a
finite number of parameters. But this amounts to enunciating the prin-
ciple Any clearly stated law has a positive prior probability, and therefore
an appreciable posterior probability until there is definite evidence against
it. This is the fundamental statement of the simplicity postulate The
remarkable thing, indeed, is that this was not seen by Laplace, who in
other contexts is referred to as the chief advocate of extreme causality.
Had he applied his analysis of sampling to the estimation of the com-
position of an entire finite population, it seems beyond question that
he would have seen that it could never lead to an appreciable probability
for a single general law, and is therefore unsatisfactory

The admission of a probability for the extreme values that does not
tend to zero however large the population may be, leads at once to
satisfactory results. For if we take

P(r=0|NH)= P(r = N|NH) = k (1)

and distribute the remainder 1—2k uniformly over the other values,
we shall have
PorINH) =122 (v %0, ) (8)
N—1
For k = 1/(N+1) this reduces to Laplace’s rule Now if the sample
is not homogeneous the extreme possible values of N give zero proba-
bility to the sample, and are therefore excluded by the data, while for
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comparison of intermediate values the new prior probability merely
gives an irrelevant constant factor and leaves the result as it was before.
Thus the results derived from a mixed sample will need no change.

But now suppose that the sample is all of the first type, so that
!l =n. r = 0 is now excluded by the data, but we want the revised
posterior probability that » = N. This can be derived easily. For the
likelihood factors are unaltered, and for r £ N the ratios of the prior
probabilities are unaltered. Therefore we need only consider the two
alternatives » = N and r s 0, N, multiplying the previous posterior
probabilities in the same ratio as the prior probabilities. The former

n+1 N—n, . . - 1
were M1l and ¥iv the previous prior probabilities were ¥ri and
%«_——;—i; the new prior probabilities k and 1—2k. Hence, now,
Pr=N|l=nN,H) =2+l k N-1 (19)

Pr#N|l=a,N,H) N-nl—2k 1

Hence if n is large, the ratio is greater than (n+ 1)k/(1—2k) whatever N
may be, and the posterior probability that » = N will approach 1 as
the sample increases, almost irrespective of N, as soon as n has reached
1/k. We may notice that if n = 1, the ratio is 2k/(1—2k), which is
independent of N if k is.

The best value to take for k is not clear, but the following considera-
tions are relevant. If k = }, it says that we already know that r = 0
or N, hence this is too large. If k = 1/(N+1), we recover the result
from the uniform assessment, and this is too low. & = } gives the ratio

(n+1) %;:l", which = 1if » = 1; this would say that a generalization

on one instance has probability }, which is not unreasonable. The
trouble here is that on the uniform assessment, if N = 2, k is already %,
so that k = } is too low in this case. If we are to make a general rule
independent of N we are therefore restricted to values of k between }
and 4. A possible alternative form would be to take

1 1

k= itawry @0

which puts half the prior probability into the extremes and leaves the
other half distributed equally over all values, including the extremes.
The basis of such an assessment would be a classification of the possi-
bilities as follows. (1) Population homogeneous on account of some
general rule. (2) No general rule, but extreme values to be treated on
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a level with others. Alternative (1) would then be distributed equally
between the two possible cases, and (2) between its n+ 1 possible cases.
This is in accordance with the principles of significance tests, which
will be developed later. For N = 2 it gives k = , leaving } for the
prior probability that the two members are unlike. For N large it
'n+1 N+3, which seems
N—n
satisfactory. It is possible, therefore, to give assessments of the prior
probability that avoid the difficulty found by Broad. The solution
would be suited to a case where it is still a serious possibility that the
class is all of one type, but we do not know of which type.

A partial solution has been given by Pearson.f ‘Suppose the solidi-
fication of hydrogen to have been once accomplished. . . . What is the
probability that on repetition of the same process the solidification of
hydrogen will follow? Now Laplace has asserted that the probability
that an event which has occurred p times and has not hitherto failed

gives the ratio of the posterior probabilities

will occur again, is represented by the fraction ﬁ i 3 Hence, in the

case of hydrogen, the probability of repetition would be only %, or, as
we popularly say, the odds would be two to one in its favour. On the
other hand, if the sun has risen without fail a million times, the odds
in favour of its rising tomorrow would be 1,000,001 to 1. It is clear
that on this hypothesis there would be practical certainty with regard
to the rising of the sun being repeated, but only some likelihood with
regard to the solidification of hydrogen being repeated. The numbers,
in fact, do not in the least represent the degrees of belief of the scientist
regarding the repetition of the two phenomena. We ought rather to
put the problem in this manner p different sequences of perceptions
have been found to follow the same routine, however often repeated,
and none have been known to fail, what is the probability that the
(p+ 1)th sequence of perceptions will have a routine ? Laplace’s theorem
shows us that the odds are p+1 to 1 in favour of the new sequence
having a routine. In other words, since p represents here the infinite
variety of phenomena in which men’s past experience has shown that
the same causes are on repetition followed by the same effect, there are
overwhelming odds that any newly observed phenomenon may be
classified under this law of causation. So great and, considering the
odds, reasonably great is our belief in this law of causation applying to
new phenomena, that when a sequence of perceptions does not appear
t T'he Grammar of Science, 1911, p 141 Everyman edition, p 122.
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to repeat itself, we assert with the utmost confidence that the same
causes have not been present in the original and in the repeated
sequence.” Here Pearson goes far to anticipate the difficulty raised by
Broad, in fact too far, for he almost says that exact causality has been
established in general by inductive methods. But he has given one
essential point, by transferring the Laplacean inference from simple
events to laws. If routines have been established in half the cases
already examined, that is adequate ground for attaching a prior proba-
bility } that there will be a routine in a new case. If it has been found
that all pure substances yet examined have fixed freezing-points, the
p+1 to 1 rule would apply as it stands, p being now the number so
far tested. The weakness of the argument is that each of the previous
cases of routine has involved an induction from a finite number of
observations to a general law, and if we started with the Laplace assess-
ment we should never be able by induction to attach a high probability
to even one general law. Pearson’s argument, with the above modifica-
tion, is highly important in relation to present procedure, but the type
of assessment (20) is needed at the outset in any case.

Philosophers often argue that induction has so often failed in the
past that Laplace’s estimate of the probability of a general law is too
high, whereas the main point of the present work is that scientific
progress demands that it is far too low. Philosophers, for instance,
appeal to exceptions found to such laws as ‘all swans are white’ and
‘all crows are black’. Now if Laplace’s rule is adopted and we have a
pure sample of m members, there is a probability } that the next m+-1
will have the property. If this is applied to many different inductions,
these probabilities should be as nearly independent as any we know of,
and Bernoulli’s theorem should hold, therefore in about half the cases
where an induction has been based on a pure sample, an exception
should have been found when the size of the sample was slightly more
than doubled. This seems to be glaringly false. The original propounder
of ‘all swans are white’ presumably based it on a sample of hundreds or
thousands, but the verifications before the Australian black swan was
discovered must have run into millions. According to the modification
(20) the number of the fresh sample before the probability that it
contains no exception sinks to } is of order m?, and this is much more
in accordance with experience. This argument is in Probability Type 3,
but the assessment in Type 2 is needed before we can start at all.

3.22. In what follows Dirichlet integrals are used several times. As
they are usually expressed in the I' notation, and I find the factorial
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notation more convenient (it is also adopted in the British Association
Tables), the main formulae are given at this point.

¢ Itm
ofz’(l—x)"'da;:(lw_'_—l)—!. (1
For w variables all between 0 and 1,
[ [ 2o .. s day ... dm, OISz
AT AN A .
e ey e 1 @
jff...fx‘iz‘,’...x‘,gdx1...dxw O<TaP <)
(ll_'*'_l._l)l(li'*'_l_l)vm (lwil_l)g
_1\p ? ? 3)
E (ll+lz+"~+lm+w)! ’
P
“‘ J'f(z o) da, ... da,, 0<SE <
= ._"‘h_w f [ (u)yu'w-1du, 4)
N Guw=1)', )
Forl, = I, = ... = I, = 0, (2) reduces to 1/w'
Forly=1Il,=..=1,=0,p =2, (3) becomes
=
2%(3w)!

If negative values of the z’s are admitted, this is multiplied by 2v.
This gives what is often called the volume of a w-dimensional sphere
of radius 1. That of a w-dimensional sphere of radius ¢ is therefore

n'hw »

@
which reduces to mc? for w = 2, and $nc?® for w = 3, as it should.

3.23. Multiple sampling. When the class sampled consists of

several types we can generalize Laplace’s assessment, with similar
provisos to those needed in the simpler case. Suppose that the whole
number of members is n, divided among r types, the numbers of the
respective types being m,, m,,..., m,. Then we say that all compositions
are equally probable. The number of ways of dividing » things into
7 classes is (n+r—1)!/n! (r—1)!; but m, is determined when the rest are
known, and can therefore be omitted by Axiom 6. Hence

P(my, my,..., mp_y |nH) = n' (r—1)/(n+r—1)! (1)

(8)
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Of these possibilities, if m, is considered fixed, the number of partitions
among the others is the number of ways of dividing n-—m, things into
r—1 classes, which is (n—m,+r—2)!/(n—m,)! (r—2)! Hence for m, by
itself
_r—=1)n! (n—m;+4r—2)!
Plm | ) = T S @
If n is very large, put m; = np,, and so on. The proposition that m,
has a particular value becomes the proposition that p, is in a particular
range dp, of length 1/n. Then

1 (r—1)!
P(dp, dp, ... dp,_, |nH) = nr-2 dp, ... dp,_, %%:%,
- (r—1)!dp, ...dp,_,. (3)

Here 7 has disappeared and need not be considered further. This gives
the distribution of the joint prior probability that the chances of the
various types lie in particular ranges. For p, separately we can approxi-
mate to (2), n—m, being large compared with , or integrate (3). Then
Pdp, | H) = (r—1)(1—py)~*dpy. 4)
In (4) the probability of p, is no longer uniformly distributed as on
Laplace’s assessment. This expresses the fact that the average value
of all the p’s is now 1/r instead of } as for the case of two alternatives;
it would now be impossible for more than two of them to exceed 3},
But if all but two of them are fixed the prior probability is uniformly
distributed between these two.
Suppose that we have made a sample and that the numbers of various
types are 2,, %s,..., 2,. The probability of the sample, given the p’s and
the actual order of occurrence, is pf' ... p%, whence, by (3),

P(dp, ...dp,_, |0H) o< p}* ... p¥ dp, ... dp, 4, (5)

factors independent of the p’s having been dropped. Integrating with
respect to all p’s except p;, the sum of the others being restricted to
be less than (1—p,), we have (6 denoting the observed data)

L A T W
P(dp, |8H) EE—— ey P P1) P1
oc pP(1—py)T+ +Er+r-2Gp, (6)

But if we are given only p;, the probability of getting , of the first type
and Y z—x, of the others together is p¥'(1—p,)%#-%; and combining this
with (4) we get (6) again, the factor r—1 being independent of p,. Hence,
if we only want the fraction of the class that is of one particular type, we
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need consider only the number of that type and the total of the other
types in the sample. The distribution among the other types is irrelevant.

By a similar analysis to that used for simple sampling it is found that
the probability, given the sample, that the next member chosen will be
of the first type is

1 1 241
!PT‘*‘(I—]);)Z Zoxi4r-2 dPl/ b"pf.(l_pl)z z-mtr-2 dp = zlx-i—r'
(M
W. E. Johnson,t assuming that distribution among the other types is
irrelevant to the probability of p,, and working entirely with the
posterior probability, has shown by an ingenious method that the
probability that the next specimen will be of the first type is linear in
z,. His formula, in the present notation, is (wx;+1)/(w> #+7). wis not
evaluated, (7) shows that in the conditions considered here w = 1.

The conditions in question in fact assume that information about the
proportion of the class that is of one type is irrelevant to the ratios of
the numbers of the other types. They would apply to an estimation of
the proportions of blue, white, and pink flowers in Polygala vulgaris.
We may call this a simple statement of alternatives. If the class falls
into main types, according to one set of properties, each of which is
subdivided according to another set, and the ratios within one main
type give no information about those in another, the result needs some
change, as we shall see for a 2 X 2 classification in § 5.11. The numbers of
the main types can then be estimated according to Laplace’s rule and
the distribution within each according to that just given. The difference
arises from the fact that the discovery that several subtypes of the same
main type are rare will give some inductive ground for supposing that
other subtypes of that type are also rare: there is no longer complete
independence apart from the bare fact that the sum of all the chances
must be 1.

3.3. The Poisson distribution. The derivation of this law suggests
an analogy with sampling, but there is a difference since the one para-
meter involved is capable of any positive value. It is the product of a
chance known to be small in any one trial, and the number of trials,
which is large. We might try to regard the problem of radioactivity,
for instance, as one of sampling, the problem being to estimate the
fraction of the atoms in the specimen that break up in the time of the
experiment. But this is not valid because the size of the specimen and

t Mind, 41, 1932, 421-3
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the time of the experiment are themselves chosen so as to make the
expectation large, we already know that the fraction that break up is
small but not zero. This must be expressed by a concentration of the
prior probability towards small values. It is not covered by either the
uniform assessment or the suggestion of a finite concentration at 0.
The fundamental object of the work is to estimate the parameter « in
the formula e~*, which represents the fraction of the atoms originally
present that survive after time ¢. This parameter is not a chance but
a chance per unit time, and therefore is dimensional, thus the correct
prior probability distribution for it, given that it must lie between 0
and oo and is otherwise unknown, is da/a. In the dust counter, similarly,
the fundamental parameter is the number of particles per unit volume,
which again is dimensional, but it might appear equally legitimate to
use the mean volume per particle, and the dr/r rule holds, though pos-
sibly with a slight modification to take account of the fact that the air
cannot be all dust. In the problem of the soldiers killed by horses a
time factor again enters. It appears best, therefore, in problems where
the Poisson law arises, to take the prior probability

P(dr |H) oc drfr. (1)
Also given r, the chance that the event will happen m times in any
interval is P(m |rH) = rme=r/m! @)
The joint chance for several intervals is therefore
pSmo—nr
P(m,y, my, .,m, |7H) ”—‘m (3)
and, omitting factors independent of r, we have}
e nSm i
P(dr | m,y, my,...,my, H) oc rSm=te=" dr = mrsm le-mrdy.  (4)

The probability, given the observations, that r is in any particular
range is given by the incomplete I' function.f We notice that the only
function of the observations that appears in the posterior probability
is Sm, which is therefore a sufficient statistic for ». The utility of further
information about the individual m’s is that they may provide a check
on whether the Poisson law actually holds, or whether, for instance,

+ As a rule we use X for ion over the par S for ion over the
observed values

t J B S Haldane, Proc Camb Phil Soc 28, 1932, 58 ‘This paper contained the use
of the du/v rule for the prior probability in such cases, at a time when I had considered it

only in relation to a standard error, also the concentration of a finite fraction of the prior
probability in a particular value, which later became the basis of my significance tests
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there is a deviation in the direction of the negative binomial. The
expectation of 7, given the data, is at % = (Sm)/n; the maximum
probability density is at a slightly smaller value, and the standard error
(m/n)"2 if Sm is large.

3.4. The normal law of error. We consider first the case where the
standard error is known, but the true value z is unknown over a wide
range. Then o is part of the data H, and

P(dz | H) o da. (O]

Also the joint chance of all the observations is
exp[ —%ﬁ{(i—x)z-l—s'z}]dxl dz, ... da,.
(2)

P(dz, ...dz, |z, H) =

(2.")‘lzno.n
Hence, omitting factors independent of .t

P(dx |y, Zqy..., 2, H) o exp{—zn—2 (x—i)z} dx
{ea

- J (—%_);exp{ _2—n~02 x—.i:)z} dz, 3)

so that the posterior probability of z is normally distributed about #
with standard error o/vn.

In practical cases there is usually some previous information relevant
to z. Perhaps the discovery of a new star (nova) affords the simplest
example. The original discovery is a non-quantitative observation,
often a naked-eye one, but by comparison with neighbouring stars it
gives enough information to enable the observer to identify the new
star again It may be enough to specify the position within 1°, but
later measurements may have a standard error of the order of 17,
Then (1) should strictly be replaced by

P(dz |H) = f(x)dz,

1 It is understood that dz in the sign P(dz | ) is an abbreviation for a proposition,
namely that a quantity ¢ whose probability distribution is being considered lies in &
particular range z to z+dz 1In the data z, H of (2), z is used as an abbreviation for the
same proposition, but it is convenient to abbreviate the same proposition in different
ways according as it appears in the data or in the proposition whose probability is being
considered The reason is that in (1) or (3) P(dz | ) is an element of a distribution, and
the differential calls attention to this fact and appears explicitly on the left, but in (2)
the variation of z in an arbitrarily small range contributes arbitrarily little to the right
side, and we need attend only to the value of z This method of abbreviation lends itself
to immediate adaptation to integration

T3
[ Pzl = Pla, < 2 < 7] 9)

z=x
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where f(z) is very small if  is not within a particular range of order 1°,
and within this range f(x) varies slowly. But then we get

P(dz |2y, 2, H) o< £ (@) exp{—%w—z)’} da.

Z is within the range where f(z) is appreciable (otherwise the accurate
observer would be observing the wrong star) and the exponential factor
is negligible if |x—#| is more than about 3”. In this range we can
neglect the variation of f(z), and on adjusting the constant factor we
are led again to (3) with a high degree of accuracy. In such cases the
original information is not contradicted by the new evidence, but is
superseded in the sense that when the latter is available the effect of
the original information on the result is negligible. Similar considera-
tions can arise in most of the problems of this chapter and the next,
and we shall not usually call special attention to them.

3.41. If the standard error is unknown, its prior probability must
be proportional to do/o, partly because it is usually dimensional and
might be either very large or very small, partly because we might
equally well take the precision constant as our standard of accuracy
(or indeed some recent writers use o2 and call it the variance). Also we
need not suppose that any previous knowledge of 2 would tell us any-
thing directly about o, so that the prior probabilities of z and ¢ may
be taken independent. Then

P(dzdo | H) cc dada/a. 1)

The likelihood factor is the same as before, hence

P(dzdo |2y, Zo..., T,,, H) o€ 071 exp[ —%{(x—i)’—{—s”}] dzda (2)

and the constant factor is
nllgns'n-—l

T ()"

We notice here the immediate representation of the posterior proba-
bility in terms of the sufficient statistics £ and s’. All the other factors
depending on the observations are the same for all values of z and o,
and therefore cancel from the posterior probability.
To get the posterior probability of z by itself we have only to inte-
grate with regard to o. We have
P(dx | 2y, Zg,..., X, H) o dz fa-"" exp[ —{i—z{(x—i)z—l—s'z}] do  (3)

0
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which becomes, on putting

w= %{(x—i)“-{-a”}, @
2\ Yam
P(dx | 2y, y,..., T, H) oC (;) f l”"e-“ {s”+(x £)Y-tn dz. (5)
o
Only the last factor involves 2. Determining the constant factor by the

condition that —o0 < z < 00, we have
1 (3n—1)! g'n-1

6
Pl iz oo ) = o=y v @
The right side is identical with ‘Student’s’ rule in form.
Integrating (2) with respect to x we get
P(do |z, @y, H) o 0" exp(—n—s—z) do. (7)
(7

If n = 2, x, > z;, and we put —% = s'tan ¢, we get
1
P(df |z, 20, H) = ~d¢. (8)

But in this case s’ is simply the distance of either observation from the
mean, and the values ¢ = +}n give, respectively, = z, and z = x,.
Hence Py < 2 < 23| %,25,H) = §. (9)
That is, given just two observations the true value is as likely as not
to lie between them. This is a general result for any type of law that
involves only a location and a scale parameter, both of which are
initially unknown. The latter condition is necessary. If, for instance,
H contained information about the standard error, and the first two
observations differed by 4o, there would be a high probability, given
these" observations, that the true value was about midway between
them, and then the probability that the true value was between them
would be more than }. If they differed by 4o, on the other hand, we
should interpret this as an accidental agreement and the probability,
given the observations, that the true value lay between them would be
less than . It is only when the observations contain the whole of the
information available about ¢ that the probability, given them, that
the true value lies between them can be the same for all possible separa-
tions of the observations.
If n =1, = x;, and 8’ = 0. Then, returning to (2),

P(dxdo |z, H) o-zexp‘ (z—“) }d xdo. (10)
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Integrating with regard to ¢ we get
dx
P(dz |2y, H 11
(e |2, ) e 2 any
that is, the most probable value of z is z,, but we have no information
about the accuracy of the determination. (7) gives for o
P(do | 2y, H) o< dofo, (12)
that is, we still know nothing about 0. These results were to be expected,
but attention to degenerate cases is often desirable to verify that the
solution does degenerate in the right way.
It is easy to show that, with the distribution of probability given in
(6), the expectation of (x—%)? is, for n > 3,
s S(x,—%)?

n—3 n(n—3)’ 13
and is infinite if n is less than 4. At small numbers of observations the
departure of the posterior probability from normality is great.

There is, however, the following peculiarity if two sets of observa-
tions with different standard errors o, v are relevant to the same z.
We should here take

P(dzdodr | H) o dzdodr/oT,

PO 12,0, H) ¢ o~mr=mexp| — 5% (v (22} — 1 ¢+ =)

Combining these and integrating with regard to o and 7, we get

P(dz | 0H) oc {8+ (z—&)2-em{t'2 4 (x— )2} "o dar, (14)
and the expectation of 22 converges even if m = n = 2. The integral
needs complicated elliptic functions to express it if m and » are odd,
and in general is not expressible compactly. If m = 1, n = 2 we find
that the posterior probability has a pole at Z, but the expectation of
(x—%)? is infinite, this means that neither very small nor very large
values of o are yet effectively excluded by the data.

If an estimate has standard error ¢, -2 or some number proportional
to it is called the weight. If z,, Z,,... are a set of estimates of x, with
weights wy, w,,..., the most probable value of z is given by

28w, = Sw,x,, (15)
and if unit weight corresponds to standard error 1, the standard error
of the estimate is (Sw,)-'2. This additive property of weight often
makes it convenient to express the standard errors in terms of it. The
standard error, itself, however, has an additive property. If z, and =,
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have independent standard errors o, and o,, then the standard error
of 4+, or of z;—x, is (cf+0})", and the corresponding weight is
Wy Wy (wy+,).

The usual practice in astronomical and physical work is to multiply
the estimated standard error by 0-6745 and call the result the ‘probable
error’. But this multiplication, which has little point even when the
probability considered is normally distributed, is seriously wrong when
uncertainty is estimated from the observations themselves. Writing the
usual estimate of the standard error in the form

—7)2) e
= {s =2 (16)
and t = (a—2)fss, (17)
we find as for 2.8 (21) ,
Pt |6H) o (1+ n_f_l)' ", (18)

which is not normal. We have already seen that for n = 2 the proba-
bility that x is between Z-s; is }, so that the probable error in the
sense defined for the normal law is equal to the standard error. For
risks of larger error the difference is greater. P being the probability
of a larger ¢ (positive and negative errors being taken together) we have
the following specimen values, from Fisher’s table.

}{ 05 01 005 001
2 1000 6314 12:706 63 657
5 01727 2132 21776 4 604

10 0703 1833 2262 3250

20 0688 1729 2093 2 861

o] 0674 1645 1 960 2576

The values depart widely from proportionality, and a statement of
uncertainty based on only a few observations is useless as a guide to
the risk of large error unless the number of observations is given.

In many statements of the results of physical experiments, besides
the omission of explicit statement of the numbers of observations in the
final conclusion, the uncertainties stated are often rounded to one
figure; I have actually seen a ‘probable error’ given as 0-1, which
might mean anything from 0-05 to 0-15. Suppose then that two esti-
mated standard errors are both given as 0-1, but one means 0-05 on
20 observations, the other 0-15 on 2 observations; and that we want to
state limits such that there is a probability 0-99 that the true value lies
between them—which we might quite well want to do if much depends

on the answer. The limit in one case would be 0-14, in the other 9-5.
L
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In fact if anybody wants to reduce a good set of observations to
meaninglessness he can hardly do better than to round the uncertainty
to one figure and suppress the number of observations.

It is generally enough to give two figures in the estimated standard
error. Karl Pearson usually gave many more figures, often six or seven,
and statisticians still usually give four, but I consider more than two
a waste of labour. It is not often that a result of importance depends
on whether the standard error is 0-95 or 1-05.

3.42. The following problem is liable to arise in practice. Given one
set of observations derived from the normal law, say z, to z, , and no
other information about z and o, what is the probability that a new
series of n, observations will give a mean or a standard deviation in a
particular range? We have, from 2.8 (15),

P(dz, dsy| 2,0, H)
= /(72 expl — 2 (7, —ay2) 4z, . TET S LS
_A/(z‘rr)o eXP{ ] (€y—a) }dxz 21/’""%@%2—%)! gm-1 exp 202

and, from 3.41(2),
P(dzde | 2,,...,2,, H)

2!
) dsj

1)

nlana PACES n = ,
= 21””'—1‘/7:({”1“ E3Y] ;m+1 exp[ - 2_012 {(x—x,)’—}-sf}] dzdo, (2)
whence

P(dxdod,dsy| xy,..., %4, H)

_ ”’l/mm;lan. 3'1 n1-1, 8'2 n3—-2
2'/nm+l/ana—2,,(én1_% ) (dny,—3) gritmatl

xexp| — 72 (@208 — 5 (o202 | dudodtzy dsp. ()

X

But
My — ) ol —E)? = (nl+n2)(x— UL L WP A

ny 5“”1‘*‘”252)2
ny+ny
(4)

7y +n,
and integration with regard to z gives
P(dodi,ds) | Tyy...; Ty, H)
n’l””'n‘g/ms’{"-ls’z"'-2
= 3T T (g — )] (g —3) o™ Fn(g L mg) e

X exp{__.M_
2(ny+n,)0*

If we now integrate with regard to o, a factor

s = 1 , , = g
(xz—xl)z}exp{—r.’z (my +-ny 322)} dodZ,ds;. (5)

2 (i; g )2 =a(n1+n3~1) (6)
Fny

nyn
{""1 st tngsy?+ n
1
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will arise. This does not separate into factors. Hence, given Z, and s},
the probability distributions of %, and s; are not independent; though
they are independent given x and 0. What this means is that if s} is
unusually large in comparison with o, we shall overestimate the scale,
and this overestimation will affect the estimates of the ranges likely
both for £, and s;. But if we are interested in only one of them we can
integrate with regard to the other. Then

P(dodZ, | y,..., %y, H)

i o mny(E—E) m s
= T ) (e p{ 2(n, + g0t 202} dodzy

(7)
- 1/y _1)| ’ n. (:l-f —F )2 ‘ll’"‘di
P(d poenr @y H) = — 12 (101 1 el Ey } iy
B A T LTy v | e
Also, ®)
P(dodsy | zy,..., 2, H)
— n;/mx—Vm"lem—llza'lm—lsém-z ny -91 +7L2 82 f
= B, — D) (b= Plom ot dodsy, (9)
’ _ 2pyam—tepma—ib(dy, 4 %n2—2)' §ym-1gyra-2
P(dsy | 2,0, Ty, H) = Bra—23) (31— 3)1 (1 8,2 1y SpE)ems +am—1 o
and on putting sy = si/y, ()

we recover the form 2.81(24), and the z distribution follows.

3.43. If Z,,..., £,,, are the means of r further sets of n, observations
each, s,,..., $}.,, the corresponding mean square deviations, the rule holds
for each separately and independently. Hence

- - Yor | _ ~ _
P(dZy...d%, ., |x,0,H) = (21;) ;;exP‘—g%S(xm—x)”}d@ ey

(12)

Now put 8%, = rX, S(&,—F)2 = rT%; (13)

the exponent becomes —5ot {(X —z)24-T% (14)

and (12) is of exactly the form of 2.8(4), with r written for » and
a/vn, for o. Hence (10) and the z rule are adapted immediately to give
the probability distribution of 7' given , to z,,. We need only replace
n, by r and s by n, T'%

This form is more closely analogous to the way in which the z rule
is used in agricultural experiments. In them the means of plots with
the same treatment are taken, and the sum of the squares of the
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differences between the treatment means and the general mean gives
rT?; n,rT? is called the treatment sum of squares. The differences
not explicable by treatments or other systematic effects are used to
provide s;. Then, given s) and the hypothesis of general randomness,
the method will give the probability distribution of 7'. If the observed
value is such that it would be very unlikely to occur on this hypothesis,
given s, then the hypothesis is rejected and the existence of treat-
ment differences asserted. In Fisher’s form s, would correspond to the
random variation and s, to the possibly partly or mainly systematic one,
hence his convention that 8, > s,. It is easy to see that interchanging
ny and s, with n, and s,, and reversing the sign of z, leaves 2.81(26)
unaltered.

These results were obtained by Mr. W. O. Storer in an unpublished
paper, based on a suggestion of mine that the conditions that lead to
the similarity between ‘Student’s’ result and mine seemed to be fulfilled
also in the circumstances considered by Fisher in deriving the z distribu-
tion. Hence I expected that the probability distribution of log(s,/s,),
given one set of observations, would agree exactly with that derived
from Fisher’s formula; and Storer found this to be the case.

3.44. A closely related problem, which will serve as an introduction
to some features of the method of least squares, is where we have to
estimate m unknowns z, (r = 1 to m), to each of which a set of n,
measures x,; (i =1 to n,) is relevant. The standard error of one
observation is supposed to be the same in all series. Put, S denoting
summation with regard to 7, 3 with regard to r,

n, &, = Sy, n, 8,2 = S(xri_-r)z- ($))

Then, denoting the observations collectively by 6,

P(da, .. dz,ydo | H) ¢ dz, ... dx,, dojo, @)
PO |2, g o) o -5 T exp[—é%{(x,—i,)z-}-s',z}], 3)
—Za,- 7y = ’
P(dz,...dx, do |0H) oc o=Z -1 exp[ - Z 5 {(x,—x,)2+s,’}] T1 dz. do.
By integration, (4)
P(do | 8H) o o=Em+m-1 exp{— > (”58;2» do, (5)
2

and if we now put

2 (n,82) = (X n,—m)s?, (6)

P(do | §H) oc o~ n-m+D exp{_(_z_%ﬂ)_sf} do. 6)
{eg
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This is of the same form as 3.41(7), if in the latter we replace ns’2 by
(rn—1)s? and then replace n—1 by 3 n,—m. In the former problem
n—1, in the present one Y n,—m, is the difference between the whole
number of observations and the number of true values to be estimated.
Hence it is convenient to call this difference the number of degrees of
freedom and to denote it by v, and to give the name standard deviation
to s in both cases. Then however many unknowns are estimated we

always have  p. | gH) o o=+ exp(—vs/20%) do, ®)

and the posterior probability distribution of ¢/s is given by a single
set of tables.
(4) can now be written

2
P(day... dzy do | 8H) ox o=En-1 exp<_ S (x,—i,)”—;ioz} 11 de, do.

9)
Integrate with respect to z,,..., 2,,; then

2
P(dz, do | 6H) a—nmm-zexp{_”_lz (xl—zl)z_l’;} dz,do, (10)
20 202,

Pldzy |0H) oc {vs?+my(2y—5)%)-140+D dary. 11

Put 8y, = 8/Vn, (12)
—7 =a(v+1)

then P(dz, | 0H) o {1+(ﬂw_f'-)2} O g, (13)

Hence the posterior probability of z, follows the ¢ rule with v degrees
of freedom, where t= (2,—%,)/s,. (14)

s,, is related to s in the same way as the standard error of £, would be
to that of one observation if the latter was known accurately. Hence
it is convenient to quote s, as the standard error of z,, Z,, §,,, and v
are enough to specify the posterior probability of x, completely, while
s and v give that of o completely.

The situation considered is a common one in practice. A large number
of unknowns may have to be estimated, but the number of observations
directly relating to any one may be small. The estimate of any unknown
from the observations directly relating to it may be of very doubtful
accuracy on account of the small number of degrees of freedom. But
if the standard error may be assumed the same for observations of all
sets the number of degrees of freedom is much increased and a good
determination of accuracy becomes possible.

As an example we take Bullard’s observations of gravityt in East

t Phil Trans A, 235, 1936, 443-531
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Africa. Seven stations were visited twice or more, many others only
once. Those visited more than once were as follows:

Reswdual
g (em/[sec?) Mean (16~¢ cm/sec?)
Neakuru .| 977 4810 +5
4800 977 4805 s
Kisumu . .| 9776056 +6
6045 977 6050 s
Equator .| 977 2608 +3
2609 | 977 2605 A
Mombasa . .| 9770212 —15
0242 977 0227 +15
Jinja 977 7186 +4
<7176 | 9777182 —6
7183 +1
Nairobi 977 5289 -3
5307 | 977 5292 +15
5281 —11
Naivasha . | 977 4663 —16
4695 977 4679 116

The sum of squares of residuals is 1499; v = 16—7 = 9, hence

10%s = (1499/9)"> = 12-9.

Then 1

8y = 0.00129(1,

v2'V3

) cm/sec?

= (0-0013, 0-00091, 0-00074) cm/sec?

according as the number of measures at a station was 1, 2, or 3; in

each case based on 9 d.f.

Since (8) is a function with only one maximum and v is often large
it is of interest to see whether it can be represented approximately by

a normal law. We write, dropping a factor o1,

i)

(o) = log{o“’exp(—— 3

2

= —v]oga-—ﬁi.

20

Then , v wvs?
$'(0) = —;+-’;§‘~

This vanishes at 0 = 8. At o =3,
$"(0) = —2v/s?,
Then, for o near s,

¢(o) = constant —

v(o—s)?
—a

$"(0) = 10v/s°.

3

5v(e—s)®

s3

(15)

(16)

(17)

(18)
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and we could write for large v

o = 8£8[/(2v). (19)
If o—s = 5/,/(2v) the cubic term is 3——55%7;
Alternatively put
o=set;  $lo) =¥l (20)
we find similarly $(L) = constant—v{2+ v, (21)
L= 0+1/J(2). (22)
Tf £ = 1/y(2v) the cubic term is g 2_,,211,,_, It is therefore  of the

corresponding term in (18). Hence use of { instead of o gives a more
symmetrical distribution and it is better to write

1
o= sexp{i(—él-’rh} (23)
rather than (19).

3.5. The method of least squares. This is the extension of the
problem of estimation, given the normal law of error, to the case where
several unknowns besides, usually, the standard error need to be found.
If the unknowns are z;, m in number, and a measure is c,, then if there
were no random error we should have a set of relations of the form

¢, = fu(@y, Tgyeer Tpy). (1)

Actually, on account of the random error, this must be replaced by
-_1! X ooty
P, 2,0, H) = T exp—gs e~ f ¥ der,  (2)

and if there are »n observations whose errors are independent we can
denote them collectively by 6 and write

1 1
P 12,0, H) = s oxp| 5z S(e,—f ) s, (3)

§ denoting summation over the observations. Usually the functions f,
are either linear, or else we can find an approximate set of values of
the x;, say x,, and treat the actual z; as the sum of z;, and a small
departure x;. In the latter case we can take z as a new set of unknowns,
so that within the permitted range af,/ox; can be treated as constants.
In either case we can write

W= 4;“S’(cr_fr)zv (4)
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which will be a quadratic function of x; or of ;. The accent can now
be omitted. We can also write

fr=2a,7; (5)

> denoting summation over the unknowns; but we can shorten the
writing by using the summation convention that when a suffix ¢ is
repeated it is to be given all values from 1 to m and the results added.
To avoid confusion through a suffix occurring more than twice we now
write

W = %S(airxi_cr)(airxj_ r) (6)
= $8(a; a5 2;— 20, ¢, x4-CF) (7)
= §b;;x;2;—d; 2,4+ 3 Sck. (8)

In the first sum each pair of unequal suffixes occurs twice, since either
may be called ¢ and the other j. This term is in general positive definite,
being a sum of squares. Hence there is always one set of values of z;
that makes W a minimum. If we differentiate with regard to x; we have
m equations for these values. If we denote them by y; we have
b;jy;—d, = 0. (9)
These are called the normal equations. They have a unique solution
if m < n; the determinant formed by the b;; is not zero. Put
= Y;tz,  G—uY; = C. (10)
Then W is quadratic in 2;, and its first derivatives with regard to z;
all vanish when the z; are 0. Also W is then equal to }Sc;2. Hence
W = 1by2,2,+48c,% (11)

Also b;;z;2;, being positive definite, can be reduced to the sum of m
squares of linear functions in an infinite number of ways. The most
convenient is illustrated most easily by the case of three unknowns.
Suppose

F = byy 2§+ 21521 23+ bpp 23+ 2b15 2y 23+ 2093 23 25+ B 25- (12)

Take L= z1+’,:‘fzz+';—ﬁ’23~ (13)
Then .
2
F—b,0 = (bzz—zlg) 3§+2(b33_-b—lg—ﬁ§)22 23+ (baa_g.l?> 22
i 1

11

= by 2+ 20532, 23 b33 23 (14)
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Now put b,
lz = z2+bT:az3» (15)
3
2 ¥ . bé% 2 ” o2
F—by, [j—b3, 08 = (baa—'a) 25 = b3323. (16)

The process can evidently be extended to any number of unknowns.
First suppose that ¢ is known, and take the prior probabulities of
Z1y00sy Ty uniformly distributed. Then

P(dzx,dz,...dz, | o, H) < dz,...dz,,. (17)
P(dz,...dz,, | 0,0, H) c o-" exp(—g) dz,...dz,

oc a‘”exp{—%z(bi, z,.zi-i—Sc;.’)} dz,...dx,. (18)
But by the mode of formation of the {; we see that in the Jacobian

%((—i—"—’z"‘—; all terms in the leading diagonal are 1, and all those to one
132009 Zm
side of it are 0. Hence the Jacobian is 1, and we have the form
1 s
Pdzy...dx,, | 6,0, H) o o= exp{— s (502 Sc,”)} . dt,. (19)

This breaks up into factors, and we can say for any {; separately

PL10,0,H) ¢ e oxp( 565 (20)
In particular, since {,, = z,,, we shall be able to write
Ty = Ymt2m = Ypmto/VD,. +(21)
b,, can be identified easily, for if we write
D = byl (22)

for the determinant of all the b,;, and B,,, for the minor of b, in it,
the transformation alters neither D nor B,,,, since

a({lv "vlm-l) —_ l, (23)

Mpooke) _ Wb
Ly “m-1

Azyeor Z)

and therefore b, = D/B,,, (24)
Any other function of the x; can be estimated as follows. Let
§=La, =Ly, +lz, (25)

where the [; are specified. Then we can eliminate the z; in favour of
the {;, and get £ = Lyl (26)
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where the probability of {; is distributed about 0 with standard error
o/vb;. Hence that of £ is distributed about I;y; with standard error o(¢)

given by o¥E) = ot 3 (AFfby). @7
If o is unknown we must replace (17) by
P(dz,...dx, do | H) < dx,...dx,, do/o (28)
and (19) by
P(dz, ...dxy do | 0H) o o""lexp{—-é’—z (S b2 Sc;z)} ity . dL,do.
(29)

Integrating with respect to all the {; except {,, we have
P(dL,, do | 6H) cc g=n+m- exp{-—gl-i (b, L2+ Sc’,2)} dldo,  (30)
(o4

and then integrating with regard to o,
P(d¢,, | ¢y... ¢, H) o (Sc24-b,, L2,)-"Tn-miD gL (31)
b\ (hr—m— D} (1 | B LB\ mmeD
= (i) i (45
so that the posterior probability of {,, is distributed as for ¢ with n—m
degrees of freedom. It is easily seen that the same applies to any

linear function of the {;. If n—m is large the distribution becomes
approximately normal with standard error o({,,) given by

0*({m) = Sc,t[(n—m)b,, = B,,, Sc,}/(n—m)D.

s (32)

This is the same as the form taken by (21) if we replace o2 by
8¢, [(n—m).
The practical method of solution is as follows. We start with the
n equations Gy = c, (33)

which are called the equations of condition. In general no set of values
of z; will satisfy them all exactly. But if we multiply each equation
by a;, and sum for all values of r, we obtain the equation

b2, = d; (34)

by the definitions of b;; and d; This is done for all values of j from 1
to m, and yields m equations for x;. These are the normal equations.
Their solution as simultaneous equations is

;= Y (35)
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The most convenient process of solution is identical with that of finding
the ;. For if we divide the first equation by by, the function on the left is

b b b b
z1+b—:f%+~-+ﬁ¢m=(y1+5ﬁyz+u~+gi-'l-”ym)+ll- (36)

Multiplying this in turn by b,,, b,5,... and subtracting from all the others,
we eliminate z, from all. Thus we are left with m—1 equations, which
still have the property that the coefficient of x; in the equation for z; is
equal to that of z; in the equation for x,, for both are equal to

bij—bli blj/bu'

We can therefore proceed to eliminate all in turn, finishing with z,,
the coefficient of which will be b,,, and b, is therefore yielded auto-
matically. Any other coefficient b, is the coefficient of z; in the first
equation remaining when z, to z;_, have been eliminated. Thus the
process of solution yields all the b;. If o is initially known, all that
remains is to express any unknown, say ,, in the form d,/b,+o/vb,+
a linear function of y, to #,, and of {, to {,; in this we use the second
equation to replace y, by a constant 4-o/vb, with functions of y; to y,,
and of Z; to ,,, and so on. Thus finally we obtain the value of y,, which
is the most probable value of z;, and a set of independent uncertainties
of x;, which are easily combined.

If o is initially unknown we proceed to estimate the y; as before;
then substituting in the equations of condition we obtain the set of
differences ¢, —a;, y;, which are called the residuals, and are identical
with ¢;. Then we can define the standard deviation of one observation by

(n—m)s® = Sc2, (37)
and that of z,, by s, = 8/Vb,,. (38)
Put t = z,/s, ; and we have

b 82 1?2 ~lo(n-m+1) t2 =la(n-m+1)
1 m_tm = (1
P(dz, |¢;...c, H) { +(n—m)sz} dt ( +n——m) d,

which is of exactly the same form as 3.44(13). If n—m = v, v is again
the number of degrees of freedom, and the ¢ table can be used as in the
simpler cases.

This method (essentially Gauss’s method of substitution) has great
advantages over some of those usually given, which involve the working
out of m--1 determinants of the mth order to obtain the y;, and the
evaluation of the first minors of all terms in the leading diagonal of D
to find the standard errors of the y; Personally I find that to get the
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right value for a determinant above the third order is usually beyond
my powers, but the above process usually gives me the right answer. The
symmetry of the equations at each stage of the solution gives a useful
check on the arithmetic, and the correctness of the final solution can
be checked by substitution.

A method due to Laplace is often said to be independent of the normal
law; but it assnmes that the ‘best’ estimate is a linear function of the
observations, and if there was only one unknown this would imply by
symmetry the postulate of the arithmetic mean, which in turn implies
the normal law. Further, it assumes that the error is estimated by the
expectation of its square, which is justified by the normal law but has
to be taken as a separate (and wrong) postulate otherwise; and an
unnecessary appeal to Bernoulli’s theorem has to be made.t

3.51. To illustrate the method of solution, consider the following set
of normal equations (1), (2), (3); the standard deviation of one observa-
tion is s.

122—5y+4z = 2 (1) | 2—042y+0332= --01740 29s (4)
—5z-+8y+22 = 1 (2)| 52—21ly+17z= 408 (5)
dz42y+6z = 5 (3)| 4z—17y+132= 107 (6)
59y +37z = +18 N y+063z = +031+041s 9
37y-+dTz = +43 (8) 37y+23 = 11 (10)
247 = +32 (1) | z= 41334064 (12)
y=+031—063%1:33 = —053 (13)

= 4017—042x053—-033x133 = —049 (14)

(4) is got by dividing (1) by 12; (5), (6) by multiplying (4) by 5 and 4.
Then (2) and (5) give (7), and so on. These results should be checked
by substitution in the original equations. The standard error 0-29s in
the first line is s/v12, and similarly for the others. For s, we have

8, = 40 4154-0:63X 0-64s = (£0-411L0-41)s = 10585, (15)

and for s,

x = (x—0-42y+0-332)+ 0-42(y -+ 0-632)— 0-60z; (16)
5, = (4:0-204-0-42 X 0-41+0-60 X 0-64)s; (17
82 = 026s%, s, = 0-5ls. (18)

Hence
z = —0:4940-543; y = —0-53+058s, 2= +1-3340-645. (19)

3.52. Equations of condition of unequal weights; grouping.
In the argument of 3.5 we have assumed that every measure has the

t Cf Phil Mag 22, 1936, 337-59
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same standard error. If the standard errors are unequal, 3.5 (3) will be
replaced by

P00, H) = S oxp(— 86— T e, ()

1
and the exponent is still a quadratic form. It differs from W in so far
as each term of the sum has to be divided by o? before addition.
Consequently the quantities 0,2, or their products by a convenient
constant, are called the wcights of the equations of condition. It will
be noticed that (1) is the same as if we replaced the equations

fr = ¢, +o, (2)
by I S ®

and took each observation as one of of,/o, with the same uncertainty o.
If the o, are known and o is chosen conveniently the formation and
solution of the normal equations will proceed exactly as before.
Evidently the arbitrary o will cancel in the course of the work. This
procedure is convenient as an aid to seeing that the method needs only
a slight alteration at the outset, and is sometimes recommended as a
practical method, that is, it is proposed that the whole of the equations
of condition should be multiplied by their respective o/o, before forming
the normal equations. This has the disadvantage that the weights are
often integers and the multiplication brings in square roots and conse-
quent additional rounding-off errors. It is better to proceed as follows.
If

o
W= %S{Z(airzi*cr)agr(ajrxj—cr)} (4)
W is also equal to '}S(ai,xi—c,){i: (aj,xl—c,)}, (5)
Or
oW 2
and o = Sat,{:—3 (aj,xj—c,)}. (8)

Consequently, if we first multiply every equation of condition by its
weight ¢?/0?, and then form the normal equations by multiplying by
a,, and adding, we get the same equations with less trouble and more
accuracy.

If the o, are unknown and some of them mutually irrelevant there
will be a complication similar to that of 3.41(14). But it often happens
in a programme of observation that some observations are recorded
as made in specially favourable conditions, some moderate, and some
poor. It is usual to deal with this by attaching impressions of the
relative accuracy in the form of weights, somewhat arbitrarily, though
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a determination of the accuracy of observations in the various grades
would be possible if the residuals were classified. Our problem, if the
relative accuracies are accepted, is to obtain an estimate of accuracy
when the o, are not taken as known, but their ratios are taken as known.
We take o as the standard error corresponding to unit weight and
proceed as just described. If w, = o?%/o? is the weight of the rth observa-
tion the term Sc;? in 3.5 (29) will be replaced by Sw, c;2. The only change
in the method of estimating o is therefore that in forming s as in 3.5
(37) we must multiply each c;* by the weight of the observation.

The observations often fall into groups such that within each group
all the a;, are nearly the same. The extreme case of this condition is
the problem of 3.44, where for the ith station a,, = 1 if the observation
is at that station and 0 if it is at any other. In the determination of
an earthquake epicentre from the times of arrival of a phase at different
stations, the stations fall into geographical regions such that within
any region the time of arrival would be altered by nearly the same
amount by any change in the adopted time of occurrence and the
position of the epicentre. It then simplifies the work considerably to
form an equation of condition for the mean position of the stations in
the region and to use the mean c, for it. The standard error of the latter
will be o/Vn,, where n, is the number of stations in the region, and
therefore it supplies an equation of condition of weight n.. The normal
equations will be nearly the same as if all the stations were used to
form separate equations of condition. All the residuals are still available
to provide an estimate of o, which will be on n—m degrees of freedom
just as in the treatment without grouping. If we chose to use the
method described in the last paragraph we should get the same least
squares solution, but only the mean residuals in the groups would be
available to provide an estimate of uncertainty, which would therefore
be on many fewer degrees of freedom.

3.53. Least square equations: successive approximation. It
often happens that a large number of the coefficients in the normal
equations are small or zero. In the extreme case, where all coefficients
not in the leading diagonal vanish, the equations are said to be orthogonal.
In the other extreme, where the determinant of the coefficients vanishes,
the solution is indeterminate, at least one unknown being capable of
being assigned arbitrarily. In all intermediate cases the determinant is
less than the product of the diagonal elements; if it is much less, the
solution may be called badly determined. The solution can, in theory,
always be completed on the lines of 3.5, but it often happens that there
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are, effectively, so many unknowns that it is desirable to do the work
piecemeal. Two methods of successive approximation are often suitable.
Consider the form
2W = by a3+ 2by, ) 2o +-byy 2 +... —2dy 1, —2d, 2, —... e, (1)
and the normal equations
b %y +bie Tyt = dy, (2)
bxle+bzz$z+ = da: (3)

We can proceed by the fo]]owmg method due to von Seidel. In (2) neg-
lect all terms in z,,... and take, therefore, z, = d,/b,,. Now if all the
z’s are 0, 2W = e. If we take x; = d,/bu and all the others 0,

2
ow A2, 4)
by by
so that this substitution always reduces W. Now make this substitution
in (3) and neglect z,, z,,.... Then we have the approximation

by % = dy—bypdy /by, ®)
and W is reduced by a further amount
1 bypd,

_— d 12 ) 6

sl ©

So we may proceed, substituting in each equation the approximations
already found. On reaching the end we begin again at the first equation,
using the first approximations for x, to z,.. Since W > 0 and is diminished
each time the process must converge, and often does so very rapidly. An
analogous method has been given by RV Southwell and A N. Black
under the name of the progressive relaxation of constraints, from an
analogy with problems of elasticity.}

The following method is sometimes quicker but does not necessarily
converge. Begin by transferring all terms of the normal equations to
the right side, except the diagonal terms, thus:

by xy = dy—byy x—byz23—..., (7)
bop Ty = dy—byp ;. —bpy 23—..., (8)

The first approximations are &, = d,/b;;, €, = d,/b,,, and so on. Substi-
tute on the right to obtain a second approximation, and proceed.
Failure of the method will be indicated by failure of the approximations
to tend to a limit. In both methods it is a saving of trouble to make

1 Proc Roy Soc A, 164, 1938, 447-67, also Southwell, Rel 1on Methods in Engis
ing Science, 1940; Relazation Methods in Theoretical Physics, 1946
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a preliminary table of all the ratios b;,/b,;, b,5/bys,... S0 as to be able to
give at once the correction to any unknown due to a change in any other.
Evidently the rate of convergence in both cases will depend on the
latter set of ratios. As an example consider a set of equations
z) = 1—kx,—kx,
Xy = —kxy—kzy ). 9)
Ty = —kx,—kx,
The second method gives (1,0, 0) as the first approximation, (1, —k,—k)
as the second, (14 2k?, —k-+k?, —k--k?) as the third, and so on. The
second approximation always decreases W, the third decreases it if
—0-39 < k < 0-64 but otherwise increases it.
Seidel’s method, applied to the same set of equations, gives in turn
z =1, T, = —k, Ty = —k+k?
x;, = 14-2k2—K3, Ty = —k+k2—k34-k4,
The correct solution, to order k3, is
xy = 142%2—203, @, = my — —k+k2— 342, (10)
The chief usefulness of these methods is in the estimation of many
unknowns when some of them occur in only a small fraction of the
equations of condition. The method of Southwell and Black has been
applied, for instance, by the Ordnance Survey to problems where the
work is laid out in many stages T Each point gives rise to equations
of condition connecting its position with those of the points observed
from it and those it is observed from Any displacement of its adopted
position appears in no equation of condition for a point two stages away,
or more, and most of the coefficients in the normal equations are there-
fore zero. Hence the points can be adjusted in turn, beginning with
those observed from the base-line. A modification of the second method
was used by Bullen and me in the construction of the times of the P
wave in seismology & Here for each earthquake used there were three
special parameters, namely, the latitude and longitude of the epicentre
and the time of occurrence. The other parameters to be found were a
set of corrections to the trial table at such intervals that interpolation
would be possible What was done was to use the tiial tables to deter-
mine the elements of each earthquake as if the tables were right. The
residuals were then classified by distance to give corrections to the
tables The process was then repcated with the corrected tables as a
standard. No change was needed after the third approximation. One
advantage of these methods is that they are iterative and therefore
1 The Observatory, 62,1939, 43, 1 Bur Centr Séism , Trav Sci,Fasce 11, 1935
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self-checking; another is that they break up the work into parts and
avoid the need to form and solve what would in this case have been
normal equations for about 150 unknowns. The difference from the
simple statements of the rules given above is that two or three un-
knowns are adjusted at once instead of only one

An estimate of uncertainty can be obtained as follows. Remembering
that the standard error of z, is o(B,,/D)": and that B,,/D is the value
found for x; on putting 1 on the right of the normal equation for x, and 0
in all the others, we need only make this substitution, solve by iteration
for each parameter in turn, and the standard errors follow at once.

3.54. The following data, given by E. C. Bullard and H. L. P. Jolly,
provide a more complicated instance of the method. The unknowns
are the values of gravity at various places. In general gravity is not
measured absolutely, but the difference between the periods of the same
pendulum when swung in different places is found, thus giving an esti-
mate of the difference of gravity. This is referred to a standard value
for Potsdam, where an absolute determination exists. In the following
set of equations of condition, therefore, absolute values refer to stations
compared directly with Potsdam, the rest are differences. Bullard and
Jolly took De Bilt as given, but it appears that the comparison of De
Bilt with Potsdam has an appreciable uncertainty compared with those
of some of the English stations, and it seems best to treat it as an
additional unknown. The unknowns are then:

The unit is 1 milligal = 0 001 cm/sec?

t M N.R.AS, Geophys Suppl 3, 1936, 470

M

9o, De Bilt. g, Greenwich, Record Room.

gy, Greenwich, National Gravity Station. g5, Kew.

gs» Cambridge, Pendulum House. g5, Southampton.

The equations of condition are.
Observer Date

Putnam 1900 g, = 981188 (1)
Putnam 1900 gs = 981200 (2)
Lenox-Conyngham 1903 gs—g, = +14 (&)
Meinesz . 1925 g4—Ggo = —3 (4)
Lenox-Conyngham and Manley 1925 g4—9gs = +647 (5)
Jolly and McCaw 1927 gs—gy = —03 (6)
Miller 1928 g, = 981188 8 (@)
Jolly and Willis . 1930 +742 (8)
Willis and Bullard 1931 = 4653 ()
Jolly and Bullard 1933 = +1431 (10)
Bullard 1935 = 41390 1y
Meinesz 1921 = 981267 (12)
Meinesz 1925 go = 981269 (13)
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A main source of error is known to be change of the mechanical proper-
ties of the pendulums during transport. Hence all the equations will
be taken of equal weight except (6). For this the stations are only
300 metres apart and at nearly the same height, and the difference can
be calculated more accurately than it can be measured. I take

ga—g; = +0-0001,

Determinations of differences of gravity between some of the stations
and the National Physical Laboratory have been made by means of
static gravimeters, and are much more accurate than the pendulum
observations when the distances are not too great. For illustration we
therefore denote gravity at the N.P.L. by g;, and have the relations

¢ =gr—59,
9> = gr—58,
g3 = g9r+67.

Then we can eliminate g,, g,, g, at once and get the equations in the
second column below.

Cale. 1 Cale 2 0—C (0—C)2
(1) gp = 9811939 98M930 gr= +09 +11 —02 00
(2) gr = 9811933 981193 0 gr = +03 +11 —08 06
(3) +126= 4120 +126 0= —-06 00 —06 04
(4) gi—go= —30 -30 gi—gs =100 —-05 405 02
(5) ga—gr= +T14 +720 gi—gp = —06 —19 +13 17
(7) gp = 981194 6 9811930 g7 = +16 +11 +05 02
(8) gy—gr= +684 4720 gi—gyr = —36 —16 —17 29
(9) gr—gs= +711  +690 gr—gi=+21 420 +01 00
(10) gi—gs = +1431 41410  g—gi— +21 401 420 40
(11) ge—gs= +1390 +1410 gi—gs = —20 +01 —21 434
(12) g, = 9812670 9812680 gp = —10 ~03 —07 05
(13) go = 981269 0 9812680 g5 = +10 ~03 413 17
16 6

These suggest the trial values

9o = 981268 0, (14)

gr = 981193.0, (15)

g4 = 981265-0, (16)

gs = 981124-0, )]

and the calculated values based on these are given as Calc. 1. The
equations in the next column are the equations of condition for the
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corrections. The formation of the normal equations proceeds as follows.
We can temporarily suppress the accents.

gr =+09
gr =403
go—gs =00 9i—90 =00
gr—gy = +06 gi—gr = —06
gr = +16
gr—g, = +3:6 gi—gr = —36
gr—gs = +21 gs—gr = —21
9a—gs = +21 gs—gs = —2:1
gi—gs = —2:0 g5—9gy = +20
go= —10
go= +10
67  —2¢— gs= +91 (18) | gr—033g,—017g; = +152:4£061 (22)
3g0— 9s = 00 (19) '
—2gp—go+59,—29s = —41 (20) | 297—0679,—0-33g; = +30
—or  —2+3=—22 (2D ]

To solve, divide the first equation (18) by 6, add twice the result to the
third equation, and add the result to the fourth, thus eliminating g;.. Then
39 —a = 00 (23) | go—0-33g, = 0-04-0-87 (26)
—go+433g,—2-33g;, = —1-1 (24)
—2-33g,+2:83g, = —0-7 (25)
4:009,—233g; = —1-1 (27) ga—0-58g; = —0-28+0-75 (29)
—2:33g,+2:83g, = —0-7 (28) | 2:33g,—1-35g; = —0-7
1-48g, = —1-4 (30) gs = —0-9441-23. (31)
The solution is then
gy = —0:94, g,= —08l, gy=—027, gp=-+110. (32)
The calculated values based on these are given as Calc. 2 in the second
table and are followed by the residuals O—C. The last column forms
the sum of squares. This is 16-6 for 12 equations, from which 4 un-
knowns have been estimated, hence
8 = 16-6/(12—4) = 2:1; s=15. (33)
The estimated standard errors of the four linear functions found in the
solution are then 1-5/v6, 1-5/v3, 1:5/44:00, 1-5/v1-48. These are entered
in the respective places. Then

85 = 4123, (34)
8¢ = 407540 58 1:23 = 4103, (35)
8 = +0-8740-33 %103 = +0-94, (36)

8gp = £0-614-0-33(8g,— 0-588g;)+0-198g5 -+ 0-173g;
= 40-6140-25--0-44 = +0-79, (37)
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and finally gp = 981194-104-0 79

go = 981267-734-0 94
g, = 981264 19-+1-03
gs = 981123-06--1-23

The normal equations (18)-(21) can also be solved by relaxation.
We do not try to obtain more than one figure at a time. A first approxi-
mation, reducing the two largest terms on the right, is gy = +1,
g4 = —1. The left sides become Calc 1 and we form O—C (1).

(38)

o0-C o-¢C 0-C 0-C 0-C

Calc. 1 (1) (2) (3) (4) (5)
6+2=38 +11l+l +01}| —04 +05| —01 00
+1=+1 —10; —10; —09-02=-11 401} 401 401
—2—6=—7 +29|+2 409 | +03+4+10=+13 —04| —-02 00
-142=41 -32|-3 —-02| —04 +02 | 403 00

At the second stage the two largest residuals are approximately removed
if we take g; = —1, leaving O—C (2). Then try increasing g, by —0-3
and g, by +0-2, giving O—C (3) Then in turn take gr = 401,
gs = +0-1. The residuals are almost removed, and by adding the
contributions we have

gr=+11, g,=—-03, g,=—08  gy=—09.

All these are right within 0 1.

To get the uncertainties, first determine s as before. Put 1 on the
right of the first equation and 0 on the right of all the others, and solve
for g, by the same method. This gives g, = 0-27, and

sp = 15/(027) = 0-78,

A similar procedure determines the other uncertainties. Do not forget
to take the root!

The method of relaxation involves more steps than the direct solution.
On the other hand each approximation reduces the residuals, and the
successive steps need less arithmetic as we proceed.

3.55. The following problem, and various extensions of it, have often
occurred in astronomy. There are cases where a group of stars can be
assumed all to have the same parallax, the estimates from any star
separately are comparable with their standard errors, but the mean of
all is substantially more than its standard error. The physical restriction
here is that a parallax cannot be negative It is substantially less than
the standard error of one observation, and we may adopt a uniform
prior probability over positive values. If, then, « is the gencral parallax
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and a,, s, are the separate estimates with their standard errors, the
number of observations in each case being large, we have

P(day...da, laH)ocexp{ Z(a_a')}dal...da,,

and Pda|Hyccda (a>0); =0 (a<0).
Then
(a—a,)?
P(da |ay...a, H) oc exp[— > 28 }da @>0), =0 (x<0).

The posterior probability of « is therefore a normal one about the
weighted mean by the a,, but it is truncated at « = 0.

The treatment of such problems has given rise to some discussion.
In the conditions of the problem some of the estimates a, are usually
negative. These have sometimes been rejected as impossible, and a
mean is taken of the positive ones. Then the rejection of a large frac-
tion of the negative random errors biases the mean by an amount com-
parable with the standard error of one determination. We are entitled
to allow for the impossibility of a negative true parallax, but this can
only be done at the end when we take the prior probability into account.
If only one star was in question we should still be entitled to take it
into account. We must not, however, do it by rejecting factors from the
likelihood. The point is somewhat similar to one that arises in one case
of the combination of correlation coefficients (p. 178), where there is a
constant term in {—z arising partly from the prior probability and partly
from the likelihood. But when several estimates are combined the part
from the prior probability only enters once, while that from the likeli-
hood enters every time. Similar considerations have occurred in the
estimation of the focal depths of shallow earthquakes. Here the depth
h enters through A2; and the least squares solution is liable to give
negative k2. There are two valid treatments possible. One is to take
h as zero in all cases in the estimation of other parameters, especially
the velocities, thus regarding the whole of the estimated values as not
significant. The other is to eliminate & from all the solutions and com-
bine the equations for the velocities. What is not valid is to reject the
cases of negative estimated A* and determine the velocities from the
rest; this gives a bias in the estimated velocities.

3.6. The rectangular distribution. This disttibution is of theoretical
interest on account of the fact that the mean of all the observed values
gives a less accurate estimate of the centre of the distribution than the
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mean of the two extreme observations does by itself. Let the centre of
the distribution be « and the range 20, to be determined. The chance
of an observation in a range dx is
dx/2 — y 1
P(dx]a,a,H):{ #[20 (a—o <z < oato) M
0 (z < a—o, > ato) 2)

The chance of n observations in given ranges is

P(dz,...dz, |, 0, H) = T]T (dx)/(20)", 3)
provided that all the z, satisfy the conditions
a—0o < 2, < ato, (4)

and therefore provided that the extreme observations satisfy them.
Call these z; and z,. We take « and ¢ as initially unknown, and there-

fore P(dado | H) ¢ dadofo (5)
and P(dodo | x,...x, H) oc o-"-1dado, (6)
provided now a—a < X5 ato >z, (7)

These conditions fix the possible joint range of « and o, given the
observations, and apart from the restrictions on the range the observa-
tions do not appear in (6). Hence, with the rectangular law, the two
extreme observations are sufficient statistics for « and o.

Then Pda| ... 2 H) o da [ 0-n-1dr (8)

through the permitted range. But, given «, o must be greater than the
larger of a—=z, and x,—«, the lower limit for o is therefore a—z, if
x> }(x,+2,), and z,—a if « < }(x,+x,). Hence

(a—z) "da (> 32, 42,)), 9)
(xy—a)"da (o < $(x,42)), (10)
with the same constant factor in both cases The posterior probability
for a, therefore, has a sharp peak at the mean of the extreme values.

The constant factor is easily found to be 2-*(n—1)(z,—z,)*t. If n = 2,
we have

P(do|z,...2, H) C {

Pry < a < xy|a, 2y, H)

Yolzy+x2) £2]
= 2n(n— 1)(x2—x,)n-l{ [ @—a)rdat [ (@—z)n da}
_ é. o Ya(xy 22) (11

Thus, if we have only two observations, and « and o are originally
unknown, the posterior probability that « lies between the observed
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values is . This is a general rule for any continuous law of error; we
have already had a case of it for the normal law.

The possible values of «, given o, range from x,—o to 2,+0, provided
the latter is the greater. Then

P(do | zy... 2, Hyoc D=%2E27 4, (12)

onrl
for 0 > }(xy—=x,) The constant factor is found to be
2-"n(n—1)(zy—ay)" L
If n = 1, the range for « is from x,—o to ;- o, and (6) leads to
P(do |z, H) o dojo, (13)

which expresses the same fact as for the normal law, that one observa-
tion can tell us nothing about its own accuracy. It may be noticed
that the probabulity density for ¢ vanishes at o = }(z,—x,) and has
a maximum at o = }(14+1/n)(x,—z,). This is because the extreme
value would require both x, and z, to have fallen at the extremes of
the law, which would be surprising, but it would not be surprising that
they should fall a little within them.

On account of the form of the limiting conditions the posterior
probabilities of « and ¢ are far from independent, any inference that
involves both should proceed from (6) directly. If we want the termini
o = a—o and ay = a0, (6) transforms to

P(dogdoy L2y, x, H) o dog dog/(a—oy)* 1 (o < 2y, 0y > 2,), (14)
whence, for o, > x,,
Pdayjzy .. a, H) = (n—=1)(1y—2)" ;=) " dx. (15)

If we fix limits such that the probability that «, «;, or «, lies between
them has any definite value, the distance between these limits will
decrease like 1/n as the number of observations increases, whereas with
the normal law of error the corresponding distance decreases like 1/vn.
This kind of result usually arises for laws of error with a finite range
where the gradient of the law is non-zero at an extreme, and especially
for any U-shaped or J-shaped law. The rectangular law is merely the
transition from a bell-shape to a U-shape

The use of the mean and second moment as location and scale para-
meters in such cases sacrifices much information For with the rect-
angular law the second moment of the law is 4¢? and the standard
error of the mean of n observations, given o, wil be o'\/(3n), thus
diminishing like 1/vn, whereas any range for a definite probability that
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o lies within it will diminish like 1/n if we use the most accurate methods
of fitting.

3.61. Re-scaling of a law of chance. As many laws do not lead to
sufficient statistics, as the normal and rectangular laws do, it has
sometimes been suggested that it would be beneficial to choose a new
variable whose law will be normal or rectangular. Thus if the law is

P(dz |0, H) = f(w)d_x .
(e o
we can define Yoo jf(flo—‘)d—x,
o (o4 o

and then Pdy|a,0,H) =dylo (a <y < ato)
Similarly we could define a z such that

s ool iz

and the chance of 2 is normally distributed about 8 with standard error o.

It has been suggested that such transformations can be used to
simplify methods of estimation, but they are useless. In the first place,
for given x we do not know the corresponding value of y or z until we
know « and o; and the whole reason for an estimation problem is that
we do not. In the second, if z can be transformed so that

ff(w) dz = fug(y) dy,

then P(dy|o,o0,H) = g(y)dy = f(x) dy,

where dx/dy will also depend on « and o. If values of x are observed,
the correct likelihood factor is T] f(z,). But if instead we use y we shall
get a factor J] g(y,). Thus the two likelihoods will differ by a factor
T1 (dy/dz),.,,, a function depending on « and o for every observation.
It is remarkable that such maltreatment of the likelihood is recom-
mended (but so far as I know not used because it cannot be) by
statisticians who object to the prior probability, which only appears
once in any given problem

3.62. Reading of a scale. The commonest case where errors do not
satisfy a normal law is the measurement of a length by means of a
scale, the positions of the ends being read to the nearest multiple of the
scale interval. Let the length of the object be L units. Two cases arise.
In the first, we place one end of the object at a graduation, say the mth,
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and read the position of the other to the nearest graduation. Then
clearly we shall always record the length as k units, where k is the
integer nearest to L. Hence, for any k,
Pk|LH) =1 (—}< L—k<3}), Pk|LH)=0 (|L—k|>3}).
If n observations are made, and P(dL |H) c dL,

PAL|0H) =dL (—}< L—k<}),

PL|6H)=0 (|[L—k]>}).
In this simple case increasing the number of measurements does nothing
to increase the accuracy of the determination. The posterior probability
distribution is rectangular.

In the second case, we may put one end at an arbitrary position on the
scale, say at m+-y units from one end, where —} < y < 4; if the length
is L = k+z units, where 0 < 2 < 1, the nearest graduation to the other
end will be the (m+k)th if [x4y| < 4, that is, if —} <y < }—=z, and
will be the (m-+-k+1)th if [x+y| > }, thatis, if }—2 <y < §. But

Pdy|H)=dy (lyl<}), PdylH)=0 (ly|>1}
and therefore
P(k|LH) = 1—=z; P(k+1|LH) = z.
If r observations give the value k, and s the value k41, we have
P(6| LH) = (1—z)25;

P(AL | 6H) ¢ (1—a)asde = ‘l"%‘_)' (1—zyas da.
The coefficient of dx is a maximum if
T=—— ==z,

so that the most probable value is the mean of the observed values.

.
(rfs)“} ,, which is not

For r, s large the standard error is nearly {

independent of .

This problem is of some theoretical interest. In practice the peculiar
behaviour of the posterior probability would lead to difficulties in
calculation. These are reduced if we can reduce the step of the scale,
for instance by means of a microscope, so that the error of reading is no
longer the principal source of error.

3.7. Sufficient statistics. In all the problems we have considered so
far, if the number of parameters to be estimated is m, the ratios of the
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likelihoods for different values of the parameters, and therefore the
ratios of the posterior probabilities, involve the observations only
through m functions of the observations and the number of observations.
Only a restricted class of laws have this property. In Fisher’s termino-
logy any function of the observations that might be used as an estimate
is called a statistic, and for laws with this property the functions of the
observations are called sufficient statistics. Thus for the normal law &
and s are sufficient statistics, for the Poisson law and the law for
measurement by difference the mean is a sufficient statistic. The
number of observations is called an ancillary statistic, in general such
statistics are said to give no information directly about the parameter,
but to throw additional light on its precision.

Fisher’s definition is different, he defined a set of statistics as sufficient
if the probability of any other function of the observations, given the
parameters and those statistics, is independent of the parameters This
can be proved from the above definition as follows. Let a summarize
the parameters, a the sufficient statistics, and 8 the observations, and
let b be another function of the observations Then

P(a|6H) = P(x|aH) = P(x|abH).
The last step follows from the fact that if there are n observations and
m parameters, ab involves m--1 data, and other n—m—1 data would
fix all the observations and reproduce P(x|6H). But these other data
are irrelevant since the result will always be P{x|aH) and therefore
they can be omitted by Theorem 11 (p 50), leaving P(«x |abH). Then
P(alaH) == AP(x|H)P(a|«H),
P(x|abH) = BP(x|H)P(ab ,«l),
where 4, B are independent of « Hence
Plab!aH) = (A/B)P(a/oH)
But P(ab|aH) = P(b!aaH)P(a |aH),
hence P |oaH) = (4]B),
which is independent of « (but of course depends on @ and b).
Gauss’s proof that (in modern language) if the arithmetic mean is a
sufficient statistic the normal law holds, assumes that the probability
of a deviation is a function only of the deviation Ifit is also a function

of the parameter the result no longer holds, a generalized form is given

by Keynes t
1 Treatisc on I'robobility, 1921, p 197 Macmillan
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If P(dz |aH) = f(x,«)dx (1)
then S,} g{; =0 (2)
is equivalent to S(x,—a) =0 3)

for all z, if and only if there is a A such that
(}g) —Xz,—a) =0, (4)
oaf,

for all z,. But since the first term contains only one value of r, A cannot
involve any other x,, say x,., and similarly, writing » for r, we see that
A cannot contain z,. Hence A must be a function of « only, and

}Sﬁ =) (5)
say. Integrating we have
logf = 2 d(e)—a(a)+ [ $(a) da +4(a), ®
which may be written
logf = (z—a)p'(c)+pler) +3h(). (W)
For the normal law in the form (with o fixed)
logf = —}log 2m — logo — (1:—:)2,

lx
Y(x) = —iﬁ—%log%r——logo,

plo) = 5 =
For the Poisson law
Pim|rH) = — e"
we find u(r) = rlogr—r, n[:(m) = —logm!
For the measurement by difference we had a binomial law

P(mnzH) = -

e

log P = log™ m+n(%n-x)log T;——x+ nxlogz+n(1—z)log(l—z),

wx) = nlogl—i—i; u(x) = nxlogx+ n(l—=z)log(l—x)—n,
Y(m) = log"C,,.
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These reductions are due to M. S. Bartlett.} The argument assumes
the law differentiable with respect to the parameter, and the form (1)
containing dz implies a continuous distribution of chance. For laws
admitting only a discrete set of values of the observable, as for the
Poisson and binomial laws, the modification is immediate. For laws
where the parameter itself can take only discrete values the argument
breaks down because the greatest likelihood will not in general occur
at a value giving zero derivative.

3.71. The Pitman-Koopman theorem. A much more general
theorem was proved by E. J. G. Pitman} and B. 0. Koopman§ almost
simultaneously, namely that a necessary and sufficient condition that a
law of chance may possess sufficient statistics vs that it can be put in the form

S (@ gy 2) = Blotg,enes () €XP Y, Ug()y(). (1)
¢ is of course determined by the condition that the sum over z must
be 1. They assumed differentiability with regard to both z and the
parameters, Pitman took only the case of one parameter, but did
specially the case where, given the parameters, f vanishes for some
range of z. Koopman did the case of several parameters. The sufficiency
of the condition is seen easily. For n observations

Hfr = ¢" H Plx,) exP{Z Ug(ar) S vs(xr)}‘ (2)
When these likelihoods for different values of the « are compared, the
J(x,) factor cancels, and the observations appear in the ratio only
through the m sums S v, (x,). But this does not need any differentiability.
To prove necessity in the general case we write
log L == Sg(x,, o, ag,..., %)

= O(a,, Ay,.. , Qpy, Ay, Agyeey Ap) -+ X(Ty, Tgy ooy ) 3)
and write for shortness « for a,,..., o, @ for a,,..., a,,, where the a, are
functions of the observations. We also write A, for difference for a
change of «,, D, for a given change of z,.

Note that we are taking » > m, that sufficient statistics a,, functions
of the observations, are assumed to exist, and that there is no functional
relation between them. Then any set of m independent functions of the
a, also would be sufficient statistics, since they could be calculated from
the observations and the a, could be calculated from them.

Take a set of standard values o, for the o, and make permissible
changes of the «, one at a time. (Where the o, can take only discrete

t+ Proc Roy Soc A, 141, 1933, 524-5

$ Proc Camb Phil Soc 32, 1936, 567-79
§ Trans Amer Math Soc 39, 1936, 399-509
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values these must be at least equal to the least difference between
admissible values.) Then if A log L is given (for given z) for all changes
o to ag+A; we have m equations for a,, with solutions
a, = J D, Sg(x,,a),00,A} (£ =0,1,..,m) 4)
At least one set of solutions must exist, namely the prescribed values
of a,, but there might be other solutions, which might depend on «,
and A. But one solution at least does not depend on o, and A. Then
we can transform a; and take
a, = {8, 8g(=,, Naote = Sv5(;) (5)
say. We retain the form (2). Then
log L — log Ly = 8 g(x,, «)— S g(z,, o)
= O(a, 0)—D(a, o)
= O{S v (z,), o} —D{S v,(x,), xo}
= W{Sv(z,), a} (6)
say. Now make a permissible change of z, to z,+*,,

D, g(x,,x)—D, g(z,, %) = Dr‘ylk‘:élvs(xk)}- (7)

The left side does not depend on any z, for ' % r or on its variation.
Hence the same is true of the right. But this depends only on changes
of the v,(x;), and varying x,. would make equal changes of Sv,, and
therefore unequal changes of the two values of ¥ subtracted, unless ¥
(for given «) was linear in the Sv,. The changes could not cancel identi-
cally since there is no functional relation between the Sv,. Then

O(a,0)=D(a, xp) = 3 us(ex) Svy(,)+pla) (8)
and since this is identically equal to S g(z,, «) — Sg(z,, ¢y) we must have
9@ @) = 3 uylo) vy(x,) + () +9(2,, o), 9

which gives (1) when we take exponentials.

For some laws certain values of z may be impossible for some values
of a parameter and possible for others. For impossible ones log L will
be —oo and the solution (4) becomes indeterminate. For the case of one
parameter « and a law with a finite terminus the law is

>
P(x|aH) = {f(x»a)>0 (x/‘l)}. (10)
(r <a)
Suppose there are two observations, z, > z, Then
L = f(xy,0)f (25, @) (1)

and vanishes for z; < «, but is positive for z; > « Then varying z,
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cannot alter this property, and if there is a sufficient statistic it must
be z,, since increasing a through z; makes a discontinuous change in L.
Comparing two values of « we have
L(xlv Zay al) — f(xl: al)f(xzs a|) s (12)
Lixy, 25, 00) S (@), ) f (03, og)
which must be independent of x,. Hence f(,, o,)/f (x5, a,) is a function
of &, a, only; and therefore it must be of the form h(q,)/h(x,), and

S @y, @) = h(x) g()- (13)
But =, is restricted only by z, > z; > o; thus this must hold for all
z, 2 «, and therefore
= _ 9@
S, a) = hla) g(z) = So(@ (z = o), (14)
the sum being over admissible values of .
This result is due to Pitman. An extension to the case where other
parameters are present has been made

3.8. The posterior probabilities that the true value, or the third
observation, will lie between the first two observations. Let us
suppose that a law of error is given by hf{h(z—a)}dx, where f may
have any form and & plays the part of the precision constant, or the
reciprocal of the scale parameter. Put

[f@de=F@), Feo)=1 1)
If « and A are originally unknown, we have
P(dxdh | H) oc dadhfh, (2)
P(dz dx, | o, b, H) = h2f {h(x,— o)} f{h(2;— )} dz, dz,, (3)
and P(dadh |2y, ,, H) oc b f{h(z;—a)} f{(xy—a)} dadh. 4)

The probability, given z, and z, (x, > =,), that the third observation
will lie in any range dz,, is

P(dy | 220, H) = [[ Pldeydadh |2y, z,, H), (5)
integrated over all possible values of o and &,
« day [ [ B3f {h@,— 0} f {h(zs—)}f {h(zs—a)} dodh. (6)
Let us transform the variables to
0 = hx;—a), ¢ = h(zy—a). (7

The probability, given z, and x,, that « is between them is I,/,, where
+ H Jefireys, l'roc Camb. Phil Soc 56, 1969, 393-5
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I, and I, are got by integrating (4) from 0 to co with regard to A, and
respectively from z, to , and from —o0 to co with regard to «. Then

0 o
w—z)hoc [ [£(0)f($)dodd = FO}1—F(0)}, 8

~® 0

(@m—z)hac [ [f(0)f(¢)dods = [ f(O1—F(0)}db =1—} = 1.
~wf ~ (9)
Hence LI, = 2F(0){1—F(0)}. (10)

If then F(0) = }, the ratio is }. In all other cases it is less than }.
Referring to (1) we see that F(0) = } is the statement that for any
given values of « and % an observation is as likely to exceed « as to
fall short of it There will be such a value for any continuous law of
given form. Hence, if we define the true value to mean the median
of the law, then the probability, given the first two observations, that
the true value lies between them is 4, whatever their separation. If we
chose any other location parameter than the median of the law, and
the law was unsymmetrical, the ratio would be less than . This is a
definite reason for choosing the median as the location parameter in
any case where the form of the law is unknown. We have already
obtained the result in the special cases of the normal and rectangular
laws.

The probability that x, will lie between z, and x,, given the latter,
is I/I,, where

EY

j 12 {h(z, — )} f {h(my— o)} f {25 — )} dcdhdy (11)

z

8 *8

8"“‘8

f hf{h(x,— )} f{h(x— ) F{h(x;— x)} — F{h(x,—a)}] dadh
0

f f 7OV G F($)—F6) dods
- @

= 2 — Xy

- j [4/ (01— 0} —f OYFO){1 — F(0)}] do
1
1

—1_ 12
Ty - ¢ F 6(12—1‘1) 2
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8 '88"88 =38 S—ta

| B @~} (hzy— o} f (hlary— )} dodhdz,  (13)

hf{h(zy—a)} f {P(@y—)} dadh

I

=1f
1

I

[ [1@17@) asig
]

[sO0-F@) 0

I

— l M
2(z,—zxy)
whence L/, =1 (15)

Thus, if the location and scale parameters are initially unknown, the
probability that the third observation will lie between the first two,
given the first two, is § whatever the separation of the first two.

The converse theorem to (10) would be that if the posterior proba-
bility that the median of the law lies between the first two observations
is § whatever their separation, then the prior probability for # must
be dhfh. If it was A(bh)dh/h, where b is a quantity of the dimensions
of « or of 1/h, the ratio I;/I, would involve b/(x,—z,) and could not be
the same for all values of z,—z,. The only possible modification would

(14)

therefore be P(dodh/H) oc kvt dadh. (16)
The question is whether y is necessarily 0 for all admissible forms of
f(2). If we put h{b(zgt-2,) —a) = ¢, an
h(z,—x,) = 5 (18)
we find  Af{h(z,— o)} f{h(x,—a)}do = —f(t—s)f (t+s)dt, (19)
and (16) in place of (2) will lead to
L—the | (2 j - j )h’/f(t—s)f(t-{—s) didh. (20)
0 -8 -
Put (2j— f )f(t—s)f(t-l—s) dt = G(s). 2y

Then our postulate reduces to

j 8 G(s)ds = 0, (22)
0
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and we know from (10) that this is satisfied for all z,, z, if y = 0.
A sufficient condition for the absence of any other solution would be
that G(s) shall change sign for precisely one value of s; for if this value
is 8y, we shall have ©
f 8% G(s) ds = 0, (23)
0

and for positive y the integrand in (22) is numerically larger than in
(23) when s > s, and smaller when s < s, Hence (22) cannot hold for
any positive y, and similarly for any negative y. It has not been proved
that G(s) has this property in general, but it has been verified for the
cases where f(z)coc exp(—32?), f(z) = —}exp{—iz|}; f(z) =14 for
—1 < z < 1, and otherwise = 0; and for a remarkable case suggested
to me by Dr. A. C. Offord, where

f(z) = 1/222 (2] > 1), fz)=0 (2] <1)

The property has an interesting analogue in the direct problem. Start-
ing from (3) and putting z,+x, = 2a, z,—2, = 2b, we find

f{hla—b—a)} f{hla+b—a)}da
[ W hia—b—a)fihia+b—w) da

P(da |bahH) = (24)

The condition that r, —a and x,—o shall have opposite signs is that
la—a] < b Hence for any b we can find the difference between the
chances tha! two observations with separation 26 will have opposite
signs or the same sign, and it is a positive multiple of

1] ©
(2 f - f )hf{h(a—b——a)}f{h(a+b—a)} dla—a) = G(hb). (25)
b e

The fact that the integral of G(kbd) over all values of b is zero means
simply that the probabilities, given the law, that the first two observa-
tions will be on the same or opposite sides of the median are equal.
Yor large b there will be an excess chance that they will be on opposite
sides, for small b on the same side, and for continuous f(z) there will
be a b such that the chances are equal. The result required is that
there is only one such b, this appeared highly plausible but, as stated,
had not been definitely proved. However, on consultation, Professor
Littlewood produced a counter-example of a law where (7(s) changes
sign arbitrarily many times. The question therefore remains completely

open
P N
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3.9. Correlation. Let the joint chance of two variables « and y be
distributed according to the law

P(dxdy|o,7,p, H)

= ! ¥ 2pxy

= Smar(1—p)h p{2(l —Pz)(°2+ dzdy. (1)
Then the joint chance of n pairs (z,, ¥;), (Ta, Yo)s---r Ty, ¥y) is
P@|o,r,p, H)

- expl— 1 (822 Sy*
T (2mor)r(1—p?)hn 13 2(1_,,2)\;&‘ -

_@?)}dxldy,...dx,,dy,,.

@)
Put Sz? = ns?, Sy? = ni?, Szy = nrst. Then s, ¢, and r are sufficient
statistics for o, 7, and p.

We take o and 7 as initially unknown. In accordance with what
appears to be the natural interpretation of the correlation coefficient,
3(14p) may be regarded as a sampling ratio, being the ratio of the
number of components that contribute to x and y with the same sign
to the whole number of components. Thus the prior probability of p,
in the most elementary case, can be taken as uniformly distributed, and

P(dadrdp | H) oc dodrdplor. (3)

If p is near 41 or —1, we may expect the rule to fail, for reasons
similar to those given for sampling. But then it will usually happen
also that one component contributes most of the variation, and the
validity of the normal correlation surface itself will fail. The best
treatment will then be to use the method of least squares. But in the
typical case where the methods of correlation would be used we may
adopt (3). Then, combining (2) with (3), we have

P(dodrdp |6H)

T oT

o=y <P {2(;_*;2)(% Lm»w, @

oT
The posterior probability distribution for p can be obtained by the
substitution, due to Fisher,

¥ T8 ()
aT ot
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st & _ Ao,7) _ st
whence = A= ae~P, 3_(;,_/35 =5

(8)

Pldp ! rr an-1 no
(dp | 0H) c dp (l_pg)lmexp —p (cosh B—rp)} dad
0 -

@

(1—p?)¥m
—— B, 7
OCdpf(coshl‘-?—-/)r)" A @

0
since the integrand is an even function of 8. At this stage the only
function of the observations that is involved is 7, so that r is a sufficient

statistic for p. If we now put

_ l—pr
cosh B—pr = Ty (8)
the integral is transformed into
1
— p2) — -1
U=pt™ [Ty 41 rpyus da. (9)

(1—pryr=e J A(2u)

Since r and p are at most equal to 1, we can expand the last factor in
powers of u, and integrate term by term, the coefficients being beta
functions. Then, apart from an irrelevant factor, we find

(1—p?)'n
P(dp |6H) o< msn(Pr)dP» (10)
—ap L e, 183 (_.1+'P’ ; 1
where  §,(pr) = 1+ r 5k s (2 )+ .y

a hypergeometric series. In actual cases 7 is usually large, and there
is no appreciable error in reducing the series to its first term. But the
form (10) is very asymmetrical. We see that the density is greatest
near p = r, but since p must be between 41 there must be great
asymmetry if r is not zero. This asymmetry can be greatly reduced by
a transformation, also due to Fisher,

tanh{ = p, tanhz = r, { =24z, (12)
50 that the possible values of { and z range between 4-co. This gives
24
PdL|6H) o cosh”+2{ cosh®~"2z(1 —tanh z tanh {)-'%

ar

« cosh®{ cosh—2z cosh™—"ez’ 3




176 ESTIMATION PROBLEMS 111, § 3.9

a power of coshz having been introduced to make the ordinate 1 at
x = 0. The ordinate is a maximum where

—%[%logcosh {+(n—3%)log coshx] = 0, (14)

or —4tanh{—(n—4)tanhz = 0. (15)

When n is large, x is small, and we have, nearly,

5r
= — 16
x on (16)
The second derivative is
— §sech?,— (n—3})sech®x = —n, nearly. (17)

sech { can range from 0 to 1, so that the second derivative can range
from —(n—}) to —(n+2). Hence for large n we can write

5r 1
t:z—é—ii% (18)

The distribution (13) is nearly symmetrical because the factor raised to a
high power is sech z, and it can be treated as nearly normal. Returning
now to the series S,(pr), we see that its derivative with regard to p is of
order 1/n, and would displace the maximum ordinate by a quantity
of order 1/n? if it was allowed for. But since the uncertainty is in any
case about 1/vn it is hardly worth while to allow for terms of order 1/n,
and those of order 1/n? can safely be omitted.

In most cases where the correlation coefficient arises, the distribution
of chance is not centred on (0, 0) but on a pair of values (a,b), which
also have to be found from the observations. Then we must take

P(dadbdodrdp |H) ¢ dadbdodrdpfor (19)
and replace z and y in (1) by x—a and y—b. Then

—a)? —b)2 — —_—
U R ST

oT

» (20)

o? 72 oT o 72

_ n{(a-—i)z +(b—y)2_2p(a—i)(b—g)} +n(32+t_2_2prst)
oT
where now
nE = Sz, ny = Sy, ns? = S(x—1I)?, nt2 = S(y—9)3,

nrst = S(x—z)y—7). 21
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Then
P(dadbdodrdp |H)

1 n ((@a—B)? , (b—9)? 2p(a—F)(b—7) B
* (o7)"+1(1—p?)en exp[2(1-—P2){ o2 + 2 or }
n_ (& 2pr8t
-5 (I_Pz)(;g )]dadbdodfdp 22)

Integration with regard to @ and b then gives

1 . —n_(s¢ £ 2prst
| L
(23)

Applying the transformations (5) and integrating with regard to « and 8
will therefore only give an irrelevant function of n as a factor and
replace # in (10) by n—1. Hence, in this case,

1_ 2)lha(n—1)

o Soeater) dp (24)

)n—’/z

P(dodrdp|0H)cc

P(dp|6H) oc

and, to the order retained, { wnll still be given by (18). A slight change
may perhaps be made with advantage in both cases. In the former,
if » =1, r will necessarily be 41 whatever p may be; in the latter
this will hold for » = 2. A permissible change will express this
indeterminacy by making the uncertainty of { infinite in these cases.
Thus in the former we can write
5r 1
t= gt gy (25)

and in the latter {= (26)

5r
ot Jn—2)
Fisher’s theory of the correlation coefficientt follows different lines,
but has suggested several points in the above analysis. He obtains the
result that I should write

Pdr|a,b,o,, p, H) o (1— p2)en=1)(] —72)'n-8)

(1__ pr)n—’h
and as this is independent of @, b, o, and = we can drop these and replace
the left side by P(dr | pH). Also if we take the prior probability of p
as uniformly distributed, since r and dr are fixed for a given sample,
this leads to

S,_y(pr)dr, (27)

(1 _Pz)lle(n—l)

= S,-1(pr) dp, (28)

P(dp | rH) o

t Biometrika, 10, 1915, 509-21, Metron, 1, 1921, part 4, pp 3-32
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which is identical with (24) except that the complete data 6 are replaced
by . This amounts to an alternative proof that r is a sufficient statistic
for p; the data contain no information relevant to p that is not contained
in r.}

The bias shown by the second term in (25) and (26) is usually negligible,
but requires attention if several equally correlated series are likely to
be combined to give an improved estimate, since it always has the
same sign. The question here will be, how far can the series be supposed
mutually relevant? We cannot combine data from series with different
correlation coefficients. But if the correlation is the same in all series
we still have three cases.

1. a, b, o, v the same in all series. Here the best method is to combine
the data for all the series and find a summary value for » from them.
The second term in { will now be —57/2 3 n, which will be utterly
negligible.

2. a, b different in the series, o,  the same. Each pair (a,b) must
now be eliminated separately and we shall be left with

1
P(do d‘rdp[ 0H) o (a.,-)‘-‘(n—l)u(l _PZ)‘Iz n-1)

1 [Snst Sna2 2p3 nrst
XeXP{ e )( +—~1_2————6—;_—)}d0d7dp. (29)

The data, therefore, yield a summary correlation coefficient

_ mrst
(2 ns?)B(3 ni?) 30
and we proceed as before, the second term will be —5R/2 Y (n—1).
3. a, b, o, 7 all different. Here o and r must be eliminated for each
series separately, before we can proceed to p. In this case we shall be
led to the forms

X

(1_ 2) /2 Xn-1)
H (1 pr)m= =i “P
df
cosh™#+2{ T cosh»~"~({—z)’
where p is the number of series. The solution will therefore be, approxi-

P(dp |0H) oc (31)

P(d{|6H) oc

(32)

mately, 3 (e—§)f = 3 (n—3)2—(4p+2)tanh (33)
or, if we take Z as the weighted mean of the values of zand tanh Z = R,
{=Z— ip+2 1 (34)

o PE S ey

1 Proc Roy Soc A, 167, 1933, 464 75
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The accuracy is similar to that of (18). The bias shown by the second
term will in this case persist, and must be taken into account if many
series are combined, since it will remain of the same order of magnitude
while the standard error diminishes. This point is noticed by Fisher.
The 2 in the numerator comes from the fact that if P(dp|H)c< dp,
P(d¢ | H) oc sech®,d{. It therefore only appears once and its effect
diminishes indefinitely as series are combined, but the extra } in (26)
comes from the likelihood and is repeated in (34) by every series.

If o and r in the correlation law are originally known, (4) will be
replaced by

1 n s2 1 2prst
P(dplBH)oc-(T_-—P-z—)mexp{ ot 2)( i 7)}dp. (35)

Callis
Thus r is no longer a sufficient statistic for p; s and ¢ are also relevant.
The maximum posterior density is given by

. aTst __1 __r__St__ 36
pP--pt— +p( St ) — =0 (36)
If r is positive, this is negative for p = 0, and equal to
s 8 2rst
S —— 7
o2 12 o7 S
for p = -1, and this is positive. For p = r it is equal to
st 12 t
G+ -2)er(1-2) (38)
g T oT,
which vanishes if s = o, ¢ = 7. Thus if s and ¢ reach their expectations,

r remains the best estimate of p. But (38) is negative if s/o and ¢/r are
very small, positive if they are large, and in the former case the best
estimate of p will be larger, in the latter smaller than r. The reason is
that if the scatters are unusually large it is evidence that too many
large deviations have occurred; if there is a positive correlation at all and
this is found in both variables, the most likely way for this to happen
would be by way of an excess of deviations where 2 and y have the same
sign, and the correlation in the sample would tend to be more than p.

It is unusual in practice, however, for ¢ and 7 to be well enough known
for such supplementary information about p to be of much use.

3.10. Invariance theory. If we have two laws according to which the
chances of a variable x being less than a given value are P and P’,
any of the quantities

Iy = f [(@P")lm—(dP)imim,  J = f]°8 a(P'— (1)
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has remarkable properties. They are supposed defined in the Stieltjes
manner, by taking 8P, 3P’ for the same interval of z, forming the
approximating sums, and then making the intervals of x tend to zero,
and therefore may exist even if P and P’ are discontinuous. They are
all invariant for all non-singular transformations of x and of the para-
meters in the laws; and they are all positive definite. They can be
extended immediately to joint distributions for several variables. They
can therefore be regarded as providing measures of the discrepancy
between two laws of chance. They are greatest if 8P vanishes in all
intervals where 8P’ varies and conversely, then I, = 2, J = o0. They
take these extreme values also if P varies continuously with x, and P’
varies only at isolated values of x. The quantities I, and J are specially
interesting. Put p, = 8F,, p, =8P, for the interval 8z,. Let p,
depend on a set of parameters a; (¢ = 1 ,...,m); and let p, be the result
of changing «; to o;+Acy, where Ao, is small. Then, if p,isdifferentiable
with respect to «;, we have to the second order, using the summation
convention with respect to i, k,

= lim z p'(a”'A )(Zi" Aozk) @)

= gu Doy Ay, (3)

1 op, ep
h = lim — L tr, 4
where I , zl' " 2 e o (4)
Also Iy = 1g: Doy Aoy, (5)

to the same accuracy. Thus J and 41, have the form of the square of
an element of distance in curvilinear coordinates. If we transform to
any other set of parameters «;j, J and 4/, are unaltered, and

J = g}, Aaf Ao, (6)
where g g"‘a aa" k. )
ool 1|0
T} N’ =t =] ||=* 8
ren it = o 2] |2 ®
But in the transformation of a multiple integral
doyday  doy, = l'-—l doy .dody, 9)
- (”ﬂ ) i .. ded. (10)
Gl

Hence 19 eday  dxg, == it dal) ... dag,. ()
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This expression is therefore invariant for all non-singular transforma-
tions of the parameters. It is not known whether any analogous forms
can be derived from I, if m # 2, but the form of I, is then usually
much more complicated.

In consequence of this result, if we took the prior probability density
for the parameters to be proportional to g, |2, it could be stated for
any law that is differentiable with respect to all parameters in it, and
would have the property that the total probability in any region of
the «; would be equal to the total probability in the corresponding
region of the o, in other words, it satisfies the rule that equivalent
propositions have the same probability. Consequently any arbitrariness
in the choice of the parameters could make no difference to the results,
and it is proved that for this wide class of laws a consistent theory of
probability can be constructed. Hence our initial requirement 2 (p. 8)
can be satisfied for this class, it remains to be seen whether the desirable,
but less precise or fundamental requirement 7 (p. 9) is also satisfied.

For the normal law of error

_ 1 (z,—A)?
Pr= ‘/(2‘”)03}(}){*“‘2—0{—} 8.15,. (12)
we have exactly, if
a = oye~"E, o’ = gye't, (13)
(x—A")2) 1 (x—2A)%)12
S E s = B |

B Ve (=2
= 2[1 ~ Je ™ i)
= 2[1—sech™ _ =
= [1 sech’{exp{ Sofcosh 4”, (14)

- [ el re e

Lo @A) 1 (@)
X[;exp{— 357 }-—;exp{ 5ot }]dx
1 o o\t 1/1 1 e
S EErA S CEPA SR

= 2sinh?{ +cosh§()‘ A)z (13)

0

g = o) (2] (o)

To the second order
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Three cases arigse. If o is fixed, the coefficient of (d))? is constant,
giving a uniform prior probability distribution for A over the range
permitted, in accordance with the rule for a location parameter. If A
is fixed, |lgy/l"2do ¢ dojo, again in accordance with the rule that we
have adopted. This rule, of course, has itself been chosen largely for
reasons of invariance under transformation of o. But if A and o are
both varied, |lggl"2dAdo oc dAdo/o? instead of dAde/o. If the same
method was applied to a joint distribution for several variables about
independent true values, an extra factor 1/o would appear for each.
The index in the corresponding ¢ distribution would always be 3(n+1)
however many true values were estimated. This is unacceptable. In
the usual situation in an estimation problem A and o are each capable
of any value over a considerable range, and neither gives any appreciable
information about the other. Then if we are given — M < X < M,
0 < o < oy, we should take

P@A|H) = dN2M,  P(do|H) = dojolog(ay/oy),

dAdo

2Molog(ayfo;) an

P(d\do |H) = P(dX | H)P(do |H) =
The departure from the general rule is thus explicable as due to the
use of a previous judgement of irrelevance.
There is no trouble for o alone or A alone; it arises when they are
considered both at once. Now take a law such as that of partial
correlation

P(dx,...dz, | ay, 0;, H) = Aexp(—3W) I] dx,,
where W =3 aya;%h/oop
and the z; are a set of observables. Here for each x; there is a corre-
sponding scale parameter o; and the «;; are numerical coefficients. It is

clear from considerations of similarity that J, to the second order, is a
quadratic in (do;/s;), and that |lg,.l| will be of the form [T o; 2B, where
i

B is a numerical factor depending on the oy. Hence the rule leads to

P(do;doyy, | H) oc H (doy/o) B TT dogm, (18)

which is what we should expect. There is no difficulty in the introduc-
tion of any number of scale parameters.

We can then deal with location parameters, on the hypothesis that
the scale and numerical parameters are irrelevant to them, by simply
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taking their prior probability uniform. If A and ¢ are location and scale
parameters in general, and the numer;cal parameters are «;, we can take

P(drdo T] do; | H) oc dM|lggli*=do TT doy, (19)

where |jg;,|l is found by varying only o and the «;, and is equal to
1/o times a function of the «;. This is invariant for transformations of

the form X = Abaf(a), (20)

which is the only form of transformation of A that we should wish to
make.
If o is already uniquely defined, a satisfactory rule would be

da o
P(dMdo TT doy | H) oc dAZligal™ TT des, (21)

where g, is now found by varying only the «;, keeping A, o constant.
Again, take a Pearson Type I law A(x—c,)™(c;—=z)™dx. For any
non-zero change of ¢, or ¢,, J is infinite. I, is not of the second order
in Ac, Ac, unless my, m, > 1. If we evaluate the coefficients in the
differential form by integration, e.g.
€3

_ [ LfoA__ Am\\E e pyma
to = [ o) ey iz @2

This diverges unless m; > 1. Thus the general rule fails if the law is
not differentiable at a terminus. But the case where either of my, m, < 1
is precisely the case where a terminus can be estimated from n observa-
tions with an uncertainty o (n—'2), and it is then advantageous to take
that terminus as a parameter explicitly; the occasion for transformation
of it no longer exists. If one of m,, m, < 1 it is natural to take ¢, or c,
respectively as a location parameter; if both are < 1, it is equally natural
to take 4(c,}c,) as location parameter and }(c,—c,) as scale parameter.
In either case we need only evaluate the differential form for changes of
the other parameters and find a prior probability for them independent
of ¢,, ¢,, or both, as the case may be. It is interesting to find that an
apparent failure of the general rule corresponds to a well-known excep-
tional case in an estimation problem and that the properties of this case
themselves suggest the appropriate modification of the procedure.
For the comparison of two chances «, «’ we have

L = (' — Ve {y (1 — ) — (1 —)}?
2—2,/(aa’)— 24/ (1 —a)y/(1—<'). (23)

Il
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’

This takes a simple form if we put « = sin%a, o’ = sin’a’"

I, = 4sin? }(a’—a) = (a’'—a)2. (24)
The exact form of J is more complicated:

= (=) log U= (25)

a(l—a’)

Then the rule (11) gives

do
Pdo|H) = = da == 26
(doe | H) = \/{a(l_a)} (26)

This is an interesting form, because we have already had hints that
both the usual rule de and Haldane’s rule
d

o(l—a)
are rather unsatisfactory, and that somethmg intermediate would be
better

For a set of chances a, (r = 1,...,, m, 3 o, = 1) we find

P(da| H) o —*—

L=2-2 Jia(a+Aa) = & > %":—’2 @7
1 7o Aa,)2 ( Z A"‘r)
= z -
Then =t 1
all = ) 28
load = 714 (28)
doy...

P(day...do,, 4 | H) (29)

d (I;f “r)

The rule so found is an appreciable modification of the rule for
multiple sampling given in 3.23, and is the natural extension of (26).

If ¢,, Y, are two sets of exhaustive and exclusive alternatives, ¢, being
irrelevant to ¢,, with chances a,, 8, (r = 1, ..,m, s = 1,...,n) the chance
of ¢, 4 is o, B;. If we vary both «, and B, and consider I, and J for the
changes of «,B,, we get

I, =2-23 3 (B B)

= 2-2(1—3L)(1—11,p), (30)
J=33 (a;ﬁ;—a,ﬂ,nog:‘g:

= 3 (—aplog ¥+ (Bi—log e
= T+, ’ ’ (31)
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suffixes «, B indicating the values if «,, B, are varied separately Hence
for probabilities expressible as products of chances log(1—41I,) and J
have an exact additive property. The estimation rule then gives
P(do, . do,_,dB,. dB, | H) = P(da, . dv,_, | H)P(dB,...dB,_, | H),
which is satisfactory. (32)
Now consider a set of quantitative laws ¢, with chances o, If ¢, is
true, the chance of a variable x being in a range dx is f(x, aq,. ., o)) d2,

and P($, Az | 0y, oo, H) = oy (T, 0p100 6rn) A (33)

For variations of both the «, and the «,,

L= 2-2F Jlolor+ B} [ SISO} da
= 2— Y Jo (0, + A} (2 L,)
]2.a+ z \/{0(,(0:,. -+ Ao‘r)}lz.r (34)
and, to the second order,
I = [2.a+ E O Iz,r' (35)

1, is the discrepancy between f, with parameters «,, and with para-
meters o+ Aa,,. If we form |lg;, "2 for variations of all «, and all a,,
the rule will then give the same factor depending on the «, as for
estimation of «,, when ¢, is taken as certain But for every a, a factor
o2 will enter into [lg,i%2, and will persist on integration with regard
to the «,, Hence the use of the rule for all «, and all «,, simultancously
would lead to a change of the prior probability of «, for every parameter
contained in f,. This would not be inconsistent, but as for scale para-
meters it is not the usual practical case «, is ordinarily determined
only by the conditions of sampling and has nothing to do with the
complexity of the f,. To express this, we need a modification analogous
to that used for location paramcters, the chance «,, like a location
parameter, must be put in a privileged position, and we have to con-
sider what type of invariance can hold for it.

The general form (11) gives invariance for the most general non-
singular transformations of the parameters. In this problem it would
permit the use of a set of parameters that might be any independent
functions of both the «, and the «,, In sampling for discrete alterna-
tives it is not obvious that there is any need to consider transformations
of the chances at all.

If we take m=1

U do, m

P(TTdo, T ol Hyor 1o [ [ ol ] [dow  (36)
§=1

JfE=)
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where |lg;,/l, is based on comparison of f, with f,4+Af,, we shall still
have invariance for all transformations of the o, among themselves and
of the o, among themselves, and this is adequate. If we do not require
to consider transformations of the o, we do not need the factor (] ] «,)-".
If some of the «,, are location and scale parameters, we can use the
modification (19). (36) can then be regarded as the appropriate exten-
sion of (32), which represents the case where «,, = B,, independent of r.
For the Poisson law

P(m |rH) = e 7%'"‘ 37)

we find I, = 2—2exp{—}(vr'—+r)%} 38)
J = (r'—r)log(r'/r) l’

leading to P(dr | H) oc dr[vr. (39)

This conflicts with the rule dr/r used in 3.3, which was quite satis-
factory. The Poisson parameter, however, is in rather a special position.
It is usually the product of a scale factor with an arbitrary sample size,
which is not chosen until we already have some information about the
probable range of values of the scale parameter. It docs, however,
point a warning for all designed experiments. The whole point of general
rules for the prior probability is to give a starting-point, which we take
to represent previous ignorance. They will not be correct if previous
knowledge is being used, whether it is explicitly stated or not. In the
case of the Poisson law the sample size is chosen so that  will be a moder-
ate number, usually 1 to 10, we should not take it so that the chance of
the event happening at all is very small. The dr/r rule, in fact, may
express complete ignorance of the scale parameter; but dr/vr may
express just enough information to suggest that the experiment is
worth making Even if we used (39), the posterior probability density
after one observation would be integrable over all r.

For normal correlation we get

o?[o'2 47278 —2pp’ar/0’7’ | 0’2o+ 1"2/7—2pp'0"r’ [oT
=7 =) ’

I, = 2—4(o0"r7")"(1 —p?)(1— p'?)Ye x

J =2 (40)

X {0273 (1— p'?)+ 02721 — p?) +-027'24- 0212~ 2pp’oa’r7’} . (41)
If we put
o' = oe, 7' = 1e?, p = tanh(, p’ = tanh{’  (42)
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and change the parameters to {, u+v, u—v, we get, to the second order
in u, v, {'—{,
J = (14-tanh®{)({'— )2 —
—4tanh {({'—{)(u+v)+4(u+tv)*+4(u—v)* cosh®{, (43)
llgsxll = 64 cosh?{, (44)
dedr dp
or (1—p¥)%’

The modifications of the analysis of 3.9, when this rule is adopted,
are straightforward. The divergence at p = 11 is a new feature, and
persists if there is one observation, when r is 4 1. If there are two
observations and r 7% 41 the posterior probability density for p has a
convergent integral, so that the rule gives intelligible answers when the
data have anything useful to say.

In problems concerned with correlations the results will depend
somewhat on the choice of parameters in defining J. From (43) we can
write J for small variations as

J = ('~ 0)*+4 cosh?{(u—v)*+{2(u+v)—tanh {(I'—0)}2.  (46)

Now o and 7 can be regarded as parameters defined irrespectively
of p; for whatever p may be, the probability distributions of z and y
separately are normal with standard errors o, 7. Thus we may analyse
the estimation of a correlation into three parts: what is the probability
distribution of x? what is that of ? and given those of z and y separ-
ately, does the variation of y depend on that of z, and conversely?
In this analysis we are restricted to a particular order of testing and in
giving the prior probability of { we should evaluate J with o and +
fixed. In this case (40) becomes

P(dodrdp | H) c (45)

_ (I-kpp')p—p)?
T = =i 7
and Pldp | orH) ‘_ITJE_fgf dp. (48)

From the interpretation of a correlation coefficient in terms of a
chance (2.5) we should have expected

P(dp | orH) = % 4T£,‘7)' (49)

This is integrable as it stands and would be free from objection in any
case where the model considered in 2.5 is known to be representative
of the physics of the problem.
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The different rules for p correspond to rather different requirements
(45) contemplates transformations of p, o, 7 together, (48) transforma-
tions only of p, keeping o, 7 fixed (49) does not contemplate trans-
formations at all, but appeals to a model. But the rule for this model
itself is derived by considering transformations of a simple chance, and
the need for this is not obvious We really cannot say that any of these
rules js better than the uniform distribution adopted in 3 9

These rules do not cover the sampling of a finite population The
possible number of one type are then all integers and differentiation
is impossible  This difficulty does not appear insuperable Suppose
that the population is of number n and contains r members with the
property. ‘I'reat this as a sample of n detived from a chance o Then

d
P(da | nH) = —r (T_a)_},
Ja(=
1
Pirinodl) = 4 (;:_t_;)_‘ Wb =),
n!
P(rdx|all) = —r'—(n_ —Tr)‘ AT (L) T d
T
Pirindly = (=B -4 (50

art(n—r)!
This is finite both forr  Oand r == n
The invariants I, and I, By definition
I~ Xip—pl
For the binomial law p,, 1--p, arc 1eplaced by i, 1 —pj, giving
L= 2lpi—py
For 2% 2 contingeney, with v,  constant,
I = 4ly'—yi
Both are linear for small variations  But for changes of cither parameter
m the normal law f; is complicated, containing an error function ¥ We
should like invatiants for different members of a lincai series to have an
additive property, this is true for the above two examples but not for
the notmal law  For a small change of a parameter « we could, however,
wiite dl, - q(v)dx
and then define by integration
.
Lo~ | qlo) dx

1 VS Huzurthazar, J Unwe Poona, 5, 1955, 115-21
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For the above two cases L = I}, but for the normal law we find

-

Varying o with A constant leads to
L = 4e~tlog(oy/a,).
For the rectangular law in 0 < z < ! we find for changes of !
L = 2logl,/l,
Then P(dx|H)oc dL
would be satisfactory in all these cases.

On the other hand, I have not succeeded in finding a correspondingly
compact form for L in comparing two values of the normal correlation
coefficient

Huzurbazar’s invariants These apply to laws that yield a sufficient
statistic for a parameter that can take a continuous set of values. In
the Pitman-Koopman form

(@) = $(o) () ereer
it would be possible to take 8 == u(x) itself as the parameter When «
can take a continuous set of values the range of 8 can be finite, semi-
infinite, or infinite. Then the form of the law will be retained under
any linear transformation
B =kB'+1,

for then S(x) = '(x) $'(B)exp{B'v'(x)}
with  ¢'() - pjexpl{l o)}, &(B) - 11, () Lr(r),
and this is the most general transformation that keeps the form, further,
if the range of B is finite, semi-infinite, or infinite the same will apply to ’.

If the range is finite there is just one choice of k, [ that will make the
range of 8’ (-—1, 1) or (0, 1). Ifit is semi-infinite there is only one choice
of ! that will make the range (0,00), and k is arbitrary. If it is infinite
(—o0, 00) it remains (—oc, o) for any choice of &, I. Thus the possible
range of B can always be reduced to one of three standard ranges.

When the range is (0,cc) the differential element df’/8’ is invariant
with respect to k. When it is (—o0, ), df’ is invariant with regard to
h and ! save for a constant factor When itis ( —1.1) or (0, 1), the only
linear transformation that will preserve the range unaltered isg” - 8
orf =1 B, any law sy mmetrical about the mid point is sclf consistent

An alternative procedure suggested by Huzurbazar is to take the
expectation of v(z) as the parameter:

Via) = j [ (@) v(x) da.
[0
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This exists in all cases that have been examined. Under transforma-
tions of «, V(«) retains its value, but the law retains its form if v(x) is
multiplied by k and u(«) by 1/k, and if we add a constant A to v(z) and
divide ¢ by exp{Au(«)} the form is again retamed. Thus for invariance
the rules just given would apply equally to V(x).
The normal law in the form
(z—A)?
16 = Jeee| =5

can be written, for fixed o, as

1 A¥2gt 320" *
e~ 20! e~ % 20" e)\zlcr s
\/(277)0

which is in the Pitman'Koopman form with

#) = qexp(—5), b = exp(— )
u(A) = g, v(x) ==

The range of X is infinite, so the rule suggests
P(dX | oH) oc dA.

E{v(x)} = Ao, and the rule based on V() leads to the same result.
For X fixed we can take

A=0, u(o) = v(z) = —22.

Ly

202’

The range of o is (0,00), so we can take
P(do | H) < dofa.

Ev(z) = —o?, and the same rule applies.
The binomial rule can be written
"Cpa®(1—a)*-% = exp[zlog{a/(1—a)}+log"C,+nlog(l —a)].
Then u(a) = log{a/(1—a)}, v(a) = z; Ev(z) = na. The range of u(x
i8 (0,0) and would suggest

Pdo | H) oc du = do

a(l—a)”
But the range of Ev(z) is 0 to n and would suggest
P(da | H) < do.

The formeor is Haldane’s suggestion, the latter is the usual rule.
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For correlation the density is

1 1 (a2 2pxy , 4°
21rm/<1—p">°“’{“2(1—p2>(c72" or +7)}

_ 1 z? ¥ pzY
= 2nw¢(1_p=)exp‘"2(1_p2)a2 —pt T (T—pBar’
Then
S S S - P .
ST ey Y 2T (1=’ 2T (1—por’
v = 2?, Yy = yzr V3 = TY.

If o and 7 are given u, or u, and u, suggest two quite different forms
for the prior probability of p. But the expectations of v,, v,, v, are
simply o?, 7%, por, and the range of por is from —or to or; so whatever
rule we took for the binomial would be immediately adaptable to p.
Thus the rule based on expectations has the valuable property that it
is preserved from the model.

Huzurbazar’s rules are confined to laws that yield sufficient statistics,
and provide a classification of such laws. They do not give unique rules
for assessing prior probabilities. But if we are seeking the maximum
degree of invariance for these laws we raust select a particular rule for
each of his classes, and can therefore give rules for initial probabilities
for all such laws. Further, any more general rule must be equivalent
to the selected Huzurbazar rule within the field of the latter.

A possible generalization to more than one parameter is contained
in some work of M. P. Peisakoff.t If the location and scale parameters
are A, o, the law may be transformed to X', o’ by a translation and a
magnification in turn. If the translation is done first the relations are

X = B(A+ta), o' = o,
where «, B are independent of A, . Then
o\, 0') 2
R B
and (1/0%)dAdo is invariant for such transformations.
On the other hand, if the change of scale is done first we get
o' = fo, X = Ata,
aN,o')
EG B

and dAdo/o is invariant.

t Princeton Thesis, 1950
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The distinction is connected with Haar measure on non-commutative
groups, there being two different invariant measures according to the
order of performance of the operations.

Mr. P H. Diananda has suggested that we could state an invariance
rule for the prior probability in estimation problems as follows. Take,
for n large,

Plo; < a; < aytdey |o H) = f (o) T] devy,
where ¢ covers all parameters in the law, then if we take
P(do; | H) o< f (o) TT do;

we have a rule equivalent to the {lg;.li": rule where the latter is appli-
cable It also works for the rectangular distribution. A similar rule was
given independently by Mr. Wilfred Perks, who, however, considered
only one parameter }

To sum up the results found so far

1 A widely applicable rule is available for assessing the prior proba-
bility in estimation problemns and will satisfy the requirement of con-
sistency whenever it can be applied, in the sense that it is applicable
under any non singular transformation of the parameters, and will lead
to equivalent results. At least this proves the possibility ot a consistent
theory of induction, covering a large part of the subject.

2 There are many cases where the rule, though consistent, leads to
results that appear to differ too far from current practice, but it is still
possible to use modified forms of the rule which actually have a wider
applicability These cases arc associated with conditions where there
is 1eason to take the prior probabilities of some of the parameters as
independent of one another

3 The rule is not applicable to laws that are not differentiable with
regard to all parameters in them, but in this case a modification of the
rule is often satisfactory

4 In some cases where the parameters themselves ean take only
discrete values, an extension of the rule is possible

Further investigation is desirable. there may be some other method
that would preserve or even extend the generality of the one just
diseussed, while dealing with some of the awkward cases more directly
If there is no rule with universal applicability we shall need a precise
classification of cases where different rules can be used Huzurbazar's
system gives a basis for such a classification in the cases where sufficient
statistics exist

1 J Inst Actuaries, 1917, 1 2%
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APPROXIMATE METHODS AND
SIMPLIFICATIONS

‘Troll, to thyself be trne—enough.’ IBSEN, Peer Gynt.

4.0. Maximum likelihood. IF a law containing parameters a, 8, y,...
and a set of observations 6 lead to the likelihood function L(a, 8, y,...),
and if the prior probability is

P(dadBdy. . |H) < f(a,B, y,...) dadBdy..., (1)
then  P(dadBdy...|6H)oc f(a,B,,...) L(a, B, ¥,...) dadBdy.... (2)

There will in general be a set of values of a, 8, y,...,say a, b, ¢, .. that make
L a maximum. These may be called the ‘maximum likelihood solution’.
Then if we put « = a+a’, and so on, we can usually expand logf and
log L in powers of «’, B, ¥',.... Now the maximum posterior probabulity
density is given by 10L 1af 0 s
Laxtioa™ @

with similar equations. The prior probability function f is independent
of n, the number of observations, log L in general increases like n.
Hence if (o', B', ¥', ) satisfy (3), they will be of order 1/n

Also, if we neglect terms of order above the second in log L and log f,
the second derivatives of log Lf will contain terms of order « from log L,
while those from log f do not increase. Hence for o', 8, y,... small, the
quadratic terms will be

—ngy(o’, By, )+0(? B2 y%,...), (4)

where ¢, is a positive quadratic form independent of n. Hence the
posterior probability is concentrated in ranges of order n~"2, and this
indicates the uncertainty of any possible estimates of «, 8, y, ... But
the differences between the values that make the likelihood and the
posterior density maxima are only of order 1/n. Hence if the number of
observations is large, the error committed by taking the maximum
likelihood solution as the estimate is less than the uncertainty inevitable
in any case. Further, the terms in log Lf that come from L are of
order n times those from f, and hence if we simply take the posterior
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density proportional to L we shall get the right uncertainties within
factors of order 1/n. Thus the errors introduced by treating the prior
probability as uniform will be of no practical importance if the number
of observations is large.

The method of maximum likelihood has been vigorously advocated
by Fisher; the above argument shows that in the great bulk of cases
its results are indistinguishable from those given by the principle of
inverse probability, which supplies a justification of it. An accurate
statement of the prior probability is not necessary in a pure problem of
estimation when the number of observations is large. What the result
amounts to is that unless we previously know so much about the
parameters that the observations can tell us little more, we may as
well use the prior probability distribution that expresses ignorance of
their values; and in cases where this distribution is not yet known
there is no harm in taking a uniform distribution for any parameter
that cannot be infinite. The difference made by any ordinary change
of the prior probability is comparable with the effect of one extra
observation.

Even where the uncertainty is of order 1/n instead of 1/n"2 this may
still be true. Thus for the rectangular distribution we had L oc o7,
while Lfoc o-»-1. The differences between the ranges for a given
probability that the quantity lies within thera, obtained by using L
instead of Lf, will be of order 1/n of the ranges themselves.

The argument concerns large n throughout. It is possible, though
improbable, that the likelihood may have more than one maximum.
Take the Cauchy law with 2 observations and given o; the likelihood

is proportional to —2)2)-1
[T{+E52)"

Suppose, as is possible but very unlikely, that the observations fall
into two groups, n of 2, and n of ,. Then

Le {1 + ("!:})’}-ﬂ{‘ + (zz—aﬁ)z}‘".

g

This is stationary with regard to A if
2) = z,4-2,,
and if 2A = 2y +2, +{(z,—2,)2—40%}'s,

if the latter expressions are real. Since L — 0 as A - 40, there is a
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single maximum if |z,—2,| < 20; but if |z,—2,| > 2¢ there are two
maxima separated by a mmimum. In this case the straightforward
interpretation would be that A is near 2, or 2, but we have no means of
saying which.

4.01. Relation of maximum likelihood to invariance theory.
Another important consequence of (1) and (3) is as follows. In 4.0(2)
we have, taking the case of three unknowns,

P(0|afyH) < L,

where L depends on the observations and on o, B, y. @, b, ¢ are the values
of a, B, y that make L a maximum, the observations being kept the
same. Then for given «, B, y we can find by integration a probability
that a, b, c lie in given intervals da, db, dc. This does not assume that
a, b, ¢ are sufficient statistics. Then when n is large L is nearly propor-

tional to exp{— ingu(s—ap)(os—ay)} TI da,

and all parameters given by maximum likelihood tend to become
sufficient statistics. Further, the constant factor is (n/2w)%m|g,, (',
and it is of trivial iraportance whether g, is evaluated for the actual
values a; or for oy = a;. Hence if we use |jg;|["s for the prior proba-
bility density, the probability distribution of «;—a; is nearly the same
when 7 is large, whether it is taken on data o, or a;; this is irrespective
of the actual value of «;.

Again, in the argurent of 3.10 we considered only the values of the
invariants for one observation, except that we showed that for sets of
observations derived independently from the laws J and log(1—41,)
have an additive property. This argument is no longer applicable if the
observations are not derived independently; this happens in problerns
where the law predicts something about the order of occurrence as well
as about their actual values. But it now appears that we can con-
sistently extend the rule to cover such cases. If two laws give

P@|oH) = LO,o),  P(O|oiH) = L(0,a),

we can take

L8, «
J=1lim 1 %" 10g Lfe 0 (200,00~ 140,20,

—log(1—3) = —lim " log{1 ~}{L*(8, i) — L4(6, )},

summations being over the possible values of . Both reduce correctly
when the observations are derived independently.



196 APPROXIMATE METHODS AND SIMPLIFICATIONS 1V,§41

4.1. An approximation to maximum likelihood. In all the prob-
lems considered in the last chapter sets of sufficient statistics exist. This
is far from being a general rule. It fails indeed for such a simple form
as the Cauchy law

P(dx |a,0, H) = odz/[n{c*+(z—a)?}].

If we have n observations the likelihood is not capable of being
expressed in terms of the unknowns «, o and any two functions of the
observed values of the z’s. For most of the Pearson laws there are no
sufficient statistics. The method of maximum likelihood is applicable
to such cases, but is liable to be very laborious, since log L must be
worked out numerically for at least three trial values of each parameter
so that its second derivatives can be found. The result has been, to a
very large extent, that where sufficient statistics do not exist for the
actual law, it is replaced by one for which they do exist, and information
is sacrificed for the sake of ease of manipulation. There is a definite need,
therefore, for a convenient approximate method that will not lose much
of the accuracy given by maximum likelihood but will be reasonably
expeditious.

In practice, with almost every method, observations are grouped by
ranges of the argument before treatment. Thus effectively the data
are not the individual observations but the numbers in assigned groups.
Suppose then that the number in a group is n,, and the total number N.
According to the law to be found the expectation in the group is m,, and

>m,=3Yn, =N. (1)

m,/N is the chance, according to the law, that an observation will fall
in the rth group, and is a calculable function of the parameters in the
law. Then the joint chance of », observations in the first group, n, in
the second, and so on, is

gt L E) = TG TIE @

The m, are the only unknown quantities in this expression, and only
the last factor involves their variations. Now put

m, = n,+ao, N', (3)
where |o, N'2| < n,, and where

2o =0 (4)
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Then "
log L = constant 4 Z n,log(l +°’Ln_N2)

I

constant + z (‘1" b _ ‘."!_‘Y) + O(N-'k)

2
= constant— N
2n,
_ 1< (m,—n,)?
= constant 3 Z -, (5)

since the first-order terms cancel by (4). Hence, apart from an irrelevant
constant, we have

— 2
logL = — Z (., )nn 2 (6)

x'? differs from Pearson’s y? only in having =, in the denominator
instead of m,. The difference will be of order (m,—n,)*/n, which is of
the order of the cubic terms neglected in both approximations. But
this form has the advantage that the n, are known, while the m, are
not. We can write the observed frequencies as equations of condition

m, = n, -t \Inr (7)

and then solve for the parameters in m, by the method of least squares,
with known weights. Pearson’s form is equivalent to this accuracy —it
is itself an approximation to —2log L, apart from a constant— but
would require successive approximation in actual use on account of the
apparent need to revise the m, at each approximation. It does not
appear that minimum x? has actually been much used in practice,
possibly for this reason. There are some references in the literature to
the fitting of frequencies by ‘least squares’, but the weights to be used
are not stated and it is not clear that minimum y? is meant. The errors
due to treating all values of n, as having the same accuracy would be
serious. The present form was given by Dr J Neymant and redis-
covered by myself,} Neyman'’s paper having apparently attracted little
attention in this country. The great difficulty in calculating log L
completely is that it usually requires the retention of a large number
of figures, in actual cases log,, L may be —200 to —600, and to find the
standard errors to two figures requires that the second decimal should
be correct. But in this method most of log L is absorbed into the

+ Bull Inst 'Intern de Statistique, Warsaw, pp 44-86 (1929)
3 Proc Camb Phil Soc 34, 1938, 156-7
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irrelevant additive constant, and we have only to calculate the changes
of the m,, given N, for a set of given small changes of the parameters.

The methed fails if any of the n, are zero, and is questionable if any
of them are 1. For unit groups there appears to be no harm in writing

m, =141 (8)
because if a parameter depends on a single unit group it will be

uncertain by its full amount in any case; while if it depends on p unit
groups the equations derived by using (8) for each can be summarized by

z m, =P i‘/]?, (9)
which is right. But special attention is needed for empty groups.
Referring to (2) we see that if n, = 0, (m,/N)* = 1 for all values of m,.
If M is the sum of the values of m, over the empty groups, we can still
make the substitution (3), but we shall now have

S N, = — M, (10)
)2
logL = constant—% z @I;L)-—M, (11)
r

where the summations are now over the occupied groups. Hence if
there are empty groups we can take

X?= Z (m_'%__')a.l_zM, (12)

the summation being over the occupied groups, and M being the total
expectation according to the law in the empty groups. The term — 3 in
log L corresponds to the probability e for a zero result according to the
Poisson law. This form does not lend itself to immediate solution by least
squares. In practice, with laws that give a straggling tail of scattered
observations with some empty groups, it is enough to group them so
that there are no empty groups, m, for a terminal group being calculated
for a range extending to infinity. Then (7) can always be used.}

4.2. Combination of estimates with different estimated un-
certainties. We have seen that when a set of observations is derived
from the normal law, but the standard error is estimated from the
residuals, its uncertainty makes the posterior probability of the true
value follow the ¢ rule instead of the normal law. The effect is fully
taken into account in the standard tables for the ¢ rule. But it often
happens that several series of observations yield independent estimates
of the same true value, the standard errors of one observation being

t For numerical illustrations see Ann Eugen 11, 1941, 108-14
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different in the different series. Can we still summarize the information
in any useful compact form ? The exact solution is straightforward; it is
(x—%,)? ~Yav,+1)
P(dxlﬂH)ocn{l+ — } dz, o)
where %,, v,, and ¢, are the mean, number of degrees of freedom, and
standard error of the mean of the rth set. This can be calculated exactly
for any set of estimates, but it is unlikely that the calculation would
often be undertaken. Clearly it is in general not reducible to a ¢ rule.
It would be useful if we could reduce (1) approximately to a ¢ rule.
We are mostly concerned with errors not more than a few times the
standard error of our estimate. Consequently it is better to try to fit
a ¢ rule for small errors than for large ones. We can proceed by equating
first, second, and fourth derivatives of the logarithms at the value of =
that makes the density in (1) a maximum. It is obviously useless to
equate third derivatives, because the ¢ rule is always symmetrical and
(1) need not be exactly so. We try therefore to choose Z, ¢, v so that

1o+ 0iog(14+ E 3 5 o togi 4 22N )

has zero first, second, and fourth derivatives at « = &. The conditions

are v, 41 F—3,
Z o w@) @
v+1 v+1{ 2
R T z v,c? ‘u_’(:;:; u, ()]’ )
v+1 v,+1f 1 _8- _8-
=2 e ) ®
where u, (%) = 1+(’”“" 2 (6)

These can be solved by successive a,pproxlmation without much diffi-
culty. It may be noticed that for a single ¢ rule the expectation of
1/u,(%) is v,/(v,+1) and that of the right side of (4) is > (v,+1)/(v,+3)c2.
Hence in a first approximation we can weight the &, in accordance with
their unmodified standard errors, but ¢c-2 will be systematically less than
3 ¢;2. The approximation therefore corrects the underestimate of the
second moment made by using the normal law instead of the ¢ law for
the separate series. The solution allows series even with », = 1 to be
taken into account (cf. 3.4 (13)). v can be called the effective number
of degrees of freedom.
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In some cases (1) may have more than one maximum (cf. p. 194).
Attempts to combine the estimates are then undesirable.

4.3. The use of expectations. When a law of chance is such that
sufficient statistics do not exist, it is often possible to proceed by con-
sidering some function or functions of the observations. Given the
parameters in the law, the expectations of these functions may be
calculable in terms of the parameters. But the observations themselves
yield the actual values of the functions for that set of observations. If
the number of functions is also the number of parameters in the law,
estimates of the parameters can be got by equating the theoretical and
observed values. If the functions chosen are such that their expecta-
tions are actually equal to the parameters they are called unbiased
statistics by E. S. Pearson and J. Neyman.

There are apparently an infinite number of unbiased statistics
associated with any law. For we might choose any function of the
observations, work out its expectation in terms of the law, and trans-
form the law so as to introduce that expectation as a parameter in
place of one of the original ones. A choice must therefore be made.

If «, B, y are parameters in a law, we can choose functions of a set of
n possible observations f(z,, z,,.. , T,), g(2y,.. , %), k(2y,..., x,) and work
out their expectations F, G, I, so that these will be functions of «, B, y
and will yield three equations for them when applied to an actual set of
observations. Actually. however, the observed values will differ some-
what from the expectations corresponding to the correct values of the
parameters The estimates of a, 8, y obtained will therefore be a, b, c,
which will differ a little from «, B, y. The choice is then made so that
all of E(a—«)?, E(b—PB)?, E(c—1)? will be as small as possible.

It should be noticed that an expectation on a law is not necessarily
found best by evaluation of the corresponding function of the observa-
tions. Suppose, for instance, that we have a set of observations derived
from the normal law about 0 and that for some reason we want the
expectation of x4. This could be estimated as Sz*/n from the actual
observations Its theoretical value is 30* But

E(%?—l%o‘)z E(S;‘) 6“E(Sx4)+9173
=E(s%")z—9oﬂ

= L E(Sa)+ B E(S 90",
n n=
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S’ meaning the sum over all values except the one taken to be z in §
(all pairs occurring twice in the double summation), and this is
Ps 9 4 9608

= ———0 —_—

n n n

On the other hand, we find
(S -2,
n

n

whence E(30%—3(z%)})* = zz—aj—;-0<~l—2)
n n

Thus three times the square of the mean square deviation is systematic-
ally nearer the fourth moment of the law than the mean of the fourth
powers of the deviations is  We should be entitled to call Sz/n an
unbiased statistic for the fourth moment of the law, but it is not the
statistic that, given the parameters in the law, would be systematically
nearest to the true value In this case Sr2'n is a sufficient statistic,
and we have an instance of the rule that we shall get the best estimates
of any function of the parameters in the law by using the sufficient
statistics, where these exist.

It may be asked why, seeing that the calculations are done on the
hypothesis that o is known, we should be interested in the probable
consequences of taking either r2 or z* to derive an estimate of o, seeing
that both estimates will be in error to some extent In this case the
interest is not great. The practical problem is usually to estimate o
from the observations, taking the observations as known and o as
initially unknown, and the sct of observations is unique Then we know
from the principle of inverse probability that the whole information
about o is summed up in x? and we need consider no other function
of the obser vations, if we have x? no other function will tell us anything
more about o, if the normal law is true, if we have not z2, but have
some other function of the scatter of the observations, there must be
some loss of accuracy in estimating o, since z? is uniquely determined
by the observations but will not be uniquely determined by this other
function Nevertheless occasions do arise where it is convenient to use,
to provide an estimate, some function of the observations that is not
a sufficient statistic If sufficient statisties do not exist, the posterior
probability distribution for a parameter may be unobtainable without
a numerical integration with regard to the others, and this is often too
formidable an undertaking ‘Then it is worth while to consider some
set of statisties that can be conveniently found from the observations



202 APPROXIMATE METHODS AND SIMPLIFICATIONS 1IV,§43

This involves some sacrifice of information and of accuracy, but we
shall still want to know what precision can be claimed for the estimates
obtained. This will involve finding the probability distribution for the
statistics used, given the parameters in the law; and then the principle
of inverse probability will still give the probability distribution of the
parameters in the law, given these statistics. By considerations similar
to those of 4.0 the effect of moderate variations in the prior probability
is unimportant. We shall have lost some accuracy, but we shall still
know how much we have kept.

Fisher has introduced the convenient term ‘efficiency’, defined as
follows. Let o?(a) be the expectation of the square of the error of an
estimate, obtained by the method of maximum likelihood or inverse
probability, and let o’%(«) be the corresponding expectation found by
some other method. Then the efficiency of the second estimate is
defined to mean the limit of o%(a)/o’?(«) when the number of observa-
tions becomes large. In most cases both numerator and denominator
are of order 1/n, and the ratio has a finite limit. For the normal law the
efficiency of the mean fourth power is §. It may be said that such losses
of efficiency are tolerable, an efficiency of # means that the standard
error of the estimate is 1-15 times as large as the most accurate method
would give, and it is not often that this loss of accuracy will affect any
actual decision. Efficiencies below }, however, may lead to serious loss.
If we consider what actually will happen, suppose that « is the true
value of a parameter, a the estimate obtained by the most efficient
methods, and a’ that obtained by a less efficient one. Then

E(@—a)? = o¥(a), E(a'—a)? = o'¥a).
But these quantities can differ only because a’ is not equal to a, and
if both @ and a’ are unbiased, so that
Ea—a) = E@—a) =0,

we have E(a'—a)? = o'(a)—o%(a).
If a’ has an efficiency of 50 per cent., so that o'(x) = ¥20(a), a’ will
habitually differ from a by more than the standard error of the latter.
This is very liable to be serious. No general rule can be given, we have
in particular cases to balance accuracy against the time that would be
needed for an accurate calculation, but as a rough guide it may be said
that efficiencies over 90 per cent. are practically always acceptable,
those between 70 and 90 per cent. usually acceptable, but those under
50 per cent. should be avoided.

The reason for using the expectation of the square of the error as
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the criterion is that, given a large number of observations, the proba-
bility of a set of statistics given the parameters, and that of the para-
meters given the statistics, are usually distributed approximately on
a normal correlation surface, for one parameter and one statistic this
reduces to the normal law. The standard error appearing in this will
be the expectation that we have considered.

One important case where these considerations arise is that of
observations derived from an unknown law of error. Suppose that
the law is dz

Pz | oH) = f(g) & (1

and that the origin is taken so that E(z) = 0. Let E(z?) = u,. We
know that the chance of the mean of n observations is nearly normally
distributed about 0 with standard error (u,/n)". u, is a determinate
function of . But in the inverse problem we have to find p, from
the observations, and this may be attempted as follows. Consider
E{S (x—z)?} taken over n observations. The probability distributions
of all the observations separately, given oH, are independent, and

S(z—%)2 = Sa*—2 Sz.i+ni® = Sx*—ni?, (2)
. E{S(z—2)%} = (n—1)p,. (3)
Hence ig—(;xﬁ will be an unbiased estimate of u,. It will not, however,

be the accurate value of u,, and we proceed to consider its expectation
of error. We have

E[S (z—Z)—(n—1),]?

= B(S (@—2)Jt—2(n— 1y, S (z—F)+ (n—1)%]

= B[S (z—7)?2—(n—1)%u}

= E[(Sz*—ni?)?]—(n—1)%3

= E[(Sx?%)?2—2nz? 8 22+n2E)—(n—1)%us. (4)
Now E(Sz*? = ESz*+E St S 23, (5)
8§’ denoting summation over all z’s except z,; the 2 is taken into
account by the fact that each pair will appear twice. Hence

E(S2%)?* = mpuy+n(n—1)u3, (6)
also 1
E(nz*Sa?) = - E S x}(z,+ S’ z,)?

= %E(Sx“+25x§’8’x2+ S} 8 z2)

= pyF04+(n—1)uf, (7)
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I | 1 3 . 3(n—1)
E(n?zt) = E’;z(Sx)‘ = ;#4+;ﬁsx%‘g af = %+ T#§ (8)
(6 having been replaced by 3 to allow for the double summation).

Hencet
—1)
L (o -

Thus the accuracy of the estimate of the second moment of the law
will depend on the fourth moment. that of the fourth on the eighth,
and so on. Apparently, therefore, we arrive at no result unless we have
the complete set, of moments. but only n independent ones can be found
from the observations, and for laws of Types 1V and VII the higher
moments of the law do not exist However, this is not so serious as it
seems. We are usually interested primarily in the mean and its uncer-
tainty, the latter being of order n-"2 But the uncertainty of y, is also
of order n="2 if u, exists, and therefore will affect the uncertainty of
the mean by something of order n-! Quite a rough estimate of p, will
therefore be enough. We can get this by considering

E{S (2 —i)%) = E[St*-~4 Sa%E-1-6 5128 — 3n4) (10)
Here E(S2°%) = %ESx‘,’(x,+ S'xy) = pgs (11)
and we find

- - 3. 3 6 9

Given the law, the errors of & and S(z—Z)? are not necessarily
independent. We have
Emz{S (x—Z)2- (n—1)py}) = E{(Sx)(S x2—n?)}

= E(Sx")——;‘z E(Sz)* = (n— Ny, (13)

LS (x—7)) —= (n—l)(l —’—i)l‘a' (14)

There will therefore be a correlation between the errors of location and
scaling if the law is unsymmetrical. With such a law, if g, is positive,
there will he a strong concentration of chance at small negative values
of x and a widely spread distribution over positive values. Thus a
negative error of the mean will tend to be associated with a small
scatter of the observations and a positive one with a large scatter.
The higher moments in such a case furnish an example of what

+ This can also be derived easily from Fisher, I’roc Lond Math Soc 30, 1930, 206
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Fisher calls ancillary statistics, which are not used to estimate the para-
meters but to throw additional light on their precision. The number
of observations is always an ancillary statistic. £ and & (vr—Z)%/(n—1)
are unbiased statistics for the parameter of location and its standard
error, but they sacrifice some information contained in the observations
if the law is not normal According as u, is more or less than 3u%, the
estimate of u, will be less or more accurate than a similar estimate
from the same number of observations given the normal law. In the
former case the posterior probability for the location parameter will
resemble a ¢ distnbution with less than n--1 degrees of frcedom, in the
latter one with more If for reasons of convenience, then, we tahe as
our cstimate & _{%EZ—H—T)): lu, as for the normal law, attention to pg
and py will recover some of the information concerning the distribution
of the chance of large errois.
The correlation between £ and 8 (x— )% is
EmiiS(x

P Bt BN

2

n—1),}] 1 _
- R 17
—(n—1)u,}]" PEEER T %
po\pa =, K
and if we write

E(E)? = of, (SR -(n=Tip} = (n--)p;,  E(ps)? = o}, (16)
we shall have
P{didupy oll)

5 9oF, 2
e g L . e\'p’ —5«1--; ({Z_fpfﬁ_z_{/j_z‘)} didp, (17)

2o, 0,4 (1 p?) | 200 -p*)\ef o0, o}
with considerable accuracy, and this may be used in place of the likeli-
hood in assessing the posterior probabilities when the location and scale
parameters are to be found from the observations

1t pg is infinite, as for a Type VIL law with index 2, the expression (9)
is infimte, and it appears that the estimate of g, will have an infinite
uncertainty. This does not prove, however, that the estimate is useless.
Tt means only that the chance of error wn y, is so far from being normally
chstributed that it has an infinite second moment The law for it will
resemble the Cauchy distribution (index 1), though this has an infinite
second moment it is possible to find on it a deviation with the same
chance of being exceeded as for any given deviation on the normal law |
it does not represent infinite uncertaints  But what will be true is that
the chance of large ertors in p, as estimated will fall off less rapidly
than it will for finite pg as n increases
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The method of expectations sometimes fails completely Karl Pear-
son’s procedure in fitting his laws was to find the mean of the observed
values, and the mean second, third, and fourth moments about the
mean. These would be equated to Ex, E(x—Ex)?, E(x— Ex)?, and
E(x— Ex)*. This process gives four equations for the parameters in the
law, which can then be solved numerically. These moments are not in
general sufficient statistics, since the likelihood cannot be expressed in
terms of them except in a few special cases. The resulting inaccuracy
may be very great. For the Type VII law
dx
P(dx|a,m,o,H) oc W
when m < §, the expectation of the fourth moment is infinite. The
actual fourth moment of any set of observations is finite, and therefore
any set of observations derived from such a law would be interpreted
as implymg m > §. For some actual series of observational errors m is
as small as this or nearly so. Pearson does not appear to have allowed
for finite n; he identified S (x—%)” with S (z—«)", neglecting the error
of £ This is usually trivial in practice. But Pearson’s delight in heavy
arithmetic often enabled him to give results to six figures when the
third was in error for this reason and the second was uncertain with any
method of treatment. The method of minimum x’2 should give greater
accuracy with little trouble, other approximate methods, approaching
the accuracy of the method of maximum likelihood at its best, are
available for Types If and VII, and for I and IV as long as the sym-
metry is not too great,} for Types III and V with known termini,
sufficient statistics exist. If the terminus is known to be at 0, the
arithmetic and geometric means are sufficient for Type III, the geo-
metric and harmonic means for Type V. For the rectangular law the
extreme observations are sufficient statistics in any case.

The property of the extreme observations for the rectangular law
can be somewhat generalized. For suppose that the lower terminus is at
x = a, and that Pl < 2, |aH) = A(z,—a) (18)
for z;—a small. Then the chance that n observations will all be greater
than z, is {1—A4(x,—a«)7}", the differential of which will be the chance
that the extreme observation will lie in a range dz,. Taking the prior
probability of « uniform, we shall have

P(da |z H) ¢ {1—A(x,—a)} Yz, — o) L da
oc (2,—a)~texp{—(n—1)A(z,—a)}da (19)
t Phil Trans A, 237, 1938, 231-71
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for large n. For r = 1, the rectangular law, this makes the expectation
of x,—a, given z,, of order 1/n; for r < 1, corresponding to U-shaped
and J-shaped distributions, the expectation falls off more rapidly than
1/n; even for r = 2, it still only falls off like n—"2. Thus even for laws
that cut the axis at a finite angle the extreme observation may contain
an amount of information about the terminus comparable with that
in the remainder; for other laws between this and the rectangular law,
and for all U-shaped and J-shaped distributions, the extreme observa-
tion by itself may be used to provide an estimate of the terminus. This
remark, due originally to Fisher, shows the undesirability of grouping
the extreme observations in such cases. It may easily happen that the
grouping interval is more than the uncertainty derivable from the
extreme observation alone, and then grouping may multiply the un-
certainty attainable several times.

Sometimes a law would possess sufficient statistics if certain minor
complications were absent. It is then often sufficiently accurate to
find expectations of the contributions to these statistics made by the
minor complications, and subtract them from the values given by the
observations. The method of maximum likelihood can then be used.
An example of a common type is given in 4.6.

4.31. Orthogonal parameters. It is sometimes convenient to
choose the parameters in a law so that the product terms in ¢, of 4.0 (4)
will have small coefficients. If the maximum likelihood estimates of the
parameters in a law g(z, «;) are a;, and if o;—a; = «f,

logL = §logg(z,, ;)

2

g_ O -
= Slogg(z, a;)+ 1S -——logg aiol, M
%

Oty

the derivatives being evaluated at «; = a;. Now the expectation of the
coefficient of o;«j, is

wfrliten [E e o

g o Oy, Ooxy Doy,

Since _[ g dz = 1 for all a;, the second part of the integral is zero; hence

22 b -
E3S oy 9y logg.ojo) = —ngyogog, 3
where g;; is the same function as in 3.10. There is therefore a direct
relation between the expectation of the quadratic terms in log L and

the invariant forms I, and J used in 3.10.
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Now if g, do;doy is regarded as the square of an e¢lement of distance
in m dimensions, at any point it will be possible to choose in an infinity
of ways a set of m mutually orthogonal directions We can then choose
orthogonal coordinates 8;, so that if

i dogdoy, = hﬂdﬁjdﬂ, (4)
all h;; vanish except for j = ! If the law g(x,~,) is then expressed in
terms of the quantities B; instead of «,. the quadratic terms in E(log L)
will reduce to a sum of squares. and for an actual set of observations
the square terms in log L will increase like n, while the product terms
will be of order n'>. Thus the eguations to determine the g; will be
nearly orthogonal, and practical solution will be much simplified The
product terms can be neglected for large =, since their neglect only
introduces errors of order n-1.

This concerns only local orthogonality If we required general ortho-
gonality, so that for all values of the 8's the element g, dx;dx, should
reduce to a sum of squares in the dB, and the number of parameters is m,
the vanishing of the product terms requires jm(m — 1) relations between
the derivatives of the a's with regard to the ’s  This is less than m
if m == 2, and equal to it if m ~= 3, otherwise greater than m Thus
we should expect that if m = 2 it will be possible to choose everywhete
orthogonal parameters in infinitely many ways, if m = 3, in a finite
number of ways, but if m —- 4 or more, it will not in general be possible
at all This was pointed out by Huzurbazar

Huzurbazar gives a general method of constructing orthogonal
parameters for m == 2 If the parameters are «y, oy, take 8, = «,, and
put o = ay(By,B;) Then

. et dny € oy O o2
E_Z jogfmtulugp @, 10ap o r
[7:87:M o8/ = 2B, Gﬁ Oé’f+ By £ﬁ Bay Exy ogf+
6:12 Coyy Oty Doy
LR Y +4 E ;nlo
By By F g ip i, 0oy BT
Gu g, g,
2B, B,

hence the first and third terms are zero, and the condition for ortho-
gonality ist o
logf+ - "F Ing =0

I

This is a differential equation for a,, a constant appears in the
solution, and this can be taken to be B,.
+ Proc Camb Phil Soc 46, 1950 281-4

« Yl "“2
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For the negative binomial in the form

n. (n—!—’r—])x’

f=u—apt it

lia 1 a° n r
——logf= ———; o = —————,
onox ogf 1—z cox? log/ (1—z)2 22
We want a parameter orthogonal to n = «, = B,. Take a, = z, then
% 1 i n n
E_% logf= — —, ogfm — D"
oo 081 =z Paplef= iy

and we have to solve
n n ox 1
{(1—x)2+x(1—x)}5ﬁ+ ==~

The variables are separable, and we get

logrx—x. = —logn + logpB,,
say Then ne
B = =z Er
The expectation of r is therefore orthogonal to the index.

For the Pearson Type VII law the location parameter is obviously
orthogonal to both the scale parameter and the index. Hence we have
only to make a transformation of the scale parameter to make it ortho-
gonal to the index. We take the law in the form

_ (m—1) (z—A)2) -7
T @nM)(m—3)' e 2Mo? |

where M is a function of m. Evidently

(5)

y {1+

o2 o2
f Ysn552 08y dz and f Y o, 08y dx

2
are zero. The condition that [ ya—’-’?ralogy dz shall vanish is found
J co®
to be 1dM _ mil 32

Mdm ~— mm—3)  m—1 m’
For y to tend to the normal form with standard error ¢ when m — o0
M /m must tend to 1, we must therefore have

(6)

M= (m—LipPm* (I <m<x), (7)
_ m! mAz—A)E |-
wihat Y= e Ty o T ®

With the law in this form we can form the maximum likelihood
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equations for A, ¢, and m, neglecting non-diagonal terras, and approxima-
tion is rapid, any error being squared at the next step.
For Type II laws the corresponding form is
(m—1)! m¥{z—N)? \"
= G T s i (<< O
For m < 1, dy/dx does not tend to 0 at the termini. It is then best to
take the termini explicitly as parameters.

Fic 2 Laws of Types II (m negative) and VII (m positive) for ¢ = 1.

Specimen curves for A = 0, o = 1 are given in the diagram, Fig. 2.
The maximum likelihood equations for a Type VII law in this form are

z—A
= 10
axl"gL Tiei 2 Tl = (10
2 _n. m (x—A)? _ 1
~ 3181 =315 2 Tre—yeite an

2 — a2 I _ _;}_
—plog L = nm {angm arlogm—p!—z s

(x—A)? mi(m+1)(x—A)?
-3 mnog{H— . M02}+ > ST ety = & (12

where p = 1/m.
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For Type II they are

2 m z—A

PlogL— M S &= 13

AL =310 2 e = (13)

2 _n._m (x—A)? _ 14
~w 8L =3 2 s = (14)

00 o fdy A ] }

logL = nm I%log(m b1 g logm—11— gt

(z—A)? m2(m—1)(x—A)? _
+2 "‘”°g{l+ 2 Mo? }"’ 2, St i — @—eater — (19

where p = —1/m. It is convenient to define w as +1/m for Type VII
and as —1/m for Type II, since this provides for continuous passage
through the normal law by increasing p through 0. Actual fitting would
be done as follows. First treat m as infinite and find first approxima-
tions to A and ¢ as for the normal law. Substitute in (12) or (15), for a
number of trial values of m. Interpolation gives a value of u, and the
divided differences give a value of 82log L/du? which is 1/s%(x). Return
to (10) and (11), or (13) and (14), and derive estimates of A and o. If the
changes are considerable, solve afresh the equation for m.

An approximate allowance for the effect of the uncertainty of o on
the posterior probability distribution of A can be found as follows. For
the normal law 2 on
{ﬁ(—log L)} =5

o=8

The numerical solution here gives a value for s*(c); we can define

02
! g2/262%(g) = 1s2] ¢ (— .
n' = §?/25%(c) = 1s {302( log L);F’
and, since two parameters besides A have been estimated, we can take
the effective number of degrees of freedom as n'—2.
A table of dlogm!/dm is given by E. Pairman at intervals of 0-02 up
to m = 20.t For m > 10 it is given in the British Association Tables.

4.4. If the law of error is unknown and the observations are too few to
determine it, we can use the median observation as a statistic for the
median of the law. We can then proceed as follows. Let « be the median
of the law, we want to find a range such that the probability, given the

1 Tracts for Computers, no 1
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observations, that o lies within it has a definite value. Let a be a possible
value of a such that ! observations exceed a and n—I fall short of it. Then

2\ 2(l—3n)?
P(l|ayn, H) = "Gl = (;—n) exp{~i7i"l] )
nearly, and if the prior probability of « is taken uniform,
> de ! 2\* 2(—4m)%)
I(da,l,n,[l)oc(ﬂn exp - (2)

Thus the posterior probability density of « is a maximum at the median,
and if we take ! = {n4-}vn as limits corresponding to the standard
error, the corresponding values of « will give a valid uncertainty, what-
ever the law and the scale parameter. The limits will not in general
correspond to actual observations but can be filled in by interpolation
The question of departure from the normal law is commonly con-
sidered in relation to the ‘rejection of observations’. Criteria for the
latter have been given by Peirce and Chauvenet. They appear, how-
ever, to be wrong in principle If observations are legitimately rejected,
the normal law does not hold, and these observations could be used to
cstimate a departure from it There is no reason to suppose that the
retained observations are themselves derived from the normal law, and,
in fact, there is reason to suppose that they are not, and then the mean
and standard error found from the observations retained may easily be
invalid estimates Another consideration is that if we make a definite
rule that observations within certain arbitrary limits are to be retained
at full weight and all beyond them rejected, then the decision about
a single outlying observation may easily affect the mean by its apparent
standard error, which is highly undesirable. Again it is often advocated
that the uncertainiv of the true value, as estimated from the mean,
should be got fiom the average residual without 1egard to sign instead
of the mean square residual, on the giound that the former is less
affected by a few abnormally large residuals tnan the latter is  But if
the mean of the observations is taken as the estimate of the mean of
the law, its uncertainty is correctly estimated fiom u,, if the latter
exists, and if it does not exist the uncertainty will not be proportional
to n="2, Tor all laws such that g, exists the mean square residual gives
an unbiased estimate ot w, The ratio of the expectation of the average
residual without regard to sign to su,, however, depends on the form
ot the law of ertor  If the average residual is found and then adapted
to give an estimate of Ay, by applving the factor found for the normal
law, this tactor will be too small for laws of Type VII, which are pre-
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cisely those where the use of this method is recommended. The cases
where this treatment is recommended are just those where it is most
likely to lead to an underestimate of uncertainty. If the mean is taken
as the estimate, there is no alternative to the mean square residual to
provide an estimate of uncertainty when the law is in doubt.

On the other hand, it is only for the normal law that the mean is
actually the best estimate, and for other laws we are entitled to con-
sider other estimates that may be more efficient. One interesting case

is the law lx-—m_f_f‘ ‘_if

e 3

P(dx |m,a,H) ==} exp(—
Here we find easily that the likelihood is a maximum if m is taken
equal to the median observation, and if a is the average residual without
regard to sign. This law is therefore known as the median law. Given
any of the three properties the other two can be deduced provided the
chance is a function of z—m only. It is only subject to this law that
the average residual leads to the best estimate of uncertainty, and then
the best estimate of the location parameter is provided by the median
observation and not by the mean. The interest of the law is reducec
somewhat by the fact that there do not appear tc be any cases where
it is true. It has the property, however, that il lies higher on the tails
and in the centre, and lower on the flanks, than the normal law with
the same second moment, and these properties are shared by the laws
of Type VII Fisher shows that for the Cauchy law the standard erroz
of the median of # observations is 7/2vn, while that of the maximum
likelihood solution is 4/(2/n). Thus the efficiency of the median as an
estimate is 8/7% = 0-81, which is quite high, in spite of the fact that the
expectation of the average residual withou* regard to sign is infinite
For the normal law it is 2/7 = 0-64, and it varics little in the inter-
mediate range of Type VII. In the corresponding range the efficiency
of the mean varies from 1 to 0. There is, therefore, much to be said tor
the use of the median as an estimate when the form of the law is unknown;
it loses some accuracy in comparison with the best, methous, but the
increase of the uncertainty is otten unimportans, and varies littie wit:.
the form of the law, and the uncertainty actually obtained is found
easily by the rule (2). An extension io the fitting of eynations of con-
dition for several unknowns, however, wculd be rather eomplicated in
practice. The maximum likelihood for the median law cones at a set
of valies such that, for each unknown, the coeiticient of that unknown
and the residual have the same sign in half the equations of condition
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and opposite signs in the other half. To satisfy these relations would
apparently involve more arithmetic than the method of least squares
The simplicity of the use of the median for one location parameter does
not persist for several parameters, and the practical convenience of the
method of least squares is a strong argument for its retention.

4.41. The nature of the effect of the law of error on the appropriate
treatment is seen by considering a law

P(dz|aH) = f(x—a)dz. (1)
The maximum likelihood solution is given by

0 = L tog(f (21— (F3— 0./ (a0}

=f,(xl""°‘) fl(xn'—a)‘ (2)
Jli—a) flxp—a)
If the arithmetic mean is the maximum likelihood solution for all
possible observed values, this is equivalent to

Fot

0 = (x;—a)+...+ (2, —a), (&)

whence flx) = e, (4)
the result obtained by Gauss. But if we put

flle—a) 5

T fE—a " ®)

(2) is equivalent to > w(z—a) = 0. (6)

Hence « is a weighted mean of the observed values. If f'(x)/f () does
not increase as fast as the residual, the appropriate treatment will give
reduced weight to the large residuals. If it increases faster, they should
receive more weight than the smaller ones. The former consideration
applies to a Type VII law, for which, for large z—a,

f'z—a)/(x—a)f(x—a)
behaves like —(x—a)-? instead of being constant. The latter applies
to the rectangular law, for which w is zero except at the ends of the
range, where it is infinite.

These considerations suggest an appropriate treatment in cases where
the distribution is apparently nearly normal in the centre, but falls
off less rapidly at the extremes. This kind of distribution is shown
especially by seismological observations. If two observers read ordinary
records and agree about which phases to read, they will usnally agree
within 1 or 2 scconds. But the arrival of a new phase is generally super-
posed on a background which is already disturbed, and the observer
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has to decide which new onsets are distinct phases and which are merely
parts of the background. The bulk of the observers actually usually
agree, but there are scattered readings up to 10 or 20 seconds away
from the main concentration. The following are specimens. The residuals
are in seconds. The first series refer to P at good Pacific stations, the
second to intermediate ones, the third to S at short distances in deep-
focus earthquakes.

Residuel —10 -9 -8 -7—-6—-5—-4-3-2—-1 0 1 2 3 45678910
Number (1) ¢ 1 1 1 1 1 4 813 1413 810 2 411220 1
Number (2) 0 1 2 0 1 2 2 2 7 81010 4 3 324120 2
Number (3) ? ? 5 4 7 10 16 23 31 51 59 443922158878

The central groups alone may suggest a standard error of about 2 seconds,
but the second moment of the whole of the observations might at the
best suggest one of 4 or 5 seconds. At the worst it would become
meaningless because there may be no definite gap between two distinct
phases, and we have no rule so far for separating them. In such a case
we may suppose that the law has the form

Pz o b, 1) = (P exp(—ha—o))tmla—p) =, (1)

where mg is always small and g varies little within ranges of order 1/k.
Within this range we must regard g as an unknown function. Then

logL = Z log[(1 m)hexp{ hz(x—a)’}+mg(x—ﬁ)] (8)

19L 2 {2(1 —m)h3/Vr}(z— a)exp{—h2(x—a)?} )
Loa — & {(1—m)h/m}exp{—h¥z—a)}+myg(z—PB)’
12L Z {(1—m)/Va}{1 — 2h*(x — a)?} exp{—h?(x— )%} (10)
Loh ~ & {(1—m)hjvrlexp{—h:(z—a)5+mg(zx—p) '
or, if we write
wl=1 +~—"i—— ﬁg(x~ﬁ)exp{h’(m~a)’} (11)
1—m h ’
}_J %OITI = S 2wz —a), (12)
Z Z‘h =3 w{l— 2 (z—a)3). (13)

Thus, with the appropriate weights, the equations for « and % reduce
to the usual ones. To find these weights requires an estimation of g,
which need only be rough. We note that the density at large residuals
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is mg, and at small ones (1--m)k/vn+mg; thus the coefficient of the
exponential in (11) is the ratio of the density at large values to the excess
at the mode, which is estimated immediately from the frequencies.
If we denote this coefficient by u, we have
wl = 14+pexp{h?(x—a)?}, (14)
and apart from p, ¢ is irrelevant to « and k. Also, in 32log L/2a?, the
term in Gw/da is small on account of a factor u(r—«)? when z—a is
small, and of a factor p-!exp{—h*z—a«)?*} when z~—a is large; in any
case we can neglect it and take
C Swx o
AR
where ¢ is given by 2> w="> wx—a) (16)
The method has been applied extensively in seismology with satis-
factory results. A change in kb or a necessitates a change of the weights,
and it is usually necessary to proceed by successive approximation, but
more often than not the second approximation almost repeats the first.
As a starting-point we can find A roughly from the distributions of the
frequencies near the centre, compute from it the expected frequencies
according to the normal law, and use the excess on the flanks to esti-
mate u Alternatively, if there is a range of approximately constant
frequencies on each side, we can subtract their mean from all frequen-
cies, including those in the central group, replace negative values by 0,
and compute o from the remainders. This has been called the method of
uniform reduction 'The chief use has been in finding corrections to trial
tables 'The residuals for all ranges together give a good determination
of the weights, which are then applied to the separate ranges to give
the required corrections. With this method the weight is a continuous
function of the residual, and the difficulty about a hard and fast limit
for rejection does not arise. S. Newcombt considered the case where
the law of error is the sum of several normal laws with different precision
constants. The Type VII Jaw would be one limiting case of such a law,
and the estimation problem for it is not nearly so difficult
4.42. In the usual statement of the problem of least squares the
whelde of the uncertainty is supposed concentrated in one of the variables
observed, the others heing taken as not subject to error. This is a
common state of affairs, hut not a universal one. It may happen that
we have a set of pairs (2,7), which may be taken as estimates of two

(15)

T Amer J Math 8, 343-66, also Astron Constants, 1895, 82-84
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variables (§,7) on different occasions, with a linear relation between
them, and that the uncertainties of each determination of x and y are
known and independent. The problem is to find the relation between

¢ and . Write 5= ab4p. )

Then a typical observation (x,4-8,,¥,4-¢,) must be read as

Pl dy,dfy | o) = 5 expl B EL (ol P e, ay, az,

25 242
2
and log L = constant — z {(x";f ')2+ _;f_ B } (3)

the unknowns being the various £,, o, and B. Integrating with regard
to all the ¢, we get, with a uniform prior probability for « and 8,
2
P(dadp | 6H) cc T] (2+a%s?)" exp{— %—i‘—%éﬁl} dadp. (4)
Hence we can write
ot + B =y, (t+a%s])", ()
as a set of equations of condition to determine « and B Since the
standard error involves « the solution must be by successive approxima
tion, but if the variation of z, and y, is much more than that of ¢, and
t,, a first approximation using equal weights will give a good estimate
of « and the second approximation will need little change The result
is equivalent to using z, as the correct value of £, but using {1) and s,
with an approximate «, to estimate n and its uncertainty at &, - x,
Correspondents have pointed out that there is an apparent asym
metry between ¢ and 7 in this treatment. the result would apparentiv
be different if (1) was put in the form ¢ = «'n -p’. But this would be
equivalent to estimating ¢ at %, =- y,, which need not be the same as
estimating 5 at £ == x,. The point is the same as the distinction between
the two regression lines in normal corielation, which do lead to the same
joint. probability distribution
4.43. Grouping. Suppose that we have observations z, of a quantity
for » different values of an argument ¢, and that we regard these as
representing a linear function of ¢, say ~ i B¢, the standard error of each
observation is ¢. Then a vypical equation of condition will be

X, o B, (1)

and the normal cquations for a and 8 will be
nat Bt =Y. &)
a¥t, BI- Sta, (3)
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Yo
whence the standard error of 8 1s{ o. If { is the mean

SE-5 )2}
of the ¢,, the standard error of a--ff is o/v¥n, and these uncertainties
are independent. This is the most accurate procedure.

On the other hand, we may proceed by taking the means of ranges
of observations near the beginning and the end; the difference will then
yield a determination of B. If there are m in each of these ranges and
the means are (I, %), (£, %,), we have

# = at-Plto/vm, %y = atBlyt-o/vm, (4)
E—&, , (2\" o
whence B= = i(m) z——-—z__il. (5)

Let us compare the uncertainties on the hypothesis that the observa-
tions are uniformly spaced from ¢{ = —1 to +1. Then Y 2 will be
nearly iz, and the least squares solution has standard error ¢./(3/n).
Also #,—1, = 2(1—m/n) and the solution by grouping has standard
error o/(2m)2(1—m/n). The latter is a minimum if m = }n, and then
is equal to o(27/8n)". The efficiency of the solution by grouping, as far
as B is concerned, is therefore §, which for most purposes would be
quite satisfactory.t The expectation of the square of the difference
between the two estimates would correspond to a standard error } of
that of the better estimate. If we took m = }n, we should get a
standard error of 2¢/n'2, and the efficiency would be .

The best estimate of «-Bf is the mean observation, and it is of
no importance whether we average the observations all together or
average the means of the three ranges. Hence we shall sacrifice hardly
any accuracy if we divide the observations into ranges each containing
a third of the observations, determine 8 by comparison of the first and
third, and a-gf from the mean of all three with equal weight.

Again, suppose that ¢ ranges from 0 to 27, and that we want to deter-
mine a+fcost from the observations of . The normal equations are

na"’ﬂ z cost, = z Ty (6)
oY cost,+B Y cos, = Y x,cost,. (7
If the arguments are equally spaced we shall have o%a) = o?/n,

*(B) = 20%/n.
But we may compare means by ranges about 0 and 7. The sum of

1 The result is due to Sir Arthur Eddington, but he did not publish it.
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the observations between 0 and p= and between (2—p)r and 27 will
give, nearly,

o
mpa-]-gf—f f costdi = nE,+0y/(np) (8)
-

and the corresponding equation for the opposite range follows. Hence
B can be estimated from

2Bsinpn — £~ 2,20/ (2pm) ©
ks
and will be found most accurately if p'2cosec pr is a minimum. This
leads to pm = 66° 47°. The convenient value pm = 60° gives

ox(f) = 2 (10)
and the efficiency is 9/n% = 0-91. If we take p = }, thus comparing
whole semicircles, we get an efficiency of 8/#% = 0-81. The use of
opposite ranges of 120°, while giving high efficiency, also has the merit
that any Fourier term whose argument is a multiple of two or three times
that of the term sought will contribute nothing to the estimate. If we
used ranges of 180°, a term in 3t would contribute to the estimate of B,
but this term contributes nothing to the mean in a 120° range.}

Thus drastic grouping, if done in the best way, loses little in the
accuracy of the estimates. The corresponding analysis for frequencies
instead of measures leads to the same results.f There may, however,
be serious loss when the chance considered falls off rapidly towards the
tails. I found this in discussing errors of observation; the sacrifice of
the information about the distribution of the errors in ranges where
the expectations according to the normal law were small led to the
standard errors being increased several times.

The method is particularly useful in carrying out harmonic analysis.
When the data are measures, if we use opposite ranges of 120°, the
coefficient of a sine or cosine is given by

=l ’”2)17;/42
= 1.814(8;,— ;)4 1-4810/vn. amn

Where the problem is to estimate a Fourier term in a chance, if 7, and
7, are the numbers of observations in opposite ranges of 120°, we get

1-481
Vn (12

t Sec Note A on p 244 1 Proc Roy Soc. A, 164, 1938, 311-14

B =1814 ‘”2:[:
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The similarity of the coefficients corresponds to the result in the mini-
mum x'? approximation that we can enter an observed number in an
equation of condition as n,4-+n,.

4.44. Effects of grouping: Sheppard’s corrections. In some
cases it is desirable to make allowance for less drastic grouping than
in 443 Suppose, as in 3 41 that the true value is 2 and the standard
arror o and that we take a convenient arbitrary point of reference x,
Then all ohservations between zy+(r+ })k will be entered as x4+ 7h,
and our dats are the numbers of observations so centred  As before,

we can take Pldrdo | H) o dedo/o. 1)

but the chance of an ohservation being given as z, +rh is now

Zo- (2 Hh
Pirizx.o,H)= —',(—0177 , e\p{ _(1) (Jg‘. o)? ‘,]5 (2)
Vi Zo Hir- b -

Two cases arise according as k is large or small compared with ¢. In
the former case the chance is negligible except for the range *hat in-
cludes x Hence if we find nearly the whole of the observations in a
single range we shall infer that o is small compared with & The likeli-
hoed is nearly constant for values of # in this range, and we shall be
left with a nearly uniform distribution of the posterior prohability of
& within the interval that includes the observations nc matter how
many observations we have This is an unsatisfactory result, the
remedy is to use a smaller interval of grouping.
If k is small with regard to o, and if we put

§—zo—1h = 1, (3)

i
f exp[—%5{(:0+rh——x)2+2n(xo+rh—x)+r)”}] dq

—th 1

1
= exp[— 272(:co+rh—-z)2] J; [l —gé(xo+rh—x)+
=4
7’ 2
+%—,(”o+"h—x) —- 5;2] dy

= exp| — gz ot b B[4 i (b 4] @

to order A, and we shall have for the joint probability of the observa-
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tions given z and o,

P6ix,0 H)
[ 3 .
< a“"exps_—g—‘;‘zz (xo +1h—2)* ‘1"24 il {3 (ka2 "0'}]
R e e TG

where £ and s? are a mean and a mean square residual found from the
recorded values. To this accuracy they are still sufficient statisties
Hence

Pldzdo , 6H)
v 2 2 2 2
X o "-1cxp[ (x x)"’( G ) ilf—(l——"-—)-— nh ‘drde. (6)

1202/ 26% 1263 2402
Differentiating {3) or (6) we see that the maximum for z is at &, and
that for o is at o? = s2— LR34 O(n-Y). I
The coefficient of (x— )2 in (6) is therefore, to this order,
n he n
LY § NG SN 8
l(s”—,‘ﬁlﬂ)( ]‘232) 2¢2 )

Without the allowance for ninite % the corresponding values would be
st and n/2s%. Hence (1) the uncertainty of x can be taken from the mean
square residual as it stands. and needs no correction, (2) to estimate o?
we should reduce s? by A2/12.

The latter correction is due to W. F. Sheppard + He procecded by
considering the expectation of the contribution to s% given o, due to
the finite %, and obtained the correction in this sense for any law of
error. He showed also that the contribution to the third moment is
zero, and to the fourth 3A%%—;i k%, which shouid therefore be subtracted
from the mean fourth moment of the observations betore finding that
of the law. It is in this form that the corrections have been most used.
But the above argument brings out the point, aiso made by Fisher. that
the uncertainty of the true value, given the observations, is determined
by the uncorrected second moment and not by the cortected one It is
only when, as in computing a correlation from grouped data, we are
directly interested in o2, that there is any point in applying the correc-
tion. There will be a slight departure from the rule of 3 41 in the
posterior probability distribution ot z. but this is negligible

4.45. There is a similar complication when the standard error con-
sists of two parts, one of which may be supposed known and equal to

t Proc Lond Math Soc 29, 1898, 363
Q
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o', while the other is to be found. There are two plausible assessments
of the prior probability. We may take o to be the complete standard
error, but restricted now to be greater than ¢'; then the rule would be

P(do | H) c do/o, (1)
for ¢ > o’. On the other hand, we might take this rule to apply to
only the unknown portion (02—o'2)'2; then

P(do | H) < dlog(o®*—0'?)'2 oc

oda
e @
But the latter leads to an absurd result. For the likelihood is still
proportional to

o oxp| — o7 (w2457 ®)

and (2) will lead to a pole in the posterior probability at ¢ = o’. Thus
the inference using this assessment of the prior probability would be
that ¢ = ¢’, even though the maximum likelihood will be at a larger
value of o; (1) on the other hand leads to the usual rule except for a
negligible effect of truncation.

The situation seems to be that in a case where there is a known
contribution to the standard error it is not legitimate to treat the rest
of the standard error as unknown, because the known part is relevant
to the unknown part. The above allowance for grouping is a case in
point, since we see that it is only when A is small compared with o that
n observations are better than one; if the interval was found too large it
would in practice be taken smaller in order that this condition should
be satisfied. The case that attracted my attention to the problem was
that of observations of gravity, where repetition of observations at the
same place shows that the accuracy of observation is of the order of 3
milligals (1 milligal = 0-001 cm/sec?), but there are differences between
neighbouring places of the order of 20 to 50 milligals. In combining
the data to obtain a representative formula the latter must be treated
as random variation, to which the inaccuracy of observation contributes
only a small known part. The use of (2) would then say that we shall
never dispose of the possibility that the whole of the variation is due
to the observational error, whereas it is already disposed of by the com-
parison of observations in different places with the differences between
observations repeated at the same place This is a case of intraclass
correlation (see later, 5.6), we must break up the whole variation into
a part between stations and a part between observations at the same
station, and when the existence of the former is established the standard
error is found from the scatter of the station means, the differences
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between observations at the same station having little more to say.
Thus the proper procedure is to use (1) or else to treat the standard
error as a whole as unknown, it does not matter which.

4.5. Smoothing of observed data. It often happens that we have
a series of observed data for different values of the argument and with
known standard errors, and that we wish to remove the errors as far
as possible before interpolation. In many cases we already know the
form of the function to be found, and we have only to determine the
most probable values of the parameters in this function. The best
method is then the method of least squares. But there are cases where
no definite form of the function is suggested. Even in these the presence
of errors in the data is expected. The tendency of random error is
always to increase the irregularities, and part of any irregularity can
therefore be attributed to random error, and we are entitled to try to
reduce it. Such a process is called smoothing. Now it often happens in
such cases that most of the third, or even the second or first differences,
at the actual tabular intervals, are no larger than the known uncertainty
of the individual values will explain, but that the values at wider in-
tervals show these differences to be systematic. Thus if we have values
at unit intervals of the argument over a range of 40, and we take
differences at intervals 10, any systematic second difference will be 100
times as large as for unit intervals, the random error remaining the
same. The situation will be, then, that the values at unit intervals give
no useful determination of the second derivative of the function, but
this information can be provided by using wider intervals. On the other
hand we want our solution to be as accurate as possible, and isolated
values will not achieve this; thus the observed values from argument 15
to 25 will all have something to say about the true value at 20, and we
need to arrange our work so as to determine this as closely as we can.
In such a case we may find that the values over a range of 10 are
enough to determine a linear function by least squares, but that the
coefficient of a square term is comparable with its standard error. If
we reject the information about the curvature provided by a range of
10, we lose little; and in any case comparison with adjacent ranges will
give a much better determination. This suggests that in a range of 10
we may simply fit a linear function. But if we do this there will be dis-
continuities wherever the ranges abut, and we do not want to introduce
new spurious discontinuities. We notice, however, that a linear func-
tion is uniquely determined by two values. If then we use the linear
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solution to find values for two points in each range we can interpolate
through all ranges and retain all the information about the curvature
that can be got by comparison of widely separated values, while the
result for these two values will be considerably more accurate than for
the original ones. Such values may be called summary values.

Now the two values of the independent variable may be chosen
arbitrarily, in an infinite number of ways consistent with the same
linear equation. The question is, which of these is the best? We have
two considerations to guide us The computed values will still have
errors, of two types. (1) Even if the function sought was genuinely linear,
any pair of values found from the observed ones would have errors
If we take the values of the argument too close together, these errors
will tend to be equal; if they are too far apart they will tend to have
opposite signs on account of the error of the estimated gradient. There
will be a set of pairs of values such that the errors are independent.
But any interpolated value is a linear function of the basic ones. If
we choose one of these pairs, the uncertainty of any interpolated value

- can be got by the usual rule for compounding uncertainties, provided
that these are independent. If they are not, allowance must be made
for the correlation, and this makes the estimation of uncertainty much
more difficult (2) We are neglecting the curvature in any one range,
not asserting it to be zero. At some points in the range the difference
between the linear solution and the quadratic solution, both by least
squares, will be positive, at others negative. If we choose summary
values as places where the two solutions agree, they are independent
of the curvature and therefore of its uncertainty, and this will not hold
of any others. Neglect of the curvature will therefore do least harm if
we use these values. We have therefore, apparently, three conditions to
be satisfied by the values chosen for the argument: they must be such
that the uncertainties of the estimated values of the function at them
are independent, and such that neither is affected by the curvature
‘There are only two quantities to satisfy these conditions, but it turns
out that they can always be found

Let z be the independent variable, y the dependent one. Suppose
that the summary values are to be at x, and z,, where » takes the
values 3, and »,. Then the general quadratic expression that takes
these values is

g = MEB)ET) | g e g, )

L,

in which y,, 7,. and 4 can be found by least squares. The weight of the
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equation of condition for a particular x being w, the normal equation
for y, is
2 w(r—x,)%y;,— 3 w(x~x1)(x—xz)yz+2 w(z—a,)(T—2,)24
(1 —T,)? Ty—%y
_Sule—m o
) —,
The conditions that the uncertainties of y,, y,, and 4 shall be inde-
pendent, i.e. that they are locally orthogonal parameters, are therefore

> wE—z)(x—2x,) = 0, (3)
S w(x—z)(x—z,)? = 0, (4)
3 wlz—2zy)}(x—1x,) = 0. ®)

But if we subtract (5) from (4) and cancel a factor z,—z, from all
terms we obtain (3). Hence we have only two independent equations
to determine x, and z, and the problem has a solution.

Put now

Sw=mn, Jwz=nI z—F=2¢ 3w =nyu, X w=mnu, (6)
Then (3) becomes

0 =3 wé—£&)E—E) = nlua+6, 6) (7)
since Y w¢ = 0. Also either of (4) or (5) with this gives
pa—pa(§14-€5) = 0. (8)
Hence ¢, and £, are the roots of
oty =0, 9
Ha Ha ®

and this is the solution required.
The sum of the weights of y, and y, is easily seen to be n. For
z w(z—2x,)? + 3 w(z—x,)? = z w(E—£,)2 + T w(é—¢£,)?
= 2np,—2(¢,+€,) 2 w{-’-!-n(ff-{—f%)
= 2npp+n{(6,+£,)2—26, €3}
= dnpy+nufful, (10)
(2,—22)% = (£,4-E:)2—4&, € = dpp-Hidfid, (1)
and the sum of the weights is the ratio of these two expressions, as we
see from the first term in (2). This gives a useful check on the arithmetic.
In practice it is not necessary to use the exact values of z; and x,.

Approximations to them will suffice to make the correlation between
the errors negligible, and the curvature, in any case small in the type
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of problem considered, will make a negligible contribution. The most
convenient method of solution will usually be to solve by fitting a
linear function as usual and to find y, and y, and their uncertainties
by the usual method. If desired we can use x? to test the fit at other
values, and if there is a clear departure from the linear form we may
either estimate a curvature term or use shorter intervals. The latter
course is the more convenient, since the curvature if genuine can be
found more accurately later by comparing different ranges.

In practice it is convenient to begin by referring all values of z to
an arbitrary zero near the middle of the range. Then the normal equa-
tions to find a linear form

y = a+tbx (12)
will be na+b Y we =Y wy, (13)
aY wrtbYy wat =Y way, (14)
and the second, after eliminating a, gives
W3 wat— (3, wa)?n} = 3 wxy—E 3 wy. (15)
The coefficient of b is
S w(¢4-E)—nE = 3wk = np,, (16)

so that p, is found by simple division in the ordinary course of a least
squares solution. If we write

S wad = nh,, a7
we have ndy = > w(é+Z)* = npg+3np, £4-nid, (18)
and therefore Py = Ag—3p, E—F°. (19)

The solution is easy and, even if the function is capable of being re-
presented by a polynomial, nearly the whole of the original information
is preserved in the summary values. These will not in general be equally
spaced, but interpolation can then be done by divided differences
The method has been extensively used in seismology, where the original
intervals and weights were usually unequal. With this method this
introduces no difficulty. One feature was found here that may have
further application. The curvature terms are rather large, but the higher
ones small. For both P and S waves the times of transmission were
found to be fitted from about 20° to 90° by quadratics, within about
1/150 of the whole range of variation, though inspection of the small
residuals against them showed that these were systematic. Convenient
quadratics were therefore subtracted from the observed times, and

+ Whittaker and Robinson, Calculus of Observations, ch ii, H and B § Jefireys,
Methods of Mathematical Physics, 237-41
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linear forms were fitted to the departures from these for the separate
ranges. Summary values were found at distances rounded to the
nearest multiple of 0-5°, and added to the quadratics at these distances,
and finally the whole was interpolated to 1°. There was no previous
reason why quadratics should give so good a fit, but the fact that they
did made further smoothing easier.}

The choice of ranges to summarize is mainly a matter of convenience.
The only condition of importance is that they must not be long enough
for a cubic term to become appreciable within them, since its values at
z, and z, will not in general vanish. This can be tested afterwards by
comparing the divided differences of the summary values with their
uncertainties. If the third differences are found significant it may be
worth while to use shorter ranges, if not, we may get greater accuracy
by taking longer ones,

A solution has been found for the problem of finding three summary
values from a quadratic determined by least squares, such that their
uncertainties are independent of one another and their values unaffected
by a possible cubic term.} It has not, however, been found so far to
give enough improvement to compensate for the increased complication
in the arithmetic.

4.6. Correction of a correlation coefficient. In a common class of
problem the observations as actually recorded are affected by errors
that affect the two variables independently, and whose general magni-
tude is known from other sources. They may be errors of observation,
and it is a legitimate question to ask what the correlation would be if
the observations were made more accurate. The observations may have
been grouped, and we may ask what the correlation would be if the
original data were available We represent these additional sources of
error by standard errors oy, £,, and continue to use o and r for the ideal
observations of which the available ones are somewhat imperfect modi-
fications. But now the expectations of 2, 2, and ay will be o%+0Z,
72412, por, since the contributions of the additional error to z and y
are independent. A normal correlation surface corresponding to these
expectations will still represent the conditions of observation if the
additional error is continuous. If it is due to grouping we can still use
it as a convenient approximation. But for this surface the proper scale
parameters and correlation coefficient will be

o’ = (0%+0l)'", 7' = (r24-13)'h, p’ = potje't’. ()

t MNRAS Geophys Suppl 4,19317, 172-9, 239-40
t Proc Camb Phil Soc. 33, 1937, 444-50
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Now we have seen for one unknown that the best treatment of a known
component of the standard error is to continue to use the do/o rule for
the prior probability of the whole standard error, merely truncating it
80 as to exclude values less than the known component. Consequently
the analysis for the estimation of the correlation coefficient stands with
the substitution of accented letters as far as 3 9(10). Thus
— p'2\len
P(dp|6,11) oc ((T]__:r))‘n'ﬁ dp. @)
If then oy and 7, are small compared with o and 7, it will be possible,
«vithin the range of probable values of the parameters, to take the prior
probabilities of p and p’ proportional, and then we can apply the (z,{’)
transformation to r and p’ as before. The result may be written

o1
T2t (r—1)
from which the probability distribution of p’ follows at once. To derive

that of p we must multiply all values of p’ by the estimate of o'r'/or,
which will be

=2z 3)

= st
H T e

The procedure is thus simply to multiply the correiation and its
uncertainty, found as for the standard case, by the product of the
ratios of the uncorrected and corrected standard errors in the two
variables. Where the additional variation is due to grouping, this is the
product of the ratios without and with Sheppard’s corrections.

This device for correcting a correlation coefficient has been derived
otherwise from consideration of expectations, but there is a complica-
tion when the correlation is high, since it is sometimes found that the
‘corrected’ correlation exceeds 1. This means that the random variation
has given an 7 somewhat greater than p’, which is already high, and if
the usual correction is applied we are led to an impossible result The
solution is in fact simple, for the only change needed is to remember
that the prior probability of p is truncated at -4 1. We have therefore
only to truncate the posterior probability at p = +1 also. If ur >1
the probability density will be greatest at p = 1.

Such treatment is valid for one estimation, but when many have to
be combined there is a complication analogous to that for negative
parallaxes in astronomy (cf p 161). The data must always be combined
before truncation. To truncate first and then take a mean would lead
to systematic underestimates of correlation.

(4)
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4.7. Rank correlation. This method, introduced by Spearman and
modified by Pearson, is extensively used in problems where a set of
individuals are compared in respect of two properties, which either are
not measurable or whose measures do not follow the normal law even
roughly. The chief applications are in psychology, where there are few
definite standards of measurement, but it is possible to arrange indivi-
duals in orders with respect to two or more abilities. Then the orders
can be compared without further reference to whether the abilities have
received any quantitative measure at all, or if they have, whether this
measure follows a normal law of chance. It is clear that if one ability
is a monotonic function of the other, no matter how the measures may
be made, the orders will either be the same or exactly opposite, so that
the amount of correspondence between the orders will indicate the
relation, if any, between the abilities. Spearman’s proposal, then, was
to assign numbers 1 to » to the observed individuals in respect of each
ability, and then to consider the differences between their placings. If
x and y are the placings of the same individual, the coefficient R was

definedf by R—1_3Z ==yl ()
ni—1

This coefficient has a peculiarity. If the orders are the same, we have
> |z—y| =0, and R == 1. But if they are opposite we have, for four
members,

z Y Je—y|
1 4 3
2 3 1
3 2 1
4 1 3
R 8
X8
and R=1 -5 = —0-6.

Thus complete reversal of the order does not simply reverse the sign
of #. This formula has been largely superseded by another procedure
also mentioned by Spearman, namely that we should simply work out
the correlation coefficient between the placings as they stand. The
mean being }(n-+1) in each case, this will be

S {z—3n+1)}y—}n+1)} @)
TVE =it DE S —im+ P’

t Brit Journ Psych 2, 1906, 89-108
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which can also be written

re1_82@=y" 3)

This expression is known as the rank correlation coefficient. It is 4-1
if the orders are the same and —1 if they are opposite.

The formula needs some modification where some individuals in
either series are placed equal. A formula for the correction is given by
‘Student’{ but it is possibly as easy to work out r directly, giving the
tied members the mean number that they would have if the tie were
separated.

The rank correlation, while certainly useful in practice, is difficult to
interpret. It is an estimate, but what is it an estimate of? That is, it
is calculated from the observations, but a function of the observations
has no relevance beyond the observations unless it is an estimate of a
parameter in some law. Now what can this law be? For r = 1 and
r = —1 the answer is easy; the law is that each ability is a monotonic
function of the other. If the abilities are independent, again, the
expectation of r is 0, and if » is found 0 in an investigation it will natur-
ally be interpreted as an indication of independence. But for inter-
mediate values of r the interpretation is not clear. The form (2) itself
is the one derived for normal correlation, but the normal correlation
surface has 8 maximum in the centre and an infinite range of possible
values in all directions. In a given experiment any combination of
these might occur. But z and y have a finite range of possible values,
each of which they can take once and only once. The validity of the
form (2) in relation to z and y therefore needs further examination.
r may be an estimate of some parameter in a law, but it is not clear
what this law can be, and whether r will be the best estimate for the
parameter

To illustrate the point, suppose that a pair of large samples from
different classes have been compared. A pair of smaller samples is taken
from them at random. What is the probabihity distribution of r for
the comparison of these small samples? Except for some extreme cases,
nobody knows; but we should want to know whether it depends only
on the value of r for the comparison of the large classes, or whether it
depends also on finer features of the relative distribution. In the latter
case, if we had only the small samples, r found from them will not be
a sufficient statistic for » in the large samples.

t Biometrika, 13, 1921, 263-82
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Pearsont has investigated the relation of » to normal correlation. If
we consider the two laws

1 2
Pldady|oyop H) = go—oxp(— 2y L) dudy, ()
P(dzdy | oy, 09, p, H)
_ 1 1 [ 2pxy Y }
N 277‘7102«/(1—P2)exp: 2(1"P2)(°§ ‘71‘72 ) dely  (5)

both give the same total chance of z or of y separately being in a given
range. Consequently we can introduce two functions (called by Pearson
the grades)

z v
1 x? 1 y?

el b e L e o AL
and eliminate z and y in favour of X and Y. Then the right of (4) is
simply dXdY for X and Y between 0 and 1. Then (5) expressed in
terms of X and Y gives a distribution within a square, and showing
correlation between X and Y. Further, such a transformation would
be possible for any law of chance; we simply need to take as new
variables the chances that x and y separately are less than given values.
The result will not be a normal correlation surface in either case, and
there appears to be no reason to suppose that it would always be of the
same functional form. Nevertheless, one property of normal correlation
will persist. The exponent in (5) can be written

~zipl (e ) +0 @

and we can take z’ = x—po, y/o, and y as new variables. These will
have independent chances, and then if p tends to 1 the standard error
of #' will tend to 0 and that of y to 0,. Thus in the limiting case the
normal correlation surface reduces to a concentration along a line and
y is strictly a monotonic function of 2. Analogous relations hold if p
tends to —1. But then X and Y will be equal, since z and y are pro-
portional.

An analogous transformation applied to any other law will make X
and Y equal if z and y are monotonic functions of each other, not
necessarily linear, and r will be +1 or —1. Now it seems to me that the
chief merit of the method of ranks is that it eliminates departure from
linearity, and with it a large part of the uncertainty arising from the
fact that we do not know any form of the law connecting z and y. For

t Drapers’ Co Research Mems , Biometric Series, 4, 1907, 1-39



232 APPROXIMATE METHODS AND SIMPLIFICATIONS 1IV,§47

any law we could define X and Y, and then a new x and y in terms of
them by (6). The result, expressed in terms of these, need not be a
normal correlation surface, but the chief difference will be the one that
is removed by reference to orders instead of measures.

Accordingly it appears that if an estimate of the correlation, based
entirely on orders, can be made for normal correlation, it may be
expected to have validity for other laws, the same type of validity as
the median of a series of observations has in estimating the median of
the law, that is, not necessarily the best that can ever be done, but the
best that can be done until we know more about the form of the law
itself. But whereas for normal correlation it will estimate departure
from linearity, for the more general law it will estimate how far one
variable departs from being a monotonic function of the other.

Pearson investigates the expectations of Spearman’s two coefficients
for large samples of given size derived from a normal correlation surface,
and gets 6
E(r) = 7—rsin"1 ip

so that p = 2sin(}nr) (8)
is an estimate of p involving only orders In terms of R he gets
p = 2cos in(1—R)—1. (9)

The latter has the larger uncertainty. Little further attention has
therefore been paid to R. The expectation of the square of the random
variation in r leads to the result that, if p is given, the standard error
of an estimate of p from r would be

10472 -— £ 1‘/’ (14-0 042p2-+0 008p!-+0 002,5). (10)

The corresponding formula for a correlation found directly from the
measures is (1—p?)/vn, so that even for normal correlation r gives a
very efficient estimate. Pearson comments on the fact that in some
cases where the distribution is far from normal the value of p found
from r is noticeably higher than that found from the usual formula, and
seems to think that the fault lies with 7. But if  was any monotonic
function of y other than a linear one, the usual foimula would give p
less than 1, whereas the derivation from r would be 1. Thus if y = 2®
for —1 < x < 1, we have

B@) =1 E@)=} E@a)=1,

3 21
p= it = (25) = 40917,
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The ranks method puts = and z° in the same order and leads to p = 1;
but that is not a defect of the method, because it does not measure
departure from linearity but from monotonicity, and in its proper sense
it gives the right answer. The formula based on  xy measures depar-
ture from linearity, and there is no inconsistency. Further, there is nc
reason to suppose that with great departures from normality this
formula gives an estimate of anything particular.

Pearson is very critical of Spearman in parts of this paper, but I think
that he provides a very satisfactory justification of his coefficient.
Spearman has replied,} but does not mention the last point, which I
think is the chief merit of his method. The rank correlation leads to
nearly as good an estimate as the product moment in the case where the
latter is definitely the best estimate. It is also right in cases of complete
association where y is a monotonic but not a linear function of z. In
such cases the normal law and normal correlation do not hold, and the
product moment would suggest imperfect association between z and y.
It is also right in testing absence of association. For general use where
the law is unknown and may be far from normal it seems in this respect
to be definitely better than Ty/s; s,. Its defect is that we still have not
succeeded in stating just what it measures in general. The normal
correlation surface is a complete statement of the joint chance of two
variables, and p is a parameter in this law. The extension to non-normal
correlation would still require such a law, containing one new parameter,
leading to an expression for the joint chance of n individuals being
arranged in any two orders with respect to two abilities, and stated
entirely in terms of those orders. Such a law has not been found; I
have searched for possible forms, but all have been either intrinsically
unsatisfactory in some respect or led to mathematical difficulties that
I, at any rate, have not succeeded in overcoming. Till this is done there
will be some doubt as to just what we mean guantitatively, in regard
to two quantities both subject to a certain amount of random variation,
by the amount of departure from monotonicity. Should the law involve

exp{—a|X—Y[} or exp{—o(X—Y)3},

for instance, we should be led to different functions of the observed
positions to express the best value of «, and to decide between them
would apparently need extensive study of observations similar to those
used to test whether the normal law of errors holds for measures. It

t Brit Journ DPsych 3, 1910, 271-95 Seo also Yule,J R Stat Soc 70, 1907, 656
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cannot be decided a priori, and until we have some way of finding it by
experiment some indefiniteness is inevitable.

Pearson’s formula for the standard error of the correlation coefficient,
as found for the normal correlation surface by the method of ranks, does
not give the actual form of the probability distribution, which is far from
normal unless the number of observations is very large. But his esti-
mates of uncertainty for the correlation coefficient found by the most
efficient method in this case, and for that found from the rank coefficient,
have been found by comparable methods, and two functions with the
same maximum, the same termini at 41, and the same second moment
about the maximum, are unlikely to differ greatly. It appears therefore
that we can adapt the formulae 3.9 (25) and (26) by simply multiplying
the standard error of { by

1:0472(140-042p%+0-008p%+4-0-002p%)
for the estimated p.
An alternative method is given by Fisher and Yates. One disadvan-
tage of the correlation between ranks as they stand is that if we have,
say, 10 pairs, in the same order, the effect of interchanging members

1 and 2 in one set is the same as that of interchanging members 5 and 6.
That is, the correlations of the series

1,2, 3, 4,5 6,7,8,9, 10
with 21,3 4,5 6,17 8, 9, 10
and with 1,2 3,45 6,7, 8,9, 10

are the same. But if the series are the results of applying ranking to a
normal correlation surface this is wrong, for the difference between
members 1 and 2 would ordinarily be much larger than that between
members 5 and 6. Fisher and Yatest deal with this by using the ranks,
as far as possible, to reconstruct the measures that would be obtained
in a normal correlation. If as before we use X to denote the chance of
an observation less than z, where z is derived from the normal law with
o = 1, the chance of p—1 observations being less than z, n—p greater
than z4-dz, and one between z and z+dz, is

n!

s R

and this is the chance that the pth observation will lie in a range dz.

t Statistical Tables, 1938, pp 13, 50-51
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The expectation of z for the pth observation in order of rank is therefore

1

n! -1 n—;
%= o= of Xp-1(1—X)r-2zdX,
and if this is substituted for the rank we have a variable that can be
used to find the correlation coefficient directly without transformation.
This avoids the above difficulty. It makes the expectation of the sum
of the squares of the differences between the actual measures and the
corresponding z, & minimum Fisher and Yates give a table of the suit-
able values of z, for n up to 30. The uncertainty given by this method
must be larger than that for normal correlation when the data are the
actual measures, and smaller than for the correlation derived from
Spearman’s coefficient, and the difference is not large. Fisher and
Yates tabulate 3 27, and Fisher tells me privately that the allowance
would be got by multiplying the uncertainty by (n/3 %)%, but the
proof has not been published.

The difference between Pearson’s method and Fisher’s recalls a
similar problem for one variable (cf. 3 61). Re-scaling may obscure an
essential feature of the distribution, and presurnably will also do so for
distributions for two variables. I think that what is needed is rather
some method of analysis, like the use of the median in 4.4, such that
the results will be as insensitive as possible to the actual form of the
law, completely insensitive they cannot be.

A further way of estimating rank correlation is given by Kendall.}

4.71. Grades and contingency. The method of ranks can be ex-
tended to a contingency table classified by rows and columns. Pearson’s
analysis actually leads to (8) and (10) by a consideration of the corre-
lation between grades, which are the quantities I have denoted by X
and Y and are called g, and g, by him. If the quantities correlated
are magnitudes and we have a series of measures, then for the normal
correlation surface X and Y will be read from a table of the error func-
tion and known for each observation with the same order of accuracy as
the measures. Then the rank correlation will be the correlation between
X and Y If we have the orders of individuals with regard to two pro-
perties, these provide the estimated X and Y, from which we can cal-
culate the rank correlation and proceed to p, in possibly an extended
sense if the correlation is not normal When data have been classified
the same will hold approximately, on account of the small effect of even

1 The Ad; d THheory of Statistics, ch 16, espocially pp 391-4, 403-8
pocially p]
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rather drastic groupmng on the estimates. The following table of the
relation of colours and spectral types of stars provides an examplie T
The spectral types are denoted by z, the colours by y, as follows &

Ed Yy

1 Helium stais 1 White

2 Hjydrogen stars 2 \White with faint tingo of colour

3 « Carinae typo 3 Very pale yellow

4 Solar stars 4 Pale yellow

5 Arcturus type 3 Fuil vellow

6 Aldebaran typo 6 Ruddy

7 Betelgeuse type

N Mean rank X
z 1 2 3 4 5 6 Total 100 x
1 125 146 8 3 0 0 282 -59
2 163 195 14 0 0 0 377 —28
3 3 97 23 8 6 0 137 0
4 0 41 1 33 29 0 180 rl6
5 0 15 86 77 63 0 241 ~28
6 0 0 4 22 43 6 75 +44
7 9 3 2 39 19 5 68 151
Total 296 497 214 182 160 11 (1,360
Meanrank Y| —~75 | —36 0 +20 1 437} +45
100 x

For convenience the zero of rank is taken in the middle of the third
group for both X and Y, and the ranks given are the means of the
placings relative to this zero, and divided by 100. Then we find

T X =—1004 SY=—3003,
TX?=17930, SY?=26233, XY = 415014.

The mean ranks are therefore at X = —07, ¥ = —2-2, to reduce to
the means we must apply to > X2, > Y2 and ¥ XY the corrections

-1004 X 0-7, —3003x2:2, —1004x2 2. Also we must correct Y X2
and 3 Y2 for grouping. In the first row for z, for instance, grouping
has made a contribution of ;282(2-82)% to > X2, and so on. It does not
affect the product systematically. Allowing for this we should reduce
> X2and ¥ Y2 by a further 326 and 1405. Thus the corrected values
are

S X2 = 16410, I Y?=18192, I XY = +13765

These give = -10-798

T W S Franks, M N RAS 67, 1907, 539-42 Quoted by Brunt, Combination of
Obscrvations, p 170

1 What Franks calls & white star would be called bluish by many observers, who
would call his second class white.
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To convert to an analogue of the correlation coefficient we must take

p = 2sin(0-5236 X 0-798) = 0-812.
Applying the z transformation we get

{ = 1133—0-003--0-037.

This uncertainty is a little too low, since it has allowed for grouping,
which should not be done in estimating uncertainties. This has altered
both X2 and )2 by about 5 per cent., and we should increase the
standard error of { by the same amount. Also we should multiply by
4 7(10) because we are working with ranks and not measures. This is
1-09. Hence (ranges corresponding to the standard error)

{ = 1-1304-0-042 = 1-088 to 1-172,

p = 40796 to 4-0-825.

Brunt, from the above data, using Pearson’s coefficient of mean
square contingency, gets p == +40-71. The difference is presumably
due to the skewness of the distribution, the greatest concentration
being in one corner of the table. I think that my larger value gives a
Letter idea of the closeness of the correspondence. But I think that
the use ot this coefficient to estimate association is undesirable for other
reasons In a rectangular contingency table x* may be computed
against the hypothesis of proportionality of the chances in the rows,
and Pearson defines the mean square contingency by

2 == y2/N,
where N is the whole number of observations + He then considers the
laws for correlations 0 and p, on the former of which proportionality
would hold, and works out, against the chances given by it, the value
of ¢? supposing the number of observations very large and distributed
exactly in proportion to the expectations given by normal correlation p.

The result for this limiting case is p?/(1—p?), and hence

R

1442
is suggested as a possible means of estimating p. Unfortunately in
practice we are not dealing with limiting cases but with a finite number
of observations classified into groups, and even if the two variables were
stiietly independent the sampling errors would in general make x2 about
{m—1i)}{n—1), where m and n are the numbers of rows and columns.
For an actual series of observations ¢? will always be positive, and »

t Drapers’ Co Res. Mems , Biomelric Serico, 1, 1904
®
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will be estimated by this method as about {(m—1)(n—1)/N}'2 if the
variations are independent. This is not negligible. But also if there are
any departures from proportionality of the chances whatever, irrespec-
tive of whether they are in accordance with a normal correlation, they
will contribute to x? and therefore to the estimate of p?. The excess
chances might, for instance, be distributed alternately by rows and
columns so as to produce a chessboard pattern; this is nothing like
correlation, but the ¢? method would interpret it as such. Or there
might be a failure of independence of the events, leading to a tendency
for several together to come into the same compartment, an extension
of the idea that we have had in the negative binomial distribution.
This would not affect the distribution of the expectation, but it would
increase ¢2. On the other hand, grouping will reduce ¢? if the correlation
is high. Accordingly, I think that this function, or any other function
of x%, should be used as an estimate only when the only parameter con-
sidered is one expressing intraclass correlation or non-independence of
the events. It is not suited to estimate the normal correlation coefficient
because too many other complications can contribute to it and produce a
bias. Inthe above case, however, the departure from normality itself has
led to a greater effect in the opposite direction, and in the circumstances
it seems that this way of estimating association would be best abandoned.

4.8. The estimation of an unknown and unrestricted integer. The
following problem was suggested to me several years ago by Professor
M. H. A. Newman. A man travelling in a foreign country has to change
trains at a junction, and goes into the town, of the existence of which
he has only just heard. He has no idea of its size. The first thing that
he sees is a tramcar numbered 100. What can he infer about the number
of tramcars in the town? It may be assumed for the purpose that they
are numbered consecutively from 1 upwards.

The novelty of the problem is that the quantity to be estimated is
a positive integer, with no apparent upper limit to its possible values.
A uniform prior probability is therefore out of the question. For a con-
tinuous quantity with no upper limit the dv/v rule is the only satisfactory
one, and it appears that, apart from possible complications at the lower
limit, we may suppose here that if n is the unknown number

P(n|H)oc n~14-0(n-2). (1)
Then the probability, given =, that the first specimen will be number m
in the series is Pmin,H)=1n (m<n) @)
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and therefore  P(n|m, H) oc n~2+0(n~%) (n = m). (3)

If m is fairly large the probability that n exceeds some definite value 7,
will be nearly

P(n > ng|m, H) = mﬁl n-=/§n4=:—:, )

nearly. With one observation there is a probability of about } that n
is not more than 2m.

I have been asked this question several times and think that an
approximate solution may be worth recording. The interesting thing
is that the questioners usually express a feeling that there is something
special about the value 2m, without being able to say precisely what it
is. The adopted prior probability makes it possible to say how a single
observation can lead to intelligible information about z, and it seems to
be agreed that it would do so. I see no way, however, of fixing the terms
of order n-2.

The extension to the case where several members of the series are
observed is simple, and is closely analogous to the problem of finding
a rectangular distribution from a set of measures.

4.9. Artificial randomization. This technique in experimental design
has been greatly developed by Fisher,} and more recently by Yates,}
chiefly in relation to agricultural experiments. The primary problem
in the work is to compare the productivities of different varieties of a
plant and the effects of different fertilizers and combinations of ferti-
lizers. The difficulty is that even if the same variety is planted in a
number of plots and all receive the same treatment, the yields differ.
Such tests are called uniformity trials. This would not affect the work
if the yields were random, if they were, the plot yields could be taken
as equations of condition for the varietal and treatment differences and
the solution completed by least squares, thus obtaining the best possible
estimates and a valid uncertainty. Unfortunately they are not random.
In uniformity trials it is habitually found that there is a significant
gradient in the yield in one or other direction on the ground. Even when
thig is estimated and taken into account it is found that there is a marked
positive correlation between neighbouring plots. Further, many fields
have at some stage of their history been laid out for drainage into a
series of parallel ridges and furrows, which may leave a record of them-
t The Design of Experiments, 1935

t J. R Stat. Soc Suppl. 2, 1935, 181-223, The Design and Analysis of Factorial
Frperiments, Imp Bur of Soil Science, 1937.
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selves in a harmonic variation of fertility. The result is that the analysis
of the variation of the plot yields into varietal and treatment differences
and random error does not represent the known facts, these ground
effects must be taken into account in some way. The best way, if we want
to get the maximum accuracy, would be to introduce them explicitly as
unknowns, form normal equations for them also, and solve. Since the
arrangement of the plots is at the experimenter’s disposal, his best plan
is to make it so that the equations for the various unknowns will be
orthogonal. One of the best ways of doing this is by means of the Latin
square. If the plots are arranged in a 5 X 5 square to test five varieties,
and each variety occurs just once in each row and each column, the
estimates of the differences between the varieties will be the differences
of the means of the plots containing them, irrespective of the row and
column differences of fertility But unfortunately the correlation be-
tween neighbouring plots still prevents the outstanding variation from
being completely random. If it was, all Latin squares would be equally
useful. But suppose that we take Cartesian coordinates of position at
the centre of each square, the axes being parallel to the sides. Then if
variations of fertility are completely expressed by the row and column
totals they are expressible in the form

F = ayta,x+a, 0 a3 2% 4-a, 20 +-b, y+ by y2+b3 4>+ by 1.

For with suitable choices of the a’s and b’s it will be possible to fit all
the row and column totals exactly. But this contains no product terms,
such as xy. In certain conditions this might be serious, for if 22 and y?
produce a significant variation it would only be for one special orienta-
tion of the sides that the xy term would be absent, and if the plots
containing one variety all correspond to positive ry and all containing
another to negative zy, part of the difference between the means for
these sets of plots will be due to the zy term in the fertility and not to
the diffcrences of the varieties This will happen with the most obvious
design, namely

Al Bl C|D]E
E| A B|C D]
DI E 4| B¢
cCi{DlEI 4, B
Bl CID|E {4,

Here varieties C and D have positive or zero xy every time, while 4
has negative or zero xy every time. If, then, the z? and »? terms should



1V,§49 APPROXIMATE METHODS AND SIMPLIFICATIONS 241

be eliminated, should we not estimate and eliminate zy too? On the
face of it it will usually be more important than higher terms such as
z*; but the real question is, where are we to stop? If we should keep
the whole of the terms up to the fourth power, we shall need to elimi-
nate 6 extra terms, leaving only 6 to give an estimate of the random
variation; if we should go to z*y* we should be left with no information
at all to separate varieties from fertility. We must stop somewhere,
and for practical reasons Fisher introduces at this stage another method
of dealing with zy, which leaves it possible to use the plot means alone
to estimate the varietal differences and at the same time to treat the
outstanding variation as if it were random, though in fact it is not.
Possibly it is often an unnecessary refinement to eliminate the higher
terms completely, as he does, but the analysis doing so is easier than
it would be to omit them and find the lower ones by least squares,
and it does no harm provided sufficient information is left to provide a
good estimate of the uncertainty. But there might be a serious danger
from zy. In a single 5 X 5 square each variety occurs only 5 times, and
some of this information, effectively 1-8 plots per variety, is sacrificed
in eliminating the row and column fertility effects. But if we use the
usual rules for estimating uncertainty they will suppose that when we
have allowed for rows, columns, and varieties, the rest of the variation
is random. If there is an zy term, this will be untrue, since the sign of
this term in one plot will determine that in every other. With some
arrangements of the varieties the contributions to the means of the
plots with the same variety due to xy will be more, with others less,
than would be expected if they were completely random contributions
with the same mean square. Consequently it will not be valid to treat
the outstanding variation as random in estimating the uncertainty of
the differences between the varieties. zy could be introduced explicitly,
with an unknown coeflicient to be found from the data, and then on
eliminating it the results would be unaflfected by it. But this would
mean appreciable increase of labour of computation, and the possibility
of still higher terms might then have to be considered

Again, it is usual to lay out two or three squares to reduce the un-
certainty. If the same design was used for three squares there would
be a 1 chance that every variety would have > zy for its plots with the
same sign in every square This is not a negligible chance, and though
the differences of the I ay for the varieties in one square might be un-
important, their contribution to the estimated total diiferences would
be multiplied by 3 in thiee squares, while their contubation to the
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estimated standard error of these totals, assuming randomness, would
only be multiplied by ¥3. Thus if the design is simply copied, and an
zy term is present, there is an appreciable chance that it may lead to
differences that would be wrongly interpreted as varietal.

Fisher proceeds, instead of determining the xy term, to make it into
a random error. This is done by arranging the rows and columns of
every square at random. Thus if we start with the arrangement given
above, we have in the first column the order AEDCB. By a process
such as card shuffling we rearrange these letters in a new order, such
as CADEB. The rows are then rearranged, keeping each row intact,
80 as to bring the letters in the first column into this order. The letters
in the first row are now in the order CDEAB. Shuffling these we get
ECBAD; and now rearranging the columns we get the final arrange-
ment

ST RN S
S HSTITEN Y
Q|

SISV ES
Qx| |

The varieties would be laid out in this order in an actual square; but
for the second and third squares entirely separate rearrangements must
be made. There is no such thing as an intrinsically random arrange-
ment. The whole point of the design is that if there is an xy term in
the fertility, its contribution to any varietal total in one square shall
give no information relevant to the total in another square. Card
shuffling is fairly satisfactory for this purpose because one deal does give
little or no information relevant to the next. But if the deal is simply
copied the terms in zy for one square will give information about their
values in the others, and the shuffling fails in its object. An arrange-
ment can only be random once.

This procedure, highly successful in practice, shows well the condi-
tions for the use of artificial randomization. In the first place, the
square is not randomized completely. The rule that each variety shall
occur just once in every row and in every column is absolute. If 25
cards were lettered, 5 with 4, 5 with B, and so on, and shuffled, the
result would be that some letters would be completely absent from some
columns and appear two or three times in others. The result would be
a loss of accuracy in the estimation of the linear gradients, which could
therefore not be allowed for with so much accuracy, and this would
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increase the final uncertainty of the varietal differences. Here is the
first principle. we must not try to randomize a systematic effect that
is known to be considerable in relation with what we are trying to find.
The design must be such that such effects can be estimated and elimi-
nated as accurately as possible, and this is done best if we make an error
in an unknown of either set contribute equally to the estimates of all
unknowns of the other sets. But this condition imposes a high degree
of system on the design, and any attempt at randomness must be within
the limits imposed by this system. In some discussions there seems to
be a confusion between the design itself and the method of analysing
the results. The latter is always to take the means of the plot yields
with the same variety to give the estimates of the varietal differences.
It is not asserted that this is the best method. If the xy term was allowed
for explicitly the analysis would, in general, be more complicated, but
elimination of the variation due to it would leave results of a higher
accuracy, which would not, however, rest simply on the differences of
the means. The method of analysis deliberately sacrifices some accuracy
in estimation for the sake of convenience in analysis The question is
whether this loss is enough to matter, and we are considering again the
efficiency of an estimate. But this must be considered in relation to
the purpose of the experiment in the first place. There will in general
be varietal differences, we have to decide whether they are large enough
to interest a farmer, who would not go to the expense of changing his
methods unless there was a fairly substantial gain in prospect. There
is, therefore, a minimum difference that is worth asserting. It is, how-
ever, also important that differences asserted should have the right sign,
and therefore the uncertainty stated by the method must be substan-
tially less than the minimum difference that would interest the farmer.
So long as this condition is satisfied it is not important whether the
probability that the difference has the wrong sign is 0-01 or 0-001. The
design and the method of analysis are therefore, for this purpose, com-
bined legitimately, provided that together they yield an uncertainty
small enough for interesting effects not to be hidden by ground effects
irrelevant to other fields and deliberately ignored. Previous experi-
ments have usually indicated the order of magnitude of the uncertainty
to be expected, with a given design, and it is mainly this that determines
the size and number of the plots. Thi§ information, of course, is vague,
and Fisher and Yates are right in treating it as previous ignorance
when they have the data for the actual experiment, which are directly
relevant. But it has served to suggest what effects are worth eliminating
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accurately and what can be randomized without the subsequent method
of analysis, treating them as random, giving an uncertainty too large
for the main objects of the experiment to be fulfilled. In different condi-
tions, however, the effects that should be eliminated and those that may
be randomized and henceforth treated as random will not necessarily
be the same.}

The same principles arise in a more elementary way in the treatment
of rounding-off errors in computation If an answer is wanted to one
decimal, the second decimal is rounded off so that, for instance, 1-87
is entered as 1-9 and 152 as 15. If the rejected hgure is a 5 it is
rounded to the nearest even number, thus 1 55 is entered as 1-6 and
1:45 as 1-4. Thus these minor errors a1e made random by their associa-
tion with observational erior and by the fact that there is no reason
to expect them to be corrclated with the systematic effects sought. If
rounding-off was always upwards or downwards it would produce a
cumulative error in the means.

Most physicists. of course, will envy workers in subjects where un-
interesting systcmatic effects can be randomized, and workers dealing
with phenomena as they occur in nature will envy those who can design
their experiments so that the normal equations will be orthogonal.

+ See also ‘Student’, Riometrika, 29, 1938, 363-79, . S Pearson and J Neyman,
ibid 29, 1938, 380-8, E S Pearson, ibid 30, 1938, 159-79, I Yates, ibid 30, 1939,
440-66, Joffreys. ibid 31, 1939, 1-8
NotE A If we compare range {—}n, }n) with (3=, §m and (Jn, 37) with (3=, [7) to
estimate hoth a sine and a cosine term, the efliciencies are both 8/#2 = 0 82, which ig
still high
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SIGNIFICANCE TESTS: ONE NEW PARAMETER

‘Which way ought I to go to get from here ?*
“That depends a good deal on where you want to get to,” said the Cat.
‘I don’t much care where——' said Alice.
‘Then it doesn’t matter which way you go,’ said the Cat.
LEWIS CARROLL, Alice in Wonderland.

5.0. General discussion. IN the problems of the last two chapters
we were concerned with the estimation of the parameters in a law, the
form of the law itself being given. We are now concerned with the more
difficult question: in what circumstances do observations support a
change of the form of the law itself? This question is really logically
prior to the estimation of the parameters, since the estimation problem
presupposes that the parameters are relevant. On the other hand,
many problems that arise in practice are genuinely estimation prob-
lems. For instance, the latitude and longitude of the epicentre and the
time of occurrence are obviously relevant to the times of arrival of a
pulse sent out by an earthquake.

We saw in Chapter I that if there are n observational data we cannot
hope to determine more than n parameters. Further, if we always
admitted the full n we should be back at our original position, since a
new parameter would imply a new function, and we should change our
law with every observation. Thus the principle that laws have some
validity beyond the original data would be abandoned. It is necessary,
therefore, that at some stage new observations do not alter the form of
the law, though they may alter the estimates of the parameters and
will in general reduce their uncertainty.

The function of significance tests is to provide a way of arriving, in
suitable cases, at a decision that at least one new parameter is needed
to give an adequate representation of existing observations and valid
inferences to future ones. But we must not deny in advance that those
already considered are adequate. the outstanding variation being legiti-
mately treated as random. Though we do not claim that our laws are
necessarily final statements, we claim that they may be, and that on
sufficient evidence they have high probabilities. We saw in Chapter I
that this implies that we must take their initial probabilities as the terms
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of a convergent series Thns in any significance problem the question
will be- Is the new parameter supported by the observations, or is any
variation expressible by it better interpreted as random? Thus we
must set up two hypotheses for comparison, the more complicated
having the smaller initial probability.

It seems undesirable to restrict the possible forms of law at all, but
merely to be ready for them as they arise for consideration, whatever their
form This makes the relation to actual thought immediate—if there is
no reason to the contrary the order of decreasing initial probability is
the order in which somebody thinks of them ‘Reason to the contrary’
arises in cases where somebody asks Why did nobody think of that
before? The ideal reasoner would be able to think of all laws; but we
have to do our best, and this decision gives a practical way of progress

We really had the simplest possible significance test in our modifica-
tion of Laplace’s theory of sampling, where we found that to get results
in accordance with ordinary thought we had to suppose an extra frac-
tion of the initial probability, independent of the size of the class, to
be concentrated in the extreme values.

A definite choice of the initial probabilities is not possible, since our
only clue is that the series of initial probabilities must converge. How-
ever, it seems reasonable that it should not converge faster than Y 2-"
or more slowly than 3 n-2, and in that case the ratio of initial proba-
bilities of consecutive terms will not be less than 1 or more than 2.
We shall examine in 5 04 the case where several modifications arise for
consideration at the same time, on apparently the same level. In the
present chapter in general we take the initial probabilities equal, this,
of course, cannot be exact, but will be near enough if the convergence
is like ¥ »~2, and the results can be modified suitably immediately if
any other ratio is adopted.

OQur problem is to compare a specially suggested value of a new
parameter, often 0, with the aggregate of other possible values. We
do this by enunciating the hypotheses ¢, that the parameter has the
suggested value, and ¢’, that it has some other value to be determined
from the observations. We shall call ¢ the null hypothesis, following
Fisher, and ¢’ the alternative hypothesis. To say that we have no
information initially as to whether the new parameter is needed or not

we must take P(gIH) = P(¢ |H) = }. M
But ¢’ involves an adjustable parameter, « say, and
P(¢' |H) =3 P(¢',a|H) (2)
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over all possible values of «. We take o to be zero on ¢. Let the prior
probability of d«, given ¢'H, be f(x)do, where
[f@yda=1, )
integration being over the whole range of possible values when the
limits are not given explicitly. Then
P(g'do|H) = }f(o)do. (4)

We can now see in general terms that this analysis leads to a significance
test for a. For if the maximum likelihood solution for o is a--s, the
chance of finding @ in a particular range, given g, is nearly

2
Pda |gH) = g5 exp(— o) da, ®)
and the chance, given ¢’ and a partlcular value of o, is
. (a— a)
P(da|q'aH) = J(2 % xp{ }da (6)
Hence by the principle of inverse probability
2
PlglaH) o <5 \,(2 oxp(— 282) )
2
P(g'de o) oc 5 (2 ! (a—o) }da. ®)

It is to be understood that in pairs of equations of this type the sign
of proportionality indicates the same constant factor, which can be
adjusted to make the total probability 1.

Consider two extreme cases. There will be a finite interval of a such
that f f(a) do through it is arbitrarily near unity. If a lies in this range
and s is so large that the exponent in (8) is small over most of this
range, we have on integration, approximately,

P(q’ |aH) = P(Q!a‘H)O'C«/(2 Ty 9)
In other words, if the standard error of the maximum likelihood esti-
mate is greater than the range of « permitted by ¢’, the observations
do nothing to decide between ¢ and ¢'.

If, however, s is small, so that the exponent can take large values,
and f(«) is continuous, the integral of (8) will be nearly f(a), and

PglaH) . 1 ( f_).
P [al)  J@msf@ T\~ 25

(10



248 SIGNIFICANCE TESTS ONE NEW PARAMETER V,§50

We shall in general write

_ Plgl6H) [P(g|H) (1)

P(¢'|6H)/ P(¢' |H)

This is independent of any particular choice of P(q|H)/P(¢' |H). If
the number of observations, =, is large, s is usually small like n-"2.
Then if @ = 0 and = large, K will be large of order n':, since f(a) is
independent of . Then the observations support ¢, that is, they say
that the new parameter is probably not needed. But if |a| is much larger
than s the exponential will be small, and the observations will support
the need for the new parameter. For given =z, there will be a critical
value of a/s such that K = 1 and no decision is reached.

The larger the number of observations the stronger the support for ¢
will be if |a| < s. This is a satisfactory feature, the more thorough the
investigation has been, the more ready we shall be to suppose that if
we have failed to find evidence for « it is because « is really 0. But it
carries with it the consequence that the critical value of |a/s| increases
with z (though that of |a| of course diminishes), the increase is very slow,
since it depends on ./(logn), but it is appreciable. The test does not
draw the line at a fixed value of |a/s|.

The simplicity postulate therefore leads to significance tests. The
difficulty pointed out before (p. 119) about the uniform assessment of
the prior probability was that even if « was 0, @ would usually be
different from 0, on account of random error, and to adopt a as the
estimate would be to reject the hypothesis « = 0 even if it was truc.
We now sec how to escape from this dilemma. Small values of |a| up
to some multiple of s will be taken to support the hypothesis « == 0,
since they would be quite likely to arise on that hypothesis, but larger
values support the need to introduce « In suitable cases high proba-
bilities may be obtained for either hypothesis. The possibility of getting
actual support for the null hypothesis from the observations really
comes from the fact that the value of « indicated by it is unique.
¢ indicates only a range of possible values, and if we select the one that
happens to fit the observations best we must allow for the fact that it
is a selected value. If |a! is less than s, this is what we should expect on
the hvpothesis that « is 0. but if « was equally likely to be anywhere in a
tanye of length m it requires that an event with a probability 2s/m shall
fiave come off  If 'al is much larger than s, however a would he a very
unlikely value to oceur if o« was 0, but no more unlikely than any other
il vwasnot 0 Tn each case we adopt the less remarkable coincidence

’|‘h{~ appioximate argament shows the general nature of the signifi-
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cance tests based on the simplicity postulate. The essential feature is
that we express ignorance of whether the new parameter is needed by
taking half the prior probability for it as concentrated in the value
indicated by the null hypothesis, and distributing the other half over
the range possible.

The above argument contemplates a law ¢ containing no adjustable
parameter and a law ¢’ containing precisely one. In practice we usually
meet one or more of the following complications.

1. ¢ may itself contain adjustable parameters, ¢’ contains one more
but reduces to ¢ if and only if the extra parameter is zero. We shall
refer to the adjustable parameters present on g as old parameters, those
present on ¢’ but not on ¢ as new parameters.

2. ¢’ may contain more than one new parameter

3 Two sets of observations may be considered They are supposed
derived from laws of the same form, but it is possible that one or more
parameters in the laws have different values. Then g is the hypothesis
that the parameters have the same value in the two sets, ¢’ that at
least one of them has different values.

4. It may be already established that sonie parameters have different
values on the two laws, but the question may be whether some further
parameter ditfers For instance, the two sets of data may both be
derived from normal laws, and the standard errors may already be
known to differ, but the question of the agreement of the true values
remains open. This state of affairs is particularly important when a
physical constant has been estimated by totally different methods and
we want to know whether the results are consistent

5. More than two sets of observations may have to be compared
Several sers may agree, but one or more may be found to ditTer from
the consistent sets by amounts that would be taken as significant if
they stood by themselves. But in such cases we are picking out the
largest discrepancy, and a discrepancy of any amount might arise by
accident if we had enough sets of data. Some allowance for selection
is therefore necessary in such cases

5.01. Treatment of old parameters. Suppose that th e js one
ol parameter v the new parameter is 2. and is 0 or ¢ In ¢ we could
replace a by o', anv tunction of a and 3 but to make it explicit that
¢’ reduces to ¢ when 8 = 0 we shall require that o' =« when B-
Suppose that o' is chosen so that a’ and 8 are oitirogonal parameters
in the sense of 4 31, take

Plgdx H) = k(a)da,  P(g'da'dBIH) = hix Vi [(B.a"VdB. (1)
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where f fBo)dpg=1. @)
For small changes of «” and 8,
J = Jan du"-l—yﬂﬂ dﬁ‘. (3)

If n is large, we get maximum likelihood estimates a and b for o’ and B,

and
1

P(dadb | guH) o o—exp[—in{gasla—a)*+gppb%], (4)

P(dadb | oBH) o 5-expl—inffuale’—a)+ogB—0)].  (5)

% Pl ab) o [ he)oxpldn(ganlaagpp?7) de
e 1) /(2 Joxp(—inggate), (©)
P(g’ |abH) [ [ h(a)f (B, o) expl—in{gaa(w’ —a)*+-ggp(B—b))] dodf
o h(a)f(b,a) "_«/T;;VE) )
= ] (2 )oxp(—inggat. ®)

This is of the same form as 5.0(10). To the accuracy of this approxi-
mation h(x) is irrelevant. It makes little difference to K whether we
have much or little previous information about the old parameter.
f(B,o’) is a prior probability density for 8 given o'.

If «" also reduces to o when 8 = 0, but is not orthogonal to g for
small values of 8, we may take

o” = o'4AB. 9)

If instead of (1) we take

P(g'do"dB | H) = h(a")f(B, ") do"dB (10)
we are led to

P(g' |abH) o [[ h(e")f (B, ") eXP["i”{gau(a'—a)2+9pp(ﬂ—b)2}] doldp
= h(a+Ab)f (b,a+Ab) —— J(g o (11)

provided now that & varies slowly. There will be little change in K if
b is small and we have little previous information about «”; so that the
condition that old parameters shall be taken orthogonal to the new
ones makes little difference to the results. But if there is much previous
information about «”, K is multiplied by k(a)/h(a-+Ab) in comparison
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with (8), and the disturbance of the result may be considerable if |b]
is large compared with the initial uncertainty of «, as it often is.

There is therefore no difficulty in principle in allowing for old para-
meters. If previous considerations, such as a definite hypothesis or
even a consistent model, suggest a particular way of specifying them
on ¢’, we may use it. If not, we can take them orthogonal to the new
one, because this automatically satisfies the condition that the para-
meter o' that replaces « on ¢’ shall reduce to « when 8 = 0; then the
prior probability of « on g can be immediately adapted to give a suitable
one for o’ on ¢’. In these cases the result will be nearly independent
of previous information about the old parameters.

In the first edition of this book I made it a rule that old parameters
on ¢’ should be defined in such a way that they would have maximum
likelihood estimates independent of the new parameter. This was rather
unsatisfactory because in estimation problems maximum likelihood
arises as a derivative principle, as an approximation to the principle of
inverse probability. It seemed anomalous that it should appear, appa-
rently as a postulate, in the principles of significance tests. We now see
that it is unnecessary, but that the notion of orthogonality leads to a
specially convenient statcment of the method; and orthogonal para-
meters satisfy the rule of the first edition to the accuracy required.

5.02. Required properties of f(«). To arrive at quantitative results
we need to specify the function f(«) of 5.0 or f(B,«) of 5.01. It might
appear that on ¢’ the new parameter is regarded as unknown and there-
fore that we should use the estimation prior probability for it. But this
leads to an immediate difficulty. Suppose that we are considering
whether a location parameter « is 0. The estimation prior probability
for it is uniform, and subject to 5.0 (3) we should have to take f(«x) = 0,
and K would always be infinite. We must instead say that the mere fact
that it has been suggested that « is zero corresponds to some presump-
tion that it is fairly small. Then we can make a test with any form
of f () whose integral converges. But it must not converge too fast, or
we shall find that the null hypothesis can never be sufficiently decisively
rejected. We shall deal with this explicitly later. At present we need
only remark that the effect of a suggestion that a = 0, if it has to be
rejected, implies much less evidence against Jarge values of « than would
be provided by a single observation that would give a maximum likeli-
hood solution a = 0. In cases where a single observation would not
give strong evidence against large values of a, it will be enough to use
the estimation prior probability.



252 SIGNIFICANCE TESTS ONE NEW PARAMETER V,§50

The situation appears to be that when a suggestion arises that calls
for a significance test there may be very little previous information or
a great deal. In sampling problems the suggestion that the whole class
is of one type may arise before any individual at all has been examined.
In the establishment of Kepler’s laws several alternatives had to be
discussed and found to disagree wildly with observation before the right
solutions were found, and by the time when perturbations began to be
investigated theoretically the extent of departures from Kepler’s laws
was reaconably well known, and well beyond the standard error of one
observation. In experimental physics it usually seems to be expected
that there will be systematic error comparable with the standard error
of one observation. In much modern astronomical work effects are
deliberately sought when previous information has shown that they
may be of the order of a tenth of the standard error of one observation,
and consequently there is no hope of getting a decision one way or the
other until some hundreds of observations have been taken. In any of
these cases it would be perfectly possible to give a form of f{«) that
would express the previous information satisfactorily, and considera-
tion of the general argument of 5.0 will show that it would lead to
common-sense results, but they would differ in scale. As we are aiming
chiefly at a theory that can be used in the early stages of a subject, we
shall not at present consider the last type of case, we shall see that the
first two are covered by taking f(a) to be of the form C/(1+4a?/o?).

5.03. Comparison of two sets of observations. Let two sets of
observations, of numbers n;, n,, be derived from laws that agree in
parameters ay,..., o, but possibly differ in a parameter «,,, Let the
values of ay,,, in the two be B,, B,. The standard error of B,—p, as
found in an estimation problem would be

§= o(ﬁli_"z)'/’. )
Ny My
Then the first factor in 5.0 (10) will be
mny |\ 1 2
O("1+ "'2) F(0)° @

Now if n, is very large compared with n, we are practically comparing
the estimate of B, with an accurately determined value, and (2) should
be O(ny?) 1t is, provided f(0) is independent of ,, and by symmetry
of n,

This principle is not satisfied by two of the tests given in the first
edition of this book comparison of two series of measures when the
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standard errors are equal (5 51), and comparison of two standard errors
(553). In these the factor in question was O(n,+4-n,)"2. The prior
probability of the ditference of the parameters on the alternative hypo-
thesis in these can be seen on examination to depend on n,/n,. The
method was based on somewhat artificial partitions of expectations.
5.04. Selection of alternative hypotheses. So far we have con-
sidered the comparison of the null hypothesis with a simple alternative,
which could be considered as likely as the null hypothesis. Sometimes,
however, the use of y% or z, or some previous consideration, suggests
that some one of a group of alternative hypotheses may be right with-
out giving any clear indication of which. For instance, the chuef periods
in the tides and the motion of the moon were detected by first noticing
that the observed quantity varied systematically and then examining
the departures in detail. In such a case (we are supposing for a moment
that we are in a pre-Newtonian position without a gravitational theory
to guide us) the presence of one period by itself would give little or no
reason to expect another. We may say that the presence of various
possible periods gives alternative hypotheses ¢,, g,,. ., whose disjunc-
tion is ¢’. They are mutually irrelevant, and therefore not exclusive.
Suppose then that the alternatives are m in number, all with probability
k initially, and that
P(q|H)= P(q'|H) = }. (1)

Since we are taking the various alternatives as irrelevant the proba-
bility that they are all false is (1—k)™. But the proposition that they
are all false is ¢, hence (I—k)m =} @

k=1—2-Un— %mgz, 3)

if m is large. Thus, if we test the hypothesis ¢, separately we shall have
m

Plg(d)y 1 m
Plo[H) ~ % ~ Ziogz — 0™ @

nearly. If K is found by taking P(q!H) = P(q, | H), we can correct
for selection by multiplymng K by 0-7m.

Where the data are frequencies or the values of a continuous quantity
at a set of discrete values of the argument, a finite number of Fourier
amplitudes suffice to express the whole of the data exactly, and the
procedure would be to test these in order, preferably beginning with
the largest. An intermediate real period would contribute to more than
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one estimated amplitude, and the true period could then be estimated
by comparison of adjacent amplitudes.}

Where the dependent variable is a continuous function and we have
a continuous record of it, neighbouring values are correlated in any
circumstances. It would be wrong to treat neighbouring values as
subject to independent errors. The null hypothesis would be more like
a statement that a finite number of values are assigned at random and
that the intermediate ones are represented by the interpolation func-
tion. The problem is a case of what is now known as serial correlation.
A method that is often used is to divide the interval into several, do
separate analyses for each, and estimate an uncertainty by comparison.

In practice it is rather unusual for a set of parameters to arise in
such a way that each can be treated as irrelevant to the presence of
any other. Even in the above case each period means two new para-
meters, representing the coefficients of a sine and cosine, the presence
of a period also would usually suggest the presence of its higher har-
monics. More usual cases are where one new parameter gives inductive
reason, but not demonstrative reason, for expecting another, and where
some parameters are so closely associated that one could hardly occur
without the others.

The former case is common in the discussion of estimates of a physical
constant from different sets of data, to see whether there are any
systematic differences between them. The absence of such differences
can be taken as the null hypothesis. But if one set is subject to
systematic error, that gives some reason to expect that others are too.
The problem of estimating the numbers of normal and abnormal sets
is essentially one of sampling, with half the prior probability concen-
trated at one extreme, but we also want to say, as far as possible, which
are the abnormal sets. The problem is therefore to draw the line, and
since K depends chiefly on x? it is convenient to test the sets in turn
in order of decreasing contributions to 2. If at any stage we are testing
the pth largest contribution (p > 1), p—1 have already been found
abnormal. Suppose that s have been found normal. Then at this stage
both extreme possibilities have been excluded and the ratio of the prior
probabilities that the pth largest contribution is normal or abnormal is
(s+1)/p, by Laplace’s theory In practice, if there are m sets, s can be
replaced by m—p, for if the pth is the smallest abnormal contribution,

1 This mothod differs approciably from the ‘periodogram’ mothod of Schuster, which
may miss somo periods altogether and ostimato amplitudes of others that lio too close
togethor to bo independent It iy essentially due to H H Turner For details see
H and B S Juifroys, Methods of Mathematical Physics, pp 400, 421
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s will be equal to m—p, so that the line will be drawn in the right place.
Hence K as found in a simple test must be multiplied by (m—p--1)/p.
We can then begin by testing the extreme departure, taking p = 1,
8 = m—1, and therefore multiplying K by m. If the correct K is less
than 1 we can proceed to the second, multiplying this time by (m—1)/2,
and so on. There is & complication, however, if the first passes the test
and the second does not. For the multiplication by m supposes both
extreme cases excluded already. In testing the first we have not yet
excluded ¢, and if we find no other abnormal cases the question will
arise whether we have not after all decided wrongly that the first was
abnormal. This can be treated as follows. The factor m arises from
Laplace’s theory, which makes the prior probabilities of ¢ (no abnormal
cases) and ¢’ (at least one abnormal case) in the ratio 1 to m. At the
outset, however, we are taking these probabilities equal, and therefore
we should multiply K by m? instead of m. We can start with m; but
if the second departure tested does not give a corrected K less than 1
we should return to the first and apply a factor m? instead of m. It is
best to proceed in this order, because to apply the factor m? at the first
step might result in the acceptance of g at once and prevent any use
from being made of the second largest contribution to x?, which might
be nearly as large as the first.

In comparison with the case where the suggested abnormalities are
irrelevant, the correcting factors to K here are somewhat larger for
testing the largest contributions to x2, and smaller for the smaller ones.

The need for such allowances for selection of alternative hypotheses
is serious. If a single hypothesis is set up for test, the critical value
may be such that there would be a probability of 0-05 that it would
be exceeded by accident even if ¢ was true. We have to take such a
risk if we are to have any way of detecting a new parameter when it
is needed. But if we tested twenty new parameters according to the
same rule the probability that the estimate of one would exceed the
critical value by accident would be 0-63. In twenty trials we should
therefore expect to find an estimate giving K < 1 even if the null
hypothesis was correct, and the finding of 1 in 20 is no evidence against
it. If we persist in looking for evidence against ¢ we shall always find
it unless we allow for selection. The first quantitative rule for applying
this principle was due, I think, to Sir G. T. Walker,} analogous recom-
mendations are made by Fisher.}

t QJ R Met Soc. 51, 1925, 337-46
1 Statistical Methods for Research Workers, 1936, pp 66-66.
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5.1. Test of whether a suggested value of a chance is correct. An
answer in finite terms can be obtained in the case where the parameter
in question is a chance, and we wish to know whether the data support
or contradict a value suggested for it. Suppose that the suggested value
is p, that the value on ¢', which is so far unknown, is p’, and that our
data consist of a sample of 2 members of one type and y of the other.
Then on ¢’, p’ may have any value from 0 to 1. Thus

Pg|H)=1%  PIH) =%  Pdpl¢,H)y=dp, (1)

whence P(q',dp' |H) = }dp’. (2)

Also, if 6 denotes the observational evidence,
P(6|qH) = =+vC,p=(1—p)Y, (3)
P@lq,p', H) = =+C, p"=(1—p'), (4)
whence P(q|6H) cc p*(1—p), (5)
P(q',dp" |6H) oc p™=(1 —p')dp’, (6)

and by integration
Plg’|6H) flp"(l—p’)"dp' = ™
’ (=+y+1)!

Hence Pgl6H) _ (@tyt !)'P’(I—P)"- (8)

= P@0H) T zly!
If  and y are large, an approximation by Stirling’s theorem gives
} 2 —_ + )}2
K= ﬂl..} x {__ﬁp_(xy_} 0
lmi) o= se o @

The following table indicates how K varies with « and y when these
are small and p = 3}, that is, if we are testing whether a chance is even:

r y K r y K z y K
101 11 3 2 2 1
2 0 } 2 1 3 3 3 3%
3 0 4 31 % 4 4 3B
4 0 % 4 1 43 5 5 938
5 0 & 5 1 2}

None of these ratios is very decisive, and a few additional observations
can make an appreciable change. The most decisive is for x = 5,
y = 0, and even for that the odds in favour of a bias are only those in
favour of picking a white ball at random out of a box containing sixteen
white ones and three black ones—odds that would interest a gambler,
but would be hardly worth more than a passing mention in a scientific
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paper. We cannot get decisive results one way or the other from a small
sample.

The result K = 1 for x = 1, y = 0 is interesting. The first member
sampled is bound to be of one type or the other, whether the chance
is 4 or not, and therefore we should expect it to give no information
about the existence of bias. This is checked by the result K = 1 for
this case. Similarly, if x = y, we have

2x4-1)!
k=2 gy

and if ¥ is increased to z+1

G4 oy

x,(x+1),(%) *
which is the same. Thus if at a certain stage the sample is half and
half, the next member, which is bound to be of one type or the other,
gives no new information.

This holds only if p=4. If p=%,2=1,y =0, we get K = };
but if x = 0, y = 1 we get K = }. This is because, if the less likely
event on g comes off at the first trial, it is some evidence against g, and if
the more likely one comes off it is evidence for g. This is reasonable.

For p = 4, K first becomes < 0-1 for x = 7, ¥ = 0, and first becomes
> 10 for x = y = 80. To get this amount of support for an even chance
requires as much evidence as would fix a ratio found by sampling within
a standard error of (}.4/160)"2 = 0-04. It is therefore possible to obtain
strong evidence against ¢ with far fewer observations than would be
needed to give equally strong evidence for it. This is a general result and
corresponds to the fact that while the first factor in 5.1 (9) increases only
like n', the second factor, for a given value of p’, will decrease like
exp[—on(p’—p)?], where « is a moderate constant. We notice too that
the expectations of 2z and y on ¢ are (z+y)p and (z+y)(1—p), so that

2 p—typP | y—(+y)(1—p) _ fe—(zty)p)?
(x+y)p (z+y)(1—p) (x+y)p(1—p)

and the exponential factor is exp(—}x?). This is a general result for
problems where the standard error is fixed merely by the numbers of
observations

A remarkable series of experiments was carried out by W. F R
Weldont to test the bias of dice. The question here was whether the
chance of a 5 or a 6 was genuinely 1. In 315,672 throws, 106,602 gave a

X + (10)

1 Quoted by Pearson, Pki Mag 50, 1900
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5ora 6. The ratio is 0-337699, suggesting an excess chance of 0-004366.
We find

_ (315672)”"ex [ 1315672 X 0‘0043662]
2m.%.% 2 1.2
= 476 exp[—13:539] = 6-27x 104,

so that the odds are about 1600 to 1 in favour of a small bias. Extreme
care was taken that a possible bias in the conditions of throwing should
be eliminated, the dice were actually rolled, twelve at a time, down a
slope of corrugated cardboard. The explanation appears to be that in
the manufacture of the dice small pits are made in the faces to accommo-
date the marking material, and this lightens the faces with 5 or 6 spots,
displacing the centre of gravity towards the opposite sides and increas-
ing the chance that these faces will settle upwards.

The formula for testing an even chance is of great use in cases where
observations are given in a definite order, and there is a question
whether they are independent. If we have a set of residuals against an
agsigned formula, and they represent only random variation, each is
independent of the preceding ones, and the chances of a persistence and
a change of sign are equal. We can therefore count the persistences and
changes, and compare the numbers with an even chance. If a number
of functions have been determined from the data, each introduces one
change of sign, so that the number of changes should be reduced by the
number of parameters determined. Similarly, if we have a series of
events of two types and they are independent, the same rule will hold.
We may try it on the set of possible results of random sampling given
in 2 13. For the series obtained by coin-tossing we have 7 persistences
and 13 changes, giving nearly

L
K = (-2—>—:r—2-9) exp(—0-9) = 1-5.

This may be accepted as a random series. The second series also
gives 7 persistences and 13 changes and the same value of K; but if
we compared each observation with one three places before it we should
have 18 persistences with no change at all. The next two each give 20
persistences and K = 2Xx 10-%. The last gives 20 persistences and 5
changes, and K = § nearly. Thus even with these rather short series
the simple test by counting persistences and changes gives the right
resuit immediately in four cases out of five, and in the other it would
give it after attention to special types of non-random arrangement,
possibly with allowance for selection. The test, however, does not
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necessarily make use of the whole of the information in the data. Itis
a convenient and rapid way of detecting large departures, but often
fails for small ones that would be revealed by a method that goes more
into detail.

5.11. Simple contingency. Suppose that a large population is
sampled with respect to two properties ¢ and . There are four alter-
native combinations of properties. The probability of a member having
any pair may be a chance, or the population may be large enough for it
to be considered as one. Then the alternatives, the sampling numbers,
and the chances may be shown as follows:

( b b~y ) (x y) (pu plz)‘
~¢p ~d.~¢ z ) P P2
The question is, are ¢ and i associated ? that is, are the chances out of
proportion? If they are in proportion we have hypothesis g, that

Pu P2 = Pr2Pa (1)
Whether they are in proportion or not, we can consider the chance of
a member having the property ¢, let this be o, and the chance of ¢, 8.

Putting l—o = o, 1-8=§, @
Pu P off Qﬁl)

we have on =7 o) 3

? (Pn pzz) (°‘ B oB ®)

On¢’, since a and B are already defined and their amounts have nothing
to do with whether ¢ and ¢ are associated, the chances can differ only
in such a way that the row and column totals are unaltered; hence there
is a number y such that the set of chances is

Bty  of'—y 4
. ) 4)
«B—y oB'+y
and this is general, since any set of chances, subject to their sum being

1, can be represented by a suitable choice of o, B, y. Since « and B are
chances, zero and unit values excluded, we have

P(gdxdB | H) = P(q'dadB | H) = }dadp. (5)
Also PuPa—P12Pau = %> (6)
(P11, Pras Po1) - B foz :,B = 1. ™)

27 R I

Since y is linearly related to the separate chances it is natural to take
its prior probability as uniformly distributed. But o and B impose
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limits on the possible values of y. With a mere rearrangement of the
table we can make o << o', B8 < B, of’ < o’B. Since

o'B—of = f—a, (8)
this makes « the smallest of «, 8, o/, 8’. Then the possible values of y
lie between —af and «f’, since no chance can be negative; and

P(dy|q, B, H) = dyo. (9)
Hence P(q' dadBdy | H) = }dadBdy/a. (10)

In ranges where « is not the smallest of «, 8, o/, 8, it must be replaced
in the denominator by the smallest.

Now the chances of getting the observed results in their actual order
are in each case pf, p¥, p%) p¥. Hence

P(gdadB | 8H) oc o t¥a/'T+V B2+TRY+V dodf, (11)
Pq'dudBdy | 6H) o< (af+y)*(af'— )" (o' B—y) ('8 + )V dadfdy/a (12)
Integrating the former we get

Plg|6H) oc ETOLEHY) @) ()

13
Ere v 0f 1)
&0 P11, Pay)
We h —AvliAy . ], 14
¢ have 305, 7) a
and the integral of (12) is nearly
1 al-a
P(q’ |60H) c ff f Phla—pu)'ph(l—a—pyy)V dadp,, dpyy o
00 O
g 1yt 1yt
—_ r'y Ty r'y 1 —q)¥+¥'+1g
of(x+y+l)'“ @y Fay T e
_ x'y'x"!/’: i , (15)
@E+y+DEty+a'+y +2)
- @ty @y @) (y+-y)! L
K= YRy eyt g+ (@+y+2'+y'+2).
(16)

An approximation has been made in allowing « to range from 0 to 1,
since a < B < 3, but if z+y is the smallest total, « is about
z+yd(@+y)
¥ty taty’
and the contribution from the extra range is exponentially small unless
a and B are nearly equal. The exact procedure would be to replace «
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by B, o', or f’ in ranges where « is not the smallest; thus we have very
slightly underestimated P(¢’ |#H) and overestimated K.

If 2’ and y’ are very large compared with z and y, the chance of ¢,
given ~¢, is very accurately given by z’/(2'+y’). Replacing this by
p we have

k] 1) 'y z+y-+1)!

which is the same as 5.1 (8). This was to be expected. The present form
is a little more accurate than a previous one,} in which I integrated
without reference to the variation of p,;+p,,, replacing the latter after
integration by its most probable value. The result was that the extra
factor z+y-+1 was replaced by x+y. The difference is trivial, but will
give an idea of the amount of error introduced by the procedure of
integrating the factors with large indices and replacing those with small
indices by their most probable values at the end of the work.

If z, y, «’, ¥’ are all large we can approximate by Stirling’s formula,
then

- { zty+a'+y) @ty) }"*exp[_g (z+y+a'+y )y —a'y)? ]

2m(z+a') (=" +y )y +y') 2 (@+y)e+a) @' +y )y +y)]
(18)
where x4y is defined to be the smallest of the four row and column
sums. The exponential factor is exp(—4x?). For if we put
N =zt+y+a'+y,
the four expectations on ¢, given the row and column totals, are

(+y)z+a)  @E+y+y) @)@ +y) @4y )y+y)
N ’ N ’ N ’ N ’

_x,y
N b
the other residuals being equal or equal and opposite to this Hence

s
v = (257 x

and

. _(EtEts) oy
N - B

« { N . N n N + N }
(E+y)e+2)  =+y)ly+y) @)@ +y) @y ) y+y)
Ny —2'y)*

e e v Trm (19)

5.12. Comparison of samples. In the last problem the only
restriction on the sample is its total number N. If ¢ is a rare property,
we may require a prohibitively large sample to make z and y large

t Proc Roy Soc A, 162, 1937, 479-95
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enough to give a decisive test one way or the other. But it may be
possible to arrange the sampling so that x+y and z'+y’ are both large
enough to be useful, without violating the condition that, given either
¢ or ~ ¢, a member has the same chance of being included in the
sample whether it has ¢ or ~ 4. Thus, if we want to know whether
red hair is more frequent among Englishmen or Scotsmen, we might
take a sample at random from the population of London, and classify
the results in a 2X2 contingency table. But if such a sample is to
contain enough Scotsmen to give much information it will contain more
Englishmen than it is practicable to classify. We can, however, proceed
in two other ways We can sample at random till we have, say, 200
Englishmen, and after that we can ignore further Englishmen and count
Scotsmen only, until we have a suitable number of the latter. Or we
can take a random sample of 200 Englishmen from London, and another
of 200 Scotsmen from Perth, and compare the two samples. If ¢ is the
property ‘Scottish’ and ~ ¢ ‘English’, these methods do not attempt
to provide information about «, but replace it by two sample totals
z+y and z’'+y’ determined for convenience.

On hypothesis g the chance of 4 is the same, given either ¢.H or
~ ¢.H. Call this 8. Then

P(dB|qH) = dp, 1)

P(01g, B, H) = p=+=(1—B)r+v, (2)

and (z+y+2'+y')B is the expectation of ’s in a sample of z+y-+a'+y'

in all. To have a valid standard of comparison, if p and p’ are the
chances of ¢ on ¢'.¢H and on ¢'.~ ¢.H, we must define a 8 by

NB = (@+y+2'+y)B = (@+y)p+('+y)P', (3)

so that the left side will still be the expectation of the number of ¢’s

in the two samples together. B has the property that it is orthogonal

to p—p’. Then both p and p’ must be between 0 and 1. Withmn the

permitted range for p, p’ for a given B can have values from NB/(z’+y’)

to (NB—z—y);(x'+y’). But the most probable value of NS will be

nearly z+x’. The former value will then be permissible if z < %', and

the latter if ' > y, and if these are satisfied there will be no further

restriction. Then P(dB|q, H) = dB, (4)
P(dp|q.B, H) = dp, (5)
app) N

P@|p,p'.q, H) = p* (1 —p)'p’=(1—p")". (7)
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Hence

1
=i (1 gv df — STV W)L
P|eH) e [ B0y dp= e ©

11
P(g'|6H) « [ [ 2 (1—p)p=(1—p')" dBdp
00

= x’;y' f f P (1—p)p=(1—p')V dpdp’

a4y aly! 'y ©
N @ty @y )Y

K = @Ry D @y @ta)ly+y) @y + DN g,
zly! Tyt (N+1)! (" +y') ’

which differs from 5.11 (16) only by quantities of order 1/(z'+y’).

5.13. If 2’ < y (more strictly, if ('+y")p’ < (x-+y)(1—p)) the pos-
sible values of p impose a further restriction, since the largest possible
value of p is now NB/(xz+y). Then (4) and (6) still hold, but

’ z+y
P(p|B,9',H) = b7 dp, (1)

and we are led to

P(g' | 0H) o« Y x+“ +y j f FFU—prp (=) dpdp’ (2)

and at the maximum of the integrand 8 = (z-+z')/N nearly. Hence

X _ EH)E @) g4y (eha)!
T ey Y Tat ey

3)

nearly; and with errors of order 1/(x+2') this is the same as we get
by interchanging z+2' with 4y in 5.11(16) and 5.12(10) according
to the altered sign of their difference.

5.14. The actual agreement is rather closer, as we can see by study-
ing the case where § is very small. In this case we may be led to the
Poisson rule, and to the rule P(dg | H) «c dB/B instead of the usual uni-
form one. But the discrepancy in the results, such as it is, consists of
a replacement of z-+2’'+1 by z+2', and this, if genuine and not merely
an error of approximation, should persist when y and y’ are very large.
The range permitted to p will still be restricted to B, but it is best to
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insert a function f(B) to generalize the prior probability of 8. Then we
shall have

P(g}6H) j BB+ (1—By+V dp, &)

P( |0H) oc f [ SR era—prpea—py dip. (@)
If y and y’ are large and p and p’ small, these reduce to

1
P(g| 6H) o j J BB+ exp{—Bly+y")} dB, @)

P(q' [6H) o« f f _y_I8 )fp" exp{—py—p'y'} dBdp,  (4)

and we have (y+y )B Y+, (5)
so that we can put

= (y+y)Bn ¥ = (y+y)BL—7), (6)
where the permitted range of » is from 0 to 1. Then
11 Ntz
P 16H) < [ [ 1@+ expl—Bly+y 1= LT dpay
00

(7)
and the integrals involving 8 in (3) and (7) are identical whatever the
form of f(B). Hence B gives only an irrelevant factor, and

1

1 (y+y'r ,

== T | (1) dn, (8)
K ¥y of

K= (z+a'41)!  y*y'™ 9

=Tt (y+y

which is correct to O(y~,y'-1) and is valid subject to the conditions
that the Poisson law may be substituted for the binomial. Also it is
identical in form with 5.1 (8); thus the agreement of two small estimated
chances z/(z-+y) and 2’/(z' +y’) can be tested by the same formula as the
agreement of a chance z/(z+ ') with a predicted one y/(y+¥'). Thus the
difference noted in 5.12 is only an error of approximation. It follows
that however the sample may be taken, the proportionality of the
chances can be tested by

K - @ty D) @+2) g+y) @ +y)! (10)

zly' &y @ He YY)

= N(z+y) R "
{2ﬂ(x+x')(y+y’)(x'+y')} exp(—1x%), (11)
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where z+y means the smallest of the four totals; and the error is
always of order K/(x'+y').

Fishert quotes from Lange the following data on the convictions of
twin brothers or sisters (of like sex) of convicted criminals, according
as the twins were monozygotic (identical) or dizygotic (no more alike
physically than ordinary brothers or sisters). The contingency table,
arranged to satisfy the necessary inequalities, is as follows:

Monozygotic  Dizygotic

Convicted 10 2
Not convicted . . 3 15

13! 13'17'18! 1

Then K = forzi 31151301 — 171’

while the less accurate exponential approximation gives g§;. Thus the
latter, even though Stirling’s formula and logarithmic approximation
have been applied down to 2' and 3!, is still quite reasonably accurate.
What we can infer is that, starting without information about whether
there is any difference in criminality between similar and dissimilar
twins of criminals, we can assert on the data that the odds on the
existence of a difference are about 170 to 1.

Yule and Kendall} quote the following official data on the results of
inoculation of cattle with the Spahlinger anti-tuberculosis vaccine. The
cattle were deliberately infected with tubercle germs, a set of them
having been first inoculated. The table, rearranged, is:

Died or seriously Not seriously

affected affected
Not inoculated . . . 8 3
Inoculated . . . 6 13
12! 14'16!19!
= g3 griisor — 03"

the exponential approximation 5.11(18) giving 0-31. The odds are
about 3 to 1 that inoculation has a preventive effect.

Tables of factorials are given in Comrie’s edition of Barlow’s tables;
of their logarithms, up to » = 100, in Milne-Thomson and Comrie,
Standard Four-figure Tables, Table VI.

The following comparison was undertaken to see whether there is
any relation between grammatical gender and psychoanalytic symbol-
ism The list of symbols in Freud’s Introductory Lectures was taken as

t Statistical Methods for Research Workers, 1936, p 99
1 Introduction to the Theory of Statistics, 1938, p 48
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a standard, and the corresponding words were taken from Latin, Ger-
man, and Welsh dictionaries. All synonyms were included; I considered
consulting experts in the languages for the usual words, and using the
German words from the original edition of the book, but this, I thought,
might introduce a bias, and I preferred in the first place to use the
whole of the synonyms. The counts were as follows:

Latin German Welsh

M. F N M. F. N M. F
Male . . .21 17 4 31 14 7 45 30
Female . . . 10 37 16 15 29 16 28 29

In the first place we ignore neuters and reduce the matter to three 2x 2
tables. The respective values of ¥2 are 15 07, 10-78, and 1-55. Using
the approximate formula 5.11(18) we get K = 1/296, 1/30, and 3-7 for
Latin, German, and Welsh respectively. The phenomenon is so striking
in the two former that a relation between symbolism and gender in
them must be considered established, though we see that it is far from
being a complete association. It would be more striking still if we
combined all three languages, but many words have been adopted
from one to another or from common sources, keeping their genders,
and the data would not be independent. The association is somewhat
stronger in Latin than in German; this is some evidence against the
possibility that Freud was guided by the gender in German in his
classification

The non-significant association in Welsh is comprehensible in relation
to the other two languages when we inspect the neuters, for Welsh is
a two-gender language like French and the primitive neuters have been
made masculine. But we notice both in Latin and German a marked
tendency for male symbols to avoid the neuter gender; there is a decided
preference to make them feminine rather than neuter. On the other
hand, a female symbol is somewhat more likely to be neuter than
masculine But when the neuters are made masculine this effect partly
counteracts the association between symbolism and masculine or
feminine gender. Thus the failure to detect the association in Welsh
is not due to the absence of association but to the fact that the greater
parts of two genuine effects have been made to cancel by an etymo-
logical rule.

The German rule that diminutives are neuter may provide part of
the explanation, the three genders may stand originally for father,
mother, and child. But this cannot be pursued further here. The
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immediate result is that the gender of names of inanimate things is
not wholly haphazard.

5.15. Test for consistency of two Poisson parameters. It may
happen that two experiments are such that the Poisson rule should
hold, but that the conditions on g predict a ratio for the two para-
meters; the question is whether the data support this ratio. Thus in
either case the joint chance of the numbers of occurrences in the two
series will be rTe=" r'Ter 1

o (1)

but on ¢ we are given r/r' = af(1—a), (2)

and we can introduce b such that

r = ab, 7’ = (1—a)b; 3)
while on ¢’ r = ab, 7’ = (1—a)b, (4)
and it now appears that « must be between 0 and 1. Then
P(q,db | H) = f(b)db, P(q’ dbda | H) = f(b) dbda, (5)
P(6q,b, H) c a*(1—a)=b*+%e=b, (6)
P@|q’,b,a, H)oc a%(1—a)*b=+%e-b, (7
Hence P(qdb | 6H) o f(b)a®(1—a)=b+7e-bdb, ®)
P(q'dbde | 0H) o f(b)o?(1—a)*bx+=e~b dbder. 9)
Integration with regard to b gives the same factor in both cases, and
1
% = fa’(l—a)" da = @*(1—ea)%, (10)
o
K= "_Jg_f.__;:;”'az(l—a)z'. ()

This is the same result as 5.14 (9), but does not depend on the sampling
theory of the Poisson rule. It would have several applications where
this rule arises. In the case of radioactivity, if # is the number of
atoms in a specimen, and the chance that a given atom will break up
in time df is Adt, the expectation of the number in time ¢ is nAt. Here
n would be fixed by the mass of the specimen and the atomic weights,
and ¢ by the experimental conditions, while A is to be found. The need
for a significance test would arise if there was a question whether high
pressure, temperature, or cosmic rays affected A. The experiments
might not involve the same values of n and ¢, but. the expectations, on



268 SIGNIFICANCE TESTS:- ONE NEW PARAMETER V,§61

hypothesis g, that there is no effect would be in the known ratio nt/n't'.
The test would therefore be given by
K- (z+2' 1) (nt)E(n't')
22t (it

In the Aitken dust counter, a question might be whether two samples
of air are equally dusty. If the same apparatus is used to test both,
a = 3, if not, a/(1—a) is the ratio of the volumes of the samples taken.

Again, two specimens of rock might be compared to see if they are
equally radioactive, a-particle counts being the data. The masses m, m’
of the specimens and the times ¢, ¢’ of the experiments would not in
general be the same, the expectations of the numbers of disintegrations
on the hypothesis that U and Th constitute the same fractions of the
specimens will be in the ratio m¢/m’t’. This question would seldom arise
in practice, since it is highly exceptional for two rocks to have the
same radioactivity, but it might arise if there was such a question for
two specimens from the same dike.

5.2. Test of whether the true value in the normal law is zero:
standard error originally unknown. If o is the standard error and
A the truc value, A is 0 on ¢ We want a suitable form for its prior
probability on ¢’. From considerations of similarity it must depend on
o, since there is nothing in the problem except o to give a scale for A,
Then we should take

P(¢’'do | H) c dv—", (1)
A\d
P(q'dodA | H) ocf(;)f 2, @
where fj(é)@ =1 (3)
o] o

If there are n observatiouns
PO1g,0,H)oc an exp{— .2%(524-3’2):, (4)
P(819',0,0, H) o g~ exp| - g% (B N7+ (5)

Then

P(qdo | 0H) oc o-n-1 exp{_ 2”-;2(52+s’2)} do, (6)

P(q dod) | 0H) o f[No-n-2exp| — ™ (E—2p+5% | dodr.  (7)
o, 202
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‘We should expect that for » = 1 no decision would be reached in the
absence of previous information about ¢ and A, since the departure of
a single measure from zero could be interpreted equally well as a random
error or as a departure of A from zero. We should also expect that for
n > 2, K would be 0 if 8’ = 0, £ 5= 0; for exact agreement of even two
observations would be interpreted as an indication that ¢ = 0 and
therefore A = % = 0.
If ' = 0, £ +# 0, take % positive, and put

o = &[r, A = ov = Zv/r. (8)
Then ©
Pg|6H) o j (x) exp(—ne) 7, )
P(¢'|6H) c f%z f(;) f(v)exp{—in(v—1)% dv. (10)
(9) converges for all n > 1. If » = 1 and f(v) is any even function,

)
n =
P [0H) oc } f f F)exp{—dv—)7} +exp{— b+ 7)1 do

=1 f @) exp{—H(o—n)%) dv
— o o
- 3/,(212 ff(") v — %:/f_”) (11)
0
Also from (9) P(g|0H) %“Ajﬂ, (12)

and therefore K = 1. Hence the condition that one observation shall give
an indecisive result is satisfied if f(v) is any even function with integral 1.
If n > 2, the condition that K = 0 for ¢' == 0, £ # 0 is equivalent

to the condition that (10) shall diverge. For v large and positive

kd

f mexp{—4in(v—1)?} fd-; ~ Nyn- (13)

0
where N is a function of n. This integral is bounded for small v. For
v negative it is exponentially small but positive. Hence (10) diverges
if and only if ®
[f@pn-rdv (19)
0

T
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diverges. The simplest function satisfying this condition for » > 1 and
also satisfying (3) is

1
fv) = L (15)
Corresponding to this and (2)
PA|gol) = — LB (16)

7(1+X%/e%) o
In the first edition of this book I used as a parameter a quantity o’,
which would in the present notation be (a24A2)"2, and would have the
property that on any set of observations its maximum likelihood esti-
mate would be the same whether A is assumed zero or not. Then the
prior probability of A was taken uniform with respect to o'; hence

, , o’ dA ododA
P(dudMqH)oc%-,—g=2(o—2_i_Wa. an
This does not satisfy (14) for n = 2, as was first found in a detailed
numerical investigation, which showed that, for n = 2, X could never
be less than 0-47 however closely the observations agreed
It may be remarked that many physicists totally reject the usual
theory of errors on the ground that systematic errors are always present
and are not reduced by taking the mean of a large number of observa-
tions. They would maintain (1) that the mean of a large number of
observations made in the same way is not necessarily better than one
observation, and the only use of making more than one observation is
to check gross mistakes, (2) that the weighted mean of several series
of observations is worse than the value given by the best series. It has
been rejected as inconsistent with the theory of probability, but this
rejection is associated with the belief that the normal law is the only
law of probability. The belief of the old-fashioned physicist can in fact
be completely formalized. If the law of error for one observation is a
Cauchy law about a constant, then the mean of any number of observa-
tions follows exactly the same law, and his condition (1) is satisfied.
If, irrespective of the random variation within each series, the location
parameter for each set has a departure from the true value with a
probability law given by (16), then the mean of the location parameters
has a probability distribution of the same form with a scale parawmneter
equal to the mean of the separate o, and therefore not less than the
smallest o. Thus condition (2) is also satisfied.
On the other hand, detailed study of errors of observation usually

1 Proc Roy Soc A, 180, 1942, 256-68
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shows that they are far from following the Cauchy law; the normal
law is nearer, and averages fluctuate less than the Cauchy law would
indicate. Also there are plenty of cases where estimates made by
different methods have agreed as well as would be expected on the
hypothesis that the normal law of error holds and that there are no
systematic errors. The belief of the old-fashioned physicist must in
fact be regarded as a serious hypothesis, or pair of hypotheses, capable
of being sufficiently clearly stated to be tested and therefore deserving
test, according to our rule of 1.1(5). But actual test shows that they
are not in general true. We do, however, often find discrepancies. We
provide for these by taking prior probability 4 for no real difference,
and } for a real difference, and distributing the latter over possible
values of the difference in such a way that if it is not zero it can always
be detected and asserted with confidence given sufficient observations.
The dependence on the standard error indicated in (16) may be regarded
as an expression of the fact that special care in reducing the random
error will usually be associated with special care in eliminating systematic
errors. The astronomical case is a special one, since random errors have
already been reduced as far as they can be for most types of observation,
and progress has long depended mainly on eliminating systematic errors.
We therefore in our rule of procedure reject the Cauchy law for the
random variation about the true value We use it for systematic
differences except that we allow a non-zero fraction, usually }, of the
total prior probability to be concentrated at zero difference.

The old-fashioned physicist’s view is therefore not nonsensical. It
consists of two parts, both of which can be clearly stated, but the first
part is wrong and the second exaggerated. When the second part is
cleared of exaggeration it leads to a valuable working rule with the
properties that we require.

An asymptotic form is easily found for K, when n is large. In (7) the
large values of the integrand, for given o, are in a range of order
A = Z4-0(o/vn). In such a range f(A/o) varies little from its value at
A = Z. Hence we can perform the integration with regard to A approxi-
mately:

P(g|6H) c f o'“"‘exp{—;—o—z(iz+s'2)} do, (18)
(1]

P(g’ |6H) J. 14—14-%0_"4“1)(—%;) do. (19)
[
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Again, the integrals are of the same form except for the factor in #/o,
which varies slowly. The large values of the second integrand are near
o = ¢'. Substituting this value in the slowly varying factor and sup-
pressing a factor that is the same for both integrals we have

P(g[0H) oc (s'2+32)~"m, (20)
Plq' |6H) oc 1 J( )1-—{—12/3’28’_"’ (21)

R e

The error of the approximations is of the order of 1/n of the whole
expression. In terms of

t = J(n—1)E/s', v=n—1, (23)

SR -

The corresponding formula given in the first edition of this book was

(A =

The new value is larger for ¢ small and smaller for ¢ large. We may say
that the present test is a little more sensitive.

If K is very small, so that it is practically certain that A is not zero,
the posterior probability of ¢ and A is nearly proportional to

P(q’ dMo | OH).

Comparing (7) with 3 41(2) we see that the posterior probability is
nearly the same as in the estimation problem, being obtained to this
accuracy by changing v to v+4-1

The behaviour of A is seen most easily by considering the case when
v is large enough for the ¢ factor to bhe replaced by exp(—4¢2) When

= 2 this i3 0 135 when { = 3 it is 0-011 1n the former case K == 1
when v is abonut 30, in the latter A7 - 1 when v is about 5,000 The
variation of A with 7 is much more important than the \ariation with w,
in fact, for given A tinereases like (jogv)'™, which is a very slow increase.
We may sayv that if ¢ _> 3, K wili be less than 1, and the introduction of
the new parameter wili be supported, for any number of observations
that ordinarily occurs If¢ — 2, K will be greater than 1 if v > 30, and
again for small values of v, in the case of v == 2 and ¢ = 2 the formula (8)
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makes K nearly 1, though the accuracy of the approximation is not to be
trusted when v is so small. Without elaborate calculation we can then
say that values of ¢ less than 2 will in most cases be regarded as confirm-
ing the null hypothesis, values greater than 3 will usually be taken as
an indication that the true value is not zero.

The fact that when K is small the posterior probability of ¢ and « is
almost the same as in the estimation problem is an indication that we
are working on the right lines. There would be no inconsistency in
taking f(v) oc e-*', where k is some positive constant, but we have
already seen that if we did so K would never be less than some positive
function of » however closely the observations agreed among them-
selves. Similarly the posterior probability of ¢ and «, even if all the
observations agreed exactly, would be the same as if there was an
additional observation of positive weight at 2 = 0. In cases where the
null hypothesis is rejected we should never be led to the conclusion that
the standard error was near s however closely the observations might
agrec. The chief advantage of the form that we have chosen is that in
any significance test it leads to the conclusion that if the null hypothesis
has a small posterior probability, the posterior probability of the
parameters is nearly the same as in the estimation problem. Some
dufference remains, but it is only a trace.

It is also possible to reduce 1/K exactly to a single integral. (18) is
exactly 2‘/27:-1(_&” — 1)1

Pl 0H) o (26)

Fiom (7) and (15), with
N o
A=ogv ‘T—z(xz—lvs %) = u, (27)

P(q 160y oc 1 f . "
' n ) 14+ n,(.t‘—'-s'z)

f / 2u Ve nvzl du
(’xp‘—zt—wtu e
(-

'7j"u
v

-
BUATSY . o
e f e
= {n(E sy 170t
d

i .
U]

e \,“( 2na ) G gy (28)
')

\ A

Integrate term by term, odd powers of v contribute nothing to the
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double integral; and we have

21m-1(4n—1)! f e-thnv' dy

PO < o oy | T

oo S ).

SHE I

«©
2 nvg? e-'h’“"
=& [ Bl e o #)
]
where , F,(«, y, x) denotes the confluent hypergeometric function

1428 et 31
+ +2'y(y+l)+ (31)

By a known identityt
1file, y,2) = e\ Fi(y—ea,y, —7); (32)

hence an alternative form of 1/K is

1 2f nviE? ns'%p? | dv
1= 2 Bl — e - i @
o

5.21. Test of whether a true value is zero: o taken as known.
Since (16) is taken to hold for all ¢, we can use it when o is already
known, then

P(q|0H) < exp( 3 02) (34)
P(q'loﬂ)oc,%,_fexp{ L P

R EelE

The method used in the first edition failed to cover this case, but there
are many applications where the standard error is so well known from
collateral evidence that it can be taken as known.

t+ H and B S Jefireys, Methods of Mathematical Physics, 1946, p 576
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5.3. Generalization by invariance theory. We have seen that for
the normal law a satisfactory form of the prior probability is

da

PAAIg'oH) = — s m
Now both I, and J of 3.10(14), (15), when { = 0, are functions of A/c; in
fact
1A% A2
I, = 2{1—exp(—§;—z)}, J= et 2)
en
d—)‘ —l -1 — 1 _.l =1 J%
"a(l_._m/oz)_"dtan {—8log(1 glz)}e_"dtan Jk, - (3)

where the square roots are taken to have the same sign as A/o. The
relation to J is much simpler than the relation to Z,.

We could therefore make it a general rule in significance tests to
express the new parameter in terms of I, or J calculated for comparison
of the null hypothesis with the alternative hypothesis, and use prior
probabilities of either as given by (3). If the inverse tangents do not
range from —}# to 4, as in cases where the new parameter can take
only one sign, correcting factors will be needed. We therefore have
possible general rules for significance tests. These rules, however,
disagree with those that we have used in problems of sampling, and
our first task must be to see whether they will give satisfactory solutions
in those cases.

For the comparison of two sets of chances

{ of o(1—F) } { of+y o1—B)—y } )
(1—e)f  (I—a)1-—B)’ (1—a)fp—y (I—a)(1—B)+y
(@B+y){(1—a)(1—B)+v} ®)
{o(1=B)—yH(1—)f—7}
This would, by the rule just suggested, be suitable to give a prior
probability distribution for y in a contingency problem. Suppose, on
the other hand, that we take a sample of ¢’s and ~ ¢’s, of given
numbers n,, n,, from the class. The chances of 4 and ~ ¢, given ¢ and
~ ¢ respectively, will be (y being 0 on g)
(B+y/e, 1—B—y|a)
{B—v/(1—), 1—Bty/(1—a})’

Comparing these two pairs of chances we find

fe Y logl BN =Py} &

a(l—a) “a{l—B)—yH{(1—a)f—y} ~ a(l—q)

we find Jy = ylog

(8)

()
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If we took samples of ¢’s and ~ ¢’s and counted the ¢’s and ~ ¢’s,
we should get similarly

Gy ®)

B(1—B)

To satisfy the condition that the significance test, for given sampling
numbers, should be nearly independent of the conditions of sampling,
the prior probability of y, given « and B, should be the same in all
cases. Hence we cannot simply use J universally. But we can define
a J that would be equal, for given y, in the three cases, and with the
proper properties of symmetry, by taking either

J o(l—a),  B(1—B); (9

oA Ja Js
ol—w)B(1-B)  E(1—-B)  o(l—a)
The first set are plainly unsatisfactory. For J tends to infinity at the
extreme possible values of y, hence if the estimate of y is a small quan-

tity ¢ it will lead to
PN

where N is the sum of the sample numbers. This conflicts with the rule
of 5.03 that the outside factor should be of order (x+y)", where 24y
is the smallest of the row and column totals On the other hand, the
second set are consistent with this rule.

A minor objection is that two paits of chances expressed in the form
(6) do not suffice to determine «, B, and y, and there is some indeter-
minacy as to what we shall take for 8 in (10) But so long as y is small
it wall make little difference what value between f+y/a and B—y/(1 —a)
we choose.

1, is much less satisfactory in this problem. There is no simple exact
relation between the values of I, in the three comparisons made. Also
I, takes finite values (not 2) for the extreme possible values of y if
neither « nor B is 0 or 1. It appears therefore that I, cannot be made
to satisfy the conditions by any linear transformation In view of the
greater complexity of the expression in J, in (3) than of that in J, it
appears unnecessary to pay further attention to I, at present.

An objection to J, even in the modified form, is that if the suggested
value of a chance is 1 comparison with any other value gives J infinite.
Consequently the rule based on J in (3) would concentrate the whole
of the prior probability of the chance in the value 1 on the alterna-
tive hypothesis, which thereby becomes identical with the null hypo-
thesis Of course a single exception to the rule would disprove the null

or

(10)
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hypothesis deductively in such a case, but nevertheless the situation
is less satisfactory than in the analysis given in 5.1. It might even
be said that the use of anything as complicated as J in so simple a
problem as the testing of a suggested chance is enough to condemn it.

Huzurbazar’s invariants suggest a fundamental distinction between
parameters with finite, semi-finite, and infinite ranges in estimation
problems. It would therefore not be surprising if a similar distinction
should occur in significance tests.

It appears to be worth recording the asymptotic forms given by (10)
in the problems of 5.1. We find without much difficulty

K ~ {n(z+y)pp'}'2 exp(—4x*) for 5.1(9),

o ’ ’ ’ Y Ve
K~{ (x—l—y)(x+x23$ +yNy+y )} exp(—1x?)

for 5.11(18), 5.12(10), 5.13(3).

An evaluation of K has also been made for the problem of 5.11, using
the estimation prior probabilities given by the invariance rules. It was
again of the order of N'=. These attempts at using the invariance theory
in sampling problems, therefore. confirm the suggestion of 3.10 (p 188)
that there is nothing to be gained by attempting to ensure general
invariance for transformation of chances, uniform distribution within
the permitted intervals is more satisfactory, as far as can be seen at
present. We shall, however, use the rule based on J in the more
complicated cases where there is no obvious suggestion from more
elementary ones

5.31. General approximate forms. We see from 3 10 (3) that if
a new parameter « is small,

J = goq0?, (1)

and if o can take either sign, the range of possible values being such
that J can tend to infinity for variations of a in either direction,

Pl M) = ”('ii;) — gt 2)
for « small If n observations yield an estimate « = a, where na3 can
be neglected, log L = ing, (a—a)t. 3)
Hence in 5 0 (4) we can put

SO = gadim, s = 1j(ng,q)", (4)
and then K~ (7?)I2e\'p( - ?;) (8)

If o can take values only on one side of 0, (2) must be doubled for o
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on that side, and if @ also is on that side the value of K given by (5)
will be approximately halved. If a is on the other side of 0, the approxi-
mate form fails; we shall see that K may then be of order n instead of n'-.

The approximate form will be adequate for practical purposes in the
majority of problems. Closer approximations are needed when n is
small: for instance, in problems concerned with the normal law the
need to estimate the standard error also from the same set of observa-
tions may make an appreciable difference. But if » is more than 50 or
so (5) can be used as it stands without risk of serious mistakes.

5.4. Other tests related to the normal law

5.41. Test of whether two true values are equal, standard
errors supposed the same. This problem will arise when two sets
of observations made by the same method are used to detect a new
parameter by their difference. According to the rule that we are adopt-
ing, any series of observations is suspected of being subject to distur-
bance until there is reason to the contrary. When we are comparing
two series, therefore, we are really considering four hypotheses, not two
as in the test for agreement of a location parameter with zero; for
neither may be disturbed, or either or both may. We continue to
denote the hypothesis that both location parameters are A by ¢, but ¢’
is broken up into three, which we shall denote by ¢y, g5, g,,. With an
obvious notation we therefore take}

P(gdod | H) o dod,\/a, (1)
da
P(gydoddd), | H) oc — ! dod) m. 2
1 dodM),
P(gydodrd)y | H) oc — m, (3)
ododMd), dA,

P(gypdodAd )y | H) o =

FEOe @
On g;, A, = A; on g, 4, = A. On g,,, since A does not appear explicitly
in the likelihood, we can integrate with regard to it immediately:

2 dod\d),

Plgyydoddydy | H) oc ~ pry (5)

Also
P01 a2y ) a-mi-mexp| — 2 (5=t — 22 5y - ),
(6)
1 In view of the converg dition and all for selection these might be

multiplied by 1, }, }, }.
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Put v = ny+n,—2; vs? = my 8P+n, 87, (7)
Then
Ny . Ny = v82\ dodA
P(gdod) |0H) oc o= exp{—Z"—'(x‘—)\)z—r:z(x,—)‘)z—ﬁ} —_
(8)

with corresponding equations for g,, g, and ¢;,. It is easy to verify
that the posterior probabilities of all four hypotheses are equal if
ny =1, n, = 0 or if n, = n, = 1, as we should expect. If n, and n,
are large we find, approximately,

P(g16H): P(q,|6H) : P(gq | 0H) : P(q;2|6H)
(1_r ny My ) ‘1+( _xz)z}{ + nyny (il_iz)zJ_lIz(nﬂm-l)

2 n,+n, n+n, 8%

c1.1.1 8HEF)?

tlilig e (9)
The equality of the second and third of these numbers is of course exact.
The last ranges from } to 2 as |Z,—%,|/s increases from 0 to infinity.
Thus the test never expresses any decision between ¢; and g,, as we
should expect, and never expresses one for g, against g, v¢,. It expresses
a slight preference for g,, against g, or g, separately if |£,—Z,|/s > V2.
But there is so little to choose between the alternatives that we may
as well combine them. If |£ —z&,|/s is small, as it usually will be, we
can write

P(q|6H) ~ 2(:_!’ 7y nz‘)lh{l + 7y Ny (il—iz)zj_ll’("”'m-l) (10)

Plgy vy v q10) 5\2n,+n, ntn, s
Expressing the standard errors of 2, and z, in the usual way,
=8m, &, =8, (1)
B = ()0 (12)
nyn,

we can write (10) as
2fm nyn, \ 12\ ~lke+D
2z 14
5(2 nl+n,) + v (3

Decision between the three alternative hypotheses, in cases where this
ratio is less than 1, will require additional evidence such as a comparison
with a third series of observations.

Where there is strong reason to suppose that the first series gives an
estimate of a quantity contained in a theory and is free from systematic
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error, the alternatives ¢, and ¢,, do not arise, and the factor 2/5 in (13)
is unnecessary.

5.42. Test of whether two location parameters are the same,
standard errors not supposed equal. The method is substantially
as in the last section, and leads to the following equations

Plode. dow | 6H OCA/( 2) of Moy ™
(¢doy do, |0H) J(o,/n1+ﬂz/"z)
Mt mysy (B
ST = e e TR

2 o.—n.«o-l —ng n 8'2 n. S
P d d OH 1 T2 1°1 2°2
@ dordon | 08) o ) A =T 1’( 26} 203 )"""d"”’
@)

P(q,do,do, | 6H) follows by symmetry,

2 o1 Moy

N (‘71‘}'0’2){1“‘ _1’32)2/(01“'0'2)2}

P(q1pdo, do, | 0H) o

xexp( - "2—*;§ _’ﬁ) doydo,  (3)
The form of the term in (£,—%,)? in (1) makes further approximations
awkward for general values of £ —&,, but we may appeal to the fact
that K is usually small when the maximum likelihood estimate of a
new parameter is more than about 3 times its apparent standard error.
If we have a good approximation when |, —i,| is less than
3y(s/ny+55/ny),

it will be useful up to values that make K small, and as it will be
smaller still for larger values we cannot be led into saying that K is
small when it is not The precise evaluation of K when it is very small
is not important, it makes no difference to our further procedure if we
estimate K as 10-3 when it is really 10-2, since we shall adopt the
alternative hypothesis in either case With these remarks we note that
if we can replace (o3/n,+03/ny)~! by A,/03+A,[0}, where 4,, A, are
chosen so that the functions and their first derivatives are equal when
0y == §;, 0, = S, the exponent in (1) will be sufficiently accurately
represented over the whole range where the integrand is not small in
comparison with its maximum. This condition is satisfied if we take

_ sty _ 3?:/”2__ 4
4= (s%/n,+83/mg)?’ A = (s3/my+s3/ng)?” “
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Replacing o, and o, by s, and s, in factors raised to small powers and

dropping common factors we find, with v; = n;—1, v, = n,—1,

S3(E, —F,)*/my "1}_'/2‘"'_“ .
(s3/my+s/ma)?

1
(s/my+s3/ng) ™

P(q|6H) < J(3m) {1+

SYE, —Fy)? g vy) s
()
L S
sf+(;;‘;l_iz)z’

2 ()

S T
FHE—L,)

P(g, |6H) o (6)

P(g, | 6H) o

$i+8p
Plaw 10 o P =2 ®
There may here be considerable grounds for decision between the
alternative hypotheses q,, g,, ;5. We recall that ¢, is the hypothesis
that the first series is disturbed and not the second, and our approxima-
tions contemplate that |& —%,| is small compared with s, and s,.
Then if s, is much less than s,, P(q, |6H) will be much more than
P(q, |6H), and P(q,, | 6H) will be slightly less than the latter. That is,
subject to the condition that either series of observations is initially
regarded as equally likely to be disturbed, the result of many observa-
tions will be to indicate that the series with the larger standard devia-
tion is the less likely if the discrepancy is small compared with the
standard errors of one observation. If the approximations remain valid
(which has not been investigated) the contrary will hold if the dis-
crepancy between the means is greater than either standard error of
one observation.
5.43. Test of whether a standard error has a suggested value o,.
We take the true value to be 0. If the standard error is o, and

o = gy¢l, (1)

we have from 3.10(15) J = 28inh¥ (2)
1 1 gy, _ V2cosh{

and "dtan Jl = 7oosh ot dg. (3)

Then according to 5.3 (3) we should take
PqIH) =k  Pgdo|H) = b

72 cosh 27 d. ()
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If there are » observations and the mean square deviation from 0 is 2,

P(9I<IH)°CUE”9XP(——;—:;), (5)

0.

PO1qH) o—"exp(—;-f;), ()
2'

P(q|6H) c o‘,"'exp(—;—%), (7)
0.

P( 0By oc V2 |
m

~

cosh {
cosh 2¢

o exp(— ;'—;:-:) dg. (8)

The factors with n in the index have a maximum when ¢ = s. Put

8la, = €. (9)
For large n the expression (8) is approximately
V2 coshz ”
= coshzza® exp( %n)A/ (:I_L) (10
K ~ [[m™\cosh 2z e
and JF oz e explin(1—em) (1)

This is greatest when z = 0 and is then /(3mn).
If instead of using J we had used J, as in 5.3 (3), we should have had
instead of the second of (4)

, _ 1 d
P(q dUIH)—;m (12)
and the first two factors in (11) would be replaced by
14/ (7n)cosh 2z. (13)
An exact form of 1/K is
1 Ve furtl s
= f ud+lu"exp{§nb (1 —u?)} du, (14)

o
where o = oyfu, 8 = gyb, b = €2, It is seen that this tends to infinity
forn=1ifb—> 0orb—>oco. (12) would give forn =1

L2 9 i) du, (15)
K @) ut41
]
which tends to a finite limit as & - 0. (14) is more satisfactory because
it says that one deviation, if small enough, can give strong evidence

against ¢; (15) does not. Either gives 1/K large if b is large.
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1t has been supposed that all values of ¢ are admissible on ¢’; the
conditions contemplate a theory that predicts a definite standard error
0o, but we may be ready to accept a standard error either more or less
than the predicted value. But where there is a predicted standard error
the type of disturbance chiefly to be considered is one that will make
the actual one larger, and verification is desirable before the predicted
value is accepted. Hence we consider also the case where { is restricted to
be non-negative. The result is to change v2 in (8) to 2¥2 and make the
lower limit 0. The approximations now fall into three types according as
{ = z lies well within the range of integration, well outside it, or near 0.

Ifz > 0 and n2? is more than 4 or so, the large values of the integrand
on both sides of the maximum lie within the range of integration and
the integral is little altered; then the only important change is that K
as given by (11) must be halved.

If z = 0, only the values on one side of the maximum lie in the range
of integration and the integral is halved; this cancels the extra factor 2
and the result is unaltered.

If z < 0 and n2? is large, the integrand decreases rapidly from { = 0.

In fact
2

" exp(-—gga) = oo‘"exp(— Z—j;)exp{—n(l—e'”)l} (16)

and K ~ }mn(1—e?) (17)

The factor n in the last expression instead of the usual n': needs
comment. In the usual conditions of a significance test the maximum
likelihood solution, here { = 2, or ¢ = s, is & possible value on ¢’. But
here we are considering a case where the maximumn likelihood solution
corresponds to a value of o that is impossible on ¢’, and is less probable
on any value of o compatible with ¢’ than on ¢. Naturally, therefore, if
such a value should occur it would imply unusually strong support for q.
Actually, bowever, such values will be rare, and if they occur they will
not as a rule be accepted as confirming g, as we shall see later (p. 307).

In the above treatment the true value has been taken as known. If
it is unknown (5) and (6) need modification. If we redefine s as the
standard deviation and put n— 1 = v, integration with regard to A will
remove a factor 1/, from (7) and 1/o from (8). The result will be that
7 in (11) and (13) will be replaced by v.

5.44. Test of agreement of two estimated standard errors. We
shall consider the case where only one of them, oy, is possibly disturbed.

Put 0y = ayeb. (1)
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Then

do v2 cosh{ ,,do
P(gdo |H) ox —; P(q'do,d 1%
(gdo |H) o (¢'doydoy | H) oc — + cosh 2l (2)
PO1golD e omomexp(~ L), 3)
{oa
, T n,8F nys?
P(6|g'oy0p H) o of Moy™ exP(—El&?l—ziof), (4)
P(g|0H) J o-mmexp(— Tt mack) do, (5)
J 202 o’
, { do w_ _ n, 8% my83\V2 cosh{ do;
Plq' |6H doy "oy mexp( — 51T doy
@l )ch 0y fol 7 exP( 20% 202)11 cosh 2{ oy
0 0 (6)
Put 8 = 8,2 (7)
Then «
'1”2 =ni=ng g—mil 83 2Az-{)
P IBH)OC gg MM eTMsexp "5(;5(”13 +n,)i X
H
o V2 cosh{
x? cosh 2¢ . (8
} _ V2 cosh ¢ o-ml n, e‘z{z-{)_l_nz —~Yo(n1 4 ma)
K™= fcosh 2t° (_nl e¥-tn, ) « @)

The factors with large indices have a maximum when { = z, and we get
approximately

T Ny 2 cosh 2zemz n,+4-n, \eni+n) (10)
2(n1+n2) coshz 7, €% -1,
K is unaltered if n, and n, are interchanged and the sign of z is reversed.
if, in addition, z is fairly small, a further approximation gives

{z(:»nf; )} “sz)”p( b ) an
If cither or both of the standard errors is regarded as possibly dis-
turbed, K can be adjusted as in 541 by multiplication by a factor
between 3 and 1. Such conditions might arise when two methods of
measurement have a great deal in common, but differ in other features,
and it is uncertaiu which is the better.
The more usual types of case where we wish to compare two standard
deviations for consistency are, first, when it is suspected that some
additional disturbance has increased the standard error in onc set,
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secondly, when methods have been altered in the hope of reducing the
standard error and we want to know whether they have been successful.
In the first case we expect { if not zero to be positive, in the latter
negative. We take the former case; then the second of (2) must be
multiplied by 2 and the range of { taken to be from 0 to co. If z is

itive
positive and 7y 0y 2?

4Ny

the net result is that K as given by (10) or (11) should be halved. If z
is negative K may be large of order n, or n,.

5.45. Test of both the standard error and the location para-
meter. If the null hypothesis is that two sets of data are derived from
the same normal law, we may need to test consistency of both the
standard errors and the location parameters. There are cases where we
need to arrange the work, when several new parameters are considered,
so that the results will be independent of the order in which they are
tested. This, I think, is not one of them. The question of consistency
of the location parameters is hardly significant until we have some
idea of the scale parameters, and if there is serious doubt about whether
these are identical it seems nearly obvious that it should be resolved first.

5.46. The following example, supplied to me by Professor C. Teo-
dorescu of Timisoara, illustrates the method of 542. There was a
suggestion that locomotive and wagon tires might be stronger near the
edges than in the centre, since they are subjected to more severe working
there in the process of manufacture. A number of test pieces were cut,
and a tensile test was made on each. The breaking tension, R, in
kilograms weight per mm?, and the percentage extension afterwards,
A, were recorded. In the first place the whole of the data are treated
as two independent series, of 150 observations each. For the edge
pieces the mean strength R, is found to be 89-59 kg/mm?, s}, in the
corresponding unit, 7-274. For the centre pieces the mean is

> 2

R, = 8817 kg/mm?, 8% = 5-619.
8fny = 0-04849;  si/n, = 0-03746; &, —F, = +1-42;

P(q | 8H) cc /(3m) 1 ( +O'04849>< 1~42’)“‘“”2

4/(0-08595) 149 X 0 085952

s (1.1 C03746 x 142 -ion
149 X 0-08595%
= 4-27(1-15727)-1492 — 7.8 x 10-5,
[y
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270 2.37
P(q;16H)oc — 270 _ g2 _ 231 _ .
@10 o o raoa = 0% P@alfH) o« commrags = 031,
507
Hye 297 _ _ .
P(g2|0H) o< 257200 0-18,
P(g|6H) _ 78x10-

=104

Pg Vg2V [6H) ~ 078

For the extensions the means were A, = 12:60 per cent., 4, = 12-33
per cent., with s} = 1:505, s§ = 1-425; we find similarly

P(g|6H) oc 9 0% 0-1530 = 1-38,
P(q, | 0H) < 0-78, P(q, |0H) cc 0-81, P(q,, | 0H) cc 0-41,

__PlqltH) . 138 _ ..
P(q1 vy vy |0H)  2:00 '
Thus there is strong evidence for a systematic difference in the strengths.
The result for a difference in the extensions is indecisive.
-Since, however, the question asked directly is ‘Has the extra working
at the edges had a systematic effect?’ it may be held that g, and ¢,,
do not arise and that we need only consider ¢,. Then for the strengths

we find P(q|6H) _ 71-8x10-5

- = 273104
P(q,10H) 029 x10

and for the extensions

P(g|0H) . 138 _
Plg,[6H) 078

This way of looking at the data, however, omits an important piece
of information, since the pairs of values for different specimens from
the same tire were available. There is also a strong possibility of
differences between tires, that is why testing was undertaken before
comparison of centres and edges. This was so well established that it
can be treated as a datum. But then differences between tires will have
contributed to the various values of s2, without affecting the differences
of the means. Hence the above values of K will be too high considering
this additional information. (If this effect was in doubt it could be
tested by means of the test for the departure of a correlation coefficient
from zero ) A more accurate test can therefore be obtained by treating
the differences between values for the same tire as our data, and testing
whether they differ significantly from 0 For the differences in R we
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find 52 = 3-790, for those in 4, s’ = 1:610, and we can use the simple
formula 5.2 (22). Then for R

Y 492\ -4
Kﬁ(liof) (1+‘42) = 3x 1012

2 3-79
1, 2\ -74
andfor A K= (1%") 2(1 +olzg ) — 058.

The evidence is now overwhelming for a difference in R and slightly
in favour of a difference in 4. This indicates how treatment of a
systematic variation as random may obscure other systematic varia-
tions by inflation of the standard error, but if comparisons for the
same tire had not been available the first test would have been the
only one possible. We notice that for R the variation of the differences
between pieces from the same tire is less than the variation of either
the centre or the edge pieces separately For A it is a little greater;
but if the variations were independent we should have expected the
mean square variation to be about 1 495+41-416 = 2 91 instead of the
observed 1 61.

The explanation of the much less decisive result for 4 even with the
more accurate treatment may be that while R will depend on the least
strength of any part of the specimen, the actual process of fracture
includes a great deal of continuous flow, and while the stronger material
is under a greater stress in the test it may also be relatively less ductile,
so that two systematic effects partly cancel.

5.47. The discovery of argon. Rayleigh’sdatat in thisinvestigation
refer to the mass of nitrogen obtained from air or by chemical methods,
within a given container at standard temperature and pressure All are
in grammes.

From air
By hot copper By hot iron By ferrous hydrate
231035 231017 231024
26 0986 10
24 1010 28
12 1001
27

By chemical methods

Iron and NO Iron and N,0 NHNO,

230143 2 29869 229849

20890 940 89
20816
30182

1t Proc Roy Soc 53, 1893, 145; 55, 1894, 340-4
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The respective means and estimated standard errors, the last in units
of the last decimal, and the standard deviations are as follows.

From air
Method 1 231025437 s= 82
2 231004467 s=134
3 231021455 8= 95
By chemical methods
Method 1 2 30008491 s =182
2 220904435 s = 50
3 220869420 s =28

The variation of s is striking. This is to be expected when several
of the series are so short. It is plain, however, that the variability for
chemical nitrogen is greater than for atmospheric nitrogen. The greatest
discrepancy in the two sets is that between chemical methods 1 and 3,
and can be tested by the test of 5 44, since a pair of means have been
estimated we have to replace n, by v, = 3, n, by v =1 At these
values the accuracy of the approximation 5.44 (10) is of course somewhat
doubtful, but we may as well see what it leads to. Here

& = 182/28 = 65,
and we find K = 1-9. As this is a selected value there seems to be no
immediate need to suppose the standard error of one determination to
have varied within either the set from air or the chemical set. We
therefore combine the data and find the following values.

Mean 8 v 8%n
From air 2 310174 0 000040 1317 11 156
By chemical methods 229947 +0 00048 1379 7 23182
001070

First compare the values of s. Here ¢* = 100,
(X100, 18
“\2 18 100 7% 100411
The existence of a difference between the accuracies of the determina-
tions for atmospheric and chemical nitrogen is therefore strongly con-
firmed. Finally, we apply 5.42 to test the difference of the means;
taking the unit as 1 in the fifth decimal we get
P(q|6H)oc 21x10-%,  P(g, |6H)cc 0-12x 104,
P(g, |0H) oc 10X 104,  P(gys | 0H) oc 1-1 1074,
P(q | 6H)
P(g, v gy V 012 | 6H)
The existence of a systematic difference between the densities is there-

9
) = 7-8x10-7.

= 092x10-5.



V,§54 SIGNIFICANCE TESTS ONE NEW PARAMETER 289

fore established In this case the systematic difference is about eight
times the larger standard error of one observation

A very rough discussion can be done by the methods of contingency.
The mean of all the data is 2:30978, all the 12 determinations for
atmospheric nitrogen are more than this, all 8 for chemical nitrogen
less. The use of a mean for comparison ensures that there will be one
more and one less than the mean, hence we can allow for one parameter
by deducting one from each total and testing the contingency table

(7 101) for proportionality of the chances. This gives by 5 14 (10)

0

_ogrrnnr 1

T 701 0T 11718 3978’
which would be decisive enough for most purposes. Many problems of
measurement can be reduced to contingency ones in similar ways, and
the simple result is often enough It has the advantage that it does not
assume the normal law of error. It does, however, sacrifice a great
deal of information if the law is true, corresponding to an increase of
the standard error above what would be got by a more accurate investi-
gation, and therefore usually (always in my experience so far) makes K
too large. Thus if the rough method gives A < 1 we can assert ¢,
but if it gives K > 1 we cannot say that the observations support ¢
without closer investigation

According to the results the ratio of the densities is 1:004654-0-00021,

effectively on 7 degrees of freedom since most of the uncertainty comes
from the chemical series. The 03, 0 1, and 0 05 points for ¢ are at 0 71,
190, and 236 We can compare the result with what more detailed
determinations of the composition of air give. The percentages by
volume of N, and A are 78:1 and 0 93,1 giving the density ratio

79X 28+093x12

o T T =1 00505.
79 % 28
40
t=----19
Hence > 5

which makes A a shade > 1 from Table 11T a
The outstanding problem is to understand the great difference
between the standard deviations in Rayleigh’s results.

5.5. Comparison of a correlation coefficient with a suggested
value. We have seen that even in the estimation problem different

+ F A Paneth,Q J R Met Soc 63,1937, 433-8 Pancth states that the socond figure
for A is uncertain, but the uncertainty suggested would hardly affect the comparison
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ways of looking at the correlation problem suggest different ways of
taking the prior probability distribution for the correlation coefficient.
If we use the representation in terms of the model of 2.5 we should
naturally take uniform distribution over the range permitted. If we use
the rule in terms of J we have to consider whether the old parameters
should be taken as o, 7 or not. These parameters have the property
that for any value of p they give the same probability distributions for
z, y separately. On the other hand, they are not orthogonal to p. As for
the testing of a simple chance the differences are not trivial, since the
outside factor would vary greatly according to the suggested value of p,
and in different ways. The difficulty is possibly connected with the
question of the validity of the model and of the normal correlation law
itself. In many cases where this is used it would be reasonable to regard =
and y as connected in the first place by an exact linear relation, neither
of them separately satisfying anything like a normal law, but subject to
small disturbances which might or might not be normal. The evaluation
of 7 in such cases is simply a test of approximate linearity of the relation
between x and y and has nothing to do with normal correlation.

Tests relating to normal correlation based on J have been worked
out, but suffer from a peculiarity analogous to one noticed for sampling;
if the suggested value of p is 1 or —1, comparison of the null hypothesis
with any other value of p makes J infinite, and the alternative hypo-
thesis coalesces with the null hypothesis. Accordingly it seems safer
to take a uniform distribution for the prior probability of p. We shall
see that an additional restriction enters in the comparison of two
correlations, similar to one that arises for comparison of samples, and
that the outside factor is always of the order of the smaller of n}z, 5.
In the first place we suppose the distribution of chance centred on
x = y = 0; the suggested value of p is p,. Then

P(gdodr |H) < dodr/oT, (1)
P(q'dodrdp | H) oc dodrdp/207, (2)
the 2 entering because the possible range of p is from —1 to 41. The
likelihoods have the same form as in 3.9, and lead to
P(gdodr |0H)
1 n_ [st 1 2pgrst ]
— Z4=— dod
g |.,n+|(|__p5)l/2nexP[ 2(1_P5)\aa+72 po oaT, 3
P(q'dodrdp | 011)
1 n s 2 2prst
SR exP[ — (0_2+:2_ “or )] dodrdp. (4)

C i1 23(1—p?)
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With the substitutions 3.9 (5) we are led to

P(g|6H)ec [ (1—p})n(cosh f—pyr)~" d, ()
© 1
P10y ch [ [ (—pPn(coshf—pr)ndfdp.  (6)
“e —1

Ag we only want one term in the result it is convenient to use the
substitution cosh B—pr = (1—pr)e® %)
instead of the previous one. This leads, on integration with respect to
u, to i
’ ( 1 —'Pg) fan 8

Pl |6H) o< PO, ®
1
, 1 [ (—ptphn
P(q' |6H) c 3 (lTpr)"—-'l7=dp' (9)
-1

Now putting
r = tanhz, p = tanh(, po = tanh {,, (10)
we get cosh®—"sz
P(q l OH) o COSh'h{o cosh""’ﬁ({o—z)’ (ll)
L
, 1 hn-y d ¥
P(q’ |0H) oc 3 J oosh"zzscosh"f‘/*(zl—z) = (2nﬂ—l) cosh®-3%z (12)

for large n; { has been replaced by z in the factor cosh”{. Hence

2n—1\'" cosh’zz
K~ ( o ) cosh's{, cosh™-"({,—2) (13
_ 2n—1\' (1— pg)"2n(1 —r2)'en—9)
N ( m ) (A—pery™k 1)

If the distribution of chance is centred on a pair of values to be deter-
mined, instead of on (0, 0), —1 must be substituted for =.

As an example we may take the following seismological problem.
The epicentres and times of occurrence of a number of earthquakes
had been determined by Bullen and me by means of a standard table
of the times of travel of the P wave to difference distances. Two other
phases, known as § and SKS8, were studied, and their mean residuals
for the separate earthquakes were found.t These varied by much more
than would be expected from the standard errors found for them. Such
variation might arise if the focal depths of the earthquakes were not
all the same, since variation of focal depth would not affect the times
of all phases equally, or if any phase was multiple and there was a

t Jefireys, Bur Centr. Intern. Séism. Assn., Trav. Sci. 14, 1936, 58.
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tendency for observers in some cases to identify the earlier, and in
others the later, of two associated movements as the phase sought. In
either case the result might be a correlation between the mean S and
SKS residuals when P is taken as a standard The individual values,
rounded to a second, were as follows.

S SKS S SKS
-8 —10 +6 +8
-5 —10 +4 +1
-3 +1 -1 0
+3 -6 +4 0
-3 +1 0 0
+3 0 -1 -1
+2 -3 -7 -2

0 +1 -8 —-10

0 —4 -3 —4
+2 v

The means are —0 8 for S and —2 0 for SKS. Allowing for these
we find

2 (x—8)? = 313, > (y—§)* = 376, 2 (x—&)y—7) = +229;
§ = 406, t =445, r = -+0667.
There are 19 determinations and a pair of means have been eliminated.
Hence n in (14) must be replaced by 18. If there was no association
between the residuals we should have hypothesis ¢, with p = 0, and

we find 35\
K= (_) (1—0 6672)75 = 0 040.
v

Thus the observations provide 25 to 1 odds on association. Further work
has to try to find data that will decide between possible explanations
of this association (it has appeared that both the above suggestions
contain part of the truth), but for many purposes the mere fact of
association is enough to indicate possible lines of progress. The later
work is an instance of the separation of a disjunction as described in
161. Had K been found greater than 1 it would have indicated no
association and both suggested explanations of the variations would
have been tuled out. The tables used for comparison in obtaining the
above data have been found to need substantial corrections, varying
with distance and therefore from earthquake to earthquake, since the
bulk of the stations observing S were at very different distances;
allowance for these corrections would have made the correlation much
closer The corresponding correlations found in two later comparisons
were +0-95 and 40 97.1

+ M NRAS Geophys. Suppl. 4, 1938, 300
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5.51. Comparison of correlations. Correlations may be found
from two sets of data, and the question may then arise whether the
values are consistent with the true correlations being the same in both
populations. We take the case where two standard errors have to be
found separately for each set. On hypothesis g the true correlation is p,
to be found from the combined data; on ¢’ it is p, in the first set and p,
in the second. Let the numbers of observations in the two sets be n,;
and n,, where n; > 7n,. In accordance with the rule that the parameter
p must appear in the statement of ¢’, and having regard to the standard
errors of the estimates of p, and p,, we may define p on ¢’ by

(nFn9)p = mypy+7yp2 (1)
As p, ranges from —1 to 41, for given p, p, ranges from
{(ny+mo)ptngdiny  to {(ny+ng)p—ngl/ny.

Both are admissible values if

Ny —n,y Ty
— < p < 2
ny+ng g ny+my’ @
and the permitted range of p, is 2. But if
ny—n,
> o2, 3
P> i, 3)
py will be +1 for Ny pp = (ny+Mg)p—1y (4)

and the permitted range for p, is from this value to 1, a range of
(ny+n,)(1—|p|)/n,. This will apply also if p is too small to satisfy
(2). Denote the permitted range of p, by c¢. Then the prior proba-
bilities are

P(qdoydrydo,drydp | H) ¢ doydrydaydrydpfoy 7y 0,7, (5)
P(q'doydr doydrydpdp, | H) o< doydr, do,dr,dpdpy/oy 7y 0575, (6)
The likelihoods are the products of those for the estimation problems,

and we can eliminate oy, 7,, 0,, 7, in terms of «,, B,, as, B, as before.

Then
1 — p2)Yn1+na)
(1=p) dp, (1)

P(gdp | 6H) c
(q P' ) (1_P,«l)m—'/z(l_m«z)m—'/z

(1 _.p'«l‘)‘/zm(l ._pg)‘lznx dePg
(I—pyr)m="e(1—pyrp)ma—t ¢

(8)

P(q'dpdp, | 60H)

(l _pg)llgmu _Pg)‘lzm ny dpl dpg
(= prra) (T py g™ (g mg)e’

(9



294 SIGNIFICANCE TESTS- ONE NEW PARAMETER V,§5.5

and, using the p = tanh { transformation,

r sech{ dl
P(q|6H) c f SOz oot R T 7’ (10)
Pla 16H ([ sech®{, sech®{, n,dl, d{,.
(¢' 1 6H) o _L f.,, GoshF (T, —z,Joosh™H{T;—z;) (ny L mg)e (11)
Hence
P(q|6H)
2r \"_ =Bt (—1)z, (m—3)(ny—1)(2,—2,)*
* (nl+n2_ 1) soch ™= n).‘:'”z—zl exp{ ; 2(”1‘2*“”2—11) * }
(12)
2mn,
P ’ oH 1 8o, 3o,
(¢’ | )oc %)‘/ﬂ(nz—a})"’(n,-}-n,)csech 2, sech™z,, (13)
{(n1_é)(”s—%)}‘/’ (ny+ng)c 50 hl(nl a4 (ny— })zz}
2m(ny,+n,—1) ny ny+n,—1
X cosh™z, cosh*z, exp{ — %———%ﬁ} . (14)

A little simplification is possible if we remember that a test will
be needed only if n, and n, are both rather large, and then the critical
value will be for a rather small value of z,—z,, We can therefore
introduce a mean value given by

(ny+n—1)z = (n,— )2+ (ng—4)2a; (15)
and, nearly, p = tanhz (16)
2(nl+n2) < 1— 17
g Cwtmk_|m (“’ <2 +n) an
b (e>250) o
(m—H)(m— )" (n e = D= )5 —2)
e R e e et

(19)
A further and permissible approximation will be got by identifying n,
and n,—3}, n, and n,—4% in the outside factors; we can take these as

et etz

(n1+n2"‘1)3 2 — N . 21
e e WU ("’ > +nz) @n
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The tests given above for normal correlation can be adapted imme-

diately to rank correlation. It would be necessary only to calculate
1-0472(140-042p%+0-008 8+ 0-002p°)

for the estimated p. Then in the outside factor of (14) we should divide
by this expression, and in the exponent we should divide by its square,
in accordance with the form of the approximation 5.0(10) The cor-
rection is small enough for the effect of error in it to be regarded as
negligible.

5.6. The intraclass correlation coefficient. This arises when we
have a number of classes of k members each. If there is a component
variation common to all members of a class, with standard error =, about
some general value, and superposed on it is a variation with standard
error ¢’, the ratio of the two can be estimated from the ratio of the
variation between the class means to the variation within the olasses.
In the case k = 2, the expectation of the squared difference between
members of the same pair is 202, that between members of different
pairs 2(o'2-+7%) = 2¢% By analogy with the simple correlation coefficient
we may introduce a correlation p, and if z and y are members of the
same pair and E denotes expectations given the parameters,

E(x—y)* = E(2*)4 E(y*)—2E(zy)

= 2(1—p)o?
and also = 20'%
Hence p = 1%/o? (1)

The last relation provides a definition of p even if there are many
members in each class. For if there were k& in each group, ¢ and ~
retain their meaning in terms of expectations, and it would still be a
valid procedure to pick out two members at random from each group,
and for these the same argument will hold. Thus we can always define
p as meaning 7%/o?, irrespective of the number of groups and of the
number of observations per group. In terms of this definition p cannot
be negative.

Brunt,} following Kapteyn, analyses the meaning of the correlation
coefficient in general by regarding m as the number of component
disturbances common to z and y, while n are independent. The correla-
tion p would then be equal to m/(m+n), and could be interpreted as
a ratio capable of being estimated by sampling, with its prior proba-
bility uniformly distributed from 0 to 1. This appears to be a valid

t Combination of Observations, 1931, p 171
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analysis of the intraclass correlation Thus in the correlation of height
between brothers it may be supposed that there is an inherited part
common to both, on which random variations due to segregation are
superposed. Negative values are excluded on such an analysis, to
include them we need the extended analysis given in 25 But there
seem to be many cases where this kind of analysis is valid, and there
is a close analogy between the ordinary and intraclass correlation
coefficients.

The conditions contemplated in the hypotheses of intraclass correla-
tion arise in two types of case. One is illustrated by the comparison
of brothers just mentioned, where members of different families may
be expected to differ, on the whole, more widely than members of the
same family In agricultural tests on productivity different specimens
are expected to differ more if they belong to different varieties than to
the same variety In these cases the comparison is a method of positive
discovery, though in practice the existence of intraclass correlation is
usually so well established already by examination of similar cases that
the problem is practically one of estimation. In physics the problem is,
perhaps, more often one of detecting unforeseen disturbances Groups
of observations made in the same way may yield independent esti-
mates of a parameter, with uncertainties determined from their internal
consistency, but when the separate estimates are compared they may
differ by more than would be expected if these uncertainties are genuine.
Sometimes such discrepancies lead to new discoveries, more often they
only serve as a warning that the apparent accuracies are not to be
trusted. Doubts are often expressed about the legitimacy of combining
large numbers of observations and asserting that the uncertainty of
the mean is n-"2 times that of one observation. This statement is con-
ditional on the hypothesis that the errors follow a normal law and are
all independent. If they are not independent, further examination is
needed before we can say what the uncertainty of the mean is. The
usual physical practice is to distinguish between ‘accidental’ errors,
which are reduced according to the usual rule when many observations
are combined, and ‘systematic’ errors, which appear in every observa-
tion and persist in the mean Since some systematic errors are harmonic
or other variations, which are not constant, but either are predictable
or may become so, an extended definition is desirable. We shall say
that a systematic error is a quantity associated with an observation, which,
if its value was accurately known for one observation, would be calculable
Jor all others. But even with this extended meaning of ‘systematic error’



V,§56 SIGNIFICANCE TESTS ONE NEW PARAMETER 297

there are many errors that are neither accidental nor systematic in the
senses stated. Personal errors of observation are often among them.
It is known that two observers of star transits, for instance, will usually
differ in their estimates, one systematically recording the transit earlier
or later than the other. Such a difference is called the personal equation.
If it was constant it would come within the definition of systematic error,
and is usually treated as such, it is determined by comparing with a
standard observer or with an automatic recording machine, and after-
wards subtracted from all readings made by the observer Karl Pearsonf
carried out some elaborate experiments to test whether errors of observa-
tion could be treated in this way, as a combination of a random error
with a constant systematic error for each observer. The conditions of
the experiments were designed so as to imitate those that occur in actual
astronomical observations. One type consisted of the bisection of a line
by eye, the accuracy being afterwards checked by measurement The
other was essentially observation of the time of an event, the recorded
time being compared with an automatic record of the event itself The
conditions resembled, respectively, those in the determination of the
declination and the time of transit of a star with the transit circle For
each type of observation there were three observers, who each made
about 500 observations When the observations were taken in groups
of 25 to 30 it was found that the means fluctuated, not by the amounts
that would correspond to the means of 25 to 30 random errors with the
general standard error indicated by the whole series, but by as much as
the means of 2 to 15 independent observations should The analysis of
the variation of the observations into a constant systematic error and
a random error is therefore grossly insufficient The non-random error
was not constant but reversed its sign at irregular intervals It would
resemble the kind of curve that would be obtained if numbers —5 to
+ 5, repetitions being allowed, were assigned at random at equal intervals
of an argument and a polynomial found by interpolation between them.
There is an element of randomness, but the mere continuity of the
function implies a correlation between neighbouring interpolated values.

I shall speak of internal correlation as including intraclass correlation
and also correlations similar to those just described. Errors of this type
were called semi-systematic by S Newcomb,} and this term is usual in
astronomy.

Internal correlation habitually produces such large departures from

Y Phil Trans A, 198, 1902, 235-99
t Astronomical Constants, 1895, p 103
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the usual rule that the standard error of the mean is n—" times that of
one observation that the rule should never be definitely adopted until
it has been checked In a series of observations made by the same
observer, and arranged in order of time, internal correlation is the
normal thing, and at the present stage of knowledge hardly needs a
significance test any longer. It practically reduces to a problem of
estimation. The question of significance arises only when special
measures have been taken to eliminate the correlation and we want to
know whether they have been successful. Thus ‘Student’ writes'}
‘After considerable experience, I have not encountered any determina-
tion which is not influenced by the date on which it is made, from this
it follows that a number of determinations of the same thing made on
the same day are likely to lie more closely together than if the repeti-
tions had been made on different days. It also follows that if the
probable error is calculated from a number of observations made close
together in point of time, much of the secular error will be left out and
for general use the probable error will be too small. Where, then, the
materials are sufficiently stable, it is well to run a number of deter-
minations on the same material through any series of routine determina-
tions which have to be made, spreading them over the whole period.’
He is speaking of physical and chemical determinations In astronomy
an enormous reduction of uncertainty, by factors of 10 or 100, is
achieved by combining large numbers of observations. But astronomers
know by experience that they must be on the look-out for what they
call systematic errors, though many of them would come under what
I call internal correlation. They arrange the work so that star-positions
are compared with other stars on the same plate, so that any tendency
to read too high or to one side will cancel from the differences, even
though it might be reversed on the next plate measured, the scale of
the plate is determined separately for each plate by means of the
comparison stars, special care is taken to combine observations in such
a way that possible errors with daily or annual periods will not con-
tribute systematically to the quantity to be determined, as far as
possible observers are not aware what sign a systematic effect sought
would have on a particular plate, and so on. In seismology many of
the great advances of the past have been made by ‘special studies’, in
which one observer collects the whole of the records of an earthquake,
reads them himself, and publishes the summaries. There is here a
definite risk of some personal peculiarity of the observer appearing in
1 Quoted by E S Pearson, Biometrika, 30, 1939, 228
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every observation and leading to a spurious appearance of accuracy.
Bullen and I dealt with this, in the first place, by using the readings
made at the stations themselves; thus any personal peculiarity would
affect only one observation for each phase of each earthquake, and
the resulting differences would contribute independently and could be
treated as random. In the design of agricultural experiments Fisher
and his followers are in the habit of eliminating some systematic ground
effects as accurately as possible; the rest would not necessarily be
random, but are deliberately made to contribute at random to the
estimates of the effects actually sought, by randomizing the design as
far as is possible consistently with the normal equations for the main
effects being orthogonal.

As a specimen of the kind of results obtainable with such precautions
we may take the comparisons of the times of the P wave in European
and North American earthquakes, for distances from 22:5° to 67-5°;
mean residuals are given against a trial table. Unit weight means a
standard error of 1 sec.

Europe N America

A Mean | Weight| Mean | Weight| Difference | Weight| x*
225 —02 47 +10 06 +08 05 03
235 -08 63 -01 06 403 05 00
24 5 —-11 31 +1-0 05 +17 04 12
255 —-07 31 —02 09 +01 07 00
265 +03 217 +01 10 —06 07 03
275 -0 08 +03 12 +09 05 04
290 —096 45 +03 20 405 14 04
315 —02 53 407 26 +05 17 04
345 —18 31 —-06 28 +08 15 10
375 -08 18 +08 21 +12 10 14
405 +09 11 —05 13 —18 06 20
435 —07 19 —~14 08 -11 06 017
465 —~12 30 —15 10 —07 08 04
495 —~18 16 —14 08 00 05 00
5256 -10 25 —28 10 —22 07 34
555 -07 19 -25 11 —22 017 34
58 5 -10 12 —14 03 —08 03 02
625 —-12 14 —09 25 -01 09 01
675 —-13 12 —08 33 +01 09 01

157

A constant systematic difference is to be expected, corresponding to
a slight difference in the way of estimating the origin times, arising
from the fact that the distributions of weight outside this range are
very different. The weighted mean of the difference is +0-4s.4-0-3s.
This is added to the European mean and the result subtracted from
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the North American one The results are given as ‘difference’, with the
corresponding weights. Then

x* = D (weight)(difference)? = 15-7

on 19 entries, from which one parameter has been determined, so that
the expectation of 2 is 18 on the hypothesis of randomness.

The distribution of signs at first sight suggests a systematic varia-
tion, but we notice that up to 31-5° the whole weight of the 8 differences
is 6-4, and the weighted mean -+0 45-40-40, which is not impressive.
The last five give —0-914+0 58. The magnitude of the differences is,
in fact, unusually small in the early part of the table, as we see from
the fact that the largest contribution to y%is 1-2. There is no contribu-
tion larger than 3-4, but on 19 entries we should have been prepared
to find one greater than 4-0 on the hypothesis of randomness.

5.61. Systematic errors: further discussion. For simplicity we
may take the very common case where the systematic error is an addi-
tive constant. Now what can such a systematic error mean in terms
of our theory? The true value, for our purposes, has been identified
with the location parameter of the law of error, and the best estimate
of this is definitely the mean. If, subject to it, the errors are independent,
its uncertainty is correctly given by the usual formula, and we have
seen how to correct it if they are not. Systematic error has @ meaning
only if we understand by the true value something different from the loca-
tion parameter. It is therefore an additional parameter, and requires o
significance test for its assertion. There is no epistemological difference
between the Smith effect and Smith’s systematic error, the difference is
that Smith is pleased to find the former, while he may be annoyed at
the discovery of the latter. Now with a proper understanding of induc-
tion there is no need for annoyance It is fully recognized that laws
are not final statements and that inductive inferences are not certain.
The systematic error may be a source of considerable interest to his
friend Smythe, an experimental psychologist The important thing is
to present the results so that they will be of the maximum use. This
is done by asserting no more adjustable parameters than are supported
by the data, and the best thing for Smith to do is to give his location
parameter with its uncertainty as found from his observations. The
number of observations should be given explicitly. It is not sufficient
merely to give the standard error, because we can never guarantee
absolutely that the results will never be used in a significance test, and
the outside factor depends on the number of observations. Two esti-
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mates may both be 4+1:50+0 50, but if one is based on 10 observations
with a standard error of 1-5 and the other on 90,001 with a standard
error of 150, they will give respectively K = 0-34 and K == 43 in a
test of whether the parameter is zero. Now this difference does not
correspond to statistical practice, but it does correspond to a feeling
that physicists express in some such terms as ‘it is merely a statistical
result and has no correspondence with physical reality’ The former
result would rest on about 8 observations with positive signs, and 2 with
negative, an obvious preponderance, which would give K = 0 49 when
tested against an even chance. The latter would rest on nearly equal
numbers of observations with positive and negativesigns [ think that the
physicist’s feeling in this is entitled to respect, and that the difference in
the values of K gives it a quantitative interpretation. The mean of a
large number of rough observations may have the same value and the
same standard error as that of a smaller number of accurate observations,
and provided that the independence of the eirors is adequately checked
it is equally useful in an estimation problem, but it provides much less
ground for rejecting a suggestion that the new parameter under discus-
sion is zero when there is such a suggestion Ultimately the reason is
that the estimate is a selection from a wider range of possible values
consistent with the whole variation of the observations from 0, and the
difference in the values of K represents the allowance for this selection

Now systematic differences between experiments with different
methods, and even between different experimenters apparently using
the same method, do exist It is perfectly possible that what Smith
does measure is something different from what he sets out to measure,
and the difference is his svstematic error The quantity to be estimated
may indeed be different in kind from the one actually measured A
meteorologist wants to know the atmospheric pressure, but what he
observes is the height of a column of mercury The conversion requires
the use of a hydrostatic law, which is not questioned, but it involves
the local value of gravity and the temperature, which enters through the
density of the mercury Allowing for the differences between these
and some standard values is the remcyval of a caleulable, and therefore
a systematic, error. An astronomer wants the direction of a star, as
seen from the centie of the earth, but the observed direction is atfected
by refraction. and the latier is calculated and allowed for The only
increase of the uncertainty involved in applyving such a correction
represents the uncertainty of the correction itcelf which is often
negligible and can in any case be found

X
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The problem that remains is, how should we deal with possible
systematic errors that are mot yet established and whose values are
unknown? A method often adopted is to state possible limits to the
systematic error and combime this with the apparent uncertainty. If
the estimate is a+s, and a systematic error may be between +m
(usually greater than s), the observer may reckon the latter as corre-
sponding to a standard error of m/¥3 and quote his uncertainty as
=+(s2+3m?)"2, or with a still more drastic treatment he may give it
as 4 (s+m). Either treatment seems to be definitely undesirable. If
the existence of the error is not yet established it remains possible that
it is absent, and then the original estimate is right. If it exists, the
evidence for its existence will involve an estimate of its actual amount,
and then it should be allowed for, and the uncertainty of the corrected
estimate will be the resultant of s and the determined uncertainty of
the systematic correction. In either case s has a useful function to
serve, and should be stated separately and not confused with m. The
possible usefulness of m, where the existence of the error is not estab-
lished and its actual amount therefore unknown, is that it suggests
a possible range of values for a new parameter, which may be useful
in comparison with other series of observations when material becomes
available to test the presence of a systematic difference. But inspection
of our general approximate formula shows that the statement of m will
go into the outside factor, not into the standard error. If the standard
error is inflated by m the result will be to increase the uncertainty
unjustifiably if the suggested difference is not revealed by the accurate
test; and to fail to reveal a difference at all when the test should show
it and lead to an estimate of its amount. In either case the inclusion
of m in the uncertainty leads to the sacrifice of information contained
in the observations that would be necessary to further progress (cf. 5.63).
A separate statement of the possible range of the systematic error may
be useful if there is any way of arriving at one, but it must be a separate
statement and not used to increase the uncertainty provided by the
consistency of the observations themselves, which has a value for the
future in any case. In induction there is no harm in being occasionally
wrong, it is inevitable that we shall be. But there is harm in stating
results in such a form that they do not represent the evidence available
at the time when they are stated, or make it impossible for future
workers to make the best use of that evidence.

5.62. Estimation of intraclass correlation. In most treatments
of this problem, including the one in the first edition of this book, the
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classes compared have been supposed equal in number. In such cases
K can be reduced to a single integral. This condition is satisfied in
balanced designs, such as are often used in biological experiments. In
other applications it is rarely satisfied. However carefully an astronomer
designs his observing programme it will generally be interrupted by
cloud. Even in the comparison of brothers there is no theoretical reason
for taking the same number from every family; the reason is only to
make the analysis fairly easy. But it is usual for the scatter within the
groups to give an estimate of the random error sufficiently accurate to
be taken as a definite determination of o. We suppose then that there
is a general location parameter A; that there are m groups of observa-
tions, the number in the rth group being k,, and that there is a location
parameter A, associated with the group whose probability distribution
about A is normal with standard error r; and that within each group
the observed values are random with standard error ¢ about A,. The
uncertainty of o is taken as negligible. We suppose the separate values
A.—A, given 7, to be independent. This is the fundamental distinction
between intraclass correlation and systematic variation. The data are
the group means z,. According to the hypotheses

%, = Ak (e 0%k, )
and the likelihood is

L = (2m)tm T (r*+o¥/k) exp{—-21- > T(zi_;__—o:‘/);'} [é= @

Then we have to estimate A and . We have

2 1op _ 5 him—)
a—legL = 02+k,1'2 s (3)
o, 1 ko 1< R(z—A2

slogL= -2 az+k,72"‘§z T (4)

Putting these zero we have the maximum likelihood equations for A
and 7% To get the uncertainties we need also the second derivatives

k"
el = =2 i ®
& o1 K Kz, =\
EEEL =52 G 2 Gy ©
The posterior probability distribution of A will not reduce to a simple
t rule. If = was 0 it would be normal with standard error (3 k,)-"20.

If o was 0 it would follow a ¢ rule with m—1 degrees of freedom. We
are concerned with intermediate cases, and may expect that the
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distribution will resemble a ¢ rule with more than m—1 degrees of
freedom. To estimate the number we form the corresponding deriva-
tives for the normal law. Here we have

log L = —nlogo— 2%2{(5_»2“'2}, @
sl = (=N, (®)
LilogL = — Moy Ttk (-0, ©)
Salosl = 2, (10)
(ajz)z' 0gL = goi— S (s (E—AY). (an

(8) and (9) vanish when A = &, o = s'; and then (10) becomes —n/s"?
and (11) becomes —n/2s’*. Hence, to the second order in departures
from the maximum likelihood solution,

log L = constant—— — (z A)2— P (a”—s”)’.

But it is simply the uncertainty of o that produces the departure of the
¢t rule from the normal. Consider then the value —A4 taken by (10)
when ¢% = s'2, and the value — B taken when

o f)

We have ——1+J() (A/B—-l)"

Then the number of degrees of freedom is n—1, and the s, of the ¢ rule
is given by e n
n—1_ (n—DA"

This can be immediately adapted to (5) and (6). We work out (6) for
the maximum likelihood solution (5) for this solution is —4; (5) with
72 increased by its standard error indicated by (6) is —B. An approxi-
mate ¢ rule for A follows.

The following data on the correction to the constant of nutation,
derived from a combination of data by Sir H. Spencer Jones,T provide
an illustration The separate equations of condition are from compari-
sons of different pairs of stars. The unit is taken as 0 01", the standard

s2 =

+ MNRAS 98, 1938, 440-7.
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error for unit weight derived from internal comparisons is 7-7. The
weights k, have been rounded to the nearest unit.

k, x, ky(x, —&,)?
44 —202 325
25 +352 200
23 +417 293
25 +0 11 8
8 —173 47
5 +489 90
3 +428 39
18 —082 41
1043

The weighted mean is +0-69 and gives x® = 1043/7-72 = 16:9 on 7
degrees of freedom. This is beyond the 2 per cent point, and is enough
to arouse suspicion. The original series, before they were combined to
give the above estimates, had shown similar discrepancies, one of them
being beyond the 0-1 per cent. point. There is further confirmation
from the distribution of the contributions to x2. For random variation
these should not be correlated with k,. Actually the three largest
contributions come from three of the four largest k,, which is what we
should expect if intraclass correlation is present. We therefore proceed
to estimate 72

To get an upper estimate we treat all the values as of equal weight,
thus neglecting ¢ The simple mean is 41 55—which is a warning that
if 7 is not taken into account there may be a serious error in the estima-
tion of A—and the residuals give 72 = 8:8. This is too high since the
variation includes the part due to o.

We write w, = k,/(c®+k,7?).
For purposes of computation A is taken as Ay = +1-13 (suggested by

the first trial value 72 = 6-0), and w, is worked out for several trial
values of 72. Results are as follows.

72| Jwy |Twlx,— )| T ur [TuHr,— AT udz,— )2 A=A, [T, — Fwl(x,—A)?

30[1151 —0111 |01963] 1316 0246 | —010 ~0165
35/1060| —0090 |01642| 1103 018 | —0085 - 0043
40/0984| —0064 [01398| 0936 0144 | 0065 ~0048
50[(0865| —0024 |01059| 0712 —  |-om 10153

By (4) we have to interpolate so that > w, — > u?(x,—A)? = 0. We
can neglect the difference between A and A,. Interpolation gives

=371
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and the interpolated value of A—A; is —0:075, hence

A = +1-055.
Also 22
-—a—)\zlog L=3w,
22

—Wlog L= —}3 w4+ Y wir,—A)? = +40-091.

Then we can take 72 = 3-714-3-32. Substitutein 3 w, for 7> = 3-71 and
6-0; we get respectively +1-02 and 0-77. Extrapolating to 7% = 7-03
we have ¥ w, = 0-66,

2 . =1 _
= Tozoee—1r = S~ gxros
Changing the unit to 1” we have the solution

A= -+40-0105"40-0107", 6d.f,

= 0-0193"40-0073".
This solution is given only as an illustration of the method. A discussion
using expectations gave similar conclusions,} but led Spencer Jones to
go more into detail. He discovered a systematic effect that had been
overlooked, and on allowing for it he obtained a satisfactory agreement
with the hypothesis of independence of the errors, and consequently a
substantial increase in accuracy.} His result was

A = 40-0034"40-0062".

The question of a significance test for ~ will arise in such problems.
We notice that on the hypothesis + = 0 a mean z, has a standard error
o/+vk,, and for other r one of (o%/k,+72). Hence, for small 72, J will be
of the order of magnitude of =%, not 72. In applying the approximate
form for K we should therefore take

K= (%%)/ exp{—3r*/s,

as suggested by 5.31(5); a factor } is needed because 72 cannot be
negative.

The determination of the constant of gravitation provides an illustra-
tion of the danger of drastic rejection of observations and of the method
of combining estimates when the variation is not wholly random.
C. V. Boys gave the value 6 658 X 10-% c.g.s. But P. R. Heyl,§ quoting
Boys’s separate values, points out that the simple mean, apart from

t MNRAS 99, 1939, 206-10 1 Ibid., pp. 211-16
§ Bur. Standards Res J 5, 1930, 1243-90

n 1-14.
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the factor 10-8, is 6-663. There were nine determinations, of which all
but two were rejected, so that the final result was the mean of only
two observations with an unknown standard error. Even if these had
been the only two observations the uncertainty of the standard error
would have a pronounced effect on the posterior probability distribu-
tion; but when they are selected out of nine the accuracy is practically
impossible to assess. Heyl made three sets of determinations, using
balls of gold, platinum, and optical glass respectively. The summaries
are as follows, with the estimated standard errors.

n

Boys . . 6 663 0 0023 9
Heyl

Gold . 6678+ 00016 [}

Platinum 6664400013 5

Glass . 667440 0027 5

The estimates are plainly dlscrepant Hey!l has tested the possibility
of a real dufference between the constant of gravitation for dufferent
substances by means of the E5tvds balance and finds none, and there
is no apparent explanation of the differences. They are so large that
we may compute the simple mean at once, it is 6:670, and the sum of
squares of the residuals is 165 X 10-¢, of which the known uncertainties
account for 17x10-%. The standard error of an entire series can then
be taken as (148/3)%x 10-3 = 0-0070. Combining this with the known
uncertainties we get for the respective o%: 10-5(54, 52, 51, 56). An im-
proved value could be got by computing a revised mean with the
reciprocals of these as weights, but they are so nearly equal that the
simple mean will be reproduced. The standard error can then be

taken as
1o- ( 165
x4
and the result is 10-8(6-:670-4-0-0037). The result is, however, virtually
based on only three degrees of freedom, the root-mean-square estimate
of uncertainty would be
165
-3 = 6 -3
10 (1><4) 6:4%10-3,
and this would be the safest to use in matters where the chief uncertainty
arises from the constant of gravitation.

5.63. Suspiciously close agreement. The tendency of either inter-
nal correlation or of a neglected systematic effect is in general to increase
x2 or z, and it is chiefly to this fact that these functions owe their
importance. If they agree reasonably with their expectations the null
hypothesis can usually be accepted without further ado. But it some-

) = 3-7x10-3,
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times happens that y? is much less than its expectation, an analogous
result would be strongly negative z when the variation suspected of
containing a systematic part is compared with the estimate of error,
another is when the standard error of a series of measures is much less
than known sources of uncertainty suggest Strong opinions are ex-
pressed on this sort of agreement Thus Yule and Kendall remark 1

Nor do only smali values of P (the probability of getting a larger x* by acci-
dent) lead us to suspect our hypothesis or our sampling technique A value of P
very near to unity may also do so. This rather surprising result arises in this way.
a large value of P normally corresponds to & small value of x2, that is to say a
very close agreement between theory and fact Now such agreements are rare—-
almost as rare as great divergences We are just as unlikely to get very good
correspondence between fact and theory as we are to get very bad correspondence
and, for precisely the same reasons, we must suspect our sampling technique if
we do  In short, very close agreement is too good to be true

The student who feels sonie hesitation about this statement may like to reassure
himself with the following example, An investigator says that he threw a die 600
times and got exactly 100 of cach number from 1 to 6 This is the theoretical
expectation, x* = 0 and P = 1, but should we believe him? We might, if we
knew him very well, but we should probably regard him as somewhat lucky, which
is only another way of saying that he has brought off a very improbable event §

Similarly, Fisher writes §

If P is between 0 1 and O 9 there is certainly no need to suspect the hypothesis
tested. . .

The term Goodness of Fit has caused some to fall into the fallacy of beheving
that the higher the value of P the more satisfactorily is the hy pothesis verified
Values over 0 999 have been reported, which, if the hy pothesis were true, would
only oceur once in a thousand trials Generally such cases are demonstrably due
to the use of inaccurate formulae, but occasionally small values of x2 beyond the
expected range do occur, In these cases the hypothesis is as definitely dis
proved as if F had been 0 001

A striking case is given by Fisher! himself mn a discussion of the
data in Mendel's classical papers on inheritance In every case the
data agreed with the theoretical ratios within less than the standard
errors, taking the whole together, x* was 41 6 on 84 degrees of freedom,
and the chance of a smaller value ansing accidentally is 0 00007
The test originated in two cases where Mendel had distinguished the
pure and heterozygous dominants by self-fertilization, growing ten of
the next generation from each Since the chance of a seif-fertilized

+ Introduction to the Theory of Statisties, p 423

+ To go to the other extreme, if & man reports that he obtained a complete hand of
one suit at bridge we do not beheve that he did so by a random deal It is more likely
either that he is Iving or that somd thing was wrong with the shuffling

§ Statistical Methods 1936 p S4
1| Annals of Science, 1, 1936, 115-37
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heterozygote giving a dominant is £, the chance that all ten would be
dominants is (0-75)'° = 0-05, so that about 5 per cent. of the hetero-
zygous ones would fail to be detected, and the numbers would be
underestimated. Correcting for this, Fisher found that Mendel’s ob-
served numbers agreed too closely with the uncorrected ratio of one
pure to two mixed dominants, while they showed a serious discrepancy
from the corrected ratio. Fisher suggests that an enthusiastic assistant,
knowing only too well what Mendel expected, made the numbers agree
with his expectations more closely than they need, even in a case where
Mendel had overlooked a complication that would lead the theoretical
ratio to differ appreciably from the simple 1 2.

When there is only one degree of freedom to be tested a very close
agreement is not remarkable—if two sets of measures refer to the same
thing, agreement between the estimates within the rounding-off error
is the most probable result, even though its probability is of the order
of the ratio of the rounding-off error to the standard error of the
difference. It is only when such agreements are found persistently that
there is ground for suspicion. The probable values of x* from 84 degrees
of freedom are 84-+13, not 0 If the only variations from the null
hypothesis were of the types we have discussed here, too small a x?
would always be evidence against them. Unfortunately there is another
type. By some tendency to naive notions of causality, apparent dis-
crepancies from theory are readily reduced in the presentation of
the data. People not trained in statistical methods tend to under-
estimate the departures that can occur by chance, a purely random
result is in consequence often accepted as systematic when no signi-
ficance test would accept it as such, and ‘effects’ make transitory
appearances in the scientific journals until other workers repeat the
experiments or estimate the uncertainty properly Similarly, when
the investigator believes in a theory he is predisposed to think that if
a set of observations differs appreciably from expectation there is some-
thing wrong with the observations, even though a closer examination
would show that the difference is no larger than would often occur by
chance, and the consequence is that observations may be rejected or
illegitimately modified before presentation. This tendency is the more
dangerous because it may be completely unconscious. In Mendel’s
experiments, where there were theoretical ratios to serve as a standard,
the result would be too small a x2, which is what Fisher found.

A significance test for such cases on the lines of the present chapter has
not been constructed It would be most useful if the prior probability
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took account of previous information on human mendacity, but this
has not, I think, been collected in a useful form!

5.64. Sir Arthur Eddington has claimed to have deduced theoretical
values of many measurable physical quantities from purely epistemo-
logical considerations. I consider that this is at least partly because he
has incorporated a great deal of observational material into what he
calls epistemology;t but that is not the chief reason why the great
majority of physicists hesitate to accept his arguments. At any rate it
is interesting to compare the values deduced theoretically in his Funda-
mental Theory with observation. He takes the velocity of light, the
Rydberg constant, and the Faraday constant as fundamental and
calculates the rest from them. I give his comparisons as they stand
except for powers of 10, which are irrelevant for the present purpose;
uncertainties are given as ‘probable errors’ and the factor (0-6745)
must be applied at some stage in the computation of x2. Probable errors
are given for the last figure in the observed value.

Obs PE Calc O —~C | (06745)"2x%

e/m, ¢ (deflexion) 175959 24 175953 +6 01
e/m, ¢ (spectroscopic) . 175934 28 175953 —19 05
hej2ne? . . 137 009 16 137 000 +9 03
mplm, . . 1836 27 56 | 1836 34 -7 00
M . . . 1-67339 31 167368 —29 09
m, . . . 9 1066 22 91092 —26 14
e . . . 4 8025 10 4 8033 —8 06
EO . . 6 6242 24 6 6250 —8 01
hle’ . 13800 5 13797 +3 04
k. . 6670 5 6 6665 +35 05
n'—H’ 000082 3 00008236 —04 00
2H'—D’ . . 0001539 2 00015404 —14 05
4H —He . 0 02866 ? 0028624+4| +4 <10
m . 2 7896 8 2 7899 -3 01
m, 1935 20 19371 —21 00

< 64

I have omitted some of Eddington’s comparisons but retained, I think,
all where the observed values rest on independent experiments. The
result is that x? is not more than 2-9, on 16 d.f. This is preposterous;
the 99 per cent. point is at x* = 5-2.

It might theoretically be better not to take three constants as
definitely known, but to make a least-squares solution from 18 data,
taking these as unknown, using their experimental uncertainties. This
would not make much difference since they are among those whose
uncertainties are smallest compared with the adopted values; the only

t+ Phil Mag (1), 32, 1941, 177-205
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difference would be that x* would be slightly reduced, remaining on
15 d.f.

Many of the observed values are based on very few degrees of freedom;
«, the constant of gravitation, for instance, is on 3 d.f. In these condi-
tions the use of y? as if the errors were normally distributed is seriously
wrong (cf. 2.82); but the tendency of the allowance for small numbers
of degrees of freedom would be to increase the expectation of x?, and
a more accurate test would give a larger predicted x2. Thus correction
of either of the obvious statistical blemishes would increase the dis-
crepancy; and the observations agree with Eddington’s theory far better
than they have any business to do if that theory is right.

There are two possible explanations. The one that would occur to
many physicists is that Eddington’s theory is artificial throughout,
and that by skilful juggling with numbers he has produced a forced
agreement. This may be so, though I should not say that his theory is
at any point more artificial or less intelligible than any other statement
of quantum theory. All need a complete restatement of their relations
to experience, including a statement of what features in experience
demand the kind of analysis that has been adopted.

The other concerns the ‘probable errors’ of the observed values.
Many of these are not based on a statistical discussion, but include
an allowance for possible systematic errors, of the kind that is depre-
cated in 5.61. It is quite possible that the probable errors given are
systematically two or three times what a proper statistical discussion
would give. In particular, some of the estimates are the results of
combining several different determinations, alleged to be discrepant,
but as the number of degrees of freedom of the separate determinations
is never given, it is impossible to form a judgement on the existence of
these discrepancies without working through the whole of the original
data afresh. If the uncertainties had not been artificially inflated it is
possible that a normal x% would have been found. At any rate the first
suggested explanation cannot be accepted until the second is excluded
by a rediscussion of the experimental data.

5.65. In counting experiments the standard error is fixed by the
numbers of the counts alone, subject to the condition of independence.
In measurement the matter is more complicated, since observers like
their standard error to be small, and it is one of the unknowns of the
problem and has to be judged only from the amounts of the residuals.
But actually the standard error of one observation is not often of much
further interest in estimation problems; what matters most, both in
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estimation problems and in any significance test that may supervene,
is the standard error of the estimates. Now it is easy in some types of
investigation for an apparent reduction of the standard error of one
observation to be associated with no reduction at all in the accuracy
of the estimates. This can be illustrated by the following example.
A set of dice were thrown, sixes being rejected, and 3 was subtracted
from each result. Thus a set of numbers —2 to -2, arranged at random,
was obtained (series 4). Differences to order 4 were found, and two
smoothed sets of values B and C were obtained, one by adding } of
the second difference, one by subtracting {; of the fourth difference.
The unsmoothed and the two smoothed series are shown below. The
respective sums of the 44 squares, excluding for the series 4 the two
unsmoothed values at each end, are 88,1 18-9, and 29 7. The smoothing
has produced a great reduction in the general magnitude of the resi-
duals; judging by this alone the standard errors have been multiplied
by 0-46 and 0-58 by the two methods. But actually, if we want a sum-
mary based on the means of more than about 5 consecutive values we
have gained no accuracy at all. For if a group of successive entries in
column 4 are z_,, ¥_;, %y, ¥;, ¥, method B will make z, contribute

4 B c 4 B c 4 B c
0 +2 410 408 —~2 —10 —18
+2 0 +10 415 —2 =10 -—17
-2 —08 —08 +2 405 402 0 —05 —04
-1 —05 —05 -2 —02 -08 0 -02 -o02
+2 402 403 -1 —05 —07 —~1 —02 —01
—2 —10 -—11 +2 408 408 +1 00 —02
—2  —10 -—12 0 +08 412 -1 00 402
+2  —05 407 +1 00 —04 41 402 401
0 00 402 —2 —05 —04 0 +02 +05
—2 —10 =—12 +1 402 00 0 —02 -—02
0 —02 --02 +1 410 +15 -1 —10 —08
+1 402 405 +1 402 402 -2 —10 —08
-1 —08 —09 —2 —10 -12 41 —05 —08
-2 —10 -—11 —~1 -05 -06 —2 -08 —03
+1 00 —02 +2 408 410 0
0 +08 412 0 00 402 —2

1z, to the second and fourth entries and 1z, to the third, the contribu-
tion from z, to the sum of the five remains z,. Method C will make
x, contribute —z, to the first and fifth entries, 3z, to the second and
fourth, and 4z, to the third. Again there is no change in the sum of
the five. There is a little gain through the contributions from the
entries for adjacent ranges, but the longer the ranges are the smaller
this will be.
1 This agrees exactly with expectation'
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Now it might well happen that we have a series of observations of
what should be a linear function of an independent variable, and that
the above set of values 4 are the errors rounded to a unit.t The least-
squares solution based on the hypothesis of the independence of the
errors will be valid. If a smoothing process changes the errors to B or
C the solution will be the same; but if the errors are still supposed
independent the apparent accuracy will be much too high, because we
know that the correct uncertainty is given by 4. What the smoothing
as in B does, if the error at one value is z,, independent of adjacent
values, is to make component errors }x,, 4x,, }z, at adjacent values.
Thus, though the smoothing somewhat improves the individual values,
it does so by introducing a correlation between consecutive errors, and if
the errors are given by B or C this departure from independence of the
errors is responsible for a diminished real accuracy in comparison with
the apparent accuracy obtained on the hypothesis of independence.

Now at the best the hypothesis of independence of the errors needs
a check when suitable information becomes available; it is never certain.
But it does often survive a test, and the estimate of uncertainty is then
valid. If there is any possibility that it is true, that possibility should
not be sacrificed. There is a real danger in some types of observation
that spurious accuracy may be obtained by introducing a correlation
between neighbouring errors. In seismological work, for instance, a
careful observer may read his records again and again to make ‘sure’,
working out his residuals after each set of readings, and in these condi-
tions it is practically impossible for him to avoid letting his readings
on one record be influenced by those at neighbouring distances. There
is a further danger of accidental close agreement in the results for a
few separate series; knowledge of the standard error of each series based
on the hypothesis of independence prevents too high an accuracy from
being asserted in such cases.

In some cases a lack of independence arising in this way can be
detected by comparing determinations from different series of observa-
tions; too large a x2 may be found, and then the differences between
the series provide a valid estimate of uncertainty, though based on
fewer degrees of freedom than might have been available in the first
place. But even here it may happen that previous results are used
to reject observations, and then even this independence fails. If the
possibility of this check is to be preserved, every series must be reduced

1 The process actually used gots them from a rectangular and not a normal distribu.
tion of chance, but this is irrelevant here
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independently. Otherwise a mistake made at the outset may never be
found out.

5.7. Test of the normal law of error. Actual distributions of errors
of observation usually follow the normal law sufficiently closely to make
departures from it hard to detect with fewer than about 500 observa-
tions. Unfortunately this does not show that the treatment appropriate
to the normal law is appropriate also to the actual law; the same is
true for a binomial law with only three or four components, or for a
triangular law, and for these the extreme observations have an im-
portance in estimation that far exceeds any they can have on the normal
law. (The binomial would of course have to be compared with a normal
law with the chances grouped at equal intervals.) Many series of
observations have been published as supporting the normal law.
Pearson showed in his original x? paper that some of these showed such
departures from the normal law as would warrant its rejection. I have
myself analysed nine series for this purpose.t Six of these are from a
paper by Pearson, which has already been mentioned (p. 297). W. N.
Bond made a series of about 1,000 readings of the position of an illumi-
nated slit, viewed with a travelling microscope slightly out of focus.
The slit was kept fixed, but the microscope was moved well outside the
range of vision after each reading, so that the errors would be as far
as possible independent. The conditions resemble the measurement of
a spectrum line or, apart from the shape of the object, that of a star
image on a photographic plate. Later Dr. H. R. Hulme provided me
with two long series of residuals obtained in the analysis of the variation
of latitude observations at Greenwich. These have the special interest
that they are based on observations really intended to measure some-
thing and not simply to test the normal law; but Pearson’s were
primanly designed to test the hypothesis that the error of observation
could be regarded as the sum of a constant personal error and a random
error, the test of the normal law being a secondary feature. So many
lists of residuals exist that could be compared with the normal law that
published comparisons are under some suspicion of having been selected
on account of specially good agreement with it.

In comparison with the normal law, Type VII gives J infinite for
m = 1; Type II gives J infinite for any m, but we can modify the
definition by omitting the intervals where the probability according to
Type II is zero, and then J remains finite, tending to infinity only as

+ Phil Trans A, 237, 1938, 231-T1; M NR A S 99, 1939, 703-9.
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m — 1. It is sufficient for our purposes to use the approximate formula
of 5.31. The maximum likelihood solutions for u, which is 1/m for Type
VII and —1/m for Type II, are as follows.

n ® K
Pearson Bisection 1 500 4011140037 031
2 500 +004+40 04 17
3 500 —022540 057 00116
Bright line 1 519 +0 23040 057 00083
2 519 +0 16340 050 0140
3 519 —0080+.0 049 75
Bond ... 1026 | 4012340051 22
Greenwich . . . . 1 4540 +036940 020 10-72
2 5014 +044340018 10-1%0

Six of the nine series give K less than 1, three less than 0-01. Allowance
for selection as in 5.04 does not alter this, but the larger values of K
are, of course, reduced. But there is another check. If the errors, apart
from a constant personal error, were random and followed the normal
law, the means of groups of 25 consecutive observations should be
derived from a normal law, with standard error } of that of the whole
series. If % is the square of the observed ratio, it should be about 0-04.
In every case the actual value in Pearson’s series was higher; it actually
ranged from 0-066 to 0-550. The test for comparison of two standard
errors, with n, = 20, n, = 480, will obviously give K much less than
1 in every case. One apparently possible explanation would be that if
errors follow a Type VII law, even if they are independent, means
of a finite number of observations will fluctuate more than on the
normal law. If this was the right explanation y should increase with p.
The actual variation is in the other direction. Taking the values in
order of decreasing . we have the following table,

I3 y? T
Bright line . 1| 40230 | 0066 | 016
2( 40163 | 0100 | 024
Bisection 1| 40115 | 0093 { 023
2| 4004 036 057
Bright line 3| —0080 ) 0140 | 032
Bisection 3] —0225 | 0550 | 072

7 is defined as ,/(y2—0-04) and is an estimate of the fraction of the
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standard error that persists through 25 observations. There is a correla-
tion of —0-92 between p and r, which might represent a practically
perfect correlation since both p and r have appreciable uncertainties.
If we fit a linear form by least squares, treating all determinations as
of equal weight, we get

# = +0-27340-093— (0-624-0-22)r.

The suggestion of these results is therefore that reduction in u is
strongly associated with increase in the correlation between consecu-
tive errors, and that a set of really independent errors, if there is
such a thing, would satisfy a Type VII law with m probably between
2-7 and 5-5.

Bond’s data would suggest limits for m, corresponding to the standard
error, of 5:7 to 14; the two Greenwich series of 2:6 to 2:9 and 2:2 to 2-4.
There appear to be real differences in the values of m, but this has an
obvious explanation. Pearson’s and Bond’s series were each made by
a single observer in conditions designed to be as uniform as possible.
The Greenwich observations were made by several different observers
in different conditions of observation. This would naturally lead to a
variation of accuracy. But if several homogeneous series of different
accuracy, even if derived from the normal law, were combined and the
result analysed, we should get a positive u. The values found from
the Greenwich observations are therefore likely to be too high for
uniform observing conditions. It seems that for uniform conditions,
if independence of the errors can be attained, and if there is a single
value of m suitable for such conditions, it is likely to be between 3
and 5

Such a departure from the normal law is serious. We havescen (p 206)
that if m < 2-5 the usual rule for estimating the uncertainty of the
standard error breaks down altogether, and such values arc not out of the
question. We have therefore two problems. First, since enormous
numbers of observations have been reduced assuming the normal law
(or different hypotheses that imply it), we need a means of reassessing
the accuracy of the summaries. Secondly, it is unusual for a set of
observations to be sufficiently numerous to give a useful determina-
tion of m by itself, but if we assume a general value of m we can frame
a general rule for dealing with even short runs by maximum hkelihood
and accordingly making an approximate adjustment of the ¢ rule.

If we take A= ii{%(i:g’%z}%,
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the uncertainty of the error term can be estimated roughly by using
expectations. If p, and p, are the second and fourth moments of the
law, we have for Type VII

B, = P m—3

3 = 9 ——">

% m—%
which is 5 for m = 4, while it is 3 for m infinite. Also
s P M 3 _ M n—3 )
a¥(py) = n n{n— ]) (ﬂz —l)

For the normal law this is 2ug/(n—1). For m = 4 it is nearly 4u}/(n—1)
Hence if the mean and the mean-square deviation are used as estimates,
and m = 4, the probability of error will approximately follow a ¢ rule
with }(n—1) degrees of freedom instead of n—1.

If we take m = 4 and estimate A and o by maximum likelihood, using
the equations 4.31 (10) and (11), it is convenient to have a table of the
quantity w defined by

w1 = 14 (z—A)}2Ma?

as a function of (z—A)/e.

(x— Ao w (x—A)/o w (z~—-A)fo w

0 1 000 24 0482 48 0189
01 0998 25 0462 49 0183
02 0993 26 0 142 50 0177
03 0983 217 0424 51 0171
04 0970 28 0406 52 0165
05 0955 29 0389 53 0 160
06 0937 30 0373 54 01565
07 0917 31 0358 55 0150
08 0894 32 0344 56 0146

09 0869 33 0330 57 0141
10 0843 34 0317 38 0137
11 0816 356 0305 59 0133
12 0788 36 0293 60 0 130
I3 0 760 317 0282 61 0128
14 0732 38 0271 62 0122
15 0705 39 0261 63 0119
16 0677 40 0251 64 0116
17 0 650 41 0242 65 0112
18 0623 42 0233 66 0109
19 0-598 43 0225 67 0106
20 0573 44 0217 68 0104
21 0549 45 0209 69 0101
22 0 525 46 0202 70 0099
23 0503 47 0195
Also M= 26797, m/M = 149,

There is no harm in practice in rounding the factors w to two figures.
Y
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Chauvenett records a set of residuals of the measured semidiameter
of Venus, in connexion with the problem of rejecting observations.
Arranged in order of magmtude they are, in seconds of arc:

Reswdual w
—~140 05
—044 09
—030 . 10
—024 10
—022 10
—013 10
—005 10
+006 10
+010 10
+018 10
+0 20 10
+0 39 09
+048 09
+063 08
+101 06

136

A simple calculation, allowing for the fact that two unknowns have been
estimated, gave o = 0-572”. This suggests the set of values w. With
these the estimate of A is +0-03", which we may ignore, and
> wz—a)? = 2:73.
Then a second approximation to o? is
149

§2 = BTY X 2:73 = 0-313, s = 0-559".

Recomputing with this value we find that the weights are unaltered to
the first decimal, and we do not need a third approximation. To find
an effective number of degrees of freedom we compute the right side
of 4.31 (11) with n = 13, o = 0-65; it is 4-4, so that

2 4-4 . .

—_— = — = 48; =30 48 = 7-5.

aozlogL 0001 48; n' = }0-559%x
To get the uncertainty of @, put A = 40 30 in 4.31 (10); the sum on the
right side becomes —2-78, and

_..?.2_ ]ogL = _1_2_9_ 31§
oA 0-55920-27

Hence 8y = 0-143
and the result is A= +003+4+0-14, 7df,

approximately.
Chauvenet’s criterion led him to the rejection of the two extreme

1 Spherical and Practical Astronomy, 2, 562
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observations and to o = 0-339. The resulting standard error of the
mean would be 0-094. But with ¢ = 0-56 there are 3 residuals out of
15 greater than o, 1 greater than 2¢. This is not unreasonable either
for index 4 or for the normal law. If we reject the two extreme observa-
tions and use ¢ = 0-34”, there are 4 out of 13 greater than o, none
greater than 2¢. This would not be unreasonable for the normal law.
The distribution by itself provides little evidence to decide whether
Chauvenet’s method of rejection or the present method is more appro-
priate. I should say, however, from comparison with other series, that
there would be a stronger case for the present method, so long as there
is no reason, recorded at the time of observing, for mistrusting particular
observations. Even if the extreme observations are rightly rejected,
the estimate of o is based on 11 degrees of freedom, and from Fisher’s
2 table there is a 5 per cent. chance of ¢ being 1-5 or more times the
estimate. This is increased if observations are rejected.

According to the rough method based on the median, which is in-
dependent of the law of error, the median would be the eighth observa-
tion, +-0-06, and limits corresponding to its standard error would be
(15/4)"s = 1-9 observations away. Interpolated, this puts the limits
at —0-12 and +0-17, so that the median of the law can be put at
~+0-034-0-145. This standard error happens to agree closely with that
found for index 4.

The table of weights on p. 317 should be of use in & number of
problems where there is at present no alternative to either keeping all
the observations at full weight or rejecting some entirely. The fact that
an error in m produces to the first order no error in either a or ¢ ensures
that even if m is not 4 the hypothesis that it is will not give any serious
errors. The importance of a very large residual is much reduced, but
the slow variation of the weight with the size of the residual prevents
the large shifts of the mean that may depend on what observations are
rejected.

5.8. Test for independence in rare events. Here the null hypo-
thesis is that the chance of the number of events in an interval of
observation follows the Poisson rule. Two types of departure from the
conditions for this rule have been considered, and both have led to the
negative binomial rule. Both are somewhat artificial. On the other hand,
any variation of the Poisson parameter, or any tendency of the events
to occur in groups instead of independently, will tend to spread the
law and make it more like the negative binomial. Among the various
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possibilities it has the great advantage that it can be definitely stated
and involves just one new parameter. (Two simple Poisson rules super-
posed would involve three in all, the two for the separate laws and one
for the fraction of the chance contained in one of them, and thus two
new parameters.) If the data support it against the Poisson law, the
latter is at any rate shown to be inadequate, and we can proceed to
consider whether the negative binomial itself is satisfactory.

The Poisson law is the limit of the negative binomial when n — co.
Therc is a sufficient statistic for the parameter r, if the law is taken in
the form we chose in 2.4 (13), but not for n. In a significance test, how-
ever, we are chiefly concerned with small values of the new parameter,
which we can take to be 1/n = v.

The law is

P(m|r',n,H) = (ﬁj?_?)"?m_*’ﬁ;"%i”ﬁ:_l_) (h_:-—r)m (n

Suppose that in a series of trials the value m, occurs n, times. Then

L= ( n_)"E”" H (ﬁ(t‘_ﬂ)_(ﬁi%:&)"‘( r )zm‘"" (@)

ntr my! n4-r'
18L _  n3¥m, 1 1
Iar = " atr T2 ”‘k”k(?—m)
o XM D Ty )

ntr " rntr)
Hence the maximum likelihood solution for 7' is

o 2 (4)
>
Thus the mean number of occurrences is a sufficient statistic for 7/,
irtespective of n, we have already had this result in the extreme case
of the Poisson law. The uncertainty of 7', however, does depend on 7.
Now form J for the comparison of the above negative binomial law
with the Poisson law
P = P(m|r,H) = er"/m! (5)
If n is large we find
, , , m-1
log7—'l'-‘ = —n Iog(l +r_) +r4m logr——mlog(n+r')+ > log(n+-s)
Pm n r s=0
n+r\  m(m—1
mr) D, )

P

2= — nlog(l +;;) 474 m(]og-:-’ —log
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J = Z {m(log_ logn+r)+m(m_l)}(1’m—1’m)

n4-r 1+1/n ,, 12
—_ — —log — —_— 7
= ( r)(log log )+ s o (7)
_(—r? 192
T T TapE
We have already seen that r* and v are orthogonal parameters. This is
another advantage of the form we have chosen for the negative binomial

law.
Asv > 0 the approximate form of K given in 5.31 should be adapted

to g 1,2
.

where N is the number of trials and estimated values are substituted
for v and s,. This form is to be used if v > s,, if [v] < s, the outside
factor is larger, tending to (mN/2)¥2 when v = 0. If v is small s, should

be nearl; 3
Y a=1/3 (©)
N
For the data on the numbers of men killed by the kick of a horse
{p. 68) we find N =280, 7= 0-700,

and solving for v by minimum x'2, taking r as given, we get
v = +00534-0 074,
K == 10exp(—0-26) = 8
The solution is rough; s, as given by (9) would be about 012, the
difference being due to the fact that the posterior probability distribu-
tion of v is far from normal. But in any case there is no doubt that the
data confirm the Poisson rule and more detailed examination is un-
necessary.
For the radioactivity data we have similarly
N = 2608, r:=387, v== —0-0866--0-095I,
the calculated standard error being 0-072. Then, since the estimate of
v is negative, we use 2 instead of 8 in (8), and
K > 60.
The Poisson law is strongly confirmed.
In studies of factory accidents made by Miss E. M Newbold,t strong
departurss from the Poisson rule were found, and there was a fairly
t J R Stat Soc 90, 1927, 487-647.



322 SIGNIFICANCE TESTS ONE NEW PARAMETER V,§568

good fit with the negative binomial. Two of Newbold’s series, fitted by
minimum x'2, would correspond in the present notation tot

7= 083510058, n=0991017; N = 447;

r = 3914021, n=1854+4+020; N = 376.
In these cases v is several times its standard error and its posterior
probability distribution should be nearly normal. Significance is obvious
without calculation. But the first series gives more individuals with large
numbers of accidents than the negative binomial would predict, and it
seems that this law, though much better than Poisson’s, is not altogether
satisfactory for this series. Actually the mean number of occurrences
was 0-978, which differs substantially from r as found by minimum x'?,
although the mean is a sufficient statistic.

5.9. Introduction of new functions. Suppose that a set of observa-
tions of a quantity y are made for different values of a variable z.
According to the null hypothesis g, the probability of y follows the same
law for all values of z. According to ¢’ the laws for y are displaced by
a location parameter depending on z, for instance, a linear function of
z or a harmonic function asinkz. This displacement is supposed speci-
fied except for an adjustable coefficient «. We have now a complication,
since the values of  may be arbitrarily chosen, and J will differ for
different z even if the coefficient is the same. We therefore need to
summarize the values of J into a single one.

In problems of this type the probability distribution of x may be
regarded as fixed independently of the new parameter; the values of z
may arise from some law that does not contain y, or they may be chosen
deliberately by the experimenter. In the latter case the previous in-
formation H must be regarded as including the information that just
those values of z will occur. Now suppose that the chance of a value
z, in an interval 8z, is p,, and that that of y, given z, is f(z,, &, ¥,) 3Y,-
Then for a general observation

P(Sa:,, Syr) = Py f(xrr @, yr) 8?/,- (1)
and for the whole series

=3 3 0g et Bt (4, ot ) )

=37 2
where J, is derived from the comparison of the laws for y, given z,.

1 Ann. Eugen 11, 1941, 108~14
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In particular consider normal correlation, stated in terms of the
regression of y on z. Applying 3.10(15) to 2.5 (9) for given z, o,  we find

_ 1 J1=p® ¢ 1—p'2 7']2
= 2[A/1—P'*'7_’~A/1—P’ ‘7] +
1 1 1 - %2
o TR G

J -—f—l——exp(——x—z-)J dz

— J J@n)e 202) %

_ 11—2pp'7/7’'+7%7'% 1 1—2pp"7' [r+7'%x2
=—2+3 T—57 +3 T—pt . ®
This is the case of 3.10(40) when ¢ = o',

If all of a discrete set of values of x have an equal chance of occurring,
it follows from (2) that J is the mean of the J,. The extension to the
case where the chance of z is uniformly distributed over an interval is
immediate.

Now if there are n values #,, each equally likely to occur, and we make
nm observations, we shall expect that about m observations will be
made of each value. It seems appropriate, in a case where all the z,
are fixed in advance, again to take the mean of the J,. For if we form
J for the whole of the observed values of #, it will be ¥ J,. If we take
m observations for each value it will be m > J,. If our results are to
correspond as closely as possible to the case where about m observations
for each z, are expected to arise by chance we should therefore divide
the latter sum by mn.

Alternatively we may argue that if the number of observed values
of z, is large and we take them in a random order, there is an equal
chance of any particular z, occurring in a given place in the order, and
these chances are nearly independent. We then apply (2) directly.

The distinction is that in the first case we average J over the values
of z that might occur; in the second we average it over the values of
that have actually occurred. The point, stated in other ways, has arisen
in several previous discussions, and it appears that each choice is right
in its proper place. In studying the variation of rainfall with latitude
and longitude, for instance, we might proceed in three ways. (a) We
might choose the latitudes and longitudes of the places for observation
by means of a set of random numbers, and install special rain-gauges
at the places indicated. Since any place in the area could be chosen in
this way, it is correct to take the average of J over the region. (b) We
might deliberately set out the rain-gauges at equal intervals of latitude
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and longitude so as to cover the region. In this case we should take
the mean of the values of J for the stations, but if the interval is small
compared with the length and breadth of the region it will differ little
from the mean over the whole region. (c) We might simply use the
existing rain-gauges. Again we should take the mean of J for the
stations. Its actual value, given «, will differ from that in (b). The
stations might, for instance, all be in the southern half of the region.
But we should consider the situation existing when such a method is
adopted. There is no observational information for the northern half,
there is a serious suggestion that the question can be settled from the
southern half alone. In (a) and (b) the suggestion is that the effect is
likely to be large enough to be detected from data over the whole region,
b}lt not likely to be detected from data for half of it. In fact, the choice
of design depends on the previous information and the difference in
the value chosen for J, as a function of «, expresses the same previous
information In testing the significance of a measured parallax of a
star, for instance, we can and must take into account the fact that we
are observing from the Earth, not from a hypothetical planet associated
with that star or from one in a remote nebula.

In physical subjects methods analogous to (b) and (c) will usually
be adopted. (a) is used in some investigations relating to population
statistics. It has the advantage over (c) that it randomizes systematic
disturbances other than those directly considered. For instance, actual
rain-gauges tend to be placed at low levels, whereas (a) and (b) would
give high stations chances of being selected in accordance with the area
of high land In some problems (b) would suffer from a similar dis-
advantage to (a), though hardly in the present one (cf. also 4 9).

In what follows we shall follow the rule of (b) and (c) and take the
summary value of J for given o to be the mean of the values for the
observed values of the (one or more) independent variables.

5.91. Suppose now that on g the measure of a variable 2, for given ¢,
follows a rule

1 2
P(dx,(q,0,t,H) = :/(2—”)06"1)(—2%2)‘1%’ (1)
and that on ¢’
, 1 o f ()
P, 190,00, 1) = i exp| — L g

Then J, = a2f3(t,)fo%, @

J = 2f%(¢,)/0% @
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where the bar indicates a mean over the observed ¢,. Now in forming
the likelihood for » observations we obtain the exponent

—2%, 2 {E—af @) )
Let a be the value of o that makes this stationary. Evidently
tf id
=55 ®
and (5) becomes
— [ S ) a—a+ 3 (m—af 6)}] @)

The forms of (4) and (7) are exactly the same as in the test for whether
a single true value agrees with zero; we have only to take this true
value as being a/{f2(,,)}. Its estimate is ay/{f%(,)}, and the second sum
in (7) is the sum of the squares of the residuals. Consequently the whole
of the tests related to the normal law of error can be adapted imme-
diately to tests concerning the introduction of a new function to repre-
sent a series of measures.

5.92. Allowance for old functions. In most actual cases we have
not simply to analyse a variation of measures in terms of random error
and one new function. Usually it is already known that other functions
with adjustable coefficients are relevant, even an additive constant
being an example. These coefficients must themselves be found from
the observations. We suppose that they are already known with suffi-
cient accuracy for the effects of further changes to be linear, and that
small changes in them make changes «,g,(¢) (s = 1 to m). The new
function f(f) must not be linearly expressible in terms of the g,(¢); for
if it was, any change made by it could be equally well expressed by
changes of the o, We can then suppose f(¢) adjusted to be orthogonal
with the g,(t) by subtracting a suitable linear combination of the g,(f).
Then the problem with regard to o, (s = 1 to m) is one of pure estima-
tion and a factor T do, must appear in the prior probabilities. Inte-
gration with regard to this will bring in factors (2m02)*2™ in the posterior
probabilities on both ¢ and ¢’, and the integration with regard to o will
replace the index —}n-1 in 5.2(22) by —}(n—m)+1 = —}(v—1) as
before. But the » in the outside factor arises from the integration with
respect to the new parameter and is unaltered. Hence the asymptotic
formula corresponding to 5.2 (22) is

el
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As a rule » will be large compared with m and there will be little loss
of accuracy in replacing # by v in the outside factor too.

As an example, consider the times of the P wave in seismology up
to a distance of 20° as seen from the centre of the earth. The observa-
tions were very unevenly distributed with regard to distance; theoretical
considerations showed that the expansion of the time in powers of the
distance A should contain a constant and terms in A and (A—1°), but
no term in (A—1°)% The question was whether the observations
supported a term in (A—1°)% A function F,, given by

F, = mimo(A—1)'—a—~bA—c(A—1),

a, b, and ¢ being so chosen that F, should be orthogonal with a constant,
A, and (A—1°)® at the weights, was constructed. A least-squares
solution based on about 384 observations gave the coefficient of F,, in
seconds, as —0-9264-0-690. Here n = 384 and the index is large enough
for the exponential approximation to be used, we have then

1
K= (" X;’s“) "exp( -3 2‘316;02) — 24-6 exp(—0-9005) = 10-0.
The odds are therefore about 10 to 1 that the fourth power is not needed
at these distances and that we should probably lose accuracy if we
introduced it. (There is a change in the character of the solution about
20° that makes any polynomial approximation useless in ranges includ-
ing that distance; hence the restriction of the solution to observations
within 20°.) Here we have also an illustration of the principle of 1.61.
There was no reason to suppose a cubic form final, its only justification
being that it corresponds closely to the consequences of having one or
more thin surface layers, each nearly uniform, resting on a region where
the velocity increases linearly with depth. The structure of the upper
layers led to the introduction of A—1° in place of A, and to the constant
term in the time. The success of one form with three adjustable con-
stants was then enough to show, first, that it was not in any case per-
missible on the data to introduce four, and hence that any other
permissible formula must be one with three constants; second, that
such a form, if it was to be valid, must give times agreeing closely
with those given by the cubic.

5.93. Two sets of observations relevant to the same parameter.
It often happens that two measurable quantities x, y are related on ¢
in such a way that

z=of(t)to, y=kagl)Lr, (1)
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where f(t), g(t) are known functions whose mean squares over the ob-
served values are 1, and k is a known constant. For instance, in the
measurement of the parallax of a star z, ¥ may be the apparent dis-
turbances in right ascension and declination, the theoretical values
of which are the product of the unknown parallax into two known
functions of the time. The mean square values of these functions need
not be equal; hence if we use the form (1) the constant k will be needed.
We take o, 7 as known. Then "t

J= S4B @

o

1 Ado

Pa|gH) = - 250 ®

where A= 4= (4)

Let a, b be the maximum likelihood estimates of « from the observa-
tions of z and y separately, s'2 and ¢'2 the mean square residuals; then

n(s'*+a?)  n(t"24k%?)
Pig|0H) cc exp -2 E)_MEHE), )
, ns't nt'? nla—a)? nki(b—a)?\1 Adda
Plg'|6H) J.exP{—-ﬁ—?'r_z_ 20% 22 7 1+ A%E
(6)
The maximum of the exponent is at

__afo®+-k%/? ™

T 1o kPR

and, approximately,
, ns'? nt'?  nk3a—>b)?
P(q' |6H) ocJ exp{—w—?rz—-m , (8)
na® nk®?  nk*a—b)?
eXp‘—--2-:7—2— 272 7 2(72+k?a?)
n(ar?4k2ba?)?
)e"pt S o)
- J(nn of - ety o
201/s2+ 1)’
where s, and s, are the separate standard errors.

When k is large or small the exponent reduces to —3nk?2/+2 or
—13na?/a?, as we should expect. For intermediate values of k, K may
differ considerably according as the two estimates @, b have the same
sign or opposite signs, again as we should expect.
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5.94. Continuous departure from a uniform distribution of
chance. The chance of an event may be distributed continuously, often
uniformly, over the rarge of a measured argument. The question may
then be whether this chance departs from the distribution suggested.
Thus it may be asked whether the variation of the numbers of earth-
quakes from year to year shows any evidence for an increase, or whether
from day to day after a large main shock it departs from some simple
law of chance. We consider here problems where the trial hypothesis g is
that the distribution is uniform. We can then choose a linear function ¢ of
the argument z, so that ¢ will be 0 at the lower and 1 at the upper limit.
The chance of an event in a range dx is then d¢, and that of # observa-
tions in specified ranges is ] (dt), provided that they are independent.

The alternative ¢’ needs some care in statement. It is natural to
suppose that the chance of an event in an interval dt is

{1+af ()}, 1)

1
where f (¢) is a given function and f f(t) dt = 0. This is satisfactory when
0

« is small, but if « is large it no longer seems reasonable to take the
disturbance for each ¢ as proportional to the same constant. Consider
a circular disk, on which marbles are dropped, while the tray is agitated
in its own plane. If the tray is horizontal the chance of a marble coming
off is uniformly distributed with regard to the azimuth 8. Ifit isslightly
tilted in the direction 8 = 0, the chance will approximate to the above
form with f() = cosf. But with a larger tilt nearly the whole of the
marbles will come off on the lower side, so that the chance on the upper
side approximates to 0 and its distribution deviates completely from (1),
with f(¢) = cos#, for any value of «; if we took « > 1 we should get
negative chances, and with any « <C 1 the chance of values of 6 between
47 and }7 would not be small. With still greater slopes nearly all the
marbles would come off near the lowest point. Thus with an external
force accurately proportional to cos 8, for any given slope, the resulting
chance distribution may vary from a uniform one to one closely con-
centrated about a single value of 6, in a way that cannot be represented
even roughly by any function of the form (1).
If, however, we take in this case

P(df|q'aH) = Aexp(acosb)df, 2)

where A f exp(acosf)df =1, (3)
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we have 4 = I;(«) and the conditions of the problem are satisfied.
Negative chances are excluded, and with sufficiently large o the chance
can be arbitrarily closely concentrated about § = 0. Hence instead of
(1) it seems reasonable to take

1
P(dt | q'aH) = explaf () dt / [ explos v} at, @

where « may have any finite value. ’
Comparing with the null hypothesis « = 0 we see that J' can range

from —o0 to o0, and for small «
1

[ explafie)} dt = O, (5)
o
1
J = [afexpaf®)—1}dt = a2 FXe). (6)
0
Without loss of generality we can take
i =1 (™
Then 1
J‘ exp{of ()} dt = (14+3a%) = exp}o?, (8)
’ Plg|H) =}, (©)
, 1 da
Plg'da| H) = & e (10)
for small «.

Let n observations occur in the intervals df,. Then over the range
where the integrand is appreciable

P(@igH) =TT (d¢), o
P1q'aH) = expla 3 f(t,)—4na?} TT (dt), (2)
%: = f exp{e 3 £ (t,)—}na?} 1:!12

2\ [ 1

= (m) °"P[ o FEm) WIS oo

This is valid if 3—1; > f(t,) is not large; but then I f(¢,)/n will be small

and the last factor will approximate to 1. Hence

K~ (%L)]hexp[ - {zé——xl)—}—z] (14)

provided the estimate of «, namely %2 f(¢,), is small.
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The solution in the first edition used (1) and contained a factor ¢
representing the range of « permitted by the condition that a chance
cannot be negative. This complication is rendered unnecessary by the
modification (4).

The estimation problem for the distribution (2) is of some interest.
Suppose that the most probable direction is 6,, which may have any
value from —# to =; then

P(df | a, 0, H) = I3*(a)exp{acos(60—8,)}d6.
o is & Huzurbazar parameter with range (0, 00); so we take
P(df,do | H) cc dbyda/a.
Then L = exp{S acos(6—0,)} 5 ™).
Let the means of cos# and sin 6 be ¢ and s. Then ¢ and s are sufficient

statistics:
dlog L/da = nfc cos 8y+ssin 8y)—n I () /Iy(),

dlog L/d8, = na(—csin s cos §,).
Then the maximum likelihood for 6, is at
tanf, = s/c
and that for « is the positive root of
L)/ Io(a) = (c2+82)"h.

If all § were equal this would make the estimate of « infinite; if & and
¢ were zero it would be 0.

The corresponding problem in three dimensions has been discussed
by Fisher,t with the natural modification of (2). Here, for a most
probable value at 6§ = 0,

P(d0d | oH) = sin 8 exos0 dp.

o
4nginh
Let the actual most probable value have direction cosines (A, p, ») and
let an observed direction be (I, m, n). Then

[+ 2

P(dl dm dn | \woH) = msin 0 exp{a(IA-+mpu+nv)} dodp.
Put SI = nl, etc.; then

9oL = n(l — coth a)+n(l«\+77m+ﬁv),

da (1

a

—log L = nal, ete.

aA g el

t Proc Roy Soc. A, 217, 1953, 295-305. See also G S Watson and E Irving,

M N R AS Qeophys Suppl.7, 1957, 289-300 The hypothesis in this problem has been
treated as a problem of random walk on a sphere by P. H Roberts and H. D Ursell,
Phil Trans A, 252, 1960, 317-56. The probability distribution is nearly the same as
Fisher’s
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Since A24-pu24-»? = 1 we must introduce an undetermined multiplier =
and consider _
nal47A = 0,

These lead to

etc.

ol
7= —n{acotha—1), A= xcotha—1

and to the equation for «,
(22 +472)h— (coth a—1/a) = O.

5.95. It willbe noticed inall these tests that the hypotheses, before they
are tested, are reduced to laws expressing the probabilities of observable
events. We distinguish between the law and its suggested explanation,
if there is any—it is perfectly possible for a law to be established
empirically without there being any apparent explanation, and it is
also possible for the same law to have two or three different explana-
tions. When stellar parallax was first discovered the question was
whether the measured position of a star relative to stars in neighbouring
directions showed only random variation or contained a systematic
part with an annual period, the displacement from some standard
position being related in a prescribed way to the earth’s position
relative to the sun. This can be stated entirely in terms of the proba-
bilities of observations, without further reference to the explanation by
means of the possible finite distance of the star. The latter is reduced,
before the test can be applied, to a suggestion of one new parameter
that can be tested in the usual way. It happens here that the explana-
tion existed before the relevant observations did; they were made to
test a hypothesis. But it might well have happened that study of
observations themselves revealed an annual variation of position
between visually neighbouring stars, and then parallax would have
been established—at first under some other name—and the theoretical
explanation in terms of distance would have come later. Similarly the
test of whether the universe has a finite curvature is not to be settled by
‘philosophical’ arguments claiming to show that it has or has not, but
by the production of some observable result that would differ in the two
cases. The systematic change of this result due to assuming a finite
radius R would be the function f(f) of a test. Its coefficient would
presumably be proportional to some negative power of R, but if a test
should reveal such a term the result is an inductive inference that will
be useful anyhow; it remains possible that there is some other explana-
tion that has not been thought of, and there is a definite advantage in
distinguishing between the result of observation and the explanation.



VI

SIGNIFICANCE TESTS: VARIOUS
COMPLICATIONS

‘What’s one and one and one and oune and one and one and one and
one and one and one ?’
‘I don’t know,’ said Alice, ‘I lost count.’
‘She can’t do addition,’ said the Red Queen.
Lewis Carrorr, Through the Looking-Glass.

6.0. Combination of tests. THE problems discussed in the last
chapter are all similar in a set of respects. There is a clearly stated
hypothesis ¢ under discussion, and also an alternative ¢’ involving one
additional adjustable parameter, the possible range of whose values is
restricted by the values of quantities that have a meaning even if the
new parameter is not introduced. We are in the position at the outset
of having no evidence to indicate whether the new parameter is needed,
beyond the bare fact that it has been suggested as worth investigating;
but the mere fact that we are seriously considering the possibility that
it is zero may be associated with a presumption that if it is not zero it is
probably small. Subject to these conditions we have shown how, with
enough velevant evidence, high probabilities may be attached on the
evidence, in some cases to the proposition that the new parameter is
needed, in others to the proposition that it is not. Now at the start of
a particular investigation one or more of these conditions may not be
satisficd, and we have to consider what corrections are needed if they
are not.

In the first place, we may have previous information about the values
permitted on ¢’. This may occur in two ways In the problem of the
bias of dice, we supposed that the chance of a 5 or a 6, if the dice were
biased, might be anything from 0 to 1. Now it may be said that this
does not represent the actual state of knowledge, since it was already
known that the bias is small In that event we should have over-
estimated the permitted range and therefore K; the evidence against
q is therefore stronger than the test has shown. Now there is something
in this objection; but we notice that it still implies that the test has
given the right answer, perhaps not as forcibly as it might, but quite
forcibly enough. The difficulty about using previous information of this
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kind, however, is that it belongs to the category of imperfectly cata-
logued information that will make any quantitative theory of actual
belief impossible until the phenomena of memory themselves become
the subject-matter of a quantitative science; and even if this ever
happens it is possible that the use of such data will be entirely in the
study of memory and not in, for instance, saying whether dice have a
bias. However, all that we could say from general observation of dice,
without actually keeping a record, is that all faces have sometimes
occurred, we could not state the frequency of a 5 or a 6 more closely
than that it is unlikely to have been under 0-1 or over 0-5. Such infor-
mation would be quite useless when the question is whether the chance
is 4 or 0 3377, and it may as well be rejected altogether. Vague informa-
tion is never of much use, and it is of no use at all in testing small effects.
The matter becomes clearer on considering the following problem.
Suppose that we take a sample of » to test an even chance. The approxi-
mate formula 5.1 (9) is
K = (2n/m)hexp(—ix?). (1
Now suppose that we have a sample of 1,000 and that the departure
makes K less than 1. If we divide the data into 9 groups and test each
separately the outside factor for each is divided by 3, but at the same
time we multiply all the standard errors by 3 and divide the contribu-
tion to x% from a given genuine departure by 9. Thus a departure that
would be shown by a sample of 1,000 may not be shown by any one
of its sections. It might be said, therefore, that each section provides
evidence for an even chance; therefore the whole provides evidence for
an even chance; and that we have an inconsistency. This arises from
an insufficient analysis of the alternative ¢’. The hypothesis ¢ is a
definitely stated hypothesis, leading to definite inferences. ¢’ is not,
because it contains an unknown parameter,t which we have denoted
by p’, and would be } on g but might be anythmng from 0 to 1 on ¢".
Anything that alters the prior probability of p’ will alter the inferences
given by q'. Now the first sub-sample does alter it. We may start with
probability 4 concentrated at p = 4 and the other } spread from 0 to 1.
In general the first sub-sample will alter this ratio and may increase
the probability that p = }, but it also greatly changes the distribution
of the probability of p’ given ¢’, which will now be nearly normal
about the sampling ratio with an assigned standard error estimated
from the first sample. It is from this state of things that we start when

1 This distinction appears also in Fisher's theory seo The Design of Ezperiments,

1936, p 19.
YA
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we make our second sub-sample, not from a uniform distribution on
¢’. The permitted range has been cut down, effectively, to something
of the order of the standard error of the sampling ratio given by the
first sample. Consequently the outside factor in (1) is greatly reduced,
and the second sample may give support for ¢’ at a much smaller
value of the estimated p’—} than if it started from scratch. We cannot
therefore combine tests by simply multiplying the values of K. This
would assume that posterior probabilities are chances, and they are not.
The prior probability when each sub-sample is considered is not the
original prior probability, but the posterior probability left by the
previous one. We could proceed by using the sub-samples in order in
this way, but we already know by 1.5 what the answer must be. The
result of successive applications of the principle of inverse probability
is the same as that of applying it to the whole of the data together,
using the original prior probability, which in this case is the statement
of ignorance. Thus if the principle is applied correctly, the probabilities
being revised at each stage in accordance with the information already
available, the result will be the same as if we applied it directly to the
complete sample; and the answer for this is given by (1). It follows
that the way of combining significance tests is not to multiply the K’s,
but to add the values of n in the outside factors and to use a x? based
on the values estimated for p’ and its standard error from all the
samples together.

In the dice problem, therefore, the information contained in, say,
1,000 previous trials, even if they had been accurately recorded, could
affect the result only through (1) a change in n, which would alter K by
about 1 part in 600, (2) changes in the estimated p’, about which we
are not in a position to say anything except by using Weldon’s sample
itself as our sole data, (3) a reduction of the standard error by 1 in 600.
The one useful thing that the previous experience might contain, the
actual number of successes, is just the one that is not sufficiently
accurately recalled to be of any use. Thus in significance tests, just as
in estimation problems, we have the result that vaguely remembered
previous experience can at best be treated as a mere suggestion of
something worth investigating, its effect in the quantitative application
is utterly negligible

Another type of previous information restricting the possible values
of a new parameter, however, is important This is where the existence
of the new parameter is suggested by some external consideration
that sets limits to its magnitude. A striking illustration of this is the
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work of Chapman and his collaborators on the lunar tide in the atmo-
sphere.t From dynamical considerations it appears that there should
be such a tide, and that it should be associated with a variation of
pressure on the ground, of the order of the load due to a foot of air
or 0-001 inch of mercury. Actual readings of pressure are usually made
to 0-001 inch, which represents the observational error; but the actual
pressure fluctuates in an irregular way over about 3 inches. Now we
saw that the significance test would lead to no evidence whatever about
the genuineness of an effect until the standard error had been reduced
by combining numerous observations to something comparable with
the permitted range, and that it could lead to no decisive result until
it had been made much less than this. The problem was therefore to
utilize enough observations to bring the standard error down from
about an inch of mercury to considerably under 0-001 inch—requiring
apparently about 107 observations. In view of the large fluctuation
present and unavoidable, Chapman rounded off the last figure of the
pressures recorded; but he also restricted himself to those days when
the pressure at Greenwich did not vary more than 0-1 inch, so that the
standard error of one observation is reduced to 0-1/v3 inch; and
combined hourly values of pressure for those days over 63 years, in-
cluding 6,457 suitable days. Now 0-1/(3 x 6457 x 24)'s = 0-00014. A
definite result should therefore be obtained if there are no further com-
plications. There might well be, since consecutive hourly values of a
continuous function might be highly correlated and lead to an increase
of uncertainty. Special attention had also to be given to the elimina-
tion of solar effects. The final result was to reveal a lunar semidiurnal
variation with an amplitude of 0-000355 inch, the significance of which
is shown immediately on inspection of the mean values for different
distances of the moon from the meridian.

In such a case, where the hypothesis ¢’, that the effect sought is
not zero, itself suggests a limit to its amount, it would obviously be
unfair to apply the same test as in the case of complete previous
ignorance of the amount. The range in which the parameter is sought
is much less and the selection to be allowed for in choosing an estimate
on ¢’ is much less drastic and therefore requires a smaller allowance.

These considerations suggest an answer to the question of how signi-
ficance tests should be combined in general. It often happens that we
get a series of estimates of a parameter, from different sets of data,
that all have the same sign and run up in magnitude to about twice

t MNRAS 78,1918, 635-8,Q J R Met Soc 44, 1918, 271-9
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the standard error. None of them taken by itself would be significant,
but when they all agree in this way one begins to wonder whether they
can all be accidental, one such accident, or even two with the same
sign, might pass, but six may appear too many. We have seen how to
do the combination for the test of a sampling ratio. Similar considera-
tions will apply to measures, so long as the standard errors of one
observation are the same in all series. If they differ considerably a
modification is needed, since two equal departures with the same
standard error may give different results in a test when one is based
on a few accurate observations and the other on many rough ones.
The outside factor will not be simply (= > n/2)", since what it really
depends on is the ratio of the range of the values irutially possible to
the standard error of the result. The former is fixed by the smallest
range indicated and therefore by the most accurate observations, and
the less accurate ones have nothing to say about it. It is only when
they have become numerous enough to give a standard error of the
mean less than the standard error of one observation in the more
accurate series that they have anything important to add. If they
satisfy this condition the outside factor will be got from 5.0(10) by
taking f(a) from the most accurate observations, and a and s from all
the series combined.

These considerations indicate how to adapt the results of the last
chapter to deal with most of the possible types of departure from the
conditions considered there. One further possibility is that ¢ and ¢’
may not be initially equally probable. Now, in accordance with our
fundamental principle that the methods must not favour one hypothesis
rather than another, this can occur only if definite reason favouring ¢
or ¢’ is actually produced. If there is none, they are equally probable.
If there is, and it is produced, it can be combined with the new informa-
tion and give a better result than either separately. This difficulty can
therefore easily be dealt with, in principle. But it requires attention to
a further point in relation to Bernoulli’s theorem. All the assessments
of prior probabilities used so far have been statements of previous ignor-
ance. Now can they be used at all stages of knowledge? Clearly not;
in the combination of samples we have already seen that to use the
same prior probability at all stages, instead of taking information into
account as we go on, will lead to seriously wrong results. Even in a pure
estimation problem it would not be strictly correct to find the ratios
of the posterior probabilities for different ranges of the parameter by
using sections of the observations separately and then multiplying the
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results, though the difference might not be serious. If we are not to run
the risk of losing essential information in our possession, we must
arrange to keep account of the whole of it This is clear enough in
specific problems. But do we learn anything from study of one problem
that is relevant to the prior probabilities in a different one? It appears
that we do and must, for if the prior probabilties were fixed for all
problems, since there is no limit to the number of problems that may
arise, the prior probabilities would lead to practical certainty about the
fraction of the times when g will be true, and about the number of times
that a sampling ratio will lie in a definite range. But this would almost
contradict our rule 5, that we cannot say anything with certainty about
experience from a priori considerations alone. The distinction between
certainty and the kind of approximation to certainty involved in
Bernoulli’s theorem makes it impossible to say that this is a definite
contradiction, but it appears that the statement that even such an
inference as this can be made in this way is so absurd that an escape
must be sought. The escape is simply that prior probabilities are not
permanent, the assessments will not hold at all stages of knowledge,
their function being merely to show how it can begin. It is a legitimate
question, therefore, to ask what assessments should replace them in any
advanced subject, allowing for previous experience in that subject. The
point has been noticed by Pearson in a passage already quoted (p. 131).
When melting was first studied quantitatively it would have been right
to attach prior probability } (or } as suggested in 3.2 (20)) to the propo-
sition that a given pure substance would have a fixed melting-point, or,
more accurately, that variations of the observed melting-point are
random variations about some fixed value. It would be ridiculous to
do so now. The rule has been established for one substance, and then
for many; then the possibility that it is true for all comes to be seriously
considered, and giving this a prior probability } or } we get a high
posterior probability that it is true for all, and it is from this situation
that we now proceed.

For the elementary problem of chances, similarly, we may begin with
a finite prior probability that a chance is 0 or 1, but as soon as one
chance is found that is neither 0 nor 1, it leads to a revision of the
estimate and to the further question, ‘Are all chances equal?’, which
a significance test answers in the negative; and then, ‘Do chances show
any significant departure from a uniform distribution?’ Pearsont says
that ‘chances lie between 0 and 1, but our cxperience does not indicate

+ Phil Mag 13, 1907. 366



338 SIGNIFICANCE TESTS. VARIOUS COMPLICATIONS VI, §60

any tendency of actual chances to cluster round any particular value
in this range. . . . Those who do not accept the hypothesis of the equal
distribution of ignorance are compelled to produce definite evidence of
the clustering of chances, or to drop all application of past experience
to the judgement of probable future statistical ratios. It is perfectly
eagy to form new statistical algebras with other clustering of chances.’
Accepting this statement for a moment, the accurate procedure at
present would be to collect determinations of chances and take the
prior probabilities of 0, 1, and intermediate values in proportion to
the observed frequencies. The important point in this passage is the
recognition that the Bayes—Laplace assessment is not a definite state-
ment for all time, and that previous information from similar problems
is relevant to the prior probability. But the statement is incomplete
because in some subjects chances do cluster. The uniform assessment
might have been right in genetics at the time of Mendel’s original
experiment, but a modern Mendelian would be entitled to use the
probabilities indicated by the observed frequencies of 0:1, 11, 1:3,
3:5,... ratios in interpreting his results, and in fact does so roughly.
Mendel’s first results rested on about 8,000 observations, some hundreds
would now usually be considered enough, and this corresponds to
the fact that all that is now needed is to establish a high probability
for one ratio compatible with the Mendelian theory against the others
that have previously occurred and a background of other ratios attri-
butable to differences of viability. Correlations in meteorology seem
to be very evenly distributed, but those between human brothers seem
to collect about +0-5. A chemist wanting the molecular weight of a
new compound would not content himself with a statement of his own
determination. He carries out a complete analysis, finds one constitu-
tion consistent with all the data, and if he wants the accurate molecular
weight for any other purpose, he will calculate it from the International
Table of Atomic Weights. The uncertainty will be that of the calculated
value, not his own. Thus previous information is habitually used and
allowed for, and it is not in all subjects that the previous information
is of the type considered by Pearson in the passage quoted. It is not
valid to group all estimates of chances or other parameters together to
derive a revision of the prior probabilities, because the grouping is
known to be different in different subjects, and this is already allowed
for in practice, whether explicitly or not, and perhaps more drastically
than theory would indicate. Thus differences of procedure in different
subjects are largely explicable in terms of differences in the nature of
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previous results, allowed for in a way equivalent to reassessments of the
prior probabilities based on previous experience. There is no need to
assume any difference in the fundamental principles, which themselves
provide means of making such reassessments. It is, in fact, desirable
that the results of a subject should be analysed at convenient intervals
80 as to see whether any alteration will be needed for future use, in
order that its inferences should represent as accurately as possible the
knowledge available at the times when they are made. Any subject in
its development provides the kind of information that is needed to
bring its prior probabilities up to date. At present, however, we must
be content with approximations, and in some subjects at any rate there
seems to be no need for any immediate modification of the assessments
used to express ignorance. In subjects where statistical methods have
hitherto had little application they are suitable as they stand. It is
clear that we cannot revise them in the same way in all subjects;
experience in genetics is applicable to other problems in genetics, but
not in earthquake statistics.

There is one possible objection to reassessment; if it is carried out,
it will convince the expert or the person willing to believe that we have
used the whole of the data and done the work correctly. It will not
convince the beginner anxious to learn; he needs to see how the learning
was done. We have already had some examples to the point. The data
on criminality of twins on p. 265 were taken from Fisher’s book, and
quoted by him from Lange. Now both Lange and Fisher already knew
a great deal about like and unlike twins, and it is possible that, on their
data, the question of a significant difference was already answered, and
the only question for them was how large it was—a pure problem of
estimation. But a person that knows of the physical distinction, but
has never thought before that there might be a mental one too, should
be convinced on these data alone by a K of 1/170. Compare this with
the results of the cattle inoculation test, where K = 0-37. The odds
on these data that the inoculation is useful are about the same as that
we shall pick a white ball at random out of a bag containing three
white and one black, or that we shall throw a head within the first two
throws with a penny. The proper judgement on these data is, ‘Well,
there seems to be something in it, but I should want a good deal more
evidence to be satisfactorily convinced.’ If we say, ‘Oh, but we have
much more evidence’, he is entitled to say, ‘Why did you not produce it 2’
(I may say that in this case I have not the slightest idea what other
evidence exists ) The best inference is always the one that takes account
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of the whole of the relevant evidence; but if somebody provides us with
a set of data 6, and we take account also of additional information ,, we
shall obtain P(q |0, 0, H), and if we do not tell him of 8,, it is not his
fault if he thinks we are giving him P(¢ |6, H) and confusion arises.

The revision of prior probabilities is a use of previous results in
assessing them and therefore is in a higher probability type, such as
we mentioned on p. 40. If direct probabilities are of Type 1, most of
the problems in this book assume the minimum of information about
the parameters in them, and are in Type 2. The revised prior proba-
bilities will be in Type 3 or higher.

6.1. Several new parameters often arise for consideration simulta-
neously. This can happen in several ways. All may be independently
suggested for consideration, and it merely happens that a set of observa-
tions is capable of providing answers to several independent questions,
or even, in experimental work, that it has been convenient to design
an experiment deliberately so as to answer them all. This is merely
a slight extension of the case of one new parameter. Each parameter
can be tested separately against the standard error by the usual rule.
Thus in agricultural experiments the comparisons of the productivities
of two varieties of crop and of the effects of two fertilizers are questions
set at the start, presumably because they are worth asking, and the
answer to one has nothing directly to do with the other

In such cases we shall need a joint prior probability distribution for
the two new parameters in case they may both be accepted, and consis-
tency requires a symmetrical method. If the parameters are a, B, we
can write ¢ for the proposition « = g = 0, g, for « # 0, B = 0, g4 for
a=0,B£0,and g,gfora # 0,8 # 0 Then it may appear that if we
test g, first and then g,g, we should form J for comparison of these and
use it to give a prior probability distribution for g given a. But this
leads to an inconsistency. With an obvious notation, it will not in general
be true that

dtan-'. dtan"'J 2 = dtan-\J dtan-1J ),

so that we might be led to different results according to which of « and
B we tested first. We can obtain symmetry if we take

1 dJE 1A
Pldadg |1l = _ e 5

(with the usual modifications if J or J* cannot range from —oo to co).
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Thus o and B are always compared with the hypothesis that both are
zero.
For reasons already given (5.45) I do not think that this need for
symmetry applies if « is a location parameter and B a standard error.
6.11. A common case is where we may have to consider both whether
a new function is needed and whether the standard error needs to be
increased to allow for correlation between the errors. Here two para-
meters arise; but the test for the first may well depend on whether we
accept the second. This can be treated as follows. Let « be the coefficient
of the new function, p the intraclass correlation between the observa-
tions. Then we have to compare four alternatives, since either « or p
may be 0 independently. Then let ¢ be the proposition « = 0, p = 0.
g, is the proposition « # 0, p = 0;g,i8a = 0, p 7 0, and g, is « 7# 0,
p # 0. Then we can work out as usual
Pg|6m) _ PlalH)
Plg,|0H) ? P(g,|6H)
If these are both > 1, ¢ is confirmed in both cases and may be retained.
If one of them is > 1 and the other < 1, the evidence is for the
alternative that gives the latter, and against ¢. Thus ¢ is disposed of
and we can proceed to consider the fourth possibility. Now

P, |0H) _ K,

P(g,|6H) K,
and the more probable of the second and third alternatives is the one
with the smaller K. The relevance of this parameter may then be
inferred in any case. Suppose that this is p. Then we have established
internal correlation and the original standard errors are irrelevant to the
test of g,, against g,. The comparison will therefore be in terms of
the summaries by ranges or classes, not the individual observations; the
standard error found for o will be larger than on g,, and it is possible
that K, may be less than 1 and yet that the data do not support « when
allowance is made for p. If, however, o is still supported we can assert
that neither o nor p is 0. On the other hand, if ¢ is asserted by the first
pair of tests we can still proceed to test p. Thus a decision between the
four alternatives can always be reached.

Referring again to Weldon'’s dice experiment, we have an interesting
illustration. The data as recorded gave the numbers of times when
the 12 dice thrown at once gave 0, 1, 2,..., 12 fives and sixes. The test
for a departure of the chance from } showed that the null hypothesis
must be rejected, but the evidence might conceivably arise from a non-

K, =
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independence of the chances for dice thrown at the same time. This
was tested by Pearson by computing the expectations of the numbers
of times when 0, 1,... fives and sixes should be thrown with the revised
estimate of the chance, 0-33770, and forming a new x? with them. In
Fisher’s revision,t in which a little grouping has been done, the revised
X% is 8:2 on 9 degrees of freedom, so that independence may be con-
sidered satisfactorily verified and the bias accepted as the explanation
of the observed departure of the sampling ratio from }.

6.12. Similar considerations will apply in many other cases where
two or more parameters arise at once; there is a best order of procedure,
which is to assert the one that is most strongly supported, reject those
that are denied, and proceed to consider further combinations. The
best way of testing differences from a systematic rule is always to
arrange our work so as to ask and answer one question at a time. Thus
William of Ockham’s rule,{ ‘Entities are not to be multiplied without
necessity’ achieves for scientific purposes a precise and practically
applicable form: Variation is random wuntil the contrary is shown; and
new parameters in laws, when they are suggested, must be tested one at a
time unless there s specific reason to the contrary. As examples of specific
reason we have the cases of two earthquake epicentres tested for iden-
tity, where, if there is a difference in latitude, there would ordinarily be
one in longitude too, or of a suggested periodic variation of unknown
phase, where a cosine and sine would enter for consideration together.
This principle is workable, and is a complete reversal of the usual notion
of a ‘principle of causality’ such as we discussed in 1.1. Scientific
method is seen as a method of successive approximation, analysing varia-
tion into a systematic and a random part. The latter never disappears.

This rule for arranging the analysis of the data is of the first im-
portance. We saw before that progress was possible only by testing
hypotheses in turn, at each stage treating the outstanding variation
as random; assuming that progress is possible we are led to the first
part of the statement, and have developed means for putting it into
effect, but the second has emerged from the analysis of its own accord.
It is necessary to a practical development, for if it could be asked that

t Statistical Methods, p 67.

1 William of Ockham (d 1349 ?), known as the Invincible Doctor and the Venerable
Inceptor, was a remarkable man He proved the reigning Pope guilty of seventy errors
and seven heresies, and apparently died at Munich with so little attendant ceremony that
there is even & doubt about the year See the C D N B The above form of the principle,
known as Ockham's Razor was first given by John Ponce of Cork in 1639. Ockham and
8 ber of , had made equivalent statements A historical
treatment is given by W M Thorburn, Mind, 27, 1918, 345-53.
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an indefinite number of possible changes in a law should be considered
simultaneously we should never be able to carry out the work at all.
The charge, ‘you have not considered all possible variations’, is not an
admissible one; the answer is, “The onus is on you to produce one.” The
onus of proof is always on the advocate of the more complicated
hypothesis.

6.2, Two new parameters considered simultaneously. There
are many cases where two parameters enter into a law in such a way
that it would be practically meaningless to consider one without the
other. The typical case is that of a periodicity. If it is present it implies
the need for both a sine and a cosine. If one is needed the other will
be accepted automatically as giving only a determination of phase.
There may be cases where more than two parameters enter in such a
way, as in the analysis of a function of position on a sphere, where all
the spherical harmonics of the same degree may be taken at once.

The simplest possible case would be the location of a point in rect-
angular coordinates in two dimensions, where the suggested position
is the origin, and the standard errors of measures in either direction are
equal. If the true coordinates on ¢’ are A, u, we find

J = (A4pd)fo 1)

Our problem is to give a prior probability distribution for A, p given o.
‘We suppose that for given A2+ u? the probability is uniformly distrnibuted
with regard to direction. Two suggestions need consideration.

We may take the probability of J to be independent of the number
of new parameters; then the rule for one parameter can be taken over
unchanged. Taking polar coordinates p, ¢ we have then

1,
Pldp |q'oH) = P@dJ |qoH) = 2 372 _ 2 odp (@)

P(ddp|qoH) = 2 2% 3 _ 1 3)

since p can range from 0 to co. Integrating with regard to p we find
2
P(d)|g'oH) = "lzlog://_g:_i%*_;‘; 7(7;%72)‘ @)
Alternatively we might use such a function of J that the prior proba-
bility of A or u separately would be the same as for the introduction of
one new parameter. Such a function would be
o dMdp

P(dAdp | q'oH) = P )
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This would lead to the consequence that the outside factor in K, for n
observations, would be O(n). This is ursatisfactory. At the worst we
could test the estimate of A or p, whichever is larger, for significance as
for one new parameter and allow for selection by multiplying X by 2,
and the outside factor would still be of order n'. This would sacrifice
some information, but the result should be of the right order of
magnitude.

To put the matter in another way, we notice that, if A/o is small, (3)

and (4) lead to a presumption that p is small too, on account of the
factor 1/p. This is entirely reasonable. If we were simply given a value
of A with no information about p except that the probability is uni-
formly distributed with regard to direction we should have a Cauchy
law for p.: Adp
mA2p?)
But with (5), even if Ao is small, P(du | ¢'cAH) still has a scale factor
of order o. That is, (3) provides a means of saying that if A/c is found
small in an actual investigation, and we are equally prepared for any
value of ¢, then p/o is likely to be small also. (5) provides no such
means.

The acceptance of (3) and therefore (4) leads to a curious consequence,
namely that if measures are available of only one of A, u the prior proba-
bility distribution for that one is appreciably different from the one we
used for a single new parameter. But I think that the arguments in
favour of (3) are much stronger than this one.

We therefore adopt (3). Each observation is supposed to consist of
a pair of measures z,, y, referring to A, pu; we write the means as &, §

and put R R ®)
The analysis proceeds as follows.
P(gdo | H)  doja, P(q’'dodAdp | H) oc

whence

P(dp | AH) =

dodMdp |
n2p(a?+p?)’

Plqdo | 6H) o ;;:; exp[ 2m'=+n(z2+y’)} ®)

202

(M

exp{_2ns'2+n()¢—x)2+n(y—g)2] dadAdp )
n 20° Jole®+p?)

9)

We are most interested in values of &, § appreciably greater than

their standard errors, which will be about s'/vn, and then we can

, 1
P(q'dadAdp | 6H) oc e
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integrate (9) approximately with regard to A and p and substitute Z, 7
for them in factors raised to low powers. Then

2 ns'? o?do
P(q'do |6H) « exp( o )(—i, TR (10)
72 572Ya 72 772 +2 72\ —n
TSI

n is already assumed fairly large. Form a generalized ¢, such that
pyp=png— " p (12)
Y" =1ty = P

since the number of degrees of freedom is 2n—2. Then

2 2 -n42 1 2\ ~Vov+1
n'le { 3 } _ (1 +t_ ) g

K~ 5o R s

valid if ¢ is more than about 2.
It is possible to reduce 1/K exactly to a single integral. We have

i —4 cos > A (2m—1)(2m—3)...1
6[64 ¢d¢=2ﬂ{l+glwm}

. A42m
= 2"(‘+ 2, m) (14)
m=1
Put B4t = 1% (15)

then
P(q' dodp | 6H)

b
) TR
[}

w2o2n o |t p?

_ 2dodp n .
= ;mexl){_ﬁ(% +P2_|_,z)} x
Z nrp am ]
<t > () ) 09
m=1
Put now R o

, 2dv 1 2 n(28"2+72)
P(q'dv |6H) c g W fmexp( Inv )exp{__%z_‘} x
1

e 3 el o

m=1



346 SIGNIFICANCE TESTS. VARIOUS COMPLICATIONS VI, §62

1 =7~2rfexp(—u}nv’)[l+ i n(n+l)...(n+m—l){ nlriy? "'] dv

K m!m! 2n(28"2+12)) |14-02
° m=1
2 H nriy? dv
fe— —_ 2 —_ 7\
wf oxp( %’"’)‘F‘{"’ l’2(2s'f=+r2)}1+v‘= (19)
0
2 ¢ ns'2v? nry? dv
=2 [ ol = gapsliont - e =)

T
o

If n=1, r =0, ¢ is identically 0 and K reduces to 1 as we should
expect. If n = 0 it is obvious from (19) that K = 1. The resemblance
to 5.2(33) is very close.

If several old parameters have to be determined their effect is similar
to that found in 5.92; n will still appear in the outside factor but will
be replaced by v in the ¢ factor, but in practice it will be sufficiently
accurate to use v in both factors.

If there is a predicted standard error we shall have

K ~ jn'rrexp(—4x) (x > 2). (21)

This will be applicable, in particular, when the data are frequencies.

6.21. Now consider the fitting of a pair of harmonics to a set of n
measures of equal standard error. The law to be considered is, for the
rth observation,

1 1 .
P(dz,|a,B,0,H) = N exp{ —55 (x,—k, « cost,—k, Bsin t,)’} de,
(22)
and for comparison with the law fora =g =0
J, = k¥« cost,+Bsint,)?/o?. (23)

For n observations we take the mean, namely

J = (Ao?+2Hof+ BB?)/o?, (24)
where

nd = 3 k*cos, nH =3 kicostsint, nB =73 k}sin%,. (25)

In practice the phase of the variation is usually initially unknown
and the distribution of the observed values ¢, is irrelevant to it. We
need a prior probability rule for the amplitude independent of the phase.
This is obtained if we take the mean of J for variations of phase ¢ with
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a?+B% = p? kept constant, then

J = (1/20) S k{ar+§)fo* = $(A-+ B)ptjor, (26)
P(dadf |g'oH) = 3{% o d
_ (4+By odadf -

2 (BN (A +B) o2+
We now find

P(gdo |6H) o o-" exp{ - 2_”-02(3'2+Aa2+211ab+3b=)}‘i_°, (28)
P(¢ dododB | 0H)

e o=nexp| — 1"+ A(a—a)*+ 2H(a—a)(B—)+ BE-b)Y | x
(A+ B)2 dodoadf
V2 (o +F){o*+3(4+ B)(F+6%)
where a, b are the maximum likelihood estimates of « and B. If \/(a2+4$?)

is much greater than s'/vn, which is the important case, we can integrate
approximately with regard to « and 8. Then

(29)

4+ B o-n
P(q’do | 0H) < (AB H’) X
ng'? o?do
<osa{ 5o ot it o O
Finally, integrating with regard to o, and putting ¢ = s in factors raised
to low powers,

1 v2{ A+B \"( . Aa*+2Habt Bb?\n
“~_(AB H*) (l+ 57 ) x

K nnm
s
AV ey oy M
Now in finding the least squares solution we get
HB _
at— + ﬂ:
v (”A) , (32)
.
P = =TT
with v=mn—2, vs?=ns? s/vn = &' [V, (33)
Aa?4-2Hab+ Bbz A(a+Hb/A)2+ (B—H?[A)b?
§'2 ve?
2 2 2
=l{(ii;f1_b/:4_)+b} £ (34)
v{ $a+Hobl4 s v
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Then

mr(B 112/A)‘/2J(a2+b2)[1 (A+ B)(a*+b?) £2\ ~tav-1
v2\ 14+ B/4 l 2s? }( v)

(35)
The calculation is simplified by the fact that nd, nH, nB are coefficients
in the normal equations and n(B— H?/A) is the coefficient of 8 after «
has been eliminated. Hence #2is found directly from the quantities that
occur in the solution and their estimated standard errors.

If 4 = B, H = 0, which is a fairly common case,

@b 1 b 2
s nd (82+ s,,) n(4-+B) % (36)
I ~ov
K~ ":"z(l +'f) : (37
“~ 14

The approximations have supposed that ,/(a®-b?%) is large compared
with s/vn and small compared with s. But a further approximation has
been made, as we can see by considering the case where H = 0 and 4
is much larger than B. If nB is of order 1, and « is much less than s,
the variation of the exponential factor with 8 may be less rapid than
that of the factor («2-4-82)-"2. In this case all the values of £, are near
0 or . Integrating with regard to B8 in these conditions we have

P(q' doda | 6H)
B \/(02+—§a2)+ o doda
o Fegene] — gl ot Jon et e o9
J(o?+1a?)+o do (39)
8 Vot lat) —o J(e*+1a®)’

K s [(14 3 )14 2™ fog HEHEE a0

P(q'do |0H) oc —-27 exp( ' )Io

VS Jah) —s
mheple 2\~

= s+ ) @

if a;s is small.
The danger signalis s, > 'a} > s, Ifnislargeand la}/s small of order
n Y2, (411) may be smaller than the value given by the direct test for
one unknown The smaller value of K represents the fact that J might
actually be large but that a might be small owing to the obscrvations
happening to lie near sint — 0 We may be able to assert with some
confidence that a periodic variation is present while knowing nothing
about the coefficient 8 cxcept that it is probably of the same order
of magnitude as a, but might be of the order of s. The situation will of
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course be very unsatisfactory, but we shall have done as much as we
can with the data available. The next step would be to seek for observa-
tions for such other values of ¢ that a useful estimate of 8 can also be
found, and then to apply (33).

In the case A = B =}, H == 0, we can reducc 1/A" again to a single
integral. The analysis is similar to that leading to 6 2(20) and gives

©
1 2 nr2s’? In(a®4b2)0% do
K=x f e"*’(*ﬁ'z‘ﬁe:ﬂz)l“{ =i, “§mae+bz}i+ o
(42)
In the conditions stated » — 1 is impossible. If n =0, K = 1 If
n =2, ¢ = 0, and again K == 1 This is the case where there are two
observations a quarter of a period apart. The result is identical with
6 2(20) except that 1—3n replaces 1--n in the confluent hyper-
geometric functions and a?-; b2 replaces r2.

There are problems where theory suggests a harmonic disturbance such
as a forced oscillation with a predicted phase. We are then really testing
the introduction of one new function, not two, and the rule of 5.9 applies.
If the disturbance is found we can still test a displacement of phase,
due for instance to damping, by a further application of 59 and 5 92.
Here the cosine and sine no longer enter on an equal footing because
previous considerations do not make all phases equally probable on ¢’.

6.22. Test of whether two laws contain a sine and cosine with
the same coefficients. This problem stands to the last in the same
relation as that of 5 41 to 5 2, I shall not develop the argument in detail
but proceed by analogy A J must be defined for the difference of the
two laws It is clear that integration with regard to the differences of
a and B will bring in a factor n, n,/(n,-+n,) instcad of n, and that the
square root of this factor can be absorbed into the second factor, so
that the first two factors in (35) will be 1eplaced Ly

(s BB~ A
V2\n,+n 1+574" ]’

where 4’, B’, H' are coefficients in the equations used to find the
differences ay—oy, By—B;.

The determination of the corrections to a trial position of an earth-
quake epicentre is essentially that of determining the variation of the
residuals in the times of arrival of a wave with respect to azimuth It
was found iu a study of southern earthquakest (for a different purpose)
that a few pairs gave epicentres close enough to suggest identity, though

t MNRAS Geophys Suppl 4, 1938, 285
Aa
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they were too far apart in time for the second to be regarded as an
aftershock in the usual sense. On the other hand, cases of repetition
after long intervals are known, and a test of identity would be relevant
to a question of whether epicentres migrate over an area. The case
chosen is that of the earthquakes of 1931 February 10 and 1931 Sep-
tember 25. If x and y denote the angular displacements needed by
the epicentre to the south and east, the trial epicentre being 5-3° 8.,
102-5° E., the equations found after elimination of the time of occurrence
from the normal equations were, for 1931 February 10,

4592267y = 33,

26724694y = —11.
Number of observations 30; sum of squares of residuals 108 sec?;
solution x = +010°40-10°, g = —0-06°+40-08°.
For 1931 September 25,

544x+4-163y = —36,

1632+ 625y = +94
Number of observations 35, sum of squares 202 sec?, solution

= —012°40-10°, g = -0-18°40-10°.
The estimated standard errors of one observation are 2-0 sec and 2-5
sec, which may be consistent and will be assumed to be. Three para-
meters have been estimated for each earthquake (cf. 3.52) and hence
the number of degrees of freedom is 304+35—6 == 59. Then
52 = (1084202)/59 = 525, s — 23 sec.
The question is whether the solutions indicate different values of z and
y for the two earthquakes. It is best not simply to subtract the solutions
because the normal equations are not orthogonal and the uncertainties
of z and y are not independent. The null hypothesis is that of identity;
if it was adopted we should find x and y by adding corresponding normal
equations and solving. But if there is a difference we can proceed by
using suffixes 1 and 2 for the two earthquakes and writing
x, = x4, Y2 = N+y
Then ' and y’ are the new parameters whose relevance is in question.
Now we notice that both sets of normal equations can be regarded as
derived from a single quadratic form
W = } 459234267z, y,+3}.694y3—33x,+ 11y, +
+3.544(x, +27)2 4 163(x, +2' )y, +y')+ 3. 625(y, +¥)*+
+36(x;+2") —94(y; +y),
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which leads to normal equations as follows:
1003z, 544"+ 430y, + 163y’ = —3,
544z, 5442’ 4163y, + 163y’ = — 36,
430z, 1632'+ 1319y, + 625y = +83,
163, + 163z’ 625y, + 625y’ = 4 94.
Eliminating z, and y, we get
2452'+108y’ = —29
108z’ + 327y’ = +53 279y’ = 66
whence the solutions can be taken as
24044y’ = —0-12, y = +0-24,
the uncertainties being independent. Then
_ 245X 0-1224-279 X 0-242 _
5:25
2’ = —0-12—0-44 X 0-24 = —0-23,
(35 ;5 30)%(l fﬁ 3)% ‘/‘0'053._; 0«058)(1 i ;%-_;E)-z as’ nearly,

i

[ 3-73,

m™
K=«7§

= 2-2.

The odds on the data are therefore about 2 to 1 that the epicentres were
the same. The further procedure if more accuracy was required would
be to drop 2’ and y’ in the normal equations for « and y, and solve for
the latter by the usual method, revising the residuals to take account
of the fact that the solution will not be at the least squares solution
for either separately.

The following attempt to test the annual periodicity of earthquakes
is an instance of the necessity to make a thorough test of the indepen-
dence of the errors before the significance of a systematic variation is
established. The numbers of determinations of epicentres of earth-
quakes, month by month, made for the International Seismological
Summary for the years 1918-33 were kindly supplied to me by Miss E. F.
Bellamy. These do not represent the whole number of earthquakes
listed; small shocks observed at only a few stations are given only in
daily lists, but the list should be representative of the large and
moderate shocks, for which all the observations are given in detail. As
the months are unequal in length a systematic effect was first allowed
for by dividing each monthly total by the ratio of the length of the
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month to the mean month The resulting values were rounded to a
unit, and are as follows.

Jan | Feb |Mar | Apr | May [June|July | Aug |Sept | Oct | Nov | Dec | Total

1918 24 40 [ 24 27 23| 34 24| 36 53| 30| 26| 31 372
1919 18 17 23 13 30 22 43| 37 551 33 13 12 321
1920 | 331 35 17 14 32| 36| 24 17| 68 24 21 24 335
1921 22 16 24 17 32 20 19 16| 271 26| 23 16 | 258
1922 221 23 19 32 26| 31 23 32| 32 17) 22| 31 310
1923 2 361 26| 23 39 38 51 45 | 142 | 44| 50 30| 544
1924 34 24| 46| 38| 45 28| 42 31 84 28 1 34 36 1 466
1025 1 36 ) 50 36| 36 54 56| 49| 39| 32| 28| 26| 36| 478
1026 28 27 45| 29| 28 55| 52| 114 66| 75| 44 56 | 609
1027 f 421 47| 571 49 82| 48] 60| 64 51 66 | 57 40| 663
1928 | 36 ) 42} 62} 74 61 54 | 41 67 | 41 3341 38] 50| 599
1920 | 43 | 41 67 63 61 66 | 62| 6l 36 | 44 28 | 39 601
1930 24 37 T 44 83 | 41 68| 40| 57| 80| 66 66{ 653
1931 61 391 50| 56 521 38 64 72| 67 63| 36| 42 630
1932 36} 42| 42| 40| 50 87 43 | 39 47 41 40 | 61 568
1933 19 54 7| 82| 60 69 73] 42| 53| 47| 43| 33| 640

Totel | 518 | 570 | 670 | 612 | 758 | 719 | 728 | 742 | 891 | 669 | 567 | 603 | 8,047

There is on the whole a sccular inciease in the number per year,
which is mostly due to the increase in the number of stations, many
earthquakes in the first few years of the period having been presumably
missed or recorded so pootly that no epicentie could be determined We
first compute 52 to test proportionality in the chances. It is found to be
707 on 165 degrees of freedom' No test of significance is needed. There
are four contributions of over 20 109 for September 1923, 60 for
August 1926, 25 for June 1932, and 21 for September 1924. Even apart
from these extreme cases, x? remains overwhelmingly large The only
years that give anything near the normal expectation are 1921, with
12 0, and 1922, with 13 4 The immediate result is that the hypothesis
of independence is seriously wrong; the test has eliminated any periodi-
city in a year or any submultiple, and any secular change. The obvious
explanation is that on an average earthquakes occur in groups of 4 3,
not as separate occurrences The ecnormous number in September 1923
represent aftershocks of the great Tokyo earthquake 1t would be of
little use to reject the years containing the very exceptional months,
because the phenomenon is present, to a greater or less extent, in nearly
every year

If the residual variation from month to month was independent we
might still proceed to determine a pair of Fourier coefficients, allowing
for the departure from independence within a month by simply multi-
plving the standard error by 4 3": = 2-1. But inspection of the signs
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of the residuals shows that they are not independent. We can test the
number of persistences and changes of sign against an even chance;
but there are many small residuals and a slight oscillation among them
gives numerous changes of sign and reduces the sensitiveness of the test
greatly. We can recover some of the information lost in this treatment
by considering only residuals over 47, thus paying some attention to
magnitude as well as to sign. There are 55 persistences and 34 changes,
which, tested against the formula for an even chance, give K = 0-7. But
the elimination of 27 parameters has introduced 27 changes of sign, and
to allow for this we must reduce the number of changes by about 13. With
this modification X is 0-003. Thus the lack of independence extends over
more than one month, and the standard error found on this hypothesis
must be multiplied by more than 2-1. The only hope is to make separate
analyses for each year and examine their consistency. If 6 denotes the
phase for an annual period, measured from January 16, we get the follow-
ing results for the coefficients of cos # and sin 8 in the monthly numbers.

cos sin cos sin
1918 - 20 — 48 1926 —158 —188
1919 —132 — 53 1927 — 82 + 08
1920 — 20 — 35 1928 — 50 +113
1921 - 10 + 02 1929 — 87 +138
1922 — 32 — 02 1930 - 37 - 57
1923 —162 —218 1931 - 170 — 25
1924 — 47 -~ 07 1932 — 60 + 32
1925 — b5 + 85 1933 — 87 +105

Simple means of the coefficients, with separate determinations of the
standard errors, give

(—6-941-2)cos §—(0-9--2-4)sin 0.

But it is very hard to see how to account for the much greater variation
of the separate values for the sine than for the cosine coefficient. If we
pool the two variations to get a general uncertainty the standard errors
of both coefficients are 1-9, and 2 = 13-3. K is about 0-2. This is
small enough for us to say that there is substantial evidence for a
periodicity, but it is not decisive. It remains possible, in fact, that
a few long series of aftershocks in the summer months are responsible,
in spite of the consistently negative signs of the coefficients of the cosine,
though the odds are about 4 to 1 against the suggestion.

Harmonic analysis applied to the monthly totals for the whole period
gives terms (—110-94-10-6)cos 6 —(18-54-10-6)sin# on the hypothesis
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of independence. The standard error is (7/72)':, where n is the number
of observations. Thus for one year the terms would be

(—6-9-+0-66)cos 6— (1-24-0-66)sin §.

But we know from x? that the uncertainties must be multiplied by at
least 4:3's, giving 1-37. The correlation between adjacent months is
responsible for the rest of the increase. If it had not been for the check
on independence the above determinations might have been accepted
without a moment’s hesitation; as it is, they may perhaps be accepted,
but certainly with hesitation.

The Schuster criterion, which is frequently used to test periodicity,
is really the x? test adapted to two degrees of freedom. It has, however,
often led to surprising results. C. G. Knott, for instance, worked out
periodicities in earthquakes corresponding to various periods near a
month or fortnight, some of which corresponded to some tidal effect
while others did not. The amplitudes found were about twice the
Schuster expectation in 7 cases out of 8.1 Knott therefore expressed
doubt about their genuineness. For the annual period he found (pp.
114-16) the maximum in different regions in several different months,
with an excessive number in December and January, and thus just
opposite to the above results.

The present analysis is not altogether satisfactory, because the list
used has been subject to a certain amount of selection. Thus the
Japanese (Tango) earthquake of 1927 March 7 produced 1,071 after-
shocks from March 11 to June 8; of these 532 are given in the 1.8.8.
in daily lists, but only one is treated in detail and contributes to the
above totals. Most of them were small. On the other hand, some earth-
quakes such as the Tokyo earthquake produced long series of large
aftershocks, which have contributed greatly. There are possibilities
that some bias might arise in deciding which earthquakes to treat fully
and which just to mention. But there seems to be no obvious way in
which this could affect the instrumental records periodically, and the
interval between the earthquakes and the time when the solutions were
made for them has gone through all possible phases during the interval
used. Yet we still have two possible explanations. Primitive earth-
quakes might be stimulated more readily in summer, or they might be
equally likely to occur at any time of the year and tend to produce
more aftershocks in summer. There is no strong theoretical reason
for either hypothesis. To test them it would be necessary to have a

i Physics of Earthquake Phenomena, 1908, pp 130-6.
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means of identifying primitive shocks, for instance by using only earth-
quakes from new epicentres. Within a single series of aftershocks, that
of the Tango earthquake, I have found no evidence for any failure of
independence or for periodicity, the data agreeing well with a simple law
of chance dt/(t—a), where « is a little earlier than the time of the main
shock.t If thisis general the only relevant data to a periodicity would be
the times of the main shocks and the number of aftershocks in each case.

Many studies of earthquake frequency do not rest on the 1.8.S., which
is a fairly complete catalogue of the strong and moderate earthquakes,
but on much less detailed lists. For instance, in a paper by S. Yamaguti, }
which inspired me to undertake the work of 6.4, it was claimed that
there was an association between the region of an earthquake and that
of its predecessor, even when they were in widely different regions. His
list gave only 420 earthquakes for thirty-two years; the 1.8.8. shows
that the actual number must have been about fifty times this. He was
therefore not dealing with successors at all; and in three of his eight
regions the excess of successors in the same region that aftershocks
must have produced is replaced by a deficiency, which is presumably
due to the incompleteness of the catalogue. Thus an incomplete cata-
logue can lead to the failure to find a genuine effect; but if any human
bias enters into the selection it may easily introduce a spurious one.
For these two reasons, non-randomness and possible bias in cataloguing,
I have great doubts about the reality of most of the earthquake
periodicities that have been claimed. (Actual examination of the
relations between earthquakes in different regions apparently obtained
by Yamaguti disclosed no apparent departure from randomness,§ and
the same applied to my rediscussion using the I1.8.8.|| after the excess
in the same region had been allowed for.)

6.23. Grouping. It has already been seen that the estimate of the
uncertainty of the location parameter in an estimation problem, where
the data had been grouped, is based on the standard deviation of the
observations without correction for grouping. The same applies, as
Fisher has again pointed out, to significance tests based on grouped
data. This follows at once from the formula 5.0 (10). For the chance of
getting a in a given range, given ¢ and the fact that the data have been
grouped, will be given by taking (3) with the uncorrected standard
error; the range of possible variation of « on ¢’ will be got by applying

1 Gerlands Beitrage z. Geophysik, 53, 1938, 111-39.

1 Bull Earthquake Res. Inst., Tokyo, 11, 1933, 46-68.

§ F.J. W. Whipple, M.N.R.A.S. Geophys Suppl. 3, 1934, 233-8.
I Proc. Camb. Phil. Soc. 32, 1936, 441-5.
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the grouping correction to the apparent range, thus, in the standard
problem of function fitting, replacing s by (s2—#A?)" in the outside
factor, which will therefore be reduced i the ratio (1—%2%/12s%)"; but
this is trivial. The usual formulae should therefore be used without
correction for grouping. This agrees with Fisher’s recommendation.

6.3. Partial and serial correlation. The conditions of intraclass
correlation merge into those of two still more complicated problems,
those of partial correlation and serial correlation. In partial correlation
an observation consists of the values of k variables, #,,..., #;, whose joint
probability density on some law is proportional to exp(—4 W), where
W is a positive definite quadratic function of the x,. The problem will
be, from m such sets of observations to estimate the coefficients in W.
In-intraclass correlation we may regard the x, as having independent
probability distributions about a variable o;, which itself has a normal
probability distribution about «. Then
P(dx, . duy |0, 0,7, H)

o H dz, f exp{— Z (Z‘Z_s: ’)2)(3xp{—(°";7 > )2} doy.

Integration with regard to o gives a joint probabulity distribution of
the form considered in partial correlation. It will, however, be sym-
metrical in the z,, which is not true in general for partial correlation.
The theory of intraclass correlation assumes that the observations
fall into sets, different sets being independent. There is often some
reason to suppose this, but often the data occur in a definite order, and
adjacent members in the order may be closely correlated. The extreme
case is where the observations refer to a continuous function. We might
for each integral n choose x,, from a table of random numbers and then
interpolate to intermediate values by one of the standard rules for
numerical interpolation. The result is a continuous function and the
estimated correlation between pairs of values at interval 0-1 would be
nearly unity, though the original data are derived by a purely random
process. Yule pointed out that many astronomical phenomena (to
which may be added many meteorological ones) can be imitated by the
following model. Imagine a massive pendulum of long period, slightly
damped, at which a number of boys discharge pea-shooters at irregular
intervals. The result will be to set the pendulum swinging in approxi-
mately its natural period T, but the motion will be jerky. 1f there is
a long interval when there are no hits the pendulum may come nearly
to rest again and afterwards be restarted in a phase with no relation
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to its original one. In this problem there is a true underlying periodicity,
that of a free undisturbed pendulum. But it will be quite untrue that
the motion will repeat itself at regular intervals; in fact if we perform
a harmonic analysis using data over too long an interval the true period
may fail to reveal itself at all owing to accidental reversal of phase.
What we have in fact, if we make observations at regular intervals short
compared with the true period, is a strong positive correlation between
consecutive values, decreasing with increasing interval, becoming nega-
tive at intervals from {7 to 7', and then positive again. At sufficiently
long intervals the correlation will not be significant.

In such a problem each value is highly relevant to the adjacent values,
but supplementary information relative to any value can be found from
others not adjacent to it, the importance of the additional information
tending to zero when the interval becomes large. For a free pendulum,
for instance, the displacement at one instant would be a linear function
of those at the two preceding instants of observation, but if the error
of observation is appreciable three adjacent observations would give a
very bad determination of the period. To get the best determination
from the data it will be necessary to compare observations at least a
half-period apart, and it becomes a problem of great importance to
decide on the best method of estimation. Much work is being done on
such problems at present, though it has not yet led to a generally
satisfactory theory.}

A simple rule for the invariant J can be found in a large class of cases
where (1) the probability of any one observation by itself is the same
for both laws, (2) the probability of one observation, given the law and
the previous observations, depends only on the immediately preceding
one. We have for the whole series,

_ dP(x,|2y...%,_y, 0o, H)
=2, Z o8 P oy ty o H) <
X{P(xy | a«’"H)P(x, |2y o' H)...P(,, | %y... Xy o' H)—
—P(2, | aH)P(z; | 2y aH)...P(x, | ... ¥, _y oH)}.
The terms containing logdP(z, | ...) reduce in the conditions stated to

dP(z,|zy..%,_y, o, H) , oy
Z lc:gﬁ,@;—l;;:;:b017_1-)-{1’(‘1l |o'H)... P(%y 4y | 2y... 2, o’ H)
— P(z |aH)...P(Zpyy | 2)... 2, aH)}

AP, |z, o', H ,
= Z lOg d—P((zT]rx'__ll—%Tlﬁj){P(Zr_b Ly, Xy yy I o H)—P(:C,_l_, Lpy Tpyy I “H)}

t Cf M G. Kendall, Contributions to the Study of Oscillatory Time series, 1946; M S
Bartlett, Stochastic Processes, 1955
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since z, and earlier values do not appear in the later terms in the
products, which therefore add up to 1; and we can also sum over z, for
8 < r—1. We can now sum over z,,, and get

dP(@, |2y, o, H) , e
2. 108 G Pl [ gy (Para | H) Py | 4, H)
—P(xr—l |°‘H)P(zr Ixr-l’ o H)}
By condition (1),  P(z,.,|«'H) = P(x,_, |aH),
and therefore this term reduces to

where z P (G | H)J,,

dP(x, | %,_y,a’', H)
1 r=1» . 15 O
J = z 8 Pl [ ) {P(x, | 2,_y,o, H)— P(x, | 2,4, a, H)}.
We have to sum over the possible values of z,_,;, and then with regard
to r. Finally, dividing by » as indicated on p. 323, we have a summary
value of J which can be used as in the case of independent observations.
Forr = 1, J, = 0; for » > 1, J, is simply J for the comparison of the
two laws with 2,_; among the data.
The simplest case of this type is where each observation is a measure
and the relation between consecutive measures is of the form
T, = Pzr—lif’
where all z,, taken separately, have normal probability distributions
about 0 with standard error 0. Then
T = a(l —-pz)‘h
and for different values of p, with o fixed, J, is the same as for com-

parison of two normal laws with true values pz,_,, p’z,_; and standard
errors o(1—p?)"s, o(1—p'?)'2. Then J, (r > 1) follows from 3.10 (15):

_YJ(A—=p?)_J(1—p?)
* (7(1_,, J(l—p'*))+2a*(1 e '*)"’ G
But P(dz, "1'°H)=~/(2,,) exp( ze )dxr—l
Hence n
34, =3, [ Pz, |oH)
(p"*—p?)?
= —1) = _= 7
00 o (e
(p'—p)(1+pp)
=@=D (I—p)(1—p")’

1+pp’ Y
= a=u—ps ¥ "

)(P —p)?
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This is identical with J for the comparison of two correlations, the
standard errors being given.
The joint likelihood for n observations is

1
@ryon(1— D

X exp[—%—a— '2';2(11——__’,3) {(my—pmy)*+ "'+(zn"'Pxn-l)2}] 11 d=,

1
= ( 2,,)‘/27»01:( 1— p2)'l2(ﬂ—1) X

X exp[— E;z_(ll_——p_f) {x3—2px, x2+(l+p2)x§——...+z,’,}] 11 d=,.

The interesting mathematical properties of J in this problem suggest
that it might be used, but there are obvious difficulties. One is similar
to what we have twice noticed already. If the suggested value of p is 1,
and p’ has any value other than 1, J is infinite, and the test fails. The
estimation rule gives a singularity not only at p = 1, which might be
tolerable, but also at —1, which is not. If the correlation is p, for values
of a function taken at equal intervals, say 1, we might try to estimate
p from observations at intervals 2. The correlation at interval 2 would
be p2. The same method would apply, but J would be seriously changed
if we replaced p by p?in it.

On account of the asymmetry for the first and last observations there
are no sufficient statistics, but a nearly sufficient pair will be

nil
z, 2,
8’=_I.Zx§; P W ﬂ:_l .
= ettt 3 o

This problem is given only as an illustration. In actual cases the corre-
lation will usually run over several observations, effectively an infinite
number for a continuous function, and the procedure becomes much
more complicated. Further, the law itself may differ greatly from
normality. I have had two cases of this myself where the problem was to
estimate a predicted nearly periodic variation and the observations were
affected by non-normal errors with a serial correlation between them.t
A completely systematic procedure was impossible in the present state
of knowledge, but approximate methods were devised that appeared
fairly satisfactory in the actual problems considered.

1 M N.R A.S 100, 1940, 139 -55, 102, 1942, 194-204
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My impression is that, though the use of J gives rules for the prior
probability in many cases where they have hitherto had to be guessed, it
is not of universal application. It is sufficiently successful to encourage
us to hope for a general invariance rule, but not successful enough to
make us think that we have yet found it. I think that the analysis
of partial correlation should lead to something more satisfactory.

In problems of continuous variation with a random element the
ultimate trouble is that we have not yet succeeded in stating the law
properly. The most hopeful suggestion hitherto seems to be Sir G. I.
Taylor’s theory of diffusion by continuous movements,} which has been
extensively used in the theory of turbulence. At least, by taking corre-
lations between values of a variable at any time-interval, it avoids the
need to consider a special time-interval as fundamental

This point and others discussed in this book arise in the astronomical
phenomenon known as the variation of latitude. This is a small oscilla-
tion of the direction of the earth’s axis, detected by observing the zenith
distances of standard stars when they cross the meridian. It contains
an annual part, probably of meteorological origin, a somewhat larger
free oscillation, and an irregular part, which is not very well understood.
Positions are published for intervals of 0-1 year. The free part is damped,
and is maintained by irregular disturbances. In consequence its phase
and amplitude have irregular changes, and the statistical problem is to
disentangle these from errors of observation. This would be quite diffi-
cult enough if the errors of observation were independent. But essential
data for determining the period and damping are the correlations between
positions at different times, and in fact the data have been smoothed
before publication and consequently these correlations have been
systematically altered. In a solution that I made I used means over
0-3 year instead of 0-1 year, this was mainly to save arithmetic, but has
two further advantages. Smoothing would have less effect in producing
correlation between consecutive errors, and if the irregular disturbances
are not impulses but may persist for months they also would be more
nearly independent.

6.4. Contingency affecting only diagonal elements. In the simple
2% 2 contingency table we have a clear-cut test for the association
of two ungraduated properties. In normal correlation we have a case
where each property is measurable and the question is whether the
parameter p is zero or not, and to provide an estimate of it if it is not.

1 Proc. Lond Math. Soc (2) 20, 1922, 196-212
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Rank correlation is an extension to the case where the properties are
not necessarily measurable, but each can be arranged in a sequence
of increasing intensity, and the question is whether they tend to be
specially associated near one line in the diagram, usually near a diagondl
of the table. The amounts of the displacements from this line are
relevant to the question. A more extreme case is where, on the hypo-
thesis ¢’, only diagonal elements would be affected. The distinction
from the case of rank correlation may be illustrated by a case where the
two orders are as follows

X Y X-Y
1 2 -1
2 1 +1
3 4 —1
4 3 +1
5 6 —1
6 5 +1
7 8 -1
8 7 +1

The rank correlation is 1—~48/504 = -4 0-905. Yet not a single member
occupies the same place in the two orders. We can assert a close general
correspondence without there being absolute identity anywhere. But
there are cases where only absolute identity is relevant to the question
under test. Such a case has been discussed by W. L. Stevens,} namely
that of the alleged telepathic recognition of cards. Evidence for the
phenomenon would rest entirely on an excess number of cases where
the presentation and identification refer to the same card; if the card
presented is the king of spades, the subject is equally wrong whether
he identifies it as the king of clubs, the queen of spades, or the two of
diamonds. (I am not sure whether this is right, but it is part of the
conditions of the problem.) Another case is the tendency of an earth-
quake in a region to be followed by another in the same region, to test
such a tendency we cannot use rank correlation because the regions
cannot be arranged in a single order. The known phenomenon is that
a large earthquake is often followed by a number of others in the same
neighbourhood; but to test whether this is an accidental association or
not we must regard any pair not in the same region as unconnected,
whether the separation is 2,000 or 20,000 km. Only successors in the
same region are favourable to the suggested association, and we have
to test whether the excess of successors in the same region is large

t Ann Eugen 8, 1938, 238-44
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enough to support the suggestion that one earthquake tends to stimu-
late another soon after and at a small distance.

In the earthquake problem, which may be representative of a large
number of others, given that the last earthquake was in a particular
region, the probability that the next will be in that region and stimu-
lated by it is o, which we may take to be the same for all earthquakes. On
hypothesis ¢, « will be 0. The chance at any time that the next earth-
quake will be in the rth region is p,. On the hypothesis of randomness the
chance that the next will be in region r and the next but one in region s
will be p, p,, where all the p’swill have to be found from the data. Onhypo-
thesis ¢/, the chance that an earthquake will be in region r and followed by
one stimulated by it will be p, «, leaving p,(1—a) to be distributed in pro-
portion to the p, (including s = r since we are not considering on ¢’ that
the occurrence of an earthquake in a region precludes the possibility that
the next will be an independent one in the same region). Thus the joint
chance will be (1—a)p, p,, except for s = r, for which it is (1 —a)pZ+ap,.
Proceeding to the third and neglecting any influence of an earthquake
other than its immediate predecessor, the joint chance of all three will
be obtained by multiplying these expressions by (1—a)p,if¢ # s, and by
(1—a)py:ta if ¢ = s. So we may proceed. The joint chance of a set of
earthquakes, in a particular order, such that in z,, cases an earthquake
in region r is followed by one in region s, for all values of r and s, is

a=ap+ T T (14 =) > M
where z, =3z, N=3Jz, (2)

and the last factor is the product over all repetitions. Then this is
P@|q,p, a,H). P@O|q,p, H)is got by putting « = 0.

The invariant J for comparison of ¢ and ¢’ can be found by the method
of 6.3. We have, if the (m—1)th observation is in region 7,

g, = Z 1og{““°‘”"+°‘}{u—a)p,+a—p,}+
+ 23 log(1—a){(1—o)p,—p)}
= z Iog(l—a+ ;)a(l—p,)—- g log(1—a).a(1—p,)

= ; afl —p,)log{l + —lo—‘:;)},

(m— l)oz2
l—a

7 =S pal—pon{i+ i) = 3 (17 =
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where m is the number of regions. J is infinite if « = 1, corresponding
to the case where, if an earthquake is in a given region, the next is
certain to be in that region. J is also infinite if for some 7,
(l—a)p,+a=0,

corresponding to the case where « is negative and sufficiently large
numerically for the occurrence of an earthquake in some region to
inhibit the occurrence of the next in that region. This might conceivably
be true, since we could contemplate a state of affairs where an earthquake
relieves all stress in the region and no further earthquake can occur until
the stresses have had time to grow again; by which time there will almost
certainly have been an earthquake somewhere else. It is therefore worth
while to consider the possibility of negative a. For a significance test,
however, it is enough to have an approximation for « small and we shall

take 1
P(da | py...p, H) = ;J(m—l)da.

The interpretation of the factor in m is that our way of stating the
problem does not distinguish between different parts of a region. An
earthquake in it may stimulate one in another part of the region, which
will be reckoned as in a different region if the region is subdivided, and
hence subdivision will increase the concentration of the probability of
o towards smaller values.

The solution is now found as usual; the factors depending on p, are
nearly the same in both P(q |0H) and P(q’ | H), and we can substitute
the approximate values _

Pr=%,|N

in the factors that also involve «. Then
A e o
l—-a)x
Put T, = IV + z,a,

and expand the logarithm of the integrand to order o2 and @, «. We find
after reduction

_Il? = ‘./(L:I_) J'exp[Na 3 a,—3}a¥m—1)N] da
= «/("‘T—’) j exp{—}(m—1)N(a—a)*+}(m—1)Na?} de,

where a= Z_a’l



364 SIGNIFICANCE TESTS VARIOUS COMPLICATIONS VI, §64
and K = A//(zlx)exp{—ﬂ}('m,—I)Na"’}

2
If K is small we shall have

1
R TV

The following table was compiled from the International Seismo-
logical Summary from July 1926 to December 1930. The earthquakes
used were divided into ten regions; eight earthquakes in Africa were
ignored because they were too few to be of any use. In some cases,
also, several widely different epicentres would fit the few observations
available, and these also were ignored Thus the table is limited to
fairly well observed earthquakes, which are only a fraction of those
that actually occur. The North Pacific in west longitude was included
with North America, the Eastern North Pacific was divided between
Japan (with the Loo-Choo Islands and Formosa) and the Philippines,
the East Indies were included with the South Pacific, the West Indies
with Central America, and the Mediterranean region and the north
coast of Africa with Europe. The results are as follows.

Second §
g slugl =2l e
2 2 I Q 2B SL 8 S
First 3|3 (ES N 2 2‘:8‘%%": <& a,

Europe 97 58 | 11 73|12 60| 22| 2223119397 |40092
Asia 69| 119 |13 93 | 21 56 | 16 1 20 ) 22 § 15 | 444 | +0098
Indian Ocean 10 17 8 23 4 10 b 3 6 2 88 | 40057
Japan 84 90§ 21 | 179} 22 82| 24| 36| 26| 26| 590 | 4+0077
Philippines 8 18 4 31133 22 5 6 8 41139 4018%
South Pacific 57 62 ( 14 81 17| 15[ 22]16] 22119425} 40107
North America 17 18 3 32 6 18 | 21 6 6 51132 10108
Central America 16 28 4 26 5 22 2116|110 2| 131 | 40072
South America 20| 19| 4| 331 9| 27| 7| 4|24] 1157 +0092
Atlantic 10 15 6{ 19|10 13 8! 21 10| 810140041
2604 | + 0928

Here m = 10, N = 2604, > a, = 0928 Then
K= 16x10-%
The evidence for ¢’ is therefore overwhelming. The estimate of « is
a = 40103140 0065

This can be interpreted as the chance that a given earthquake will be
followed by an aftershock, strong enough to be widely recorded, before
there has been another widely recorded carthquake anywhere else.
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6.5. Deduction as an approximation. We have seen that in
significance tests enormous odds are often obtained against the null
hypothesis, but that those obtamed for it are usually much smaller.
A large discrepancy makes K exponentially small, but even exact agree-
ment with the predictions made by the null hypothesis only makes K
of order n':. But a small K does not establish the hypothesis ¢’. It
only shows that the hypothesis that one new parameter is needed, the
rest of the variation being regarded as random, is more probable than
that the whole variation is random. It does not say that no further
parameter is still needed. Before we can actually attach a high proba-
bility to ¢’ in its present form we must treat it as a new ¢ and test
possible departures from it, and it is only if it survives these tests that
it can be used for prediction. Thus when a hypothesis comes to be
actually used, on the ground that it is ‘supported by the observations’,
the probability that it is false is always of order n~"2, which may be as
large as 0-2 and will hardly ever be as small as 0-001. Strictly, therefore,
any inferences that we draw from the data should not be the inferences
from ¢ alone but from ¢ together with all the alternatives that have
been considered but found not to be supported by the data, with
allowance for their posterior probabilities. If, for instance, z denotes
the proposition that some future observation will lie in a particular
range, and we consider a set of alternative hypotheses g, g,,..., we shall
have
P(z |0H) = 3 P(q,z|0H) = 3 P(x|q,0H)P(q, | 0H).
Now if in a given case one of the hypotheses, ¢ say, has a high proba-
bility on the data, and all the others correspondingly small ones,
P(x | 0H) will be high if z has a high probability on q. If x has a low
probability on g, its probability will be composed of the small part
from ¢, representing the tail of the distribution of the chance on ¢, and
of the various contributions from the other ¢, But the last together
make up ¢’, and the total probability of all such values cannot exceed
the posterior probability of ¢’ Thus the total posterior probability
that the observation will be in a range improbable on ¢ will be small.
In our case the situation is more extreme, for the g, will be statements
of possible values of a parameter «, which we may take to be 0 on ¢.
But when K is large neaily all the total probability of ¢ comes from
values of o near the maximum likelihood solution, which itself is small
and will give therefore almost the same inferences as ¢ The only effect
of ¢’ is to add to the distribution oun q another about nearly the same
maximum and with a slightly laiger scatter and a smaller total area.
Bb
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Thus the total distribution on data §H is practically the same as on g6 H
alone, the statement of 6 takes care of the uncertainties on the data of
the parameters that are relevant on ¢. Thus if ¢ has been found to be
supported by the data we can take as a good approximation

P(x |6H) = P(x|q0H),

thus virtually asserting ¢ and neglecting the alternatives. We have in
fact reached an instance of the theorem of 1.6, that a well-verified
hypothesis will probably continue to lead to correct inferences even if
it is wrong. The only alternatives not excluded by the data are those
that lead to almost the same inferences as the one adopted. The
difference from the inferences in a simple estimation problem is that
the bulk of the probability distribution of « is concentrated in « = 0
instead of being about the maximum likelihood solution.

This approximation means an enormous practical convenience. In
theory we never dispose completely of ¢’, and to be exact we should
allow for the contributions of all non-zero values of « in all future
inferences. This would be hopelessly inconvenient, and indeed there
is a limit to the amount of calculation that can be undertaken at all—
another imperfection of the human mind. But it turns out that we
need not do so, if K has been greater than 1 for all suggested modifica-
tions of ¢ we can proceed as if ¢ was true. At this stage science becomes
deductive. This, however, is not a virtue, and it has nothing to do
with pure logic. It is merely that deduction has at last found its
proper place, as a convenient approximation to induction. However,
at this stage all parameters in ¢ now acquire a permanent status (at any
rate until further observation shows, if ever, that ¢ was wrong after
all). Planetary theory, for instance, involves associating with each
planet a certain quantity, which remains unchanged in predicting all
observations. It is convenient to give this a definite name, mass. This
process occurs at a much more elementary stage of learning. Whenever
we find a set of properties so generally associated that we can infer that
they will probably be associated in future instances, we can assert their
general association as an approximate rule, and it becomes worth while
to form the concept of things with this set of properties and give them
a name. For scientific purposes reality means just this. It is not an
a priori notion, and does not imply philosophical reality, whatever that
may mean. It is simply a practical rule of method that becomes con-
venient when we can replace an inductive inference approximately by
a deductive one. The possibility of doing it in any particular case is
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based on experience. Thus deduction is to be used in a rather Pick-
wickian sense. It no longer claims to make inferences with certainty,
for three reasons. The law may be wrong; even if right, it contains
parameters with finite uncertainties on the data, and these contribute
to the uncertainty of predictions; and the prediction itself is made with
a margin of uncertainty, expressing the random error of the individual
observation.

It is worth while to devote some attention to considering how a law,
once well supported, can be wrong. A new parameter rejected by a
significance test need not in fact be zero. All that we say is that on the
data there is a high probability that it is. But it is perfectly possible
that it is not zero but too small to have been detected with the accuracy
yet attained. We have seen how such small deviations from a law may
be detected by a large sample when they would appear to have been
denied by any sub-sample less than a certain size, and that this is not
a contradiction of our general rules. But the question is whether we can
allow for it by extending the meaning of ¢ so as to say that the new
parameter is not 0 but may be anywhere in some finite range. This
might guard against a certain number of inferences stated with an
accuracy that further work shows not to be realized. I think, however,
that it is both impossible and undesirable. It is impossible because ¢
could not then be stated, it would need to give the actual limits of the
range, and these by hypothesis are unknown. Such limits would be a
sheer guess and merely introduce an arbitrariness. Further, as the
number of observations increases, the accuracy of an estimate also
increases, and we cannot say in advance what limit, if any, it can reach.
Hence if we suggest any limit on ¢ it is possible that with enough
observations we shall get an estimate on ¢’ that makes nearly the whole
chance of « lie within those limits. What should we do then? K would
be in the ratio of the ranges permitted on ¢’ and ¢. Should we be satis-
fied to take the solution as it stands, or should we set up a new ¢ that
nobody has heard of before with a smaller range ? I think that the latter
alternative is the one any scientist would adopt. The former would say
that the estimate must be acccepted whether we adopt ¢ or ¢’. But it
is just then that we should think that the reason we have got a doubtful
value within the range on ¢ is that we took the range too large in the
first place, and the only way of guarding against such a contradiction
is to take the range on g zero. If there is anything to suggest a range
of possible values it should go into the statement of ¢’, not of q.

Possible mistakes arising from parameters already considered and
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rejected being in fact not zero, but small compared with the critical
value, can then be corrected in due course when enough information
becomes available. If we try to guard against it in advance we are
not giving the inference from the data available, but simply guessing.
If K > 1, then on the data the parameter probably is zero; there is no
intelligible alternative. It does not help in the least to find out that a
parameter is 0-1 if we say that it may not be 0 when the estimate is
0-64-0-5. All that we can say is that we cannot find out that it is not 0
until we have increased our accuracy, and this is said with sufficient
emphasis by making the posterior probability of ¢ high but not 1.

A new parameter may be conspicuous without being very highly
significant, or vice versa. A 5 to 0 sample appears striking evidence at
first sight, but it only gives odds of 16 to 3 against an even chance. The
bias in Weldon’s dice experiments is hardly noticeable on inspection,
but gives odds of about 1,600 to 1. With a small number of observa-
tions we can never get a very decisive result in sampling problems, and
seldom get one in measurement. But with a large number we usually
get one one way or the other. This is a reason for taking many obser-
vations. But the question may arise whether anomalies that need so
many observations to reveal them are worth taking into account any-
how. In Weldon’s experiments the excess chance is only 0-0044, and
would be less than the standard error if the number of throws in a
future trial is less than about 10,000. So if we propose to throw dice
fewer times than this we shall gain little by taking the bias into account.
Still, many important phenomena have been revealed by just this sort
of analysis of numerous observations, such as the variation of latitude
and many small parallaxes in astronomy. The success of Newton was
not that he explained all the variation of the observed positions of the
planets, but that he explained most of it. The same applies to a great
part of modern experimental physics. Where a variation is almost
wholly accounted for by a new function, and the observations are
reasonably numerous, it is obvious on inspection and would also pass
any significance test by an enormous margin. This is why so many
great advances have been made without much attention to statistical
theory on the part of their makers. But when we come to deal with
smaller effects an accurate analysis becomes necessary.



VII

FREQUENCY DEFINITIONS AND DIRECT
METHODS

Lord Mansfield gave the following advice to the newly-appomnted
Governor of a West India Island. ‘There is no difficulty in deciding
a case—only hear both sides patiently, then consider what you think
justice requires, and decide accordingly , but never give reasons, for
your judgment will probably be right, but your reasons will certainly

be wrong’
A. H. ENGELBACH, More Anecdotes of Bench and Bar.

7.0. MosrT of current statistical theory, as it is stated, is made to appear
to depend on one or other of various definitions of probability that
claim to avoid the notion of degrees of reasonable belief. Their object
is to reduce the number of postulates, a very laudable aim; if this
notion could be avoided our first axiom would be unnecessary. My
contention is that this axiom is necessary, and that in practice no
statistician ever uses a frequency definition, but that all use the notion
of degree of reasonable belief, usually without even noticing that they
are using it and that by using it they are contradicting the principles
they have laid down at the outset. I do not offer this as a criticism
of their results. Their practice, when they come to specific applications,
is mostly very good, the fault is in the precepts.

7.01. Three definitions have been attempted .

1. If there are n possible alternatives, for m of which p is true, then
the probability of p is defined to be m/n.

2. If an event occurs a large number of times, then the probability
of p is the limit of the ratio of the number of times when p will be
true to the whole number of trials, when the number of trials tends
to infinity.

3. An actually infinite number of possible trials is assumed. Then
the probability of p is defined as the ratio of the number of cases where
2 is true to the whole number.

The first definition is sometimes called the ‘classical’ one, and is
stated in much modern work, notably that of J. Neyman.t The second

t Phil Trans A, 236, 1937, 333-80
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is the Venn limit, its chief modern exponent being R. Mises.f The
third is the ‘hypothetical infinite population’, and is usually associated
with the name of Fisher, though it occurred earlier in statistical
mechanics in the writings of Willard Gibbs, whose ‘ensemble’ still plays
a ghostly part. The three definitions are sometimes assumed to be
equivalent, but this is certainly untrue in the mathematical sense.

7.02. The first definition appears at the beginning of De Moivre's
book.} It often gives a definite value to a probability; the trouble is
that the value is often one that its user immediately rejects. Thus sup-
pose that we are considering two boxes, one containing one white and
one black ball, and the other one white and two black. A box is to be
selected at random and then a ball at random from that box. What
is the probability that the ball will be white? There are five balls, two
of which are white. Therefore, according to the definition, the proba-
bility is 2. But most statistical writers, including, I think, most of
those that professedly accept the definition, would give }.3-+3.3 = 5.
This follows at once on the present theory, the terms representing two
applications of the product rule to give the probability of drawing each
of the two white balls. These are then added by the addition rule.
But the proposition cannot be expressed as the disjunction of 5 alter-
natives out of 12. My attention was called to this point by Miss J.
Hosiasson.

On such a definition, again, what is the probability that the son of
two dark-eyed parents will be dark-eyed? There are two possibilities,
and the probability is 3. A geneticist would say that if both parents
had one blue-eyed parent the probability is §; if at least one of them
is homozygous it is 1. But on the definition in question, until the last
possibility is definitely disproved, it remains possible that the child will
be blue-eyed and there is no alternative to the assessment 4. The
agsessment § could be obtained by the zygote theory and the defini-
tion, but then again, why should we make our definition in terms of
a hypothesis about the nature of inheritance instead of the observable
difference? If it is permitted to use such a hypothesis the assessment
ceases to be unique, since it is now arbitrary what we are to regard as
‘alternatives’ for the purpose of the definition.

Similarly, the definition could attach no meaning to a statement that a
die is biased. As long as no face is absolutely impossible, the probability
that any particular face will appear is 4 and there is no more to be said.

1 Wahkrscheinlichkeit, Statistil: und Wakrheit, 1928, Wahrscheinlichkei k 1931.
§ Doctrine of Chances, 1738.



VII, §7.0 FREQUENCY DEFINITIONS AND DIRECT METHODS 371

The definition appears to give the right answer to such a question
as ‘What is the probability that my next hand at bridge will contain
the ace of spades?’ It may go to any of the four players and the result
is }. But is the result, in this form, of the slightest use? It says nothing
more—in fact rather less—than that there are four possible alternatives,
one of which will give me the ace of spades. If we consider the result
of a particular deal as the unit ‘case’, there are 52!/(13!)* possible deals,
of which 51!/12!(13!)® will give me the ace of spades. The ratio is  as
before. It may appear that this gives me some help about the result
of a large number of deals, but does it? There are {52!/(13!)4}" possible
sets of n deals. If m; and m, are two integers less than n, there are

i 52! }n,, i 3m
2, {itsy emtrd
possible sets of deals that will give me the ace from m,; to m, times.
Dividing this by the whole number of possible sets we get the binomial
assessment. But on the definition the assessment means this ratio and
nothing else. It does not say that I have any reason to suppose that
I shall get the ace of spades between }n-t}(3n)"s times. This can be said
only if we introduce the notion of what is reasonable to expect, and
say that on each occasion all deals are equally likely. If this is done
the result is what we want, but unfortunately the whole object of the
definition is to avoid this notion. Without it, and using only pure
mathematics and ‘objectivity’, which has not been defined, I may get
the ace of spades anything from 0 to n times, and there is no more to
be said. Indeed, why should we not say that there are n4-1 possible
cases, of which those from m, to mg are my,—m, -1, and the probability
that I shall get the ace of spades from m, to m, times is
(mo—my+ 1)/ (n+1)?
Either procedure would be legitimate in terms of the definition. The
only reason for taking the former and not the latter is that we do con-
sider all deals equally likely, and not all values of 7. But unfortunately
the users of the definition have rejected the notion of ‘equally likely’,
and without it the result is ambiguous, and also useless in.any case.
For continuous distributions there are an infinite number of possible
cases, and the definition makes the probability, on the face of it, the
ratio of two infinite numbers and therefore meaningless. Neyman and
Cramér try to avoid this by considering the probability as the ratio of
the measures of sets of points. But the measure of a continuous set is
ambiguous until it is separately defined. If the members can be specified
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by associating them with the values of a continuous variable z, then
they can be specified by those of any monotonic function f(x) of that
variable. The theory of continuity does not specify any particular
measure, but merely that some measure exists and therefore that an
infinite number of possible measures do. x,—z, and f(x,)—f(z,) are
both possible measures of the interval between two points, and are not
in general in proportion. We cannot speak of the value of a probability
on this definition until we have specified how the measure is to be
taken. A pure mathematician, asked how to take it, would say: ‘It
doesn’t matter; I propose to restrict myself to theorems that are true
for all ways of taking it.” But unfortunately the statistician does not
so restrict himself; he decides on one particular way, his theorems would
be false for any other, and the reason for choosing that way is not
explained. It is not even the obvious way. Where x is a continuous
variable it would seem natural to take the interval between any two
points as the measure, and if its range is infinite the probability for
any finite range would be zero The asscssment for the normal law of
error is not taken as the interval but as the integral of the law over
the interval, and this integral becomes a probability, in the sense stated,
only by deriving the law in a very circuitous way from the dubious
hypotheses used to explain it. The measure chosen is not the only one
possible, and is not the physical measure. But in modern theories of
integration the measure does appear to be the physical measure, at
any rate pure mathematicians are willing to consider variables with an
infinite range.

Even where the definition is unambiguous, as for the cases of dice-
throwing and of the offspring of two heterozygous parents, its users
would not accept its results. They would proceed by stating some limit
of divergence from the most probable result and rejecting the hypo-
thesis if the divergence comes beyond this limit. In these two cases
they would, in fact, accept the experimental results But this is a con-
tradiction. The definition is a mathematical convention involving no
hypothesis at all except that a certain number of cases are possible,
and the experimental results show that these cases have occurred, the
hypothesis is true. Therefore the original assessment of the probability
stands without alteration, and to drop it for any other value is o con-
tradiction. Therefore I say that this definition is never used even by
its advocates, it is set up and forgotten before the ink is diy The
notion that they actually use is not defined, and as the results obtained
are closely in agreement with those given by the notion of reasonable
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degree of belief the presumption, until more evidence is available, is
that this notion is used unconsciously.

Of all the theories advocated, it is the upholders of this one that
insist most on mathematical rigour, and they do, in fact, appear mostly
to have a considerable command of modern mathematical technique
But when the assessments have to be made by some principle not stated
in the definitions, and are often flatly contradictory to the definitions,
and when the application of the final result requires an interpretation
different from that given by the definitions, the claim that the elaborate
use of ¢, 0 (n—'2), and ‘almost everywhere’ in the intermediate stages adds
anything to the rigour is on the same level as a claim that a building is
strengthened by fastening a steel tie-beam into plaster at each end

7.03. With regard to the second and third definitions, we must
remember our general criteria with regard to a theory. Does it actually
reduce the number of postulates, and can it be applied in practice?
Now these definitions plainly do not satisfy the second criterion. No
probability has ever been assessed in practice, or ever will be, by
counting an infinite number of trials or finding the limit of a ratio
in an infinite series. Unlike the first definition, which gave either an
unacceptable assessment or numerous different assessments, these two
give none at all. A definite value is got on them only by making a
hypothesis about what the result would be. The proof even of the
existence is impossible. On the limit definition, without some rule
restricting the possible orders of occurrence, there might be no limit
at all. The existence of the limit is taken as a postulate by Mises,
whereas Venn hardly considered it as needing a postulate.f Thus there
is no saving of hypotheses in any case, and the necessary existence of
the limit denies the possibility of complete randomness, which would
permit the ratio in an infinite series to tend to no limit. The postulate
is an a priori statement about possible experiments and is in itself
objectionable.

On the infinite population definition, any finite probability is the ratio
of two infinite numbers and therefore is indeterminate { Thus these

t Cf R Leslie Ellis, Camb Phil Trans 8, 1849, 2 ‘For my«elf, after giving a painful
degree of attention to the point, I have Leen unable to sever the judgment that one event
is more likely to happen than another, or that it is to be expected in preference to it,
from the belief that in the long run it will occur more frequently  Consider a biased
coin, where we have no information about which way the bias is until wo havo experi-
mented At the outset neither a head nor a tail is more likely than the other at the
first throw Therefore, according to the statement, in a long series of throws heads
and tails will occur equally often This is false whichever wav the bias is

t W Burnside, Proc Camb Phil Soc 22, 1925, 726-7, Phil Mag 1, 1926, 670 -4



374 FREQUENCY DEFINITIONS AND DIRECT METHODS VI, §7.0

definitions are useless for our purpose because they do not define; the
existence of the quantity defined has to be taken as a postulate, and
then the definitions tell us nothing about its value or its properties,
which must be the subject of further postulates. From the point of
view of reducing the number of postulates they give no advantage over
the use of chance as a primitive notion; their only purpose is to give
a meaning to chance, but they never give its actual value because
the experiments contemplated in them cannot be carried out, and the
existence has no practical use without the actual value. In practice
those who state them do obtain quantitative results, but these are never
found in terms of the definition. They are found by stating possible
values or distributions of chance, applying the product and addition
rules, and comparing with observations. In fact the definitions appear
only at the beginning and are never heard of again, the rest of the work
being done in terms of rules derivable from the notion of reasonable
degree of belief; the rules cannot be proved from the definitions stated
but require further postulates.

The Venn limit and the infinite population do not involve the incon-
sistency that is involved in the first definition when, for instance, bias
of dice is asserted; since they do not specify a priori what the limit or
the ratio must be, they make it possible to alter the estimate of it with-
out contradiction. Venn,} considering the product rule, stated it in
terms of ‘cross-series’. If we consider an infinite series of propositions
all entailing r, P(p|r) and P(pq |r) would be defined by the limits of
ratios in this series, but P(q | pr) requires the notion of an infinite series
all implying p and r, and of a limiting ratio for the cases of ¢ in this
series. If the series used is the actual one used in assessing P(p|r),
the product rule follows by algebra, but that does not prove that all
series satisfying p and r will give the same limiting ratio for ¢, or indeed
any limit. The existence of the limit and its uniqueness must be
assumed separately in every instance. Mises takes them as postulates,
and the question remains whether to take them as postulates is not
equivalent to denying the possibility of randomness. With the defini-
tion in terms of an infinite population the product rule cannot even be
proved in the limited sense given by the Venn definition, and must
be taken as a separate postulate. Thus both definitions require the
existence of probabilities and the product rule to be taken as postulates,
and save no hypotheses in comparison with the treatment based on the
notion of degree of reasonable belief. The value of the quantity defined

t The Logic of Chance, 1866, pp 162 et seq.
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on them cannot be found from the definitions in any actual case.
Degree of reasonable belief is at any rate accessible, and at the least
it provides some justification of the product rule by pointing to a class
of cases where it can be proved.

1t is proved in 2.13 that, in specified conditions, the limit probably
exists. But this proof is in terms of the notion of degree of reasonable
belief and must be rejected by anybody that rejects that notion. He
must deal with the fact that in terms of the definition of randomness
the ratio may tend to any limit or no limit, and must deal with it in
terms of pure mathematics.

Fisher’s definition becomes workable if the infinite population is
replaced by a large finite population. The addition and product rules
could then be proved. The difficulty that the possible ratios would
depend on the number in the population would be trivial if the popula-
tion is large compared with the sample; the trouble about the infinite
population is that it is precisely when it becomes infinite that the ratios
become indefinite. Such a definition avoids the difficulty of the De
Moivre definition about the different possible ways of stating the unit
alternatives. The numbers in the population would be defined as those
that would be obtained, in the conditions of the experiment, in the
given number of trials, and might well be unique. But there would
still be some difficulties, since the actual set of observations would still
have to be regarded as a random sample from the population, and the
notion of ‘equally probable’ would enter through the notion of random-
ness; it is also doubtful whether this notion could be applied validly
to what must in any case be the first sample.

Many physicists make some such statement as ‘probability deals only
with large numbers. Life is proverbially uncertain, but nothing is more
certain than the solvency of an insurance company.’ This is wholly
misleading. The insurance company at any tirne has a finite number
of people on its books; its rates are based on vital statistics, all based on
finite sets of cases. The suggestion that insurance companies are con-
cerned with infinite classes or series is monstrous. An individual, on the
other hand, has to decide what sort of policy will suit his needs best, and
he is concerned with his own probability of living a certain time. If this
sort of probability is held to be meaningless, it is a fair question to ask
at precisely what number of cases the line should be drawn; without
some such criterion the distinction is itself meaningless.

7.04. It appears to be claimed sometimes that the three definitions
are equivalent. This is not so. For dice-throwing the first gives the
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chance of a 5 or a 6 unambiguously as }, but the users of all three would
usually adopt the experimental result as an approximation, and it is
appreciably larger—at any rate they would expect the limit in an
indefinitely extended series to be more than }. The first and second
definitions can be made equivalent only by assuming the existence of
the limit and then treating the experimental result as irrelevant to its
value. It is also sometimes stated that it is known by experiment that
the Venn limit is identical with the ratio given by the first definition
This is simply false; and though this claim is sometimes made by good
mathematicians it appears that they must have temporarily forgotten
the nature of a mathematical limit The actual number of trials is
always finite, and in the mathematical sense gives no information
whatever about the result of an infinite series, unless the law connecting
successive terms is given, and there is no such law for random selection.
It has been argued that for a finite population, sampled without replace-
ment, the limit must be in the ratio in the population. This is true, but
it gives no meaning to the statement that the ratio in m trials is likely to
agree with that in the population to order m~"2. If the selection con-
sisted of picking out all members of one type before proceeding to the
other, the first statement would be true, but the second would be hope-
lessly wrong, and it is the second that we need for any useful theory.
For sampling with replacement, even with a finite population, there is
no logical proof that we shall not go on picking the same member for
ever. This is relevant to the argument concerning hands at cards. The
usual assessment of the chance of getting the ace m times in n deals
receives an attempted justification from the fact that we should get it
in just this ratio if we got each possible deal once and once only But,
unfortunately the conditions refer to sampling with replacement Long
befcre some deals had occurred some of the earlier ones would have
occurred many times, and the argument cannot be applied. The
difficulty will be appreciated by those who have tried to obtain a
complete set of cards, one by one, from cigarette packets each con-
taining one. A dozen of one card may be obtained before some others
have appeared at all.

Some doubt is apparently felt by the advocates of these definitions,
who are liable to say when challenged on a particular mathematical
point that the statement is ‘reasonable’ But this gives away the entire
case. The only excuse for the definitions is that they exclude the notion of
‘reasonable’ in contrast to ‘mathematically proved’, and they therefore
tnvite challenge on mathematical grounds If an actual mathematical
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proof t be given, showing that a different result is simply impossible,
the result s not proved To say then that it is reasonable is mathematically
meaningless, and grants that ‘r ble’ has a ing, which is indis-
pensable to the theory, and which is neither a mathematical nor an objective
meaning. If it follows assignable rules they should be stated, which is
what has been done here, if it does not, my Axiom 1 is rejected, and it
is declared that it is reasonable to say, on the same data, both that p is
more probable than ¢ and ¢ more probable than p. Curiously, however,
the extreme tolerance expressed in such an attitude does not appear to
be borne out in practice. The statistical journals are full of papers each
maintaining, if not that the author’s method is the only reasonable
one, that somebody else’s is not reasonable at all.

7.05. The most serious drawback of these definitions, however, is
the deliberate omission to give any meaning to the probability of a
hypothesis. All that they can do is to set up a hypothesis and give
arbitrary rules for rejecting it in certain circumstances. They do not
say what hypothesis should replace it in the event of rejection, and there
is no proof that the rules are the best in any sense. The scientific law is
thus (apparently) made useless for purposes of inference. It is merely
something set up like a coconut to stand until it is hit, an inference
from it means nothing, because these treatments do not assert that
there is any reason to suppose the law to be true, and it thus becomes
indistinguishable from a guess. Nevertheless in practice much con-
fidence is placed in these inferences, if not by statisticians themselves,
at least by the practical men that consult them for advice. I maintain
that the practical man is right, it is the statistician’s agnosticism that
is wrong. The statistician’s attitude is, of course, opposite to that of the
applied mathematician, who asserts that his laws are definitely proved.
But an intermediate attitude that recognizes the validity of the notion
of the probability of a law avoids both difficulties.

The actual procedure is usually independent of the definitions. A
distribution of chance is set up as a hypothesis, and more complicated
probabilities are derived from it by means of the addition and product
rules. 1 have no criticism of this part of the work, since the distribution
is always at the very least a suggestion worth investigation, and the
two rules appear also in my theory. But the answer is necessarily in the
form of a distribution of the chance of different sets of observations,
given the same hypothesis. The practical problem is the inverse one;
we have a unique set of observations and the problem is to decide
between different hypotheses by means of it. The transition from one to
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the other necessarily involves some new principle. Even in pure mathe-
matics we have this sort of ambiguity. If z =1, it follows that
z?+x—2 = 0. But if 22-+2—2 = 0, it does not follow that x = 1. It
would if we had the supplementary information that z is positive. In
the probability problem the difficulty is greater, because in any use of
a given set of observations to choose between different laws, or differ-
ent values of parameters in the same law, we are making a selection out
of a range, usually continuous, of possible values of the parameters,
between which there is originally usually little to choose. (On the Venn
and Fisher definitions this would mean a decision of which series or
which population is to be chosen out of a super-population.) The actual
selection must involve some principle that is not included in the direct
treatment. The principle of inverse probability carries the transition
out formally, the prior probability being chosen to express the previous
information or lack of it. Rejecting the restriction of probabilities to
those of observations given hypotheses and applying the rules to the
probabilities of hypotheses themselves, the principle of inverse proba-
bility is a theorem, being an immediate consequence of the product
rule. No new hypothesis is needed. But the restriction spoken of makes
some new hypothesis necessary, and we must examine what this is.

7.1. ‘Student’s’ treatment of the problem of the uncertainty of the
mean of a set of observations derived from the normal law provides
an interesting illustration, and has the further merit of being accepted
by all schools. The result actually proved is 2.8(18),

P(dz|z,0,H) ¢ (14+22)"endz, (1)
where 2 and o are the true value and standard error, supposed known,
and if Z and s are the mean and standard deviation of the observations,

z—F
= (2)

My result is, 3.41(6),

P(dz|6H) oc (1+22)-"endz, (3)
which, since the right side involves the observations only through Z and
s, leads, by the principle of the suppression of irrelevant data (1.7), to

P(dz|Z,s, H) o (1422)~"hndyz, (4)
This is not the same thing as (1) since the data are different. The usual
way of stating (1) speaks of the probability of a proposition by itself
without explicit mention of the data, and we have seen how confusing
assessments on different data may lead to grossly wrong results even
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in very simple direct problems. In a case analogous to this we may note
that the probability that Mr. Smith is dead to-day, given that he had
smallpox last week, is not the same as the probability that he had small-
pox last week, given that he is dead to-day. But here if we interpret (1)
to mean (4) we get the correct posterior probability distribution for z
given Z and s, and this is what in fact is done. But (1) certainly does
not mean (4), and we must examine in what conditions it can imply it.
We notice first that the inclusion of any information about Z# and s in
the data in (1), other than the information already given in the state-
ment of #, o, and H (the latter involving the truth of the normal law),
would make it false. For the assessment on information including the
exact value of either Z or s would no longer depend on z alone, but
would involve the value of x—% or of s/a explicitly. For intermediate
amounts of information other parameters would appear, and would
appear in the answer. Thus we cannot proceed by including Z and s in
the data in (1) and then suppressing z and o as irrelevant to get (4);
for if we did this the probability of dz would be unity for all ranges
that included the actual value and zero for all others.

But we notice that in (1) the values of z and o are irrelevant to 2,
and can therefore be suppressed, by Theorem 11, to give

P(dz | H) oc (1422)-"endz, (5)
since the conditions of observation H entail the existence of # and s,
« and o, and this is the vital step. On the face of it this says nothing,
for z has no value unless the quantities z, £, and s are given. But just
for that reason it is now possible that if we now introduce Z and s into
the data the form will be unaltered. The argument is apparently that
the location of the probability distribution of z, given & and s, must
depend only on £, and its scale must depend only on s. But this amounts
to saying that P(dz|%,s,H) = [ (2) dz; (6)
and since Z and s are irrelevant to z they can be suppressed, and the
left side reduces to P(dz|H), which is known from (5). Thus the
result (4) follows.

Something equivalent to the above seems to have been appreciated
by ‘Student’, though it cannot be expressed in his notation. But we
must notice that it involves two hypotheses: first, that nothing in the
observations but £ and s is relevant; secondly, that whatever they may
be in actual observations we are at full liberty to displace or rescale
the distribution in accordance with them. The first is perhaps natural,
but it is desirable to keep the number of hypotheses as small as possible,
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whether they are natural or not, and the result is proved by the principle
of inverse probability. The second can mean only one thing, that the
true value x and the standard error o are initially completely unknown.
If we had any information about them we should not be permitted to
adjust the distribution indefinitely in accordance with the results of one
set of observations, and (8) would not hold. ‘Student’ indeed noticed
this, for his original tablest are entitled ‘Tables for estimating the
probability that the mean of a unique sample of observations lie
between —oco and any given distance of the mean of the population
from which the sample is drawn’. There is no particular virtue in the
word ‘unique’ if the probability is on data 2, o, H, the rule (1) would
apply to every sample separately. But when the problem is to proceed
from the sample to # uniqueness is important. If H contained informa-
tion from a previous sample, this would not affect (1), since, given z
and ¢, any further information about them would tell us nothing new.
But it would affect the transition from (1) to (5), and this would' be
recognized in practice by combining the samples and basing the esti-
mate on the two together. ‘Student’ called my attention to the vital
word just after the publication of a paper of mine on the subject,}
showing that he had in fact clearly noticed the necessity of the condition
that the sample considered must constitute our only information about
z and o. The conditions contemplated by him are in fact completely
identical with mine, and he recognized the essential point, that the
usefulness of the result depends on the particular state of previous
knowledge, namely, absence of knowledge.

It can be shown further that if we take (4) as giving the correct
posterior probability of , there is only one distribution of the prior
probability that can lead to it, namely

P(dxdo | H) oc dxdo/o. (7)
For the result implies that the most probable value of x is the mean,
and that for two observations there is a probability } that x lies between
them But the former implies a uniform prior probability distribution
for z, and the latter, by 3 8, implies the do/o rule.§ Given this my
argument in 3 4 follows. The irrelevance of information in the sample
other than # and s holds for all assessments of the prior probability.
Hence the hypotheses made by ‘Student’ are completely equivalent to
mine, they have merely been introduced in a different order.

1 Biometrika, 11, 1917, 414

1 Proc Roy Soc A, 160, 1937, 325-48
§ A proof adapted to the normal law of error is givon in my paper just mentioned
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Similar considerations affect Fisher’s fiducial argument. Speaking of
‘Student’s’ rule, he says.t ‘It must now be noticed that ¢ is a continuous
function of the unknown parameter, the mean, together with observable
values %, s, and 7, only. Consequently the inequality

t>t
is equivalent to the inequality

p < F—st/Vn

so that this last must be satisfied with the same probability as the first.
... We may state the probability that p is less than any assigned value,
or the probability that it lies between any assigned values, or, in short,
its probability distribution, in the light of the sample observed.” The
innocent-looking mathematical transformation, however, covers the
passage from data z and o to data & and s (Fisher’s p being my x)
which the notation used is not adequate to express. The original assess-
ment was on data including p, and if these were still being used the
probability that p is in a particular range is 1 if the range includes
the known value and 0 if it does not. The argument therefore needs the
same elaboration as was applied above to that of ‘Student’. It may be
noticed that in speaking of the probability distribution of p in the light
of the sample Fisher has apparently abandoned the restriction of the
meaning of probability to direct probabilities; different values of u are
different hypotheses and he is speaking of their probabilities on the data,
apparently, in precisely the same sense as I should. He does criticize the
use of the prior probability in the same paper, but he appears to under-
stand by it something quite different from what I do. My only criticism
of both his argument and ‘Student’s’ is that they omit important steps,
which need considerable elaboration, and that when these are given the
arguments are much longer than those got by introducing the prior
probability to express previous ignorance at the start.

Fisher heads a section in his book} “The significance of the mean of
a unique sample’ and proceeds. ‘If z,, z,,.. , z, is a sample of »n’ values
of a variate z, and if this sample constitutes the whole of the informa-
tion on the point in question, then we may test whether the mean of z
differs significantly from zero by calculating the statistics. . . ." Here
we have the essential point made perfectly explicit. The test is not
independent of previous knowledge, as Fisher is liable to say in other
places, it is to be used only where there is no relevant previous know-

t Ann Eugen 6, 1935, 392
1 Statistical Methods, 1936, p. 125
ce
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ledge. ‘No previous knowledge’ and ‘any conditions of previous know-
ledge’ differ as much as ‘no money’ and ‘any amount of money’ do.

7.11. A different way of justifying the practical use of the rule with-
out speaking of the probability of different values of z is as follows. Since
P(dz |z, 0, H)is independent of # and 0, and of all previous observations,
it is a chance. If we take an enormous number of samples of number #,
the fraction with z between two assigned values will approximate to the
integral of the law between them, by Bernoulli’s theorem.

This will be true whether x and ¢ are always the same or vary from
one sample to another. Then we can apparently say that actual values
of z will be distributed in proportion to the integrals of (14-22)-"#" and
regard actual samples as a selection from this population; then the proba-
bilities of errors greater than +zs will be assigned in the correct ratio
by the rule that the most probable sample is a fair sample. The trouble
about the argument, however, is that it would hold equally well if =
and o were the same every time. If we proceed to say that z lies between
Z40-75s in every sample of ten observations that we make, we shall be
wrong in about 5 per cent. of the cases, irrespective of whether x is the
same every time or not, or of whether we know it or not. It is suggested
that we should habitually reject a suggested value of 2 by some such
rule as this, but applying this in practice would imply that if  was
known to be always the same we must accept it in 95 per cent. and
reject it in 5 per cent. of the cases, which hardly seems a satisfactory
state of aflairs. There is no positive virtue in rejecting a hypothesis in
5 per cent. of the cases where it is true, though it may be inevitable,
if we are to have any rule at all for rejecting it when it is false, that we
shall sometimes reject it when it is true. In practice nobody would use the
rule in this way if # was always the same; samples would always be com-
bined. Thus, whatever may be recommended in theory, the statistician
does allow for previous knowledge by the rather drastic means of restrict-
ing the range of hypotheses that he is willing to consider at all. The rule
recommended would be used only when there is no previous information
relevant to z and o. Incidentally Bernoulli’s theorem, interpreted to give
an inference about what will happen in a large number of trials, cannot
be proved from a frequency definition, and the passage to an inference in
a single case, which is the usual practical problem, still needs the notion
of degree of reasonable belief, which therefore has to be used twice.

Some hypothesis is needed in any case to enable us to proceed from a
comparison of different sets of data on the same hypothesis to a com-
parison of different hypotheses on the same data; no discredit is there-
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fore to be attached to ‘Student’ for making one. It cannot, however,
be claimed legitimately that the argument is independent of previous
knowledge. It would be valid only in the special case where there is no
previous knowledge about x and o, and would not be used in practice
in any other. The hypothesis that, given H but no information about
z and o other than that provided by # and s, # and s are irrelevant to z
is essential to the argument. It may be accepted as reasonable, but it is
none the less a hypothesis.

Fisher has recently maintained, in what looks like a last desperate
attempt, that it is obvious that the two are identical. This would be
equivalent, in the present language, to saying that all prior probabilities
are equal, and therefore, since different hypotheses might have equal
likelihoods for particular data, that probabilities of hypotheses do not
follow the addition rule. But his chief point is irrelevance of previous
information, and a remark of E. B. Wilsont disposes of this at once.
‘If maximum likelihood is the only criterion the inference from the
throw of a head would be that the coin is two-headed.’

7.2. An enigmatic position in the history of the theory of probability
is occupied by Karl Pearson. His best-appreciated contributions in
principle are perhaps the invention of x2, the introduction of the product
moment formula to estimate the correlation coefficient, and the Pearson
types of error law; besides of course an enormous number of applica-
tions to special subjects. I should add to these the Grammar of Science,
which remains the outstanding general work on scientific method, and
the recognition in it that the Bayes-Laplace uniform assessment of the
prior probability is not final, but can be revised to take account of
previous information about the values that have occurred in the past
in analogous problems. The anomalous feature of his work is that
though he always maintained the principle of inverse probability, and
made this important advance, he seldom used it in actual applications,
and usually presented his results in a form that appears to identify
a probability with a frequency. In particular his numerous tables of
chances are mostly entitled frequencies. In determining the parameters
of laws of his own types from observations he did not use inverse
probability, and when Fisher introduced maximum likelihood, which
is practically indistinguishable from inverse probability in estimation
problems, Pearson continued to use the method of moments. A possible
reason for this that many would appreciate is that complete tables

1 An Introduction to Scientific Research, McGraw-Hill, 1952



384 FREQUENCY DEFINITIONS AND DIRECT METHODS VII, §72

for fitting by moments were already available, and that the fitting of
a law with four adjustable parameters by maximum likelihood is not a
matter to be undertaken lightly when sufficient statistics do not exist.
But Pearson in his very last paper maintained that the method of
moments was not merely easier than maximum likelihood, but actually
gave a better result. He also never seems to have seen the full impor-
tance of y? itself. When the data are observed numbers, he showed
that the probability of the numbers, given a law, is proportional to
exp(-—4x?) with a third-order error. Thus the equivalence of maximum
likelihood and minimum x? was Pearson’s result, and the close equiva-
lence of maximum likelihood and inverse probability in estimation
problems is so easy to show that it is remarkable that Pearson over-
looked it. Most of the labour of computing the likeiihood is avoided
if x* is used instead, though there are complications when some of the
expectations are very small, but even these are avoided by the treat-
ment of 4 2 Fisher repeatedly drew atiention to the relation between
maximum likelihood and minimum x?, but Pearson never accepted the
consequence that if he used the latter he would have had a convenient
method, more accurate than the method of moments, and justified by
principles that he himself had stated repeatedly.

In practice Pearson used x? only as a significance test His method,
if there were n groups of observations, was to compute the complete x*
for the data, in comparison with the law being tested If m parameters
had been found from the data, he would form the integral

@ o
P(xt) = [ xromete-tex dX/ [ xr-m-te=tex ay,
X 0

which is the probability, given a law, that the x? formed from n—m
random variations in comparison with their standard errors would
exceed the observed value. (In his earlier use of x? he allowed only
tor one adjustable parameter, the whole number of observations, the
need to allow for all was pointed out by Fishert and emphasized by
Yule }) If P was less than some standard value, say 0-05 or 0 01, the
law considered was rejected Now it is with regard to this use of P
that I differ from all the present statistical schools, and detailed atten-
tion to what it means is needed. The fundamental idea, and one that
I should naturally accept, is that a law should not be accepted on data
that themselves show large departures from its predictions. But this
requires a quantitative criterion of what is to be considered a large

t J R Stat Soc 85, 1922, 87-94 1 Ibid, pp 95-106
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departure. The probability of getting the whole of an actual set of
observations, given the law, is ridiculously small. Thus for frequencies
2.74 (6) shows that the probability of getting the observed numbers, in
any order, decreases with the number of observations like (27 N)~"@w-1.
for x2 = 0 and like (27rNe)~4P-D for y? = p—1, the latter being near
the expected value of x2 The probability of getting them in their
actual order requires division by N'. If mere improbability of the
observations, given the hypothesis, was the criterion, any hypothesis
whatever would be rejected Everybody rejects the conclusion, but
thus can mean only that improbability of the observations, given the
hypothesis, is not the criterion, and some other must be provided. The
principle of inverse probability does this at once, because it contains an
adjustable factor common to all hypotheses, and the small factors in
the likelihood simply combine with this and cancel when hypotheses
are compared But without it some other criterion is still necessary,
or any alternative hypothesis would be immediately rejected also

Now the P integral does provide one. The constant small factor is
rejected, for no apparent reason when inverse probability is not used,
and the probability of the observations is replaced by that of x* alone,
one particular function of them Then the probability of getting the
same or a larger value of x? by accident, given the hypothesis, is com-
puted by integration to give P If x* is equal to its expectation sup-
posing the hypothesis true, I’ is about U 5 If x? excceds its expectation
substantially, we can say that the value would have been unlikely to
oceur had the law been tiue. and shali naturally suspect that the law

is false. So much is clear enough If P is small, that means that there
have been unexpectedly large departures trom prediction But why
should these be stated in terms of 22? The latter gives the probability
of departures, measured in a particular way, equal to or greater than
the observed set, and the contribution irom the actual value is nearly
always negligible What the use of P wmplies, therefore, is that a hypo-
thests that may be true may be rejected because it has not predicted observable
results that have not occurred. This seems a remarkable procedure. On
the face of it the fact that such results have not occurred might more
reasonably be taken as evidence for the law, not against it. The same
applies to all the current significance tests based on P integrals |

1 On the other hand, Yates (J B Stat Soc, Suppl 1, 1934, 217-35) recommends, in
testing whether a small froquoncy n, is consistent with expectation, that x? should be
caleulatod as if this frequency was o, 1§ instead of n,, and thereby mahos the actual
value contribute largely to > This is also recommended by Fisher (Statistical Methods,
p 98) It only remains for them to agree that nothing but the actual value is relevant

8695 110
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The use of the integral goes back to Chauvenet’s criterion for reject-
ing observations. This proceeded as follows. Let P(m) be the chance on
the normal law of an error greater than mo. Then the chance that all
of n errors will be less than mo is {1—P(m)}*, and the chance that
there will be at least one greater than mo is 1—{1— P(m)}*. The first
estimate of the true value and standard error were used to find the
chance that there would be at least one residual larger than the largest
actually found. If this was greater than } the observation was rejected,
and a mean and a standard error were found from the rest and the
process repeated until none were rejected. Thus on this method there
would be an even chance of rejecting the extreme observation even if
the normal law was true. If such a rule was used now the limit would
probably be drawn at a larger value, but the principle remains, that an
observation that might be normal is rejected because other observa-
tions not predicted by the law have not occurred. Something might be
said for rejecting the extreme observation if the law gave a small chance
of a residual exceeding the second largest; then indeed something not
predicted by the law might be said to have occurred, but to apply such
a rule to the largest observation is wrong in principle. (Even if the
normal law does not hold, rejection of observations and treating the
rest as derived from the normal law is not the best method, and may
give a spurious accuracy, but the question here concerns the decision
as to whether the normal law applies to all the n observations.)

It must be said that the method fulfils a practical need; but there
was no need for the paradoxical use of P. The need arose from the fact
that in estimating new parameters the current methods of estimation
ordinarily gave results different from zero, but it was habitually found
that those up to about twice the standard error tended to diminish
when the observations became more numerous or accurate, which was
what would be expected if the differences represented only random
error, but not what would be expected if they were estimates of a
relevant new parameter. But this could be dealt with in a rough
empirical way by taking twice the standard error as a criterion for
possible genuineness and three times the standard error for definite
acceptance. This would rest on a valid inductive inference from analo-
gous cases, though not necessarily the best one. Now this would mean
that the former limit would be drawn where the joint probability of
the observations is e-2 of the value for the most probable result, sup-
posing no difference present, and the latter at e-45. This would depend
on the probability of the actual observations and thus on the ordinate



VII, §7.2 FREQUENCY DEFINITIONS AND DIRECT METHODS 387

of the direct probability distribution, not on the integral. The ordinate
does depend on the hypothesis and the observed value, and nothing
else. Further, since nearly all the more accurate tests introduced since
have depended on the use of distributions that are nearly normal in
the range that matters, there would be a natural extension in each case,
namely to draw the two lines where the ordinates are e~2 and e~*5 times
those at the maximum. The practical difference would not be great,
because in the normal distribution, for instance, for x large and positive,

1 f exp(———x—z—) dz ~A/(g)gexp(—x—2)
J(2n)o 202 )z 20?
x

and the exponential factor varies much more rapidly than . The use
of a standard value for the ordinate rather than P would give practically
the same decisions in all such cases. Its choice, however, would rest
on inductive evidence, which could be stated, there would be no need
for the apparently arbitrary choice of fixed limits for P, or for the
paradox in the use of P at all.

Some feeling for the ordinate seems to lie behind the remarks (see
5.63) of Yule and Kendall and Fisher on the subject of suspiciously small
x? and P very near 1. It is hard to understand these if P is taken as the
sole criterion, but they become comprehensible at once if the ordinate is
taken as the criterion, P very near 1 does correspond to a small ordinate.

7.21. It should be said that several of the P integrals have a definite
place in the present theory, in problems of pure estimation. For the
normal law with a known standard error, or for those sampling problems
that reduce to it, the total area of the tail represents the probability,
given the data, that the estimated difference has the wrong sign—pro-
vided that there is no question whether the difference is zero. (If some
previous suggestion of a specific value of a parameter is to be considered
at all, it must be disposed of by a significance test before any question
of estimating any other value arises. Then, strictly speaking, if the
adjustable parameter is supported by the data the test gives its posterior
probability as a by-product.) Similarly, the ¢ rule gives the complete
posterior probability distribution of a quantity to be estimated from
the data, provided again that there is no doubt initially about its
relevance; and the integral gives the probability that it is more or less
than some assigned value. The z rule also gives the probability distribu-
tion of the scatter of a new set of observations or of means of observa-
tions, given an existing set. These are all problems of pure estimation.
But their use as significance tests covers a looseness of statement of
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what question is being asked. They give the correct answer if the
question is If there is nothing to require consideration of some special
values of the parameter, what is the probability distribution of that
parameter given the observations? But the question that concerns us
in significance tests is* If some special value has to be excluded before
we can assert any other value, what is the best rule, on the data avail-
able, for deciding whether to retain it or adopt a new one? The former
is what I call a problem of estimation, the latter of significance. Some
feeling of discomfort seems to attach itself to the assertion of the
special value as reght, since it may be slightly wrong but not sufficiently
to be revealed by a test on the data available, but no significance test
asserts it as certainly right. We are aiming at the best way of progress,
not at the unattainable ideal of immediate certainty. What happens
if the null hypothesis is retained after a significance test is that the
maximum likelihood solution or a solution given by some other method
of estimation is rejected. The question is, When we do this, do we
expeet thereby to get more or less correct inferences than if we followed
the rule of keeping the estimation solution regardless of any question
of significance? I maintain that the only possible answer is that we
expect to get more. The difference as estimated is interpreted as random
error and irrelevant to future observations. In the last resort, if this
interpretation is rejected, there is no escape from the admission that
a new parameter may be needed for every observation, and then all
combination of observations is meaningless, and the only valid presenta-
tion of data is a mere catalogue without any summaries at all.

If any concession is to be made to the opinion that a new parameter
rejected by a significance test is probably not zero, it can be only that
it is considerably less than the standard error given by the test; but
there is no way of stating this sufficiently precisely to be of any use.

The use of the P integral in significance tests, however, merely
expresses a feeling that some standard is required. In itself it is falla-
cious because it rejects a hypothesis on account of observations that
have not occurred its only justification is that it gives some sort of
a standard which works reasonably well in practice, but there is not
the slightest reason to suppose that it gives the best standard Fisher
writes, T speaking of the normal law ‘The value for which P = 0 05,
or 1in 20, is 1 96 or nearly 2, it is convenient to take this point as a
limit in judging whether a deviation is to be considered significant or
not Deviations exceeding twice the standard error are thus formally

t Statistical Methods, p. 46.



VIIL, §7.2 FREQUENCY DEFINITIONS AND DIRECT METHODS 389

regarded as significant. Using this criterion we should be led to follow
up a false indication only once in 22 trials, even if the statistics were
the only guide available. Small effects will still escape notice if the data
are insufficiently numerous to bring them out, but no lowering of the
standard of significance would meet this difficulty.” Convenient is
Fisher’s word; there is no claim that the criterion is the best. But the
idea that the best limit can be drawn at some unique value of P has
somehow crept into the literature, without apparently the slightest
attempt at a justification or any ground for saying what the best value is.

The distinction between problems of estimation and significance arises
in biological applications, though I have naturally tended to speak
mainly of physical ones. Suppose that a Mendelian finds in a breeding
experiment 459 members of one type, 137 of the other The expecta-
tions on the basis of a 3:1 ratio would be 447 and 149. The difference
would be declared not significant by any test. But the attitude that
refuses to attach any meaning to the statement that the simple rule
is right must apparently say that if any predictions are to be made
from the observations the best that can be done is to make them on
the basis of the ratio 459/137, with allowance for the uncertainty of
sampling. I say that the best is to use the 3/1 rule, considering no
uncertainty beyond the sampling errors of the new experiments. In fact
the latter is what a geneticist would do. The observed result would be
recorded and might possibly be reconsidered at a later stage if there was
some question of differences of viability after many more observations
had accumulated, but meanwhile it would be regarded as confirmation
of the theoretical value. This is a problem of what I call significance.

But what are called significance tests in agricultural experiments
seem to me to be very largely problems of pure estimation. When a
set of varieties of a plant are tested for productiveness, or when various
treatments are tested, it does not appear to me that the question of
presence or absence of differences comes into consideration at all. It is
already known that varieties habitually differ and that treatments have
different effects, and the problem is to decide which is the best, that
is, to put the various members, as far as possible, in their correct order.
The design of the experiment is such that the order of magnitude of the
uncertainty of the result can be predicted from similar experiments in
the past, and especially from uniformity trials, and has been chosen so
that any differences large enough to be interesting would be expected
to be revealed on analysis. The experimenter has already a very good
idea of how large a difference needs to be before it can be considered
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to be of practical importance, the design is made so that the uncertainty
will not mask such differences. But then the P integral found from the
difference between the mean yields of two varieties gives correctly the
probability on the data that the estimates are in the wrong order, which
is what is required. If the probability that they are misplaced is under
0-05 we may fairly trust the decision. It is hardly correct in such a case
to say that previous information is not used; on the contrary, previous
information relevant to the orders of magnitude to be compared has
determined the whole design of the experiment. What is not used is
previous information about the differences between the actual effects
sought, usually for the very adequate reason that there is none, and
about the error likely to arise in the particular experiment, which is
only an order of magnitude and by the results found several times in
this book can be treated as previous ignorance as soon as we have
directly relevant information. If there are any genuine questions of
significance in agricultural experiments it seems to me that they must
concern only the higher interactions.

7.22. A further problem that arises in the use of any test that simply
rejects a hypothesis without at the same time considering possible
alternatives is that admirably stated by the Cheshire Cat in the quota-
tion at the head of Chapter V. Is it of the slightest use to reject a
hypothesis until we have some idea of what to put in its place? If
there is no clearly stated alternative, and the null hypothesis is rejected,
we are simply left without any rule at all, whereas the null hypothesis,
though not satisfactory, may at any rate show some sort of corre-
spondence with the facts. It may, for instance, represent 90 per cent.
of the variation and to that extent may be of considerable use in pre-
diction, even though the remaining 10 per cent. may be larger than we
should expect if it was strictly true. Consider, for instance, the history
of the law of gravitation. Newton first derived it from Kepler’s laws
and a comparison of the accelerations of the moon and of a body falling
freely at the earth’s surface. Extending it to take account of the mutual
attractions of the planets and of the perturbations of the moon by
the sun, he got the periods and orders of magnitude of the principal
perturbations. But he did not explain the long inequality of Jupiter
and Saturn, with a period of 880 years, which gives displacements in
longitude of 1196” and 2908” of arc for the two planets,T and was only
explained by Laplace a century later. The theory of the moon has been

1 I am indebted for the values to Mr D H Sadler, they are from G W Hill, Astro-
nomical Papers of the American Ephemeris, vols iv and vii
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taken only in the present century, by E. W. Brown, to a stage where
most of the outstanding errors of calculation can be said to be within the
errorsof observation, there arediscrepancies between observationand cal-
culation that are attributed to changes of the rotation of the earth; but
these discrepancies are our principal ground for believing in the existence
of these changes. In fact agreement with Newton’s law was not given
by the data used to establish it, because these data included the main
inequalities of the moon; it was not given during his lifetime, because
the data included the long inequality of Jupiter and Saturn; and when
Einstein’s modification was adopted the agreement of observation with
Newton’s law was 300 times as good as Newton ever knew. Even the
latter appears at present as powerless as Newton’s to explain the long
empirical term in the moon’s longitude and the secular motion of the
node of Venus.t There has not been a single date in the history of the
law of gravitation when a modern significance test would not have
rejected all laws and left us with no law. Nevertheless the law did lead
to improvement for centuries, and it was only when an alternative was
sufficiently precisely stated to make verifiable predictions that Newton’s
law could be dropped—except of course in the cases where it is still a
valid approximation to Einstein’s, which happen to be most of the cases.
The test required, in fact, is not whether the null hypothesis is altogether
satisfactory, but whether any suggested alternative is likely to give an
improvement in representing future data. If the null hypothesis is not
altogether satisfactory we can still point to the apparent discrepancies
as possibly needing further attention, and attention to their amount
gives an indication of the general magnitude of the errors likely to arise
if it is used; and that is the best we can do.

7.23. The original use of x* involves a further difficulty, which could
occur also in using Fisher’s z, which is the extension of x? to take
account of the uncertainty of the standard error. If we have a set of
frequencies, n—m of which could be altered without producing an
inconsistency with the marginal totals of a contingency table, their
variations could be interpreted as due to n—m possible new functions
in a law of chance, which would then give x* = 0; or they could be due
to a failure of independence, a tendency of observations to occur in
bunches increasing x* systematically without there necessarily being
any departure from proportionality in the chances. We have seen the

t This discrepancy has now been explained in a recalculation by R L Duncombe
(4J 61, 1956, 266-8), but there are now unexplained variations of the motions of
Uranus and Neptune that cannot be satisfactorily explained by any adjustment of
planetary masses (including Pluto’s) (D Brouwer, M N R 4 S. 115, 1955, 221-35)
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importance of this in relation to the annual periodicity of earthquakes.
Similarly, when the data are measures they can be divided into groups
and means taken for the groups. The variation of the group means
can be compared with the variations in the groups to give a value of z.
But this would be increased either by a new function affecting the
measures or by a failure of independence of the errors, which need not
be expressible by a definite function The simple use of x% or of z
would not distinguish between these, each new function or a failure of
independence would give an increase, which might lead to the rejection
of the null hypothesis, but we shall still have nothing to put in its place
until we have tested the various alternatives What is perhaps even
more serious is that with a large number of groups the random variation
of x? on the null hypothesis is considerable, and a systematic variation
that would be detected at once if tested directly may pass as random
through being mixed up with the random error due simply to the arbi-
trary method of grouping (of. 2 76,p 107) Fisher of course has attended
to this point very fully. though some of his enthusiastic admirers seem
to have still overlooked it. Both with x? and z it is desirable to separate
the possible variation into parts when the magnitude of one gives little
or no information about what is to be expected of another, and to
test each part separately. The additive property of x* makes it easily
adaptable for this purpose. Each component of variation makes its
separate contribution to %, and exp(—4y?) separates into factors, so
that the contributions are mutually irrelevant [t is for this reason that
x? and ¢* have appeared eaplicitly in my tests where several new para-
meters are associated. The x? here is not the complete x2, but the
contribution for the possible component variations directly under con-
sideration. Whether the random vaiiation is more or less than its
expectation (so long as it s random) is irrelevant to the test

7.3. The treatment of expectations is another peculiar featuie of
Pearson s work The choice of a set of functions of the observations,
and equating them to the expectations given the law under considera-
tion, is often a convenient way of estimating the parameters Pearson
used it habitually in the method of moments and in other work It is
not necessarily the best method, but it is liable to be the easiest But
it is often very hard to follow in Pearson’s presentations and in those
of some of his followers. It is indeed very difficult on occasion to say
whether in a particular passage Pearson is speaking of a function of the
observations or the expectation that it may be an estimate of. When he
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speaks of a ‘mean’ he sometimes intends the mean of the observations,
sometimes the expectation of one observation given the law, and the
complications become greater for higher moments. The transition from
the function of the observations to the corresponding expectation in-
volves a change of data, which is passed over without mention even when
the use of inverse probability may be recommended a few pages later.

7.4. The general agreement between Professor R. A. Fisher and myself
has been indicated already in many places. The apparent differences
have been much exaggerated owing to a rather unfortunate discussion
some years ago, which was full of misunderstandings on both sides
Fisher thought that a prior probability based on ignorance was meant
to be a statement cf a known frequency, whereas it was meant merely
to be a formal way of stating that ignotance, and I had been insisting
for several years thal no probability is simply a frequency. I thought
that he was attacking the ‘Student’ rule, of which my result for the
general least squares problem was an extension, at the time, to my
regret, I had not read ‘Student’s’ papers and it was not till considerably
later that I saw the intimate relation between his methods and mine.
This discussion no longer, in my opinion, needs any attention. My main
disagreement with Fisher concerns the hypothetical infinite population,
which is a superfluous postulate since it does not avoid the need to
estimate the chance in some other way, and the properties of chance
have still to be assumed since there is no way of proving them. Another
is that, as in the fiducial argument, an inadequate notation enables him,
like ‘Student’, to pass over a number of really difficult steps without,
stating what hypotheses are involved in them The third is the use of
the P integral, but Fisher's alertness for possible dangers is so great
that he has anticipated all the chief ones. I have in fact been struck
repeatedly in my own work, after being led on general principles to a
solution of a probleru, to find that Fisher had already grasped the
essentials by some brilliant piece of common sense, and that his results
would be either identical with mine or would differ only in cases where
we should both be very doubtful As a matter of fact I have applied my
siguificance tests to numerous applications that have also been worked
out by Fisher’s, and have not yet found a disagreement in the actual
decisions reached. The advantage of my treatment, I should say, is
that it shows the relation of these methods among themselves, and to
general principles concerning the possibility of inference, whereas in
Fisher’s they aprarently involve independent postulates. In relation to



394 FREQUENCY DEFINITIONS AND DIRECT METHODS VIIL, §74

some special points, my methods would say rather more for Fisher’s
than he has himself claimed. Thus he claims for maximum hkelihood
only that it gives a systematic error of order less than n-'2 in the
ordinary cases where the standard error is itself of order n-"2. Inverse
probability makes the systematic error of order n~1. He shows also by
a limiting argument that statistics given by the likelihood lead to esti-
mates of the population parameters at least as accurate as those given
by any other statistics, when the number of observations is large.
Inverse probability gives the result immediately without restriction on
the number of observations. The fiducial argument really involves hypo-
theses equivalent to the use of inverse probability, but the introduction
of maximum likelihood appears in most cases to be an independent
postulate in Fisher’s treatment. In mine it is a simple consequence of
general principles. The trouble about taking maximum likelihood as a
primitive postulate, however, is that it would make significance tests
impossible, just as the uniform prior probability would. The maximum
likelihood solution would always be accepted and therefore the simple
law rejected. In actual application, however, Fisher uses a significance
test based on P and avoids the need to reject the simple law whether
it is true or not; thus he gets common-sense results though at the cost
of some sacrifice of consistency. The point may be illustrated by a
remark of W. G. Emmettf to the effect that if an estimated difference
t is less than the adopted limit, it affords no ground for supposing the
true difference to be O rather than 2. If we adopted maximum likelihood
or the uniform prior probability in general there would be no escape
from Emmett’s conclusion; but no practical statistician would accept
it. Any significance test whatever involves the recognition that there is
something special about the value 0, implying that the simple law may
possibly be true; and this contradicts the principle that the maximum
likelihood estimate, or any unbiased estimate, is always the best.

Fisher has already introduced the useful word ‘fiducial’ for limits, in
estimation problems, such that there may be on the data a specified
probability that the true value lies between them. But it seems to be
supposed that ‘fiducial’ and ‘significant’ mean the same thing, which
is not the case.

He has often argued for making a decision rest on the observations
immediately under consideration and not on any previous evidence.
This appears to contradict the view that I have developed, that the
best inference must rest on the whole of the relevant evidence if we are

t BJ Psych 26, 1936, 362-87
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to be consistent. The difference is not so great as it appears at first
sight, however. I find that vaguely recorded evidence is just as well
ignored, and precisely recorded evidence may require a significance
test to establish its relevance. He also avoids the tendency of the
human mind to remember what it wants to believe and forget the rest,
unless it is written down at the time. With such exceptions as these,
with respect to which we should concur, Fisher seems to be as willing
in practice to combine data as I am. In fact, in spite of his occasional
denunciations of inverse probability I think that he has succeeded
better in making use of what it really says than many of its professed
users have.

7.5. E. 8. Pearson and J. Neyman have given an extended analysis of
significance tests. In any test, if we are to have a rule for detecting the
falsehood of a law, we must expect to make a certain number of mistakes
owing to occasional large random errors. If we habitually use a 5 per
cent. P limit, the null hypothesis will in the ordinary course of events
be rejected in about 5 per cent. of the cases where it is true. As it will
often be false, if we choose such a limit the number of such mistakes
will be less than 5 per cent. of the whole number of cases It is in this
sense that Fisher speaks of ‘exact tests of significance’. Pearson and
Neyman, however, go further. This type of mistake is called an error
of the first kind. But it is also possible that a new parameter may be
required and that, owing either to its smallness or to the random error
having the opposite sign, the estimate is within the range of acceptance
of the null hypothesis, this they call an error of the second kind, that
of accepting the nul] hypothesis when it is false. They have given
extensive discussions of the chances of such errors of the second kind,
tabulating their risks for different possible values of the new parameter.t
I do not think that they have stated the question correctly, however,
though this &ttention to errors of the second kind bears some resem-
blance to the principle that I have used here, that there is no point in
rejecting the null hypothesis until there is something to put in its place.
Their method gives a statement of the alternative. But in a practical
case the alternative will either involve an adjustable parameter or will
be as definitely stated as the null hypothesis. For instance, the laws
of gravitation and light of Newton and Einstein involve the same
number of adjustable parameters, the constant of gravitation and the
velocity of light appearing in both. Now Pearson and Neyman proceed

t Univ Coll Lond, Stat Res Mems 2, 1938, 25-57, and earlier papers
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by working out the above risks for different values of the new para-
meter, and call the result the power function of the test, the test itself
being in terms of the P integral. But if the actual value is unknown the
value of the power function is also unknown; the total risk of errors of
the second kind must be compounded of the power functions over the
possible values, with regard to their risk of occurrence. On the other
hand, if the alternative value is precisely stated I doubt whether any-
body would use the P integral at all, if we must choose between two
definitely stated alternatives we should naturally take the one that gives
the larger likelihood, even though each may be within the range of accep-
tance of the other. To lay down an order of test in terms of the integral
in such a case would be very liable to lead to accepting the first value sug-
gested even though the second may agree better with the observations.

It may, however, be interesting to sec what would happen if the new
parameter is needed as often as not, and if the values when it is needed
are uniformly distributed over the possible range Then the frequencies
in the world wou'd be proportional to my assessment of the prior
probability. Suppose, then, that the problem is, not knowing in any
particular case whether the parameter is 0 or not, to identify the cases
so as to have a minimum total number of mistakes of both kinds.
With the notation of 5.0, the chance of ¢ being true and of ¢ being in
a range da is P(qda | H). That of ¢/, with « in a range da, and of a
being in the range da. is P(q’dada | H). If, then, we assign an e, and
assert ¢ when ja; < a, and ¢’ when la| > a,, and sampling is random,
the expectation of the total fraction of mistakes will be

2},P(qda|H)+2f:f P(q’ doda | H), (1)
Qe 0

the second integral being over the range of «. Thus the second integral
is 2TP(q’ da | H). Now if a, is chosen to make the total a minimum,
we r;usb have for small variations about a,
P(gda' H) = P(q'da | H). ()
But these are respectively equal to
P(da |H)P(q|a.H) and P(da|H)P(q |{a,H),
whence P(qla,H) = P(q' |a H). (3)

But this is the relation that defines the critical value. Hence, with
world-frequencies in proportion to the prior probability used to express
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ignorance, the total number of mistakes will be made a minimum if the
line is drawn at the critical value that makes K = 1.

Now I do not say that this proportionality holds; all that I should
say myself is that at the outset we should expect to make a minimum
number of mistakes in this way, but that accumulation of information
may lead to a revision of the prior probabilities for further use and the
critical value may be correspondingly somewhat altered. But what-
ever the frequency law may be, we notice that it is the values of « near
a, and therefore, in the cases needing discussion, the small values, that
contribute most of the second term in (1). Revision would therefore
alter (3) in the ratio of the numbers of the cases of « = 0 and of small
values of «, and therefore K would be altered by a factor independent
of the number of observations. We should therefore get the best result,
with any distribution of «, by some form that makes the ratio of the
critical value to the standard error increase with n. It appears then that
whatever the distribution may be, the use of a fixed P limit cannot be
the one that will make the smallest number of mistakes. The absolute
best is of course unknown since we do not know the distribution in
question except so far as we can infer it from similar cases.

7.51. This procedure has some interest in relation to ‘giving a theory
every chance’. There are cases where there is no positive evidence for
a new parameter, but important consequences might follow if it was not
zero, and we must remember that K > 1 does not prove that it is zero,
but merely that it is more likely to be zero than not. Then it is worth
while to examine the alternative ¢’ further and see what limits can be
set to the new parameter, and thence to the consequences of introducing
it. This occurred in the discussion of the viscosity of the earth. The
new parameter here would be the rate of distortion per unit stress when
the stress is maintained indefinitely long; if it is zero the viscosity is
infinite and the strength is finite. There was no positive evidence that
the parameter is not zero, but if it was the way might be open to large
distortions under forces acting for a long enough time. It was therefore
desirable to consider what limits could be assigned to the new para-
meter from evidence actually available, and to see whether they would
permit the amounts of distortion that were claimed. Here the use of
deduction as an approximation would not permit the discussion of ¢’ at
all, but on recognizing that it is only an approximation we are free to
continue to consider ¢’ and fix limits to its consequences. It was actually
foundt that the largest admissible value of the new parameter, that is,

t Jefireys, The Earth, 1929, pp. 304-5.
pd
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the smallest possible viscosity, led to insufficient distortion under any
force suggested. This is a case where a hypothesis, that of ultimate
indefinitely large distortion, is disposed of not only by the lack of posi-
tive evidence for the new parameter needed to make it possible at all,
but also by the fact that even on choosing the new parameter to be as
favourable as possible to it, consistently with other evidence, the result
is still contradicted.

7.6. The analysis of this chapter is relevant to the standard presenta-
tions of statistical mechanics, those of Boltzmann and Gibbs. The
original derivation of the distribution of velocities, that of Maxwell,
proceeded by supposing, first, that the probability of a given resultant
velocity is a function of that velocity alone; secondly, that those for the
three components separately are independent. From these hypotheses
Maxwell’s law follows. Boltzmann attempted to go more into detail by
considering the probable effects of collisions, and appeared to show
that a function H, representing the departure from a Maxwellian state,
would diminish. An objection to Maxwell’s treatment was that he
assumed independence of the components. But he claimed only to
consider the steady state, where this might possibly hold. Boltzmann,
however, considered departures from the steady state, and assumed
irrelevance between the positions and velocities of neighbouring mole-
cules. This is plainly illegitimate if the density is not uniform or if the
velocity varies systematically between regions. The presence of one
molecule in a region affords ground for supposing that the region is
one of high density and therefore gives an excess probability that there
will be another near to it. A velocity of a molecule implies an excess
probability that a neighbour has one in a similar direction; in each case
supposing that any original departures from homogeneity have not had
time to be smoothed out. Thus Boltzmann’s treatment is definitely
worse than Maxwell’s, in spite of its greater complexity. Maxwell
applied the hypothesis of independence only to the case where it might
be true, Boltzmann applied it to cases where it quite certainly contradicts
the premisses. His argument affords no ground whatever for supposing
that a system will approach a Maxwellian state, because it is only when
the final state has been reached that the hypotheses can possibly be
right. This criticism of the Boltzmann method would be appreciated
by any statistician that understands a correlation coefficient.

In the treatment of Gibbs no attempt is made to treat the individual
system, instead, an ensemble of an infinite number is set up and con-
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clusions are drawn as averages over the ensemble. But there is no
guarantee at all that an average has any relevance to a single system.
It might, for instance, be merely the mean of two peaks and itself
correspond to no individual case at all. What is done is to consider the
state of a system by regarding the n coordinates and » momenta as
plotted in space of 2n dimensions. Then the values at any instant
determine the rates of change, by the equations of dynamics, and we
can consider how the volume of a small region (corresponding to a range
of different systems) will vary if each point in it moves at the rate so
specified. Liouville’s theorem shows that it will not vary. By some
process that is recognized as obscure this is made to lead to the con-
clusion that the density in this phase space is uniform. Thus Jeanst
appeals to experiment to say that if a property is found to hold in
general for systems that have been left to themselves for a long time,
that must mean either that the representative points crowd into the
regions where that property holds, which is forbidden by Liouville’s
theorem; or that the property is true for the whole of the space, and
therefore, apparently, the distribution of density does not matter and
may as well be taken uniform. But there is no theoretical reason to
show that there should be any such properties. Fowler} gives a similar
argument, including the statement ‘that such a W really exists is largely
a pious hope’. What can be done by these methods is at the most to
obtain relations between properties, assuming that such relations exist;
they give no explanation of why they should exist. This can be done
only by considering the individual system and showing that certain
properties would be expected to hold for any individual system. Any
sort of averaging is definitely dangerous.

The fundamental fact appears to be that we do not in general know
the initial state of the system sufficiently accurately to predict even one
collision. Though the equations of classical mechanics would ordinarily
lead to a unique solution if the initial state was known exactly, and we
had enough time for the computation, a trifling uncertainty in the
velocity of one molecule would affect the identity of the first struck by
it, and this would lead to differences afterwards that would ultimately
affect the entire system. It is this uncertainty that requires the intro-
duction of probability at all. For a system with exactly known initial
conditions there would be a unique trajectory in phase space (classical
mechanics of course being assumed). But for the actual system we have
a set of possible trajectories with different probabilities forming a

t Dynamical Theory of Gases, 1921, p. 13 1 Statistical Mechanics, 1929, p 12.
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continuous set. On account of the collisions, even if these differ only
slightly originally, they will quickly become widely scattered. The
essential point is not so much that the volume of an element in the
phase space remains the same as that its shape is distorted continuously
between every pair of collisions, and it is broken up and displaced bodily
at every collision. The result is that if we fix attention on a given
element of the phase space, the chance that the system will be within
it after a Jong time is made up of components from the probabilities of
all the possible initial states. The tendency of this averaging is to make
the probability density after a long time uniform, subject to the condi-
tion that the only admissible states are those with the same invariant
properties as the original state—such as energy, for all conservative
systems, and linear and angular momentum, for free systems. The
density in phase space thus acquires a definite meaning as a true proba-
bility, arising ultimately from the fact that we do not know the initial
state accurately It leads to inferences about, for instance, the proba-
bility that there will be a given fraction of the momenta in one direction
between stated limits, and hence to definite predictions about statistical
properties such as pressure and density for every individual system.
Thus the theory does give what is wanted, a prediction about the ulti-
mate state of the individual system and made with practical certainty.}
It is in no other sense that the relations found can be considered as
physical laws or the quantities in them as physical magnitudes.

The general principles of this kind of averaging are known as ergodic
theory and have been extensively studied, especially by French and
Russian authors.}

t Proc Roy Soc A, 160, 1937, 337-47
1 Cf M. Fréchet, Borel's Traité du calcul des probabilités, t 1, fasc 3, 1938, H. and
B S Jefiroys, Methods of Mathematical Physics, 1946, pp 148-52



VIII

GENERAL QUESTIONS

‘But you see, I can believe a thing without understanding it. Tt’s all
a matter of training.’ Dorotuy L. SAYERS, Have his Carcase.

8.0. MosT of the present books on statistics, and of the longer papers
in journals, include a careful disclaimer that the authors propose to
use inverse probability, and emphasize its lack of logical foundation,
which is supposed to have been repeatedly pointed out. In fact the
continued mention of a principle that everybody is completely con-
vinced is nonsense recalls the saying of the Queen in Hamlet ‘The lady
doth protest too much, methinks.” Unfortunately some people that
have examined the question have not been so convinced, and they
include such first-rate logicians as W. E. Johnson, C. D. Broad, and
F. P. Ramsey. The objectors, however, mostly seem to understand by
the principle something so nonsensical that it hardly seems worth
attention, namely that the prior probability is intended to be a known
frequency. This statement has been repeated by Kendallt since the
first edition of this book. The essence of the present theory is that no
probability, direct, prior, or posterior, is ssmply a frequency. The funda-
mental idea is that of a reasonable degree of belief, which satisfies certain
rules of consistency and can in consequence of these rules be formally
expressed by numbers by means of the addition rule, which in itself is
a convention. In many cases the numerical assessiment is the same as
that of a corresponding frequency, but that does not say that the proba-
bility and the frequency are the same thing even in these cases. The
fact that physicists describe an atmospheric pressure as 759 millimetres
does not make a pressure into a length (and meteorologists now give
the pressure in terms of the millibar, which really is a unit of pressure).
A number of choices of units so that certain constants of proportionality
would have measure unity, and then the identification of the constants
with the number unity, led to the amazing conclusion that the ratio
of the electromagnetic and electrostatic units of charge, which are
quantities of the same kind, is the velocity of light, and instead of seeing
that this was a reductio ad absurdum several generations of physicists

+ The Advanced Theory of Statistics, 1, 178
3595 110
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tried to justify it. There are signs now that the fact is appreciated.
The equations of heat conduction and diffusion have the same form, but
that does not make heat a vapour. The notion of a reasonable degree
of belief must be brought in before we can speak of a probability; and
even those writers that do not mention it at the beginning have to use
it at the end before any application can be made of the results—or else
avoid the question by allowing the person advised to supply it himself,
which he does in practice without the slightest difficulty. Even if the
prior probability is based on a known frequency, as it is in some cases,
reasonable degree of belief is needed before any use can be made of it.
It is not ¢dentical with the frequency.

The kind of case where a prior probability may be based on a known
frequency is the following. Suppose (a) we deliberately make up 10,001
classes of 10,000 balls each, such that one contains 10,000 white ones,
the next 9,999 white and 1 black, and so on. We select one of these at
random and extract a sample of 30, 20 of which are found to be white
and 10 black. By the condition of randomness the chance of selecting
any class for sampling is the same, and the prior probability for its
composition follows Laplace’s rule. We infer that in the class sampled
about % are probably white and the rest black, the probabilities for
other ratios being distributed according to a definite rule. But suppose
(b) that classes of 10,000 were chosen at random from a class of number
10%°, about the composition of which we had no previous information,
and that we again sampled one of them and found 20 white and 10 black
balls. Again the prior probability follows Laplace’s rule, but for a
different reason. The posterior probabilities for the class sampled are
the same in both cases. Case (b) is the one that usually concerns us,
but the analysis is quite capable of dealing with (@), in which the prior
probability is based on a known frequency. It may be pointed out that
if we take a sample from a second class there will be a considerable
difference in the results in the two cases. For in (a) the probability
that the composition will have any particular value is almost what it
was before, the only difference is that since one class, whose ratio was
probably near 2-1, has been excluded, the probability that the second
class will yield a sample with a composition in this neighbourhood is
a shade less than it was before. But in case (b) the first sample is
effectively a sample from the whole 10%°, and its composition therefore
implies a high probability that the 2-1 ratio holds approximately in
this, and therefore in the next 10,000, which are another sample from
it. Thus in case (b) the composition of the first sample gives a consider-
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able increase in the probability that the second will show a ratio near
2:1; in case (a) it slightly diminishes it.

Case (b) is more like what we actually meet; () is highly artificial.
But the fact that the inference from the first sample about the particular
class sampled would be the same in both cases has been found surprising
by some writers, and it seems worth while to point out that the infer-
ences drawn about another class or a sample from one would be very
different. In both cases the notion of reasonable degree of belief is
involved through the notion of randomness.

It is often said that some frequency definition is implicit in the work
of Bernoulli, and even of Bayes and Laplace. This seems out of the
question. Bayes constructed the elaborate argument in terms of ex-
pectation of benefit to derive the product rule, which he could have
written down in one line by elementary algebra if he was using the De
Moivre definition. The limit definition was not stated till eighty years
later, by Leslie Ellist and Cournot,} and there is no mention of a limit
in this part of Bayes’s paper. Did Bayes go to this trouble to prove
what was already obvious? Again, what can be the point of Laplace’s
‘equally possible’ on any frequency definition? He does not mention
a limit, which first appeared in the literature after his writings also.
Surely Laplace’s statement is meant to specify what cases he proposed
to discuss; ‘equally possible’ is not meant to be true of all possible cases,
otherwise why mention it? And if it is not always true the De Moivre
definition is rejected. In his application to sampling Laplace does take
the possible numbers in the population as equally possible; but this
does not say that he was supposing a world population of classes with
the proportions known to be uniformly distributed. I suggest indeed
that the author of the Mécanique Céleste was much too great a man to
have thought anything so ridiculous. His own statement, in the
Introduction, is ‘La théorie des probabilités n’est que le bon sens
reduit au calcul’. His problem was simply, using the sample, to find
out from it what he could about a population of otherwise unknown
composition; and he said that the composition was otherwise unknown
by taking the alternatives equally possible, or, as we should now say,
equally probable. Similarly, Bayes gave an explicit warning again and
again that the uniform assessment is to be used only when there is no
information whatever about the composition of the population sampled.
With such care about this point it seems remarkable that he should have

t Camb. Phil Trans 8, 1843, 1-6.
1 Ezxposition de la théorie des chances et des probabilités, Paris, 1843
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omitted to say that the population was drawn from a super-population
of known composition if he meant it. Such a hypothesis must be re-
jected on the internal evidence in Bayes’s paper by any significance
test. Similarly, it has been supposed that a limit definition is implicit in
Bernoulli’s theorem. But, even if the value of the limit was taken for
granted, the ratio in a finite sample, however large, could mathematically
still be anything from 0 to 1, the theorem would be mathematically
meaningless. The ratio in a finite sample, again, has been taken as the
definition of the probability, and it has been suggested that Bernoulli
himself intended this to be done. Then did he construct a long and
dafficult mathematical argument, showing that this ratio would be
near the probability in the conditions considered if he was going to
take it as a definition at the end? And why did he call his book Ars
Conjectandi? I maintain that the work of the pioneers shows quite
clearly that they were concerned with the construction of a consistent
theory of reasonable degrees of belief, and in the cases of Bayes and
Laplace with the foundations of common sense or inductive inference.

In a fairly extensive search I have not succeeded in tracing the origin
of the belief that the prior probability is supposed to be derived from
a known frequency. So far as I have found, Karl Pearson is the only
person to have both believed anything like it and advocated the use of
inverse probability. In several places he appeals to previous instances
to justify the uniform assessment, which is consistent with the prior
probability being, not a known frequency, but a degree of confidence
based inductively on a previously observed frequency. This is entirely
valid in terms of the present theory, and does not require a frequency
definition. But also he sometimes says that without such previous
instances the uniform assessment cannot be used, nor can any other
This, however, would make it impossible for the theory ever to find its
first application. In this respect Pearson’s statement is unsatisfactory,
though I do not believe that even in its actual form it identifies an
inferred frequency with a known one. It is, however, very difficult to
understand Pearson on the point, because the development of the nature
of scientific inquiry in the Grammar of Science often appears to be
inconsistent with his statements in statistical papers, and in spite of his
great achievements in introducing clarity in the Grammar he himself
does not appear to have been influenced by them so much as might have
been expected. With the doubtful exception of Pearson, however, the

t He did not use Stirling’s theorem, and his argument is much moro difficult than
would now be used
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identification of the prior probability with a known frequency, or the
statement that it must rest on one, is, so far as I have been able to
trace, to be found only in the writings of opponents. I hope that this
clears me from the heinous charge of originality.

8.1. The few critics of my treatment that have not proceeded by attri-
buting to me views that I have explicitly rejected usually say that the
prior probability is ‘subjective’ or ‘mystical’ and therefore meaningless,
or refer to the vagueness of previous knowledge as an indication that
the prior probability cannot be uniquely assessed On the former point,
1 should query whether any meaning can be attached to ‘objective’
without a previous analysis of the process of finding out what is objective.
If it is done from experience it must begin with sensations, which are
peculiar to the individual, and must give an account of how it is possible
to proceed from the scattered sensations of an individual, including the
reports of their sensations made to him by other individuals, to some
set of statements that can form a possible basis of agreement for many.
We must and do begin with the individual, and we never get rid of
him, because every new ‘objective’ statement must be made by some
individual and appreciated by other individuals. On the other hand, if
we do not find out by experience what is objective we can do it only
by imagination. One hesitates to say that critics believe that nothing
but imagination is objective.

What the present theory does is to resolve the problem by making
a sharp distinction between general principles, which are as impersonal
as those of deductive logic, and are deliberately designed to say by
themselves nothing whatever about what experience is possible, and,
on the other hand, propositions that do concern experience and are in
the first place always merely considered among possible alternatives.
The latter are possible scientific laws; the former give rules for deciding
between them by means of experience and for drawing further inferences
from them. The empirical proposition is always in the first place the
result of imagination. It becomes a law or an objective statement when

t The meaning of ‘metaphysics’ and ‘mysticism’ seems to change with time Compare
the following, from J L Lagrange, 1760 I am indebted to Dr F Smithies for the
reference

‘For the rest, I do not deny that it is possible, by the consideration of limiting processes
from a particular point of viow, to prove rigorously the principles of the differential
calculus, but the kind of metaphysics which it is necessary to use in doing so is, if not
contrary, at loast foreign to the spirit of analysis

*In methods which use the infinitely little, the calculation corrects the false hypotheses

automatically . Tho error is destroyod by a second error On the other hand,
Newton's method is completely rigorous *
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the general rules have compared it with experience and attached a
high probability to it as a result of that comparison. That is the only
scientifically useful meaning of ‘objectivity’. If statements about pos-
sible results of experience were included in the general principles they
would lead to illegitimate @ priori assertions about experience, and these
might easily be wrong and could be disposed of, as for the first frequency
definition, only by introducing contradictions.

It is argued that because P(p |g) depends on both p and ¢ it cannot
be an objective statement, since different persons with different know-
ledge would assess different probabilities of p. This is a confusion. p has
no probability whatever of itself, any more than x+y has any particular
value for given z if we do not know y. The probability of a proposition
irrespective of the data has no meaning and is simply an unattainable
ideal. On the other hand, two people both following the rules would
arrive at the same value of P(p|q). It is a fact that the probabilities
of a proposition with respect to different data will in general differ,
and people with different data will make different assessments. But
this is no contradiction, but merely the recognition of an obvious fact.
They will arrive at consistent assessments if they tell each other their
data and follow the rules. We can know no absolute best—that would
require us to have all possible knowledge. But we can give a unique
and practically applicable meaning to ‘the best so far as we can tell
on our existing data’, and that is what the theory does.

One difficulty that has possibly led to more trouble than has received
explicit mention is the treatment of vague and half-forgotten empirical
information. This seems to be understood in such expressions as ‘un-
certainty of the previous knowledge’. We have several times been led
to discuss such information, and the result has always been the same:
information inadequately recorded can be treated only as a suggestion
of possible alternatives, and the prior probability used to express
previous ignorance should still be used. The fault is not in the theory
but in an imperfection of the human mind that the theory makes it
possible to correct. The difference between the results of different
assessments of the prior probability in the same problem is much less
than the differences between those found by different statisticians that
agree about little except that the prior probability must be rejected.

A prior probability used to express ignorance is merely the formal
statement of that ignorance. It says ‘I do not know’ and leaves the
posterior probability, if the observations are of any use for the purpose,
to say ‘You know now’. The statements ‘I do not know z’ and ‘I do
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not know the probability of 2’ still continue to be confused. The latter
is ‘I do not know whether I have any information about z or not’,
which differs from the former as much as z* differs from 22, one having
been derived from z by one operation of squaring and the other by two.
I should gravely doubt whether anybody approaching a set of data in
the latter state of mind could possibly do anything useful with them.
To speak of ‘an unknown prior probability’ involves either this confusion
or the identification of the prior probability with a world-frequency, and
no coherent theory can be made until we are rid of both.

The confusion may arise partly from the fact that probability state-
ments are sentences in the indicative mood. Thus the question ‘Is
Mr. Smith at home?’ can be expressed by three sentences in the
indicative mood:

I do not know whether Mr. Smith is at home.
I want to know whether Mr. Smith is at home.
I believe that you know whether Mr. Smith is at home.

These three sentences contain the whole content of the question, and
the difference from ‘Mr. Smith is at home’ is expressed by a trans-
position of subject and verb and, in print, a symbol called a question-
mark. The situation implied in these three statements is 80 common
that a special symbolism has been introduced into language to express
it. The prior probability statement is the first. The second is, in a
scientific problem, indicated sufficiently by our willingness to under-
take the work of finding the answer; it is a statement of a wish and is
not a probability statement. The third is a probability statement of
higher order; and all this is done in speech by a transposition. Yet
people continue to question whether degrees of knowledge can be
expressed in symbols. What the prior probability does, in fact, is to
state clearly what question is being asked, more clearly than ordinary
language is capable of doing. And I suggest that this is no mean
achievement. Many will support me when I say that 90 per cent. of
the thought in a scientific investigation goes in the preliminary framing
of the question; once it is clearly stated, the method of answering it is
usually obvious, laborious perhaps, but straightforward. Consider, for
instance, the work of G. I. Taylor and H. Quinney on the plasticity
of copper,} to decide whether the difference between the largest and
smallest principal stresses at a point, or the Mises function, which is a
symmetrical function of the three principal stresses, afforded the correct

t Phil. Trans. A, 230, 1932, 323-62
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criterion for the start of flow. It was known that different specimens of
the material differed more than the difference between the criteria
would be. Hence to answer the question it was necessary to eliminate
this variation by working on the same specimen throughout. But then
something that would differ according to the criterion had still to be
found. They showed that if tension P and shear stress @ were applied
simultaneously, the former directly, the latter by torsion, the Mises
criterion would give flow at a constant value of P24-3Q?, the stress-
difference at a constant value of P24-4Q2. Here at last was an answer-
able question clearly stated. The suggested experiment needed care and
skill, but not much more; the brilliance was in asking the right question.
It would be easy to give a long list of papers that cannot answer the
question that they claim to answer, simply because insufficient attention
has been given to whether the data are suited to decide between the
possible alternatives.

Part of the objection to probability as a primitive notion is con-
nected with the belief that everything is vague until it is defined in
words. Such a belief omits to recognize that some things are perfectly
intelligible before any definition is available. To try to define such
things can result only in defining them in terms of something less
immediately intelligible and failing to give account of established laws.
For instance, observed colours are found to be associated with different
measured wavelengths. This led to the idea that colour should be
defined in terms of the wavelength and the sensory impression rejected.
This was vigorously advocated; but had it been acted upon nobody
would have been able to say that a thing was red until he had actually
set up a spectroscope and measured the wavelength of the radiation
coming from it. Not even the persons with the facilities for doing it
would act on the principle. What the recommendation does is to reject
an important means of investigation, and the empirical relation be-
tween colour and wavelength. The behaviourist psychologists reject
consciousness and thought except so far as they can define them in
terms of certain minute movements in the throat that go on when the
person says he is thinking. Consequently, in their system, there are two
alternatives. (1) A man has no way of knowing whether or what he is
thinking except by observing these movements. Many people manage
very well without it. (2) He may admit his own consciousness but
reject other people’s. That is solipsism, and no two solipsists can
understand each other and agree. Eddington, finding the fundamental
laws of physics symmetrical with regard to past and future, searches
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for something that does vary in one direction with time and finds
entropy; and therefore defines the order of increasing times as that of
increasing entropy. Consequently he could not know that he wrote
the Relativity Theory of Protons and Electrons after he discovered the
mass-luminosity relation except by measuring the entropy of the uni-
verse on the two occasions. It all seems very difficult. Bertrand Russell,
who cannot be accused of shirking the logical consequences of his
postulates, or of refusing to change the postulates when the conse-
quences are intolerable, has arrived at the conclusion:t ‘Things are
those series of aspects which obey the laws of physics. That such series
exist is an empirical fact, which constitutes the verifiability of physics.’
Much of what passes for modern theoretical physics consists in the
application of the first sentence while forgetting the second. To be a
practical definition it must refer to the laws already known, not to
the aggregate of all laws. In the former sense it is a possible rule for
progress; in the latter it is‘a mere counsel of perfection. But in the
former sense the fact that series have been found to fit the laws is
equivalent to saying that laws have been found to fit the aspects.
Russell, be it noted, does not define an aspect, but merely gives a rule
about what aspects are to be grouped in a series to constitute a thing;
and the second sentence recognizes that a possible law must be rejected
if no series of aspects can be found that conform to it.

Definitions add clarity when something new is defined in terms of
something already understood; but to define anything already recog-
nizable is merely to throw valuable information into the wastepaper
basket. All that can be done is to point to instances where the pheno-
menon in question arises, in order to enable the reader to recognize
what is being talked about by comparison with his own mental processes
and sensations.

W. E. Johnson} puts the point even more strongly. He remarks that
some things are ‘so generally and universally understood that it would
be mere intellectual dishonesty to ask for a definition’.

8.2. We can never, formally, rule out the possibility that some new
explanation may be suggested of any set of experimental facts. But we
have seen that in many cases this does not matter, by 1.6. Once a law
has attained a high probability it can be used for inference irrespective
of its explanation. If an explanation also accounts for several other
laws, so much the better; there is more for any alternative to explain

1 Our Knowledge of the External World, 1914, p 110 1 Logic, 1, 106
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before it can be said to be as satisfactory as the existing one. The
question of an alternative becomes effective only when (1) it accounts
for most or all of the evidence explained by the first, (2) it suggests a
specific phenomenon that would differ according to which is right.
The decision can then be made in accordance with our principles. This
is the answer returned by the theory of probability to the logical
difficulty of the Undistributed Middle, or the neglect of an unforeseen
alternative. The use for inference is valid so long as it involves only
the use of laws that have already been established inductively, because
the laws are in a stronger position than any explanation could possibly
be. When an explanation is used and applied to predict laws, these
require test; but now the possible alternative explanations are severely
limited by the fact that they must agree with the laws already known.
Incidentally, this meets a possible difficulty with the rule that all sug-
gestions have the same prior probability, no matter who makes them.
The layman in a subject may be admitted as capable of making a good
guess, but it is extremely hard for him to make a guess that is not
contradicted by evidence already known.

This also answers the problem of ‘scientific caution’. Everybody
agrees on the need for caution, but different people, or even the same
person on different occasions, may have entirely different opinions on
what caution means. I suggest that the answer is that results should
always be presented so that they will be of the maximum use in future
work. That involves, for pure estimation, a statement of a location
parameter and its standard error. But it can never be guaranteed
that no modification in a law will ever need to be considered; and a
possible systematic error of observation needs positive evidence for its
existence just as any other modification does. To assert in advance
any kind of departure from the suggested law is a reckless statement,
irrespective of whether the departure considered is a systematic error
of observation or a ‘physical’ effect that the physicist considers more
interesting. In both cases the information should be presented so that
a significance test can be applied when suitable evidence is available;
and this implies giving the estimated value, the standard error, and the
number of observations. There is no excuse whatever for omitting to
give a properly determined standard error. It is a necessity in stating
the accuracy of any interpretation of the data, if the law is right; if
the law is wrong, it is necessary to the discovery that it is wrong. All
statisticians will agree with me here, but my own applications are
mostly in subjects where the need is still very inadequately appreciated.
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Again, the best way of finding out whether a law is wrong is to apply
it as far as possible beyond the original data, and the same applies to
any suggested explanation. But if we have not a determination of the
standard errors of the parameters in the law we have no way of saying
whether any discrepancy found is genuine or could be removed by a
permissible readjustment of the parameters, with a corresponding im-
provement in their accuracy. The usual reason given for the omission is
that there may be some other source of error and that the statement of
a standard error expresses a claim of an accuracy that future events
may not justify. This rests on a complete failure to understand the
nature of induction. It is essential to the possibility of induction that
we shall be prepared for occasional wrong decisions; to require finality
is to deny the possibility of scientific inquiry at all. The argument,
however, does not prevent its users from asserting systematic differ-
ences when the estimates agree within the amounts indicated by the
standard errors, supposing these genuine, or from denying them when
they are flagrant. What we should do is (1) always to draw the most
probable inference from the data available, (2) to recognize that with
the best intentions on our part the most probable inference may turn
out to be wrong when other data become available, (3) to present our
information in such a form that, if we do make mistakes, they can be
found out. This can be done by a consistent process, and should not
be confused with guesswork about other possible effects before there is
any evidence for their existence or any estimate of their amount.

8.3. The situation with regard to alternative explanations mentioned
above actually existed for a long time in relation to the quantum
theory. The quantum explanation seemed to be demanded by the
distribution of black-body radiation and by the photo-electric effect;
it seemed to be denied by the phenomena of interference, notably by
G. I. Taylor’s experiment,} which obtained interference patterns under
illumination of intensity so low that it was highly improbable that
there would ever be two quanta inside the apparatus at once. The
quantum theory and the continuous emission theory both accounted
for one set of facts, but each, in its existing form, was inconsistent with
the facts explained by the other. The proper conclusion was that both
explanations were wrong, and that either some new explanation must
be sought or the sets of data recognized as unrelated. But meanwhile,
physicists based their predictions on the laws; in types of phenomena
t Proc Camb. Phil Soc 15,1909, 114~15
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that had been found predictable by quantum methods, they made their
predictions by quantum methods; in phenomena of interference they
made predictions by assuming continuous wave trains. Thus what
they really did was to proceed by induction from the laws established
empirically. This was a valid process and did not require the assertion
of any particular explanation of the laws, the latter being entirely
subsidiary.

The present position of the quantum theory illustrates another point
in relation to the theory of probability. There are three main quantum
theories; but all make the same predictions and for, it may be, the first
time in the history of physics, the exponents are willing to accept the
situation and even on occasion to use one another’s methods. The
theories themselves are not the same, and indeed each contains reference
to things that have no meaning on another. The treatment of them as
equivalent refers only to the observable results predicted, and not to
their actual content. It recognizes that as long as theories lead to the
same predictions they are not different theories, but merely different
ways of saying the same thing. The differences are relegated to meta-
physics. But this is a complete abandonment of naive realism, in which
the things with ‘physical reality’ would be those contained in the
explanations, and no others. It does not matter, for instance, whether
an electron is a point charge with an exact position that we do not
quite know, or a volume distribution rather fuzzy at the edges, or
whether the position of the electron is intrinsically meaningless in the
sense that it cannot be expressed in terms of three Cartesian coordinates
at all This attitude is precisely what is reached here; the essential
thing is the representation of the probability distribution of observable
events, and therefore the forms of laws and the values of parameters
in them. Questions that cannot be decided by means of observation
are best left alone until some way of answering them suggests itself

8.4. The modern quantum theories, like the relativity theories, suffer
from a confusion in the use of the term ‘the rejection of unobservables’.
‘Unobservable’ is a legacy from naive realism. An observation, strictly,
1s only a sensation. Nobody means that we should reject everything
but sensations. But as soon as we go heyond sensations we are making
inferences. When we say that we have obscrved an object we mean
that we have had a series of sensations that are coordinated by imagin-
ing or postulating an object with assigned properties, and that to con-
tinue to do so will probably lead us to a correct prediction of other



VIIL, §8 4 GENERAL QUESTIONS 413

groups of sensations. ‘To observe an object’ is merely an idiomatic
shorthand way of writing this; what we really observe is a series of
patches of colour of various shapes, and whether these are correctly
located in our minds or where we suppose the object to be must be left
to philosophers. But in naive realism it is taken for granted that we
do observe the object and that the patches of colour are ‘subjective’
and not respectable; and this puts the cart before the horse because
except through the latter there is no way of finding out anything about
the object at all. The acceptance of an object with its properties de-
pends on the verification of the inferences that it leads to, that is, it is
required that our sensations without it, or if it had different properties,
would be different from what they have actually been. Hence the
verifiable content can be stated entirely in terms of parameters in laws
connecting sensations. This is dealt with completely by the theory of
probability, and for purposes of inference the laws are all we want. If
we restrict ourselves to the inference of future sensations the concept
has done its work and serves no other purpose. This would be a possible
idealist attitude. If we are realists and think that our concepts have
counterparts in an external world (subject to the critical realist’s
willingness to change his mind if necessary), we may consider the law
as a justification of the reality of the concept. But observability of
a concept can mean nothing but the statement that it suggests new
parameters in laws connecting sensations, and that the need for these
parameters is supported by a significance test. Thus the theory of
probability takes the rejection of observables in its stride. It gives an
answer to the question whether any parameter is more probably present
than not, given the actual data. To consider further data that we have
not is sheer waste of time We do not say that so-and-so must be un-
observable, we say that, with the information at our disposal, it ¢s
unobserved, and that if we try to take it into account we shall probably
lose accuracy. To say that it must be unobservable would be illegiti-
mate, it would be either an a priori statement leading to inferences
about observations or an induction claiming deductive certainty 1
The principle really seems to have arisen from a confusion of three
possible statements of the ‘economy of hypotheses’. (1) In developing
a logic, as in Principia Mathematica, the number of postulates is reduced
to a minimum, though some results that appear as theorems appear

+ Cf H Dingle, Nature, 141, 1938, 21-28 This is an admirable statement of the
logical position of the principle, except for the ission to ider any lism but
naive realism

Ee
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equally obviously intuitively. The reasons for this procedure have been
discussed under rule 6 of Chapter I. (2) Parameters in a law that make
no contribution to the results of any observation can be eliminated
mathematically, leaving the observations to be described only in terms
of the relevant parameters. When this is done an economy of statement
may be achieved (possibly at the cost of increased complexity of mathe-
matical form), but there is no improvement in representing either
present or future observations, since either form will say precisely the
same thing about both. (3) The third is the simplicity postulate as used
in the present theory, which leads to the restatement of Ockham’s
principle in the form ‘Variation must be taken as random until there is
positive evidence to the contrary’. This is the principle that we actually
need. The second principle is always a pure tautology, but in the usual
statement it becomes the ‘rejection of unobservables’ and is used to
deny the relevance of any variable not yet considered. It then becomes
an a priori statement that future observations must follow certain laws,
whatever the observations may say. Such an inference into the future
must be an inductive inference based on probability, because it is
logically possible that the observations may disagree with prediction.
The third principle deals with such inferences, but the attempt to use
the second involves a logical fallacy.

Now I maintain that whatever has been said on the matter, the
rejection of unobservables in the form stated has never led to a single
constructive advance, and that in spite of the reluctance of modern
physicists to pay any serious attention to the problem of induction,
what they have done is to use induction and then confuse it with
deduction. Relativity, up to 1920 or so at any rate, did not involve
any new parameters; the velocity of light, the constant of gravity, the
mass of the sun, and so on, were all required by previous theories. It
made changes in the laws but left them expressed in terms of the same
parameters. The reason for abandoning the old theory was not that it
involved unobservables such as absolute velocity or simultaneity; it was
that this theory made positive predictions, such as the one sought for
in the Michelson-Morley experiment, which turned out to be in dis-
agreement with observation. The rejection of absolute velocity was
not a priori; what was done in the special theory of relativity was to
alter the laws of measurement and light so that they would agree with
observation. The general theory, in its original form, was obtained by
a natural analogy with Newtonian dynamics. The coefficients g, in
what seemed to be the natural extension of the special theory to take
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gravitational effects into account, were seen to play the part of the
Newtonian potential U. Far from matter all second derivatives of
the latter vanish, near to matter the contracted Cartesian tensor V2U
vanishes, but the separate components do not; inside matter V2U does
not vanish, but has a simple relation to the density. Einstein proceeded
by analogy. He found a second-order tensor that should vanish far
from matter, contracted it to get the differential equations satisfied
near matter, and said that these equations will be modified inside
matter. Given, what was already established, that the Euclid-Newton
system needed modification, this was the natural procedure to try. But
it is a suggestion, not an a priori necessity. On this point one may
refer to Eddington, writing just before the 1919 eclipse expeditions:}
‘The present eclipse expeditions may for the first time demonstrate the
weight of light; or they may confirm Einstein’s weird theory of non-
Euclidean space; or they may lead to a result of yet more far-reaching
consequences—no deflexion.” The first alternative refers to the New-
tonian deflexion, which would be half Einstein’s. That was Eddington’s
position before the observational result, Einstein’s theory stood to him
as the theory of probability says that it should, as a serious possibility
needing test, not as demonstrable by general principles without refer-
ence to observation. In other words, Eddington at the proper time
agreed with me; his later emphasis on the mathematical necessity of
Einstein’s theory is a case of ‘forgetting the base degrees’. The correct-
ness of Einstein’s law rests on the fact that it requires no new para-
meters and gives agreement with observation where the alternatives
fail. Insistence on the alleged philosophical grounds for it has led to
their being challenged, and to a tragic neglect of the observational basis.
The latter is, in fact, appreciably stronger than is provided by the
mere verification, as I showed in chapters vii-ix of Scientific Inference.
Starting entirely from observed data and proceeding by generalization
of laws, introducing new parameters only when observation showed
them to be necessary, I showed that it was possible by su.cessive
approximation to build up Euclidean mensuration, Newtonian dyna-
mics, and the special and general theories of relativity; and that the
forms of Einstein’s ds? is completely determined near the sun by observa-
tion alone. No further hypothesis is needed, and some of those made
by Einstein are replaced by others more closely related to laws already
adopted or by experimental facts. The linearity of the transformation
of coordinates in the special theory, for instance, need not be assumed.
t The Observatory, March 1919, p 122
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It can be proved from the constant measured velocity of light and the
natural extension of Newton'’s first law, that an unaccelerated particle
in one inertial frame must be unaccelerated in another. The object of
the work was to see whether the observed agreement could be regarded
as accidental, that is, whether any other possible laws (Newton’s in
particular) could have given the same results in the range of magnitude
available; and it was found that no other form would explain on New-
ton’s theory a fact not explained on Einstein’s without leading to
contradictions elsewhere. For instance, the excess motion of the peri-
helion of Mercury had been known for ages to be explicable by the
attraction of an oblate distribution of matter around the sun, such as
was seen in the zodiacal light. Similarly, it was suggested, I believe by
Professor H. F. Newall, that the eclipse deflexion could be explained by
the refraction of matter near the sun. But such Newtonian explanations
led to estimates of the amount of matter needed, and according as it
was solid or gaseous the amount of light it would scatter could be esti-
mated. It was found that the visible scattered light did not correspond
to more than an insignificant fraction of what would be implied by the
Newtonian explanation.t Using some more recent data I find a larger
discrepancy. Hence there is no Newtonian explanation in sight for
either the perihelion of Mercury or the eclipse displacement, while
Einstein’s law explains both. So far as any law can be proved by
observation (and no law can be proved at all in any other way), Ein-
stein’s law is proved within the solar system.

The rejection of unobservables in the quantum theory seems to be
a mere spring-cleaning and to be correctly placed under the second of
the above principles. The older theories involved many unobservable
quantities, and left many observable ones uncoordinated. It had be-
come impossible to see the wood for the trees on account of the com-
plications of the concepts, and the postulates led to results inconsistent
with observation. The modern quantum theories have begun by direct
and successful attempts to coordinate what we know, without attending
to the details of any deeper interpretation, and this was right as a
matter of mathematical convenience. But it is no more a rule for
positive discovery than the fact that a gardener weeds his plot before
sowing his seed. The important forward step did not come from the
rejection of unobservables but from the subsequent recognition of
formal relations. These relations are not inferred from a principle that
so-and-so must be unobservable—and indeed they are full of new un-

t MNRAS 80,1919, 138-54



VIII, § 8.4 GENERAL QUESTIONS 417

observables of their own, which have to be eliminated before anything
verifiable is reached. They are guessed by analogy with Newtonian
dynamics and asserted because their consequences agree with observa-
tion, just like Einstein’s law of gravitation.

The most elaborate use of the form of the rejection of observables
criticized on p. 414 is to be found in the works of Eddington, culminat-
ing in his statement that all the fundamental laws and constants of
physics can be predicted from purely epistemological considerations.
Some comments on his conclusion are given in 5.64, a criticism of his
general point of view is in the Philosophical Magazine paper cited there.

A warning is needed that the frequent use of the word ‘probability’
in works on quantum theory is no guarantee that the numbers referred
to are probabilities in any sense or satisfy the laws of probability, and
that there is reason to suppose that the probability interpretation of
wave mechanics leads to the conclusion that quantum theory is deter-
ministic in exactly the same sense as classical mechanics.}

8.5. Criticism of fallacious logic is usually treated as captious, on the
grounds that the methods criticized have delivered the goods. It is not
considered a matter of importance to physics whether the arguments are
right so long as they somehow give the right answer at the end. But the
methods have not delivered the goods. The chief advances in modern
physics were not achieved by the rejection of unobservables or by any
other alleged general mathematical principle. They were achieved by the
method of Euclid and Newton: to state a set of hypotheses, work out
their consequences, and assert them if they accounted for most of the
outstanding variation. The method was inductive, and the claim that
the results were obtained in any other way is contrary to history. The
insistence on the mathematical argument as a proof, in turn, invites
challenge on grounds of logic; either it is important or it is not. If it is,
it must be prepared to meet logical criticism by a logical answer, if it is
not, it should be dropped and cease to make bad logic an essential part
of what is supposed to be mathematics. Above all, it should cease to
obstruct the development of an adequate theory of induction.

Reasoning and observation are two different faculties, and it is im-
portant to keep them separate, as far as possible, and to separate them
as well as we can if the information presented to us is in such a form
that they have already been mixed. If this is not done we may find
ourselves in the position of saying that the argument is right and

t Of Phil Mag. (7), 33, 1942, 815-31.
8605 110
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therefore we do not need observations to test whether we have over-
looked anything; or that the argument leads to results agreeing with
observation and therefore must be right however many mistakes are
found within it. Many modern examples of both could be found. The
following one, though not exactly recent, is an interesting illustration
of how attention to the details of an argument has actually led to
constructive results. Laplace in his calculation of perturbations had
shown that the eccentricity of the earth’s orbit should be systematically
diminishing. This affects the disturbance of the moon by the sun, and
leads to the result that the moon’s distance should be decreasing, and
its rate of revolution about the earth increasing. This would alter the
calculated times of ancient eclipses, and recorded observations of them
showed that such an effect was required. Laplace gave only the first
term of the series representing it, but this was near enough to the
observed value for Plana, Damoiseau, and Hansen to develop the matter
and include further terms. The agreement at this point seemed entirely
satisfactory. J. C. Adams, however, worked out the theory afresht and
found that several neglected terms mounted up. The first two coefficients
of the series in powers of m, where m is the ratio of the mean motions,
are §m?—3m4, whereas Plana had got —Z§m?* for the second. On
account of this enormous numerical coefficient the calculated value of
the secular acceleration was practically halved, and the agreement
with observation was destroyed. Adams’s result was confirmed by
Delaunay and several other dynamical astronomers, who obtained
further terms. But Pontécoulant said that if the result of Adams were
admitted it would ‘call in question what was regarded as settled, and
would throw doubt on the merit of one of the most beautiful discoveries
of the illustrious author of the Mécanique céleste’. Le Verrier wrote:
‘Pour un astronome, la premiére condition est que ses théories satis-
fassent les observations. Or la théorie de M. Hansen les représente
toutes, et 1’on prouve & M. Delaunay qu’avec ses formules on ne saurait
y parvenir. Nous conservons donc des doutes et plus que des doutes
sur les formules de M. Delaunay. Trés certainement la vérité est du
coté de M. Hansen.” Thus the mathematics of Adams and Delaunay
was to be judged, not by whether the results followed from the equa-
tions of dynamics, but by whether they agreed with observation; if
the results disagreed with observation there must be a mistake in the
mathematics. J. W. L. Glaisher remarks in his biographical notice.}

t Phil Trans 143, 1853, 397-406, see also several of his collected papers
1 Adams, Collected Works, p xxxviii
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‘It is curious that it should have been possible for so much difference of
opinion to exist upon a matter relating only to pure mathematics, and
with which all the combatants were fully qualified to deal, as is clearly
shown by their previous publications.” What happened, in fact, was that
Adams’s result was so thoroughly confirmed by different methods and
different investigators that it had to be accepted and the discrepancy
admitted. But the result was not purely destructive. What it did was
to direct attention to the matter afresh and to lead to the theory of
tidal friction in a long series of papers by Sir G. H. Darwin;t{ and at the
present time this appears to give quite satisfactory quantitative agree-
ment with observation,} and a large number of constructive results
about the remote past and future of the solar system, which could never
have been considered at all if Plana’s result had stood unquestioned.
The use of the word ‘theory’ in several different senses is perhaps
responsible for a good deal of confusion. What I prefer to call an
‘explanation’ consists of several parts: first, a statement of hypotheses;
secondly, the systematic development of their consequences; thirdly, the
comparison of those consequences with observation. It still sometimes
happens, as in some passages just quoted, that the fact that the alleged
consequences agree with some observations is a proof both that the
hypotheses are right and that the intermediate steps have been correctly
worked out. What is liable to be true is that the intermediate develop-
ment involves numerous begged questions, the answers having been
chosen so as to agree with observation and not because they are conse-
quences of what has gone before; and that the correct working out of
the consequences leads to results disagreeing with the very observations
that the theory is said to explain. In such cases the hypotheses are
disproved. Further, it is open to anybody to work out other conse-
quences of the hypotheses and to see whether these agree with observa-
tion, and if they do not, to suggest a different set of hypotheses. That
is how science advances. There are some current ‘theories’ that, when
divested of begged questions, reduce to the non-controversial statement,
‘Here are some facts and there may be some relation between them’.

8.6. To recapitulate the main postulates of the present system, we
have first the main principle that the ordinary common-sense notion
of probability is capable of consistent treatment. Other theories can
deny the consistency, but cannot help using the notion. We have also

t Scientific Papers, vol 2.
t G. I Taylor, Phil Trans A, 220, 1919, 1-33; Jefireys, ibid 221, 1920, 239-64;
The Earth, 1929, ch. xiv.
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Axiom 4, which implies that there is no inconsistency in using the
addition rule. The rule as it stands is a convention, since other rules
consistent with the axioms would be possible and would lead to putting
probabilities in the same order, and all could be compared with a
standard obtained by considering balls in a bag. Thus the numerical
assessment merely specifies the rules of a language capable of going
into more detail than ordinary language. A generalization of the pro-
duct rule may be needed, justified by the principle adopted in Principia
Mathematica that in constructing a logic the postulates should be taken
in their most general form. These postulates are required in all theories.
The principle of inverse probability is a theorem. The prior probabilities
needed to express initial ignorance of the value of a quantity to be
estimated, where there is nothing to call special attention to a particular
value, are given by an invariance theory that leads to equivalent results
for transformations of the parameters, combined with some rules of
irrelevance to the effect that the actual values of certain parameters,
especially scale parameters, tell us nothing about those of certain others.
Where a question of significance arises, that is, where previous considera-
tions call attention to some particular value, half, or possibly some
smaller fraction, of the prior probability is concentrated at that value.
This is the simplicity postulate. It needs some elaboration when
several parameters arise for consideration simultaneously.

The main results are (1) a proof independent of limiting processes
that the whole information contained in the observations with respect
to the hypotheses under test is contained in the likelihood, and that
where sufficient statistics exist other functions of the observations are
irrelevant, (2) a development of pure estimation processes without
further hypothesis; (3) a general theory of significance tests, which allows
any hypothesis to be tested provided only that it is sufficiently clearly
stated to be of any use if it is true, declares no empirical hypothesis
to be certain or false a priori, does not require the introduction of the
P integral to avoid results in contradiction with common sense, and
leads to a solution of the estimation problem as a by-product of the
significance test instead of as a separate problem based on contradictory
hypotheses, (4) arising out of this, an account of how in certain condi-
tions a law can reach a high probability and inferences from it be treated
as deductive in an approximate treatment It thus makes it possible
to test laws by observation, without making either the unnecessary
assumption that laws can be found to fit the observations exactly, or
the false one that laws known to us at present do; thus it gives a formal
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account of the actual process of learning. Further, it solves the problem
of the rejection of unobservables, replacing a useless mathematical
platitude by a practical criterion, removes the paradoxical appearance
of the uncertainty principle; meets the logical difficulty of the undis-
tributed middle, and gives intelligible meanings to ‘scientific caution’
and the notion of ‘objectivity’.

Comment was made in Chapter I on the fact that a formal and con-
sistent theory of inductive processes cannot represent the operation
of every human mind in detail, it will represent an ideal mind, but it
will also help the actual mind to approximate to that ideal. We have
had occasion sometimes to call attention to special imperfections,
notably. (1) wish-fulfilment, expressed sometimes in an exaggerated
lenience towards one’s own hypotheses, sometimes in a belief that
things can be proved in terms of ordinary mathematics and deductive
logic when in their very nature they cannot be, and an appearance of
such a proof is simply a proof that there must be a mistake in it;
(2) imperfect memory, which can be treated merely as a suggestion of
alternatives but not as a contribution of observational information
when the matter is brought up for formal consideration, (3) failure to
think of the right empirical hypothesis at the time when data are first
available to test it, (4) limitations of time or industriousness that make
us content with approximations. The existence of these is no argument
against the theory, but the theory will provide a standard of com-
parison for them in psychological studies, psychology is admitted as
a valid science to the same standard as any other.

The human mind has also a tendency to exaggerate the differences
between familiar things and overlook the resemblances Let us recall
the reply of Dr. Jervis to a lady who had asked whether Dr. Thorndyke
was ‘at all human’.}

‘He is entircly human,’ I replied, ‘the accepted test of humanity being, as L
understand, the habitual adoption of the ereet postwie in locomotion, and the
relativo position of the end of the thumb - —°

‘T don’t mean that,” interrupted Mrs, Haldean ‘I mean human in things that
matter *

‘I think thosc things matter,’ I rejoined. *Consider, Mrs Haldean, what would
happen if my learned colleague were to be seen in wig and gown, walking towards
the Law Courts in any posture other than the ereet It would be a publie scandal *

We have, of course, the words ‘person’ and ‘human’, which can apply
to any member of the species But though we have six or seven words
to describe diffcrent sexes and ages of the species Canis familiaris, Bos

t R Austin Freeman, John Thorndyke's Cases, p 60
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taurus, Equus caballus, we have no standard word that can apply to
any individual of either.f The real reason for the difficulty in the
understanding of the theory of probability is, I think, that the funda-
mental ideas and general principles are so familiar that ordinary lan-
guage has overlooked them, and when they are stated it is immediately
taken for granted that they must mean something too complicated for
ordinary language, and a search is made for something to satisfy this
condition. The truth is that they are too simple for ordinary language,
and the customary approach renders any understanding impossible.

8.7. We now return to the question of realism versus idealism. The
question is whether the theory leads to any decision between them.
Nothing in the theory depends on the acceptance of one or the other,
and to arrive at a decision in terms of it we must point to some observ-
able fact that would be more probable on one than on the other. Both
are admissible hypotheses and we must take their prior probabilities
as 3. We see that solipsism, the extreme form of idealism, can be
rejected by the theory. If other people had not minds something like
my own it would be very improbeble that their behaviour would
resemble mine as much as it does The belief in a material world is
on a different footing, since while I seem to be immediately aware of
my own personality, any object, even my own body, is known to me
only through sensations. If I was an idealist I should say that I had
invented it to give a convenient way of describing my sensations (past,
present, and future, so far as they can be inferred, since we are not
considering the rejection of induction). A realist would say that he
meant something more than that, but it is very difficult to say just
what. Personally I believe that in studying seismology I am finding
out something about the interior of the earth and not merely making
predictions about future observations But in either case the rival
hypotheses could be tested only through the sensations predicted from
them; and the properties that the idealist would assign by convention
to his imaginary objects would be such as to lead to exactly the same
predictions as those that the realist would postulate of the objects that
he supposes real. Thus the theory of probability makes no decision
whatever between critical realism and critical idealism, if the latter is
taken as admitting other personalities; both have probability 3, and

t Curiously, the infantile ‘bow-wow’, ‘moo moo’, ‘geo goe' can apply to any member

of the respective species The loss of general words has taken place in acquiring adult
language
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there appears to be no type of evidence that could alter this. An attempt
to support idealism has been made by saying that realism involves an
extra hypothesis and should therefore be rejected if evidence for it is
not available. This appeal to the economy of hypotheses is not valid,
however. It only justifies the omission to assert realism; that is, it still
leaves us in the position ‘either idealism or realism is true’ but agreeing
to say no more about it. The denial of the extra hypothesis is just as
much a hypothesis as its assertion. The conclusion we reach, therefore,
is that there are forms both of realism and of idealism that would be
scientifically tenable, that scientific method cannot decide between
them, and that it doesn’t matter anyhow. But neither of them is the
form of realism or idealism usually advocated. Realism has the ad-
vantage that language has been created by realists, and mostly very
naive ones at that, we have enormous possibilities of describing the
inferred properties of objects, but very meagre ones of describing the
directly known ones of sensations; ‘probability’ is a word of five syl-
lables, whereas the use of the notion dates from a time when one would
be beyond our powers. So the idealist must either do his best with
realist language or make a new one, and not much has been done in the
latter direction.

Questions like these, that cannot be answered by scientific means,
may be called metaphysical. (I do not regard this as a mere term of
abuse.) Another is the distinction between religion and materialism.
A materialist can hold that all biological phenomena, including evolu-
tion, are due to physical and chemical causes; he cannot state just why
a Nautilus evolved into an ammonite, nor why an ammonite did not
evolve back into a Nautilus, but he cannot be refuted on this ground
because he can always appeal to the fact that the consequences of the
laws have not yet been fully worked out and in any case there are
presumably physical laws that are not yet known. Bishop Barnes could
accept evolution and reject the account of creation in Genesis, and hold
that evolution is the actual way the Creator creates species and that
He laid down the physical lJaws in the first place. To him the discovery
of scientific laws was the discovery of something about how the Creator
works. Equally he could not be refuted; it would be impossible to pro-
duce any piece of observational evidence that could not be dealt with
in this way. His view and the materialist’s are scientifically equally
tenable, the choice between them is apparently a matter of what one
wishes to believe and not of evidence In spite of G. K. Chesterton’s
opinion to the contrary, many people do find an emotional satisfaction
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in materialism. The opposition often alleged between religion and
science arises only when religion ceases to be religion and becomes bad
science. Actually they are mutually irrelevant. This is fortunate; it
enables, for instance, both the Jesuit Seismological Association and
Soviet Russia to produce good seismological observations. Similarly
for the distinction between free will and determinism. The determinist
can always say ‘it is predestined what I shall do, so there is only one
course open to me, here goes!” The Arabian Nights may be studied for
examples.

8.8. The present theory does not justify induction. I do not consider
justification necessary or possible, what the theory does is to provide
rules for consistency. A prediction is never in the form ‘so-and-so will
happen’. At the best it is of the form ‘it is reasonable to be highly
confident that it will happen’. This may be disappointing, but in the
last resort that is all that we can say. The former statement is a falla-
cious claim to deductive certainty, the latter is attainable by a consistent
process. In this sense we can justify particular applications, and it is
enough.



APPENDIX A
MATHEMATICAL THEOREMS

SomE theorems of pure mathematics are collected here so as not to
interrupt the main argument. References M MP are to H. and B. S.
Jeffreys, Methods of Mathematical Physics, 3rd edition.

A.1. If a set of positive quantities a, are such that the sum of every finite
set is less than a constant M, the set is finite or enumerable Take a sequence
of positive quantities ¢,, €,,.. tending to zero (¢, = 2-" will do). There
cannot be more than M /e, of the a, greater than ¢, for if there were their
sum would exceed M. Similarly there cannot be more than M /e, satis-
fying €; = @, > €, and so on. Hence (since every a, is greater than
some ¢,) we reach every a, in a finite number of steps. If there is an n
such that all @, are greater than e, the set is finite, if not, we can arrange
the @, in a definite order and the set is enumerable.

A2, If F,(z,) <M at an enumerable set of points z,, it is possible to
select a subsequence of {F,} that converges to a limit at each z,. Take a
sequence of positive quantities €, €,, . tending to zero, and take the z,
in a simply ordered sequence z,, x,,... Then F,(z,) are a bounded
infinite set and have a limit point F(x;). Hence there is a sequence
{F, (x,)} such that F, (z;) > F(x,). From this we can pick out a sub-
sequence {F, } such that F, (z,) within this subsequence have a limit
F(z,), and so on. Proceeding, for each z, there is a subsequence of the
previous subsequence that tends to a limit at x|, x,, ..,, Take F, a
member of {F, }, n, >m,, and F,,, a member of {F, }, so that m, —co, then
F, (v), F, (2), ., F, (x), .. is a sequence tending to a limit F(z,) at each z,.

A.21. Let the z, be an enumerable everywhere dense set inan interval
(a, b) (such as the rationals in (0, 1)). Let F, satisfy the condition

|Fol@y) — Fo(2)| < 8(zp—ay),
where §(z,—=x,) - 0 as 2,—=z, > 0, uniformly with respect to z, and =.
Then for any w we can divide (a,b) into a finite set of intervals such
that for ¢, ¢, in the same interval |F,(¢,)—F, ()| < w, independent
of n Take any point z, in each interval Then we can take F(z,), a
subsequence {F,. ()}, and m, so that
1B (@) — Flz,)| < w

for all n° > m, and all z,. Then for z in the same interval as «,,
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| F(2) — By ()| < | Fpo(@)— Fr(e ) |+ | By () — ()| | F(,) — F (25,)]
< 3w;

and therefore, since w is arbitrary, F,.(z) tends uniformly to a limit
function F(x), which is therefore continuous.t

A.22. Let F,(z) be bounded and non-decreasing but not necessarily
continuous; the interval of  may be infinite. Take x, an enumerable
set everywhere dense in the interval (e.g. the rationals). Then there is
a convergent subsequence of F,, tending to F(x,) atallz,. F(x,)isbounded
and if 2, > x,, F(z,) > F(z,). If zis not an z, we can define F(z--) and
F(z—) as the limits of F(z,) as , > from above and below; and
F(z+) > F(x—). If these limits are equal, F(x) is continuous at .

Let « be a point of continuity of F(z). There are z, arbitrarily close
to x; take z,, z, so that z, < z < x,, 0 < F(z,)—F(z,) < w, and take
m so that for all n > m in the subsequence

an(xr)_F(xr)] < w, IFn(xn)—F(xa)] < w.

Fn(xr) < Fn(x) < Fn(xa)» Fn(xr) = Fn(xs)—‘aw;
Fy(z) > Fla,)—w;  F2) < Flz)to < Fr,)+20.
Then for all #, n’ >> m in the subsequence

|F(2)—Fl2)| < 6w

and the subsequence converges at every point of continuity of F(z).

Since the limit must be between F(z,) and F(z,), however close z,
and z, may be, the limit must be F(x). Hence by 2.601, for any ¢, 8
we can exclude a finite set of intervals of total length < & and choose
m so that in the remaining intervals |F, (z)— F(z)| < € for all n > m.

A.23. If {F,(2)} converges to F(z) there is only one limit point for
each z, and all subsequences tend to the same limit function F(z).
If {F,(x)} does not converge there is at least one x, such that {F,(x,)}
has not F(z,) as its only limit point, and it is possible to construct
another convergent subsequence leading to alimit function G(x) different
from F(x), but with other properties as stated in A.22. We can
take the x, as points of continuity of F(x); then if Q(z,) # F(z,) there
is an interval on at least one side of x, where G(z) % F(x).
A.3. Stieltjes integrals (MMP, §1.10). These are integrals with
respect to a function, which may itself be discontinuous. To define

b
I= [ f(z)dg(a)
Tz=a
t C. Arzela, Rend Bologna, 1882-3, pp 142-59; G. Ascoli, Mem Accad Lincei (3) 18,
1883, 521-88 (esp 546-9) The fundamental lemma A 21 is also used in the proof of
Montel’s theorem for functions of a complex variable

Then
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we divide the range a < = < b into subintervals (z,,,,,), with z, = a,
z, = b, and in z, < = < z,,, take a value £. Then if the sum

8 ="S 1 Noe)—0(e)}

tends to a unique limit when the number of subdivisions tends to
infinity, in such a way that the largest z,,,—, tends to 0, this limit is
the Stieltjes integral written as I.

g(z) need not be a monotonic function of z, and consequently it is
confusing to write the range of integration as a to b, as is often done.
As for the Riemann integral it is z that is supposed to increase throughout
the interval.

If g(x) is non-decreasing and bounded for ¢ < « < b, and if f(z)
is also bounded, a necessary and sufficient condition that the integral
shall exist is that for any ¢, 8 the interval (a,b) can be divided into a
finite number of subintervals, such that in the intervals where the leap
of f(x) is greater than w the total variation of g(x) is less than 8. A
sufficient condition is that one of f, g shall be continuous and the other
of bounded variation. A necessary condition is that f, g shall not be
discontinuous at the same value of (MM P, § 1.10).

If g(x) is non-decreasing and bounded the Stieltjes integral can be
written as a Riemann integral. In these conditions all discontinuities
of g(x) are simple (MM P, §1.093). At points of continuity of g(x) take
y = g(z), k(y) = f(z). If ¢ is a discontinuity and g(c—) < y < g(c+),
take k(y) = f(c), which has a definite value since f (x) is continuous at c.
Then

b o(0)
[ t@dg@) = | ki) dy.
z=a 9(a)

A.31. Inversion of the order of integration. We can define a
double Stieltjes integral, but we chiefly need to consider integrals of
the form Ts b
| [ fe0 dedga).

Ty z=a
In our applications g is non-decreasing, and we can replace the integral
by a double Riemann integral
T3 9(b)

[ [ k0 dedy.

T g(a)

A necessary and sufficient condition for the existence of the double
integral is that k(y, ) shall be bounded and that for any €, 8 the points
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where the leap of k(y, ) is > € can be encloged in a finite set of rectangles
whose total area is < 8 (MM P, § 5 05). A rectifiable curve can be so
enclosed; hence discontinuities on a finite set of rectifiable curves do
not affect the existence of the integral.

The main theorem is that if the double integral exists, the two repeated

integrals Te oW oy T
[at | kgndy, | dy [k
Ty gla) ‘olay T

both exist, and are equal to the double integral and to each other. It
may happen that for some values of ¢, in the first of these repeated
integrals, the integral with regard to y does not exist, and similarly for
the second, but the result remains true if for such values the integral
is replaced by either the upper or the lower Riemann sum (MMP,
§ 5051).

A belief has become widespread that a condition for this inversion
can be stated only in terms of Lebesgue integration. This is erroneous.

A.4. Approximations. Very few of the results of probability theory
are expressible exactly in a compact form, and we continually need to
approximate, especially when the number of observations is large. The
greater part of the approximations rest on a general theorem due to
G. N. Watson. As a preliminary we need a form of Abel’s lemma for
integrals.

x
A4l. Abel’s lemma. Ina<z<b ld h< f f@)de < H; and
let v(x) be > 0, non-decreasing, and bounded Then *

b
ho(a) < f f(x)v(x) de < Ho(a).
a
b may be infinite in the conditions stated Write

j /(z) dz = F(z).
Then

b b b
I - j flz)v(z) dz = f (@) dF(z) = [v(z) F(z)]'— f P(x) dv(z)

x-a r-a

The last integral will be a Sticltjes integral if v(x) has discontinuities
All steps of v(x) are == 0 as a increases. Hence the last expression will
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not be decreased if F(x) is replaced everywhere by its upper bound, or
increased if F(x) is replaced by its lower bound. Also F(a) = 0. Then

ho(b)—h f dv < I < Hob)—H f dv,

whence the conclusion follows.
A.42. Watson’s lemma. Let

z
I(a) = f e~%22m f(2) dz,
[

where f (z) = 3 a2 for 2| < R, ay  0; the integral is along the positive
n=0 P

real axis, and exists for some value of a, say a = «. Z may be greater
than R and may be infinite. a is large and positive. Then for every n

n-1

n a.(m+r)!
am+ {I(a,)—- Z -—’;ﬁ;r} -0 as a->oo0.
Since the integral exists for = «, m > —1, and

X

fe-‘“z"‘f(z) dz is bounded for 0 < X < Z.

[
Also for 2 < A< R

n-1
f(z)— g a,z" = R,(2), (1)

with |R.(2)] < Mzm, @)

where M is a constant. Then

4 et 4 z
I(a) = f e~9%m 3 a.2"dz + f e~%%zm R, (2)+ fe'“’z"‘f (2)dz, (3)
0 0 [} a

where if Z < R we can take A = Z and the last integral will not arise.
First we note that for z > 0,

142 < e%; (4)
whence for z > 4, if m+r >0,
z\m+r z—A\mr z—A
(Z) = (1+— = ) <expfmtn 2], ®)

and if m+4r < 0 (which occurs if m < 0, r = 0), (2/A)y"** <1 Then
i - , , T _ z—A __ Am+rexp(—ad)
fe azgm4r gy < Am+ fexp{ az+(m+r) 7 }dz = A
a a (6)

Ff
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(where the term (m~-r)/A does not arise for m+r 0), and
A ©
f e~amir y = f eaemAr dz — f e-azmr gz
0 a
P M —0 (e-ﬂﬁ), (7)
am+r+l

when a is lJarge. Then the first integral in (3), being the sum of a finite
number of terms, is

L= St

T G0 (e7). ®)

The second integral in (3) satisfies

A
1
Ll < f e-asmMn dz < M(":::?l ©)
In A <2< Z take 2
j e—25mf(2) dz| < N. (10)
A

Then e-(@-% ig positive decreasing, and by Abel’s lemma the third
integral in (3) satisfies

5] < Neta-o)4, (12)
Hence
T = S wtmd g Memd it o, 13)

[]

where |0] < 1; whence the result follows.
In the notation of asymptotic expansions
!
@)~ ”i"%_j‘;)_ (14

Note that for finite R the series is not convergent. Its utility depends
on the fact that any finite partial sum gives an arbitrarily good approxi-
mation when a is large enough.

Note also that the condition that the result has & meaning (that is,
that the integral exists and that f(z) has a convergent expansion near
z = 0) is sufficient for its truth. Most theorems of pure mathematics
depend on additional conditions, which might not be satisfied and then
their conclusions might be intelligible but false, but Watson’s lemma
is an exception. It can be extended to complex integrals and to com-
plex a, but additional conditions are then needed (MMP, § 17.04). It
is the basis of the important method of steepest descents.
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The most important case for this book is m = —}. We have
A!
fe’“z-‘h(an+a,z+...) dz ~ V’( 1})'-l— % B!
o
13a
( ‘/=+2a%+2 2a°7n+"')’ (15)

and for 4, B >0

4
f e (g ta, 24...) dz
B
a4

= [ et {hayta,(20)+ag. 20 +..} dz +
0

B
+ f e~alf-fgg—a, /(20)+ay. 2L —...} dz

~J &) ot 2 k) 16)

The results are usually surprisingly accurate. For instance, the factorial

function is given by ®

al = fe-“u" du, (17)
H

and the first term of the approximation for a large is

(27a)(afe)”. (18)
Taking a = 1 gives agreement to 8 per cent., a highly satisfactory result
to be obtained on the hypothesis that 1 is a large number. (Later terms
can be obtained more easily by other methods and lead to agreement
to 0-001.)
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TABLES OF K

P(q|0H)

P 16H)’

where g is the null hypothesis, ¢’ the alternative, H the previous in-
formation, and 8 the observational evidence. We take the standard case
where ¢ and ¢’ are equally probable given H. In most of our problems
we have asymptotic approximations to K when the number of observa-
tions is large. We do not need K with much accuracy. Its importance
is that if K > 1 the null hypothesis is supported by the evidence; if
K is much less than 1 the null hypothesis may be rejected. But K is
not a physical magnitude. Its function is to grade the decisiveness of
the evidence. It makes little difference to the null hypothesis whether
the odds are 10 to 1 or 100 to 1 against it, and in practice no difference
at all whether they are 10% or 101° to 1 against it In any case what-
ever alternative is most strongly supported will be set up as the hypo-
thesis for use until further notice. The tables give values of 2, ¢, or z
for K = 1, 10-"2, 10-1, 10-*2, 10-2. The last will be regarded as a limit
for unconditional rejection of the null hypothesis. K = 10-'2 repre-
sents only about 3 to 1 odds, and would be hardly worth mentioning
in support of a new discovery. It is at K = 10 and less that we can
have strong confidence that a result will survive future investigation.
We may group the values into grades, as follows.

Grade 0 K > 1. Null hypothesis supported.

Grade 1. 1> K > 10", Evidence against ¢, but not worth more
than a bare mention.

Grade 2 10-": > K > 10-1. Evidence against ¢ substantial.

Grade 3. 10! > K > 10-*%:. Evidence against ¢ strong.

Grade 4. 10-% > K > 102 Evidence against ¢ very strong.

Grade 5. 10-2 > K. Evidence against g decisive.

WE have defined K =

Any significance test must depend on at least two variables, the
number of observations and the estimate of the new parameter (more
usually the ratio of the latter to its estimated standard error). Conse-
quently any table of K must be a table of at least double entry. In the
tables I have taken those tests where A depends on not more than two
variables. In most of each table the computations were based on the
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asymptotic formula, values for small numbers of observations being
separately computed from the exact formula. Accuracy of a few per
cent. was considered sufficient, since it will seldom matter appreciably
to further procedure if K is wrong by as much as a factor of 3.

It is clear from the tables how accurately it is worth while to do the
reduction of a given set of observations. Consecutive values of x? or ¢
for given v usually differ by at least 10 per cent., often by 20 per cent.
or more If we get x2 or 2 right to 5 or 10 per cent. we shall in practice
be near enough, and this implies that the work should be right to about
5 per cent. of the standard error. Hence as a general rule we should
work to an accuracy of two figures in the standard error. More will
only increase labour to no useful purpose, fewer will be liable to put
estimates two grades wrong. For instance, suppose that an estimate is
quoted as 44-2 from 200 observations, to be tested by Table III. This
might mean any of the following.

2 tirade
4525 90 2
35.25 196 0
40420 40 0

Similarly, 542 from 200 observations might mean any of.
L=}

[Ad Grade
45225 324 0
50,20 625 1
45215 90 2
50415 1i 1 3
55115 13 4 4

The practice of giving only one figure in the uncertainty must therefoie
be definitely condemned, but there is no apparent advantage in giving
more than two. Similarly, minor correcting factors in A that do not
reach 2 can be dropped, since decisions that depend on them will be
highly doubtful in any case

It will be noticed in Table T that for small numbers of observations
K = 1is at not much over the standard error. This is rather surprising,
but becomes less so when we consider the values of K in testing an
even chance from samples of 5 and 6

z y x* K B g X’ K
H 0 50 N 6 0 60 o5
4 1 18 HH 5 1 27 23
3 2 02 bt 3 2 07 R
J 3 (] 13

The exact vaiues of A are given for compatison For a sample ot o the
eritical vaive 18 for y- a shade less than 5, vut tnis means o« 4 1
sampie  For a sample of 6 it hies about audway beinween a4 2 ard

EXNEN
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5:1 sample, corresponding to x® about 1-7. We notice, however, that
K = 0-1 is not attained by the most extreme samples possible. The
interpretation of these small critical values is not that significance can
be strongly asserted at them—indeed there is only a probability 4 of
a systematic departure at the critical value anyhow. What they mean
is that the outside factor is small, and with the best possible agreement
with the null hypothesis there cannot be more than about 2 to 1 support
for it. Consequently a smaller value of y? is needed to reduce KX to 1.
The proper conclusion is that where the data are frequencies small
samples can tell us little new in any case.

In Tables I and II the values of x? for given K increase steadily with
n. I have indicated by italic figures in the upper part of Table I the
values that have been calculated, but could not in practice arise in a
sampling problem. It is only for a homogeneous sample of 10 that K
can first approach 0-01.

In Tables III and IV the values of ¢2 for given K begin by decreasing
as v increases, reach a minimum, and then increase slowly, behaving
for large v as x* does in Tables I and II. The difference is of course
due to the allowance for the uncertainty of the standard error, as in
the corresponding estimation problems. It is much more important for
small K than for K = 1.

Table V is intended to test the agreement of a standard deviation
with a suggested value. K is not an even function of z and therefore
it is necessary to tabulate separately for positive and negative z. It is
actually very nearly an even function of z/(1—1z), within the range of
the table. The asymptotic formula was in satisfactory agreement with
the exact formula at v = 4.

It is interesting to compare the results with those based on the
customary use of the P integral. The usual treatment of the problems of
Tables I and IT would be to draw the line at values of x* such that they
have 5 per cent. or 1 per cent. chances of being exceeded on the null
hypothesis. These limits are, for one new parameter, 3-8 and 6-6, for
two, 6:0 and 9 2. In Table I, K = 1 lies below the 5 per cent. point
up to » = 70, and passes the 1 per cent. point only about n = 1000.
K = 10-'2 lies below the 5 per cent. point only for » = 5 and 6, and
reaches the 1 per cent. point about n = 130.

Similarly, in Table II K = 1 lies below the 5 per cent. point up to
n = 30, and passes the 1 per cent. point at n = 500. K = 10~ never lies
below the 5 per cent. point, and reaches the 1 per cent point about n = 40.

The 5 per cent. and 1 per cent. points for ¢ can be taken from the
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tables given by Fisher, remembering that his n is my v. The former
drops from #2 = 7-8 at v = 4 to 3-8 for v large; it lies between K = 1
and K = 10-"5 up to about » = 50, and for larger v below K = 1. The
1 per cent. point lies between K = 10-*2 and K = 10~ up to about
v = 200, and below K = 1 for » = 1000 and more.

For z (Table V) the 5 per cent. point and K = 1 are close together
both for positive and negative z. (My negative z corresponds to Fisher’s
—z with », infinite.) K = 10-"2 agrees fairly well with the 1 per cent.
point, K = 0-1 with the 0-1 per cent. point.

In spite of the difference in principle between my tests and those
based on the P integrals, and the omission of the latter to give the
increase of the critical values for large =, dictated essentially by the
fact that in testing a small departure found from a large number of
observations we are selecting a value out of a long range and should
allow for selection, it appears that there is not much difference in the
practical recommendations. Users of these tests speak of the 5 per cent.
point in much the same way as I should speak of the K = 10-"2 point,
and of the 1 per cent. point as I should speak of the K = 10-1 point; and
for moderate numbers of observations the points are not very different.
At large numbers of observations there is a difference, since the tests
based on the integral would sometimes assert significance at departures
that would actually give K > 1. Thus there may be opposite decisions
in such cases. But they will be very rare. We may recall that P = 0-01
means that if ¢ is true there is a 1 per cent. chance of a larger departure.
Hence we can apply Bernoulli’s theorem and say that if we assert a
genuine departure whenever P is less than 0-01 we shall expect to be
wrong in the long run in 1 per cent. of the cases where g is true. Accord-
ing to my theory we should expect to make fewer mistakes by taking
the limit farther out; when K = 1 lies above P = 0-01 there will be a
smaller risk of rejecting ¢ wrongly, partly counter-balanced by a slight
increase in the risk of missing a small genuine departure. But in these
conditions the probability of a mistake by the use of the 1 per cent.
limit for P is so small anyhow that there is little to be gained by reducing
it further. Values between the two limits will be so rare that differences
in practice will hardly ever arise. Thus even though the P tests some-
times theoretically assert ¢’ when the number of observations is large
and my tests support g, the occasions will be extremely rare.

Actually it may appear that such differences are fairly common; it
is known that when the number of observations is very large the
estimates of new parameters two to four times the standard error tend
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to be commoner than would be expected if ¢ was true, but that these
often or usually do not persist in other similar sets of observations.
This, however, is a false contrast, because these discrepancies do not
correspond to either the ¢ or to the ¢’ of the tests considered in these
tables, they represent internal correlation of the errors or non-indepen-
dence of the chances, and we have not arrived at the hypothesis actually
supported by the data until this hypothesis also has been set up and
considered. But this leads us to a working rule for saying when such a
hypothesis is worth investigation- if an estimate gives K > 1 and
P < 0-01, internal correlation should be suspected and tested, for such
a result would not be expected on the hypothesis of independence of
the errors in either case. The use of P by itself involves a danger
that discrepancies due to failure of independence will be interpreted as
systematic.
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1a
Tabe I Values of x* from K = (3?) exp(—1x?)
m
K
n 1 10-# 10t 108 107
5 12 35 58 81 10 4
6 13 36 60 52 106
7 15 38 61 84 107
8 16 39 62 85 108
9 17 40 63 86 109
10 18 42 65 88 111
11 20 42 66 89 112
12 20 43 66 89 112
13 21 44 67 90 113
14 22 45 68 91 114
15 23 46 69 92 115
16 23 46 69 92 115
17 24 417 70 93 116
18 24 417 70 94 116
19 25 48 71 94 117
20 25 48 72 94 118
30 30 52 76 99 122
40 32 55 78 102 124
50 35 58 81 104 127
60 36 59 82 106 128
70 38 61 84 107 130
80 39 62 85 108 131
90 40 64 87 110 133
100 42 64 88 111 134
200 48 72 95 118 141
500 58 81 104 127 150
1,000 65 88 111 134 157
2,000 72 94 118 141 164
5,000 81 104 127 150 173
10,000 88 111 134 157 180
20,000 94 118 141 16 4 187
50,000 104 127 150 173 196
100,000 111 134 157 180 203
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TasLE II.  x2 from K = }nn'ey exp(—3x?)

K
n 1 104 10-1 10-% 102
7 43 71
8 45 73
9 46 74
10 48 75
11 49 76
12 50 71 103
13 51 78 104
14 52 79 104
15 53 80 105
16 54 81 106
17 54 82 107
18 55 82 108
19 56 82 108 .
20 56 83 109 134 159
30 61 88 113 138 163
40 65 91 117 142 168
50 67 94 19 144 168
60 69 95 120 145 170
70 70 97 122 147 171
80 72 98 123 148 173
90 73 100 125 150 174
100 76 101 126 161 176
200 83 109 134 159 183
500 93 19 144 168 193
1,000 | 101 126 151 176 | 200
2,000 | 109 134 159 183 207
5000 | 119 144 168 193 217
10,000 126 151 176 200 224
20,000 | 134 159 183 207 23 2
50,000 | 144 168 193 217 241
100,000 | 151 176 20 0 224 | 248
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b 2\ ~lfgv+1fz
TaBLE III. # from K = (%V) (l +£—)
14
K
v 1 10-4 L 10-2
5 34 99
[ 34 89 178
7 34 83 155
8 35 80 142
9 35 717 133 .
10 36 75 127 192 278
11 36 74 122 18 2 258
12 37 73 118 174 242
13 37 72 114 168 233
14 37 72 112 163 224
15 38 71 11 159 215
18 38 71 110 154 207
17 39 71 109 151 201
18 39 70 108 148 196
19 39 70 107 146 192
20 40 70 106 145 189
50 46 74 100 128 16 0
100 52 717 103 128 155
200 57 82 107 131 156
500 68 91 114 138 16 2
1,000 74 97 120 143 166
2,000 81 104 127 150 173
5,000 90 113 136 159 182
10,000 97 120 143 16 6 189
20,000 104 127 150 173 196
50,000 113 136 159 18 2 205
100,000 120 143 166 189 212
TaBLE IIL A. & from accurate formula 5.2 (33)
t=0
v| K |K=1 10 101 10-% 10-*
11 23|39 ) 30 12x10t 2x 101 ..
21 27| 36| 2 102 100 10¢
31301 34 128 39 120 370
4|33 [ 34| 108 268 52 118
5|35 ]| 35 92 194 37 66
6] 38 | 35 85 160 29 50
7|40 35 81 150 24 2 38
8142 | 38 79 136 206 31
9| 43 | 38 77 131 195 290

439
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2\ —1fow

TaBLE IV. £ from K = %v'/’ﬂt(l +t )
v

K

v 1 10-# 1071 10-# 102

5 73 184

6 70 159

7 68 144
8 67 131 225 350 522
9 67 128 208 313 453
10 67 123 194 28 4 400
11 67 120 185 265 367
12 67 17 1717 250 340
13 67 115 172 240 322
14 67 13 167 231 306
15 67 11 163 223 293
16 67 10 159 216 28 1
17 68 109 156 210 272
18 68 108 153 205 265
19 68 107 151 20 2 259
20 68 107 150 199 253
50 73 104 136 169 203
100 79 108 136 164 193
200 85 12 139 165 192
500 94 120 146 172 197
1,000 102 128 152 177 20 2
2,000 109 134 159 183 208
5,000 119 144 168 193 2117
10,000 127 151 176 200 22 4
20.000 134 159 183 208 23 2
50,000 144 169 193 217 24 1
100,000 151 176 200 224 248

TaBLE IV A. 2 from accurate formula 6.21 (42)

t=0

v | K |K=1 10% [ 1ot | 10-F 10—
1| 27| 91 |1,500 1010

2| 30| 68 | 48 |380 3,300 | 32,000
3|33 |65 245] 79 251 790
4|35 | 62 182 | 436 100 216
65| 38| 61 157 | 336 70 138
81 40 | 60 139 | 266 49 85
7] 42|59 128 | 222 36 55
8|43 |69 | 123]| 207 326 491
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TaBLE V. 2z from 5.43(11) and (14)
z2=0

v | K |K=1| 10 | 100 | 1040 | 10 |K=1] 104 | 102 | 10-0 | 100
1184077 +104| +120| +131] +140] ~14 [ -85 » ] "
2(22|4+056|+076| +094{ +104|+112]—113)—22 [—32 [—44 |55
3| 25|+047| 4070 | +078] +088| +0094| —099]| —168| —230( —288|—346
4]28|+045|+062]+072| +082) +080)—070| —117]| ~160| 201|242
5|31 (+043| +057|+067(+075|+082]—065|—-104]—138(—171]—203
6| 34)|+041)4+054] 4063 +070] +077| 081 —004|—121] —147]|—172
7|36 (+039|+051|+060]+065|-+073]—-057|—085|—-108] —130] 151
8]39]4037)+040|+057|+0863]+069| 052/ —077(—098|—118} —136
9|41 |+036)+046] +054)+060|+086)—049]—071)—090{—108]—125
1042|4034 +044| +052|+068]+063[ 047|087 —~085{—101]—-118
12| 46| +032| +042| +049 ]| +054| +059] —043| —060f{ —075(—089|—102
14| 49| +031| +039| +046| +051| +055[~040] —055] —068| —081]| —092
16| 52 |+030|+037|+043| +048)| +052| 038 ~051|—063|—074|—085
18] 56[+020|+036|+041)+046) +050} —036]| —048] —0569| —071|—078
20 | 58 [ +027(+034]| +040( +044] +048| —034| —045|—055( 068|073
50 | 90 +020| +024|+027| +030| +033]| —0-22| ~029| —~034] —038| —043
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HARMONIC ANALYSIS AND
AUTOCORRELATION

Analysis for periodicities
1. For a finite interval (0, T), if a function f(t) is given, it can in
ordinary conditions be exactly represented by a Fourier series in the form
& 2mst . 2mst
76 = Ao+ ; (A,cosT+ B,sin _T.), (1)
where

T T
do=1 f foa, 4,=2 f S (troos T ay
0 [}

T (2)
B,=%ff(t)sin2"_T_"d¢
[

The periods of the terms are a discrete set 7', 3T, 4T',.... The problem

in practice is usually to decide what can be said about a possible period

2n/y that may really be contained in f (), when observed values of f(t)

are available. The coefficients just stated require integration and there-

fore usually application of an integrating machine to a continuous record.
Suppose that in fact

We find f(t) = Acosyt+ Bsinyt. 3)
e fin
4, = ;17., {A sinyT 4 B(1—cosyT)}
_ 4 [sin(yT'—2ms) | sin(yT+ 2#8)}
4e= A{ yT —2ms + yT+2ms +
1—cos(yT —2ms) | 1—cos(yT+ 2ns)
+B{ yT—2ns yT'+2ms &)
_ 1—cos(yT—2ms) , 1—cos(yT+ 2#3),
B, = A‘_ yT—2ms yT+2ms +
+B sin(yT —2ns) sin(yT+2ws)
{ yT—2rs  yT+2ns

In some cases, notably tidal theory, the periods are already known,
and we only want 4 and B. In others, notably the detection of a free
period, we want all of y, 4, B. The record to be studied is disturbed by
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(1) the existence of superposed periods, (2) errors of observation, (3)
noise. Contributions from (1) will largely cancel unless there are two
periods very close together. (2) and (3) will mostly contribute at random
to the estimates of the coefficients. Noise (i.e. continuous irregular
movement) is at its worst when the average interval between its maxima
is near the true period. Also the method will not usually be used unless
the period sought is short compared with 7'. Then the largest terms will
be those with 27s as close as possible to y7', and especially if
2ns < yT < 2m(s+1).

Between these values the coefficients 4, and B, change sign.

Then the two pairs of coefficients for s and s+ 1 give four equations
for A, B, and y (if required). If we take also those for s—1 and s+2 we
have 8 equations for 3 (or 2) unknowns and can estimate uncertainties by
least squares based on 5 (or 6) degrees of freedom. It will usually be
legitimate to treat the errors from the disturbances mentioned above
as independent and arising from equal standard errors, since (1) will be
small, (2) will satisfy this condition, and the contribution from noise will
presumably vary smoothly with the period.

The equations are not linear in y, but a first approximation can be
found as follows. The terms in y7'—2ns and yT'—2n(s+ 1) are

2sin }(yT—2ns) K

4,= yT—2us
B, = 2sina}('yT—21-r8)L
yT'—2ms )
4. - 2sin §(y T —2ns)
T T on(s+1)
_ 2sin§(yT —2ms)
1T T 2n(s+1)
Where K = A cos }(yT—2ms)+ Bsin }(y T—2ns) ©
L = —Asin(yT—2ns)+ Boeos 3 (yT —2ms)]’
Then ;_4_”___1 _ By, yT—2ns )

4, B, ~ yT—2n(s+1)
Naturally the estimate based on the quotient of the larger quantities
would be preferred
Harmonic coefficients for closer intervals of y are often calculated
This serves no useful purpose, since all the information in the data is
already expressed in the coefficients for periods of integral submultiples of
T'; values at closer intervals are simply interpolates and their errors are
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highly correlated It will not usually be possible to detect two periods
between those corresponding to consecutive values of s (this is the well-
known problem of resolving power) but it can be done if the noise level
is unusually small, when the equations of condition may give excep-
tionally small residuals.

2. Instead of a continuous record we may have a set of measures
f(r) fort =22, XA = 2n/n (r =0,1,2,...,n—1). These can be expressed
exactly by a sum (MM P, pp. 429-30)

f(r) = Ag+ 3 (A, cosrsA+ Bysinrs)), (8)
where =
4o = P Zf(")
e
4, = . ,Zo frycosrar \, )
2,
B, = - Zof(r)sm 78\
o 1<
and if n is even 4,, = 7—‘; (—1yf(r). (10)

The sine sum vanishes if s = }n.

Each term has period n)/s. If the f(r) are derived from the normal
law, independently measured and have equal standard errors o, the
mean square uncertainties of all terms also have equal standard errors;
that is, that of 4, is o and those of 4; and B; are ov2, and their uncertain-
ties are also independent.

Suppose that f(r) contains a term

A cos prA+Bsin pra, (11)
where in future inferences we may want to extend to non-integral r, and

in any case p is not an integer. Evaluating the coefficients for this we find,
for p near s,

nd,sin{(p—s)A = }AX(p—s)+1BY(p—s)

nB,sin}(p—s) = —34Y(p—s)+1BX(p—s)
X(p—s) = sin}(p—s)A+sin}(2n—1)(p—s)A
Y(p—s) = cos}(p—s)A—cos}(2n—1)(p—s)A

These will be largest when the denominator sin 4(p—s)X is as small as

(12)
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possible; that is, when s has the two integral values nearest to p, on
opposite sides of it  If A, and B, are computed from (9) for several values
of s, each pair is a pair of equations of condition for 4, B, and p

To get a first approximation, note that the numerators are not in
general small, and are not much changed if s is replaced by s+-1, but the
sign of sin {(p—s)A is reversed. Then we shall have roughly

Ay _ Boy _ __sind(p—s (13)
A By sin }(s+1—p)A

The relevant range of p is identified by the change of sign of the co-
efficients, the largest (in absolute value) pair give an equation for p This
should be enough to serve as a trial value Then if we use the values for
s—1,s, s+1, and s+2 we have 8 equations of condition for p, 4, and B,
and can estimate standard errors on 5 degrees of freedom.

The method described is essentially that of A. Schuster t Useful
2-figure tables for estimating up to 20 terms are given by H H. Turner.}
It must be distinguished from one treated at length by Whittaker and
Robinson (Both are often called the periodogram ) They have a series
of 600 observations, said to refer to the magnitudes (rescaled) of a
variable star on successive days They consider periods of exact mul-
tiples of a day, say ¢ days, and for the mth period take the values for
mg+(0,1, 2, ,g—1). These are averaged for all m and these averages
are then analysed harmonically. The disadvantage of this method is that
g is not in general a submultiple of 600, and the estimates for different ¢
are interpolates between those that could be found, their uncertainties
are far from independent, and none is found for the answer

Many solutions, even those starting with (9), use only the squared
amplitudes 42+ B%, and ‘seek for a maximum This leads to a great loss
of sensitivity in comparison with one that attends to the signs of the
separate coefficients Schuster himself does this, and gives a significance
test equivalent to P(x?) on two degrees of freedom Turner mentions
attention to the change of sign, but does not use neighbouring values to
get improved estimates.

As an illustration I take the data on pp. 349-52 of Whittaker and
Robinson’s book Their analysis is enough to show that the amplitudes
have maxima for periods of about 29 and 24 days. Fourier coefticients
covering this range were calculated for me by Mis. M Mutch at the
Mathematical Laboratory, Cambridge, as follows

t Terrestial Magnetism and Atmospheric Electricity, 3, 1898, 13-41, Trans Camb
Phil Soc 18,1900, 107-35
t Tables for Facilitating the Use of Harmonic Analysis, Oxford University Press, 1913

Gg
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8 4, B,

18 +0 146 —0911
19 +0 202 —1491
20 +0-454 —3-747
21 —0 888 +8625
22 -0179 +2 064
23 —0-091 +1194
24 —0 047 +0-849
25 —0034 +7750
26 —0-015 +0 547
27 —0013 +0 468
28 0000 +0 409
29 —0002 +0 365
30 +0008 -0 329

4, and B, take their largest absolute values and change sign between
8 = 20 and 21. A rough least-squares solution was made, in which A
was treated as small. First approximations were 4 = 7:5, B = 66,
p = 20-7. The solution was
A = 6:134-0:05, B = 579+40-05, p = 20-694840-0018

on 5 d.f. The standard deviation for the 8 entries used was 0-05. It will
be noticed that the bulk of the entries B, exceed this and have a
systematic behaviour in sign. The period would be 28-9928-0-0025
days.

The second maximum at s = 25, period 24 days, does not satisfy the
conditions, as there is no adjacent change of sign. There must be some
non-random disturbance, or possibly there are two periods close together,
which cannot be clearly separated by the data. Anamplitude fluctuating
with argument ¢/day could produce this effect. This complication may
have many interpretations, some of which will affect that of the data
near s = 20.

As Whittaker and Robinson did not identify the star, I consulted an
expert, who reported that he could not find one in the lists of variable
stars with the properties indicated. and thought that the data were
an artificial series I had thought it remarkable myself that it should
have been possible to observe it on 600 consecutive days without
cloud! But I have retained the analysis purely as an example of the
method.

Dr. Walker calls my attention to papers by P Whittle.t It is shown
that the maximum likelihood estimate of the period has a standard
error of order n~" instead of the usual n-2,

t Trab Estadist 1952, 43-47 and Appendix 2 in H Wald, 4 Study in the Analysis
of Stationary Time Series, 2nd edn Almqvist and Wiksell, 1954,
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3. In fact there seem to be very few problems where the method is
strictly applicable. The nearest is the tidal case, where there are many
forced periods and the only problem is to find the amplitudes and phases
If the data are at, say, hourly intervals, the method would succeed; but
the usual practice is to take an interval of observation that is as nearly
as possible a multiple of the periods to be sought and then to analyse for
them directly.

The next nearest would be the estimation of a free period, excited by
a single disturbance, such as the free vibrations of the Earth as a whole
set up by a large earthquake. The complication here is damping. If there
is a systematic decay of amplitude we must try to estimate it. The set
of Fourier terms, with heavy damping, will yield only mean values over
the range of observation, and their uncertainties may not be independent
A possible method is to make a preliminary inspection to detect the
largest term, analyse for ranges of such length that the change of
amplitude is not dominant, and estimate the damping and improve the
period by comparing results for different ranges Then this term can be
subtracted and the next sought for. Sometimes a preliminary Fourier
analysis will detect several trial periods. Finally the whole, with the
damping, can be estimated by maximum likelihood.

4. The commonest case, however, is when the motion is continually
regenerated by random disturbances. Most musical instruments are of
this type. Turbulence at the entry, for a wind instrument, or solid
friction for a string, gives an irregular disturbance; this excites the free
vibration, which lasts for some time, gradually dying down, till a new
disturbance enters. The result is that for most of the time the motion is
a damped free vibration, but this is regenerated at irregular intervals.
Yule considered the formation of sunspots to be of this type, certain
variations of the Earth’s rotation also seem to be.

The general equation will be of the form

Up—@Q U1+ Qo U,y = L7 (16)
If the disturbance r was absent we could treat this as a linear difference
equation; we put u, oc e-or a7
and get e~ —q =g, = 0. (18)
We are interested chiefly in the case where the roots are complex, we put

e~ = ke,
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Then on substituting and separating real and imaginary parts we are
led to a, = 2kcosy, (19)
a, = k2 (20)
For a damped motion 0 < k < 1 if we take —in < v < }=.
The likelihood will be of the form
1 _ g =y, tay %, ,)?
(2n72)in-2 exP[ § 27 &0
and in a long series without systematic growth (called a stationary time
series) the sum in (21) approximates to

2[(1+a}+ad)u;—2(ay+a, ag)u, u, g+ 20, %, %, , ], (22)
whence @, and a,, and hence k and v, can be estimated.

Two serious complications may exist First, the equation supposes r
to be entirely a disturbance of the regression equation between u,, u, ;
and u,_,, and successive residuals of the equation are supposed indepen-
dent But there will usually be errors of observation, those of different
u, in general being independent. Then their contributions to different
%, —@y U, _,+a5%,_, in general are not. They will make systematically
positive contributions to Su? and not affect Su,u,_, and Su.u,_,. It
appears likely, though a general proof would be complicated, that the
result would be to overestimate the damping and underestimate the
period Yulet found in the analysis of sunspot numbers that applica-
tion of his regression method led to shorter periods than those estimated
otherwise, but appeared to believe the latter more accurate. In an
artificial series, where no contribution from observational error was
introduced, he got good agreement between the estimates and the model.
Possibly observational error is the explanation.

The second complication is that the disturbances expressed by 7 may
themselves be correlated. We have a clue to the treatment in intraclass
correlation. If it is present, treatment of successive disturbances as
independent usually leads to an underestimate of uncertainty, which can
be tested by using longer intervals in the analysis. We may therefore
expect that the use of mean values over longer non-overlapping intervals
will lead to a more genuine estimate. If the underlying period is T, it
would be undesirable to use intervals > }T, since part of the main
effect sought would cancel; intervals of 37 may be satisfactory.

Direct harmonic analysis of such series is liable to be disastrous, as
M. G Kendall has shown by numerous examples.

t G Udny Yule, Phil Trans A, 226, 1927, 267-98
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The strict procedure for dealing with observational error would be to
regard the u, as estimates of unknowns £, with standard error o, the
regression equation holding between the £,. Then we should have

equations of condition ¢ —u, = +o, 23)
L= € tayd = £, (24)
and the likelihood will have exponent
E—a, 6 110,60 (u =§,)°
—8 272 202 (25)

The likelihood would then have to be integrated with regard to the £, to
give a total probability distribution for the ,. The estimate of ¢, will
depend on at least five values of the u,, still depending on ¢ and =; in
any case it is a formidable undertaking. I had a simular problem of two
correlated series and devised a rough method  A. M Walker and A.
Young gave another.}

Introduction of an extra term into the regression equation involves
a new parameter, the relevance of which could be tested by a significance
test, on the lines of the approximate theory of 5.0

The model deserves a rather full treatment. First consider a displace-
ment 7 arising between r = —1 and 0, for r < —1 there is no displace-
ment. The equation for ¢, is supposed unaffected by 7, which would
appear only in that for £, Then we find for r > 0

PR sm(r+l)v (26)
siny
,
_ _mSin(r—m-+1)v
For general ¢, _m-z_w T 7 B (27)
E¢ ¢, = 2_8_;)2 Z k2 -mipleos pv—cos(2r—2m+p+20}  (p = 0)
_ (28)
and on summation (7%, being now replaced by 2)
T Ic” (14 k?)cos pv—cos(p+ 2)v— k2 cos(p—2)v (29)
T 2sin% (1—42)(1—2k* cos 2v+k?) :
For p = 0 we shall have
2’
Fa? = B0t — (LEE) +oh (30)

(1—k?)(1—2k2 cos 2v+-£*)
while other Ex,x,,, are equal to (29).
We need four equations to estimate o, 7, k, and v, and can get them by

t MNRAS 100, 1940, 139-55
t Ibid 115, 1955, 443-59; 117, 1957, 119-41
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equating four observed means to expectations In the full likelihood any
£, is associated with four others From the results it would be possible to
calculate expectations for higher p, if these came out unexpectedly large,
correlation among the 7,, may be suspected. Uncertainties could be
estimated by evaluating expectations of products of means, as in 4.3.
The solution is difficult in any case. Methods are discussed thoroughly by
A. M. Walker.{

Autocorrelation

The type of regression with disturbance has been extensively studied,
especially by Russian writers. We consider first a distribution function
F with F'(z) = f(z), and the integral

It = [ J0F @+ d. (1)

This can be expressed in terms of the characteristic function as follows
We have (for differentiable F')

#o) = [ soeta, 0 =g [ pertde; @)
whence - o

10) = - [ @fer) [ goerdo

©

— g [ #erdo [ st mestensmsior ageeny

1 twr
-5 J' Hw)d(—w)e T deo. ®)

Thus ¢(w)d(—w) is the Fourier transform of I(7) The result is due to
Khinchin. For real f, ¢(w) and ¢(—w) are conjugate complexes.

[f(t) may also be a measured quantity. If it hasa random variation as
between different series of observations we can define the process as
stationary if Ef2(t) is independent of ¢, that is, the process is supposed
to be generated by random disturbances, which maintain its general
amplitude in spite of the damping. We take Ef(t) = 0 We can define
the autocorrelation (or better, covariance) as

X
I6) = lim % f FOF ) de. @)
-x

1 Biometrika, 47, 1960, 33-43.
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For increased generality it is useful to consider complex values of f,
and write

X
1) =lim % [ fOf et ®)
-X
where the asterisk denotes the complex conjugate. The reason for this
is that if f(t) = Ceiot = (A+iB)(cos wi+isin wt) (©)
and we put 7 = 0, we should have
fHt) = (A*— B*+2{ 4 B)(cos 2wt +i sin 2wt), (7)
F@Of*t) = 42+ Be. (8)

Thus Ef2(t) depends on ¢; Eff * does not, and also is equal to the square
of the amphtude. Also
F@Of*(t+7) = (A2+ B?)(cos wr-isinwr) (9

and is independent of ¢.

For more general f, f(t) and f(t+ =) usually approach independence
as 7 becomes large, and I(7) > 0

The above argument can now be applicd. The relations between
f(t) and ¢(w) are unaltered, except that f will be taken 0 for jt; > X;
we have

I(r) = hm f dt f*(t+7) f $w)et! dw
= llm f $(w) dw f [ (4 T)emtettsnvion gt 1)
= umé}_f( f Hw)d*(w)eio™ dew. (10)

A possible form of random noise is that f (t) is the result of independent
disturbances mg/(8¢) in interval 8¢, each decaying exponentially; then

10 = 3 medoi)ei-s. (an
We find
3 eiwé
$(w) =f=2_:xm§ 4(88) i

B/ Of@+7) = 3 midgeiwerth = mie M2 (r>0), (12

=
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and for 7 < 0, 7 must be replaced by |7|, and

2
I= %e—mﬂ (13)

(on the assumption that products of independent m; add up to much less
than m2. This can be treated more strictly by using the notion of con-
vergence in mean square.) But

X, 2 me
Moy = S ¥ 2Xm?
E{p(w)g*(w)} ¢4 X”_i @t Aot (14)
The Fourier transform of [ is
m?
Pl (18

This is really an awful warning on the use of Fourier transforms in
estimation problems for stochastic processes To estimate A from obser-
vations we should have first to interpolate, then to calculate |4%| by
integration for at least two values of w. Even this uses only part of the
data But maximum likelihood needs only Sz? and Sz, z,,, and uses all
the information in the data It depends of course on the law being true,
but that applies to both methods

The general theory has, however, many applications One set is in
the theory of turbulent motion in hydrodynamies t

A. M Yaglomi gives an account of the general theory, and in par-
ticular a most important extension (pp 78-81) If there are n variables,
functions of ¢, say £,(t), &(!), ,&,(t), we may consider the cross-correla-

tions Bylt,s) = BE)EN). (16)
If these depend only on the difference t—s, we may say that the set &,
is in a stationary state, the correlation matrix can be written
B(t,s) = B(t—s). (17)
This is an obvious extension of a stationary random process for one
variable
Evidently Bt s) = {Byy(s, )}*, (18)
and in the stationary state
B(r) = {B(—7)}* = B(—7) (19)

t G K Batchelor, The Theory of Homogeneous Turbulence, Cambridge University
Press, 1963
1 Stati

'y Random F tons Translated by R A Silverman Prentice-Hall, 1962
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(notation as in MM P, Chapter 4) Also
B(r) = f eior dF, (20)

where F may be called the spectral distribution function for the process.
Then

B*(r) = j e-iwr JF*, (21)
B*(—7) = [ eiom dF*, (22)
BY(—7) = f eiwr dF, (23)
whence, by comparison with (19) and (20),
F = F'.

Thus F is a hermitian matrix I am indebted to Professor H. E. Daniels
for filling in the details of Yaglom’s abbreviated proof

The importance of this result in statistical mechanics, and quantum
theory in particular, can hardly be exaggerated, though Yaglom does
not mention this explicity Hermutian matrices play a predominant part
in it, usually with no very clear explanation of why they arise. A.Landé
gives one,T but the above account shows that they are a necessary part
of any stationary stochastic process, and is rather more direct.

t New Foundations of @ Mechanics, Cambridge University Press, 1965
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jeftrey's Theary of probatility, first published In 1939, was the first teat to
develop a fundamental theory of scientific inference based on the ideas of
Bayesian statistics, His kleas were way ahead of their ime and 1t is only in
the past lew years that the subject of Bayes factors has been significantly
devetoped and extended. Uintil recently the two schoals of statistics
{Bayesian and frequentist) were distinct and separate areas of research.
Recent work, aided by Increased computer power, has changed this and
todey's graduste students and researchers il require an understanding of
Bayesian ideas. This book is their starting paint
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