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Abstract

Motivated by alignment of correlated sparse random graphs, we introduce a hypothesis
testing problem of deciding whether or not two random trees are correlated. We obtain
sufficient conditions under which this testing is impossible or feasible.

We propose MPAlign, a message-passing algorithm for graph alignment inspired by the tree
correlation detection problem. We prove MPAlign to succeed in polynomial time at partial
alignment whenever tree detection is feasible. As a result our analysis of tree detection reveals
new ranges of parameters for which partial alignment of sparse random graphs is feasible in
polynomial time.

We then conjecture that graph alignment is not feasible in polynomial time when the
associated tree detection problem is impossible. If true, this conjecture together with our
sufficient conditions on tree detection impossibility would imply the existence of a hard phase
for graph alignment, i.e. a parameter range where alignment cannot be done in polynomial
time even though it is known to be feasible in non-polynomial time.
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Introduction
Graph alignment Given two graphs G = (V,E) and G′ = (V ′, E′) with same node set V =
V ′ = [n], the problem of graph alignment consists of identifying a bijective mapping, or alignment
σ : V → V ′ that minimizes ∑

i,j∈[n]

(
1{i,j}∈E − 1{σ(i),σ(j)} ∈E′

)2
,

that is the number of disagreements between adjacencies in the two graphs under the alignment
σ.

Figure 1: Graph alignment consists in the following informal question: what is the ’best way’ to
match the nodes of the two graphs G,G′?

This problem reduces to the graph isomorphism problem in the noiseless setting where the
two graphs can be matched perfectly, i.e. are isomorphic. The paradigm of graph alignment
has found numerous applications across a variety of diverse fields, such as network privacy [18],
computational biology [21], computer vision [5], and natural language processing.

Given the adjacency matrices A and B of the two graphs, the graph matching problem can be
viewed as an instance of the quadratic assignment problem (QAP) [19]:

arg max
Π

〈A,ΠBΠT 〉 (1)
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where Π ranges over all n× n permutation matrices, and 〈·, ·〉 denotes the matrix inner product.
QAP is known to be NP-hard in general, as well as some of its approximations [19, 16]. These
hardness results are applicable in the worst case, where the observed graphs are designed by an
adversary. In many applications, the graphs can be modeled by random graphs. Accordingly our
focus will be on random graph instances rather than worst-case scenarios.

Correlated Erdős-Rényi model A recent thread of research [6, 7, 8, 9, 10, 11, 13] has focused
on the study of graph alignment when the two considered graphs are drawn from a generative
model under which they are both Erdős-Rényi random graphs. Specifically, for (λ, s) ∈ R+× [0, 1],
the correlated Erdős-Rényi random graph model, denoted G(n, q, s) with q = λ/n, consists of two
random graphs G,G′ both with node set [n] generated as follows. Consider an i.i.d. collection
{(Aij , Ãij)}i<j∈[n] of pairs of correlated Bernoulli random variables with distribution

(Aij , Ãij) =


(1, 1) with probability λs/n
(1, 0) with probability λ(1− s)/n
(0, 1) with probability λ(1− s)/n
(0, 0) with probability 1− λ(2− s)/n.

(2)

Consider then a permutation σ∗ drawn independently of A, Ã and uniformly at random from the
symmetric group Sn. The two graphs (G,G′) are then defined by their adjacency matrices A and
A′ such that for all i < j ∈ [n]:

Aij = Aji, A′ij = A′ji = Ãσ∗(i)σ∗(j).

In this setting, the marginal distributions of G and G′ are identical, namely that of the Erdős-
Rényi model G(n, q) with q = λ/n.
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(a) Union graph (A, Ã)
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(b) Graphs G, G̃ with adjacencies A, Ã
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(c) Graphs G,G′ with adjacencies A,A′

Figure 2: A sample from model G(n, q = λ/n, s) with n = 11, λ = 1.9, s = 0.7. For the sake of
readability, the two-colored edges are drawn thick and purple.
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Planted graph alignment The previous model is then used to study the mean-case version of
graph alignment – namely planted graph alignment – consisting in finding an estimator σ̂ of the
planted solution σ∗ upon observing G and G′. For any subset C ⊂ [n], the performance of any
one-to-one estimator σ̂ : C → [n] is now assessed through ov(σ∗, σ̂), its overlap with the unknown
permutation σ∗, defined as

ov(σ∗, σ̂) :=
1

n

∑
i∈C

1σ̂(i)=σ∗(i). (3)

Note that the estimator σ̂ may not be in Sn, and only consist in a partial matching. The error
fraction of σ̂ with the unknown permutation σ∗ is defined as

err(σ∗, σ̂) :=
1

n

∑
i∈C

1σ̂(i)6=σ∗(i) =
|C|
n
− ov(σ∗, σ̂). (4)

It easy to check that the maximum-a-posteriori (MAP) estimator of σ∗ given G,G′ is the solution
of the QAP problem (1). However, it is shown [6] that this estimator σ̂MAP performs well – namely,
verifies σ̂MAP = σ∗ with high probability – only in the case where the mean degrees in the graphs
are at least Ω(log n). Hence in our sparse regime (with constant mean degree) this new measure
of performance (3) – which is the one on which we will focus next – differs from that of the
non-planted case (1).

A sequence of injective estimators {σ̂n}n – omitting the dependence in n – is said to achieve

• Exact recovery if P(σ̂ = σ∗) −→
n→∞

1,

• Almost exact recovery if P(ov(σ∗, σ̂) = 1− o(1)) −→
n→∞

1,

• Partial recovery if there exists some ε > 0 such that P(ov(σ∗, σ̂) > ε) −→
n→∞

1,

• One-sided partial recovery if it achieves partial recovery and P(err(σ∗, σ̂) = o(1)) −→
n→∞

1.

Remark 0.1. One-sided partial recovery is by definition at least as hard as partial recovery. From
an application standpoint it is more appealing than partial recovery: indeed, it may be of little use
to know one has a permutation with 30% of correctly matched nodes if one does not have a clue
about which pairs are correctly matched. Our proposed algorithm will achieve one-sided partial
recovery under suitable conditions.

Phase diagram In this sparse regime, where the graphs have constant mean degree λ, it is
known [6, 7] that the presence of Ω(n) isolated vertices in the underlying intersection graph of
G and G′ makes exact and almost exact recovery impossible. The main questions consist then
in determining the phase diagram of the model G(n, λ/n, s) for partial alignment (or recovery),
namely the range of parameters (λ, s) for which, in the large n limit:

• Any sequence of estimators fails to achieve partial recovery for any ε > 0. We refer to the
corresponding range as the information-theoretic (IT-)impossible phase;

• There is a sequence of estimators σ̂ achieving partial recovery (not necessarily one-sided)
with some ε > 0, which we refer to as the IT-feasible phase;

• There is a sequence of estimators σ̂ that can be computed in polynomial-time achieving
partial recovery with some ε > 0 (and sometimes even more, achieving also one-sided partial
recovery): the easy phase.

An interesting perspective on this problem is provided by research on community detection,
or graph clustering, for random graphs drawn according to the stochastic block model. In that
setup, above the so-called Kesten-Stigum threshold, polynomial-time algorithms for clustering are
known [4, 15, 17], and the consensus among researchers in the field is that no polynomial-time
algorithms exist below that threshold. Yet, there is a range of parameters with non-empty interior
below the Kesten-Stigum threshold for which exponential-time algorithms are known to succeed
at clustering [2]. In other words, for graph clustering, it is believed that there is a non-empty
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hard phase, consisting of the set difference between the IT-feasible phase and the polynomial-time
feasible phase.

The picture available to date for partial graph alignment is as follows. Recent work [13] shows
that the IT-impossible phase includes the range of parameters {(λ, s) : λs ≤ 1}, and Wu et al.
[23] have established that the IT-feasible phase includes the range of parameters {(λ, s) : λs > 4}
(condition λs > C for some large C had previously been established in [14]). For the easy phase,
Ganassali and Massoulié [11] have established that it includes the range of parameters {(λ, s) :
λ ∈ [1, λ0], s ∈ [s(λ), 1]} for some parameter λ0 > 1 and some function s(λ) : (1, λ0] → [0, 1].
The algorithm proposed in [11] based on tree matching weights achieves in this regime one-sided
partial recovery. Figure 3 depicts a phase diagram describing these prior results together with the
new results in this paper.

Figure 3: Diagram of the (λ, s) regions where partial recovery is known to be IT-impossible
([13]), IT-feasible ([23]), or easy ([11] and this paper). In the orange region, though partial graph
alignment is IT-feasible, one-sided detectability is impossible in the tree correlation detection
problem, and partial graph alignment is conjectured to be hard (this paper).

Problem description and main contributions
This partial picture leaves open the question of whether, similarly to the case of graph clustering,
graph alignment features a hard phase or not. The contribution of the present work can be
summarized in three points:

(1) We investigate a fundamental statistical problem, which to the best of our knowledge had
not been previously studied: hypothesis testing for correlation detection in trees. We study
the regimes in which the optimal test on trees succeeds or fails in the setting when the trees
are correlated Galton-Watson trees (see Theorem 1);

(2) For this detection problem on trees, the computation of the likelihood ratio can be made
recursively on the depth, which yields an optimal message-passing algorithm for this task
running in polynomial-time in the number of nodes;

(3) We remark that the previous detection problem on trees arises naturally from a local point
of view in the related problem of one-sided partial recovery for graph alignment. In light of
the previous analysis we then draw conclusions for our initial problem on graphs and doing
so we precise the phase diagram shown in Figure 3, extending the regime for which one-sided
partial alignment is provably feasible in polynomial time, and exhibiting the presence of a
conjectured hard phase (see Theorem 2).
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Our approach to point (3) follows the way paved by [11]. It essentially relies on an algorithm
which lets σ̂(i) = u for i such that the local structure of graph G in the neighborhood of node
i is ’close’ to the local structure of graph G′ in the neighborhood of node u. As exploited in
[11], the neighborhoods to distance d of two nodes i, u in G and G′, provided that u = σ∗(i),
are asymptotically distributed as correlated Galton-Watson branching trees (distribution denoted
P1,d). On the other hand, for pairs of nodes (i, u) taken at random in [n], the joint neighborhoods
of nodes i and u in G and G′ respectively, to depth d, are asymptotically distributed as a pair of
independent Galton-Watson branching trees (distribution denoted P0,d).

Thus a fundamental step in our approach is to determine the efficiency of tests for deciding
whether a pair of branching trees is drawn from either a product distribution, or a correlated
distribution. [11] relied on tests based on a so-called tree matching weight to measure the similarity
between two trees. In the present work we are instead interested in studying the existence of
one-sided tests, which are tests asymptotically guarantying a vanishing type I error and a non
vanishing power. According to the Neyman-Pearson Lemma, optimal one-sided tests are based
on the likelihood ratio Ld of the distributions under the distinct hypotheses P1,d and P0,d (trees
correlated or not)1. The mathematical formalization of point (1) here above is the following

Theorem 1 (Correlation detection in trees). Let

KLd := KL(P1,d‖P0,d) = E1,d [log(Ld)] .

Then the following propositions are equivalent:

(i) There exists a one-sided test for deciding P0,d versus P1,d,

(ii) lim
d→∞

KLd = +∞ and λs > 1,

(iii) There exists (ad)d such that ad →∞, P0,d(Ld > ad)→ 0 and lim infd P1,d(Ld > ad) > 0.

(iv) Denoting P0 := P0,∞, the martingale (Ld)d (w.r.t. P0) is not uniformly integrable.

(v) λs > 1 and P1

(
lim infd→∞(λs)−d log Ld > 0

)
≥ 1−pext(λs), where pext(λs) is the probability

that a Galton-Watson tree with offspring distribution Poi(λs) gets extinct.

Remark 0.2. This Theorem gives general necessary and sufficient conditions for the existence of
a one-sided test in the tree correlation detection problem. Several more explicit conditions in terms
of λ and s will be obtained throughout the paper which guarantee that the equivalent conditions of
Theorem 1 either fail or hold.

Condition (v) will be used in the design of the algorithm in Section 6, choosing an appropriate
threshold that will guarantee for the method to output both a substantial part of the underlying
permutation and a vanishing number of mismatches.

Theorem 2 (Consequences for one-sided partial graph alignment). For given (λ, s), if one-sided
correlation detection is feasible, i.e. any of the conditions in Theorem 1 holds, then one-sided
partial alignment in the correlated Erdős-Rényi model G(n, λ/n, s) is achieved in polynomial time
by our algorithm MPAlign (Algorithm 1 in Section 6).

Conjecture 1. We conjecture that if one-sided correlation detection in trees fails, i.e. none of
the equivalent conditions in Theorem 1 holds, then no polynomial-time algorithm achieves partial
recovery. In view of Theorem 6 of Section 5, which guarantees existence of a non-empty parameter
region where one-sided tree detection fails while partial graph alignment can be done in non-
polynomial time, our conjecture would imply the hard phase to be non-empty.

Paper organization The outline of the paper is as follows. The precise model of pairs of
random trees and the associated problem of testing tree correlation is introduced in Section 1,
together with notations. The derivation of the likelihood ratio between the relevant distributions
is done in Section 2, where points (iii) and (iv) of Theorem 1 are proved (see 2.3.1). In Section

1This guarantees that whenever the test based on tree matching weight in [11] succeeds, the optimal test studied
in this paper also succeeds. On this point, Theorem 4 (see Section 3) extends the sufficient conditions established
in [11] for partial alignment (for small λ and s close to 1).
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3, points (ii) and (v) of Theorem 1 are proved (see 3.1.1) and a first sufficient condition for one-
sided tree detectability (Theorem 4) is obtained by analyzing Kullback-Leibler divergences: this
condition is of the same kind as the one following from [11], however with a more direct derivation
as well as a more explicit condition. Using a different approach, a second sufficient condition –
that of Theorem 5 – is established in Section 4 by analyzing the number of automorphisms of
Galton-Watson trees.

Next, we prove in Section 5 another condition (see Theorem 6) for the failure of one-sided
detectability, hence showing that the conjectured hard phase is non-empty. The precise message-
passing method for aligning graphs is introduced in Section 6, and guarantees on its output are
established as well as the proof of Theorem 2.

Appendix A is dedicated to numerical experiments as well as the description of the algorithm
used in practice (MPAlign2). Some additional proofs are deferred to Appendix B.

1 Notations and problem statement

1.1 Notations
In this first part we briefly introduce – or recall – some basic definitions that are used throughout
the paper.

Finite sets, permutations For all n > 0, we define [n] := {1, 2, . . . , n}. For any finite set X ,
we denote by |X | its cardinal. SX is the set of permutations on X . We also denote Sk = S[k] for
brevity, and we will often identify Sk to SX whenever |X | = k. For any 0 ≤ k ≤ `, we will write
S(k, `) (resp. S(A,B)) for the set of injective mappings from [k] to [`] (resp. between finite sets
A and B). By convention, |S(0, `)| = 1.

Graphs In a graph G = (V,E) – with node set V and edge set E – we denote by dG(i) the
degree of a node i ∈ V and NG,d(i) (resp. SG,d(i)) the set of vertices at distance ≤ d (resp. exactly
d) from node i in G, SG,d(i). The neighborhood of a node i ∈ V is NG(i) := NG,1(i), i.e. the set
of all vertices that are connected to i by an edge in G.

Labeled rooted trees A labeled rooted tree t = (V,E) is an undirected graph with node set V
and edge set E with no cycle. The root of t is a given distinguished node ρ ∈ V , and the depth of
a node is defined as its distance to the root ρ. The depth of tree t is given as the maximum depth
of all nodes in t. Each node i at depth d ≥ 1 has a unique parent in t, which can be defined as
the unique node at depth d− 1 on the path from i to the root ρ. Similarly, the children of a node
i of depth d are all the neighbors of i at depth d+ 1.

For any i ∈ V , we denote by ti the subtree of t rooted at node i, and ct(i) the number of
children of i in t or simply c(i) where there is no ambiguity. Finally we define Vd(t) (resp. Ld(t))
to be the set of nodes of t at depth less than or equal to d (resp. exactly d).

Canonical labeling A labeled rooted tree can be canonically labeled by ordering nodes’ children,
giving the following labels. First, the label of the root node is set to the empty list ∅. Then,
recursively, the label of a node i is a list {m, k} where m is the label of its parent node, and k is
the rank of i among the children of its parent.

We denote by Xn the collection of such canonically labeled rooted trees of depth no larger
than n. Obviously, X0 contains a single element, namely the rooted tree with only one node – its
root. Each tree t in Xn can be represented with a unique ordered list (t1, . . . , tc(ρ)) where each ti
is the subtree of t rooted at node i as defined above, and thus belongs to Xn−1. When c = 0, the
previous ordered list is empty.

Tree prunings The pruning of a tree t at depth d is the subtree of t denoted by pd(t) obtained
by removing nodes at distance > d from the root, keeping the same labels if t is labeled.
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Tree subsampling For s ∈ (0, 1), a s−subsampling of a tree t is obtained by conserving every
edge independently with probability s, and outputting the connected component of the root (which
is still a tree). The nodes in the resulting tree inherit a canonical labeling from their order in the
original tree.

Relabelings of labeled trees A relabeling r(t) of a tree t ∈ Xn is recursively identified as
a permutation σ ∈ Sc(ρ) of the children of the root node, together with relabelings ri(ti) of its
subtrees, resulting in tree

r(t) =
(
rσ(1)(tσ(1)), . . . , rσ(c(ρ))(tσ(c(ρ)))

)
.

A random uniform relabeling r(t) of a labeled tree t ∈ Xn is defined as follows. Associate inde-
pendently to each node i of t a permutation σi of its children, uniformly distributed in Sc(i). The
relabeling is then defined by induction on the depth of nodes: the new label r(ρ) of the root is ∅,
and recursively, if the label of i is {m, k} and j is the parent of i, we assign to i the new label

r(i) := {r(j), σj(k)}.

An important and easily verified property is that, for a given labeled tree t ∈ Xn, r(t) is indeed
uniformly distributed on the set of all possible relabelings of t.

∅

{∅, 1} {∅, 2}

{{∅, 1} , 1} {{∅, 1} , 2} {{∅, 2} , 1}

{{{∅, 1} , 1} , 1}

{{{∅, 1} , 1} , 2}

{{{∅, 1} , 1} , 3} {{{∅, 2} , 1} , 1}
{{{∅, 2} , 1} , 2}

{{{{∅, 2} , 1} , 2} , 1}

1

(a) unlabeled rooted tree t

∅

{∅, 1} {∅, 2}

{{∅, 1} , 1} {{∅, 1} , 2} {{∅, 2} , 1}

{{{∅, 1} , 1} , 1}

{{{∅, 1} , 1} , 2}

{{{∅, 1} , 1} , 3} {{{∅, 2} , 1} , 1}
{{{∅, 2} , 1} , 2}

{{{{∅, 2} , 1} , 2} , 1}

1

(b) pruning of t at depth 2

∅

{∅, 1} {∅, 2}

{{∅, 1} , 1} {{∅, 1} , 2} {{∅, 2} , 1}

{{{∅, 1} , 1} , 1}

{{{∅, 1} , 1} , 2}

{{{∅, 1} , 1} , 3} {{{∅, 2} , 1} , 1}
{{{∅, 2} , 1} , 2}

{{{{∅, 2} , 1} , 2} , 1}

1

(c) a random uniform relabeling of t

Figure 4: A rooted tree t ∈ Xn with n = 4 (the root is highlighted in yellow).

Automorphisms of labeled trees Some of the relabelings of a labeled tree t may be indistin-
guishable from t, that is, equal to t as labeled trees. These relabelings are called automorphisms
of t, and their set is denoted by Aut(t).

Injective mappings between labeled trees For two labeled trees τ, t ∈ Xn, the set of injective
mappings from τ to t, denoted S(τ, t), is the set of injective mappings from the labels of vertices
of τ to the labels of vertices of t that preserve the rooted tree structure, in the sense that any
σ ∈ S(τ, t) must verify

σ(∅) = ∅ and σ({p, k}) = {σ(p), j} for some j.

Note that S(τ, t) is not empty if and only if τ is, up to some relabeling, a subtree of t.
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Probability For the sake of readability, all random variables are written in bold characters,
in order to distinguish them from their possible values or other deterministic objects. Some
proposition Bn depending on random variables is said to be verified with high probability (w.h.p.)
if the probability of Bn tends to 1 when n→∞.

For µ > 0, GWµ (resp. GWµ,n for n ≥ 0) stands for the distribution of a labeled Galton-
Watson tree of offspring Poi(µ) (resp. pruned at depth n), which we don’t redefine here. We also
denote by πµ the Poisson distribution of parameter µ, namely for all k ≥ 0,

πµ(k) := e−µ
µk

k!
.

1.2 Models of random trees, hypothesis testing
The context of our problem is as follows. We observe two trees t, t′ (or rather, their prunings at
depth n, in Xn, obtained by removing nodes at distance > n from the root), each having been
obtained from random uniform relabeling of two trees τ , τ ′, and would like to test whether τ , τ ′
are independent or correlated. More specifically, we will consider two models of random trees,
which we present here after.

(i) Independent model P0. Under the independent model, τ and τ ′ are two independent
Galton-Watson branching trees with offspring distribution Poi(λ), where λ > 0. It is then
an easy fact that under P0, the distribution of the relabeled versions (t, t′) coincides with
that of (τ , τ ′), i.e. we simply observe two independent labeled Galton-Watson trees. We
will denote (t, t′) ∼ P0.

(ii) Correlated model P1. In order to describe the construction of the correlated trees under
model P1, let us first introduce an additional definition.

Tree augmentation. For λ > 0 and s ∈ (0, 1), a (random) (λ, s)−augmentation of a
given tree τ = (V,E), denoted Aλ,s(τ), is defined as follows. First, attach to each node i in
V a number c+(i) of additional children, where the c+(i) are i.i.d. of distribution Poi(λs̄),
where s̄ := 1− s. Let V+ be the set of these additional children. To each j ∈ V+, we attach
another random tree of distribution GWλ independent of everything else.

We are now ready to describe the correlated model P1. Under this model, starting from
an intersection tree τ ∗ chosen to be a Galton-Watson tree with offspring Poi(λs), we take
τ , τ ′ to be two independent (λ, s)−augmentations of τ ∗, and t, t′ are then obtained as two
i.i.d. uniform relabelings of τ , τ ′. We will denote (t, t′) ∼ P1.

It can easily be verified that the marginals of t and t′ are the same under P0 and P1, namely the
distribution of a Galton-Watson tree with offspring Poi(λ).

Hypothesis testing, one-sided test As mentioned earlier, we observe finite trees in practice,
more precisely trees that are pruned to depth n ≥ 0. We recall that pm is the pruning operator at
depth m, and we define P0,n (resp. P1,n) to be the distribution of (pn(t), pn(t′)) when (t, t′) ∼ P0

(resp. (t, t′) ∼ P1). A property that we will use implicitly in the sequel is that for i ∈ {0, 1},
t, t′ ∼ Pi,n and m < n, then pm(t), pm(t′) ∼ Pi,m.

The hypothesis testing considered in this study can be formalized as follows: given the obser-
vation of a pair of trees (t, t′) in Xn ×Xn, we want to test

H0 = "t, t′ are realizations under P0,n" versus H1 = "t, t′ are realizations under P1,n". (5)

More specifically, we are interested in being able to ensure the existence of a (asymptotic) one-
sided test, that is a test Tn : Xn × Xn → {0, 1} such that Tn chooses hypothesis H0 under P0,n

with probability 1−o(1), and chooses H1 with some positive probability uniformly bounded away
from 0 under P1,n. In other terms, a one-sided test asymptotically guarantees a vanishing type I
error and a non vanishing power.

Remark 1.1. Why focus on one-sided tests? In statistical detection problems, the commonly
considered tasks are that of

9



(a) Samples t, t′ from P0,n.

(b) Samples t, t′ from P1,n. The common subtree τ is drawn thick and purple.

Figure 5: Samples from models P0,n and P1,n, with λ = 1.8, s = 0.8, and n = 5. The root node is
highlighted in yellow and labels are not shown.

• strong detection, i.e. tests Tn that verify

lim
n→∞

[P0,n (Tn(t, t′) = 1) + P1,n (Tn(t, t′) = 0)] = 0,

• weak detection, i.e. tests Tn that verify

lim
n→∞

[P0,n (Tn(t, t′) = 1) + P1,n (Tn(t, t′) = 0)] < 1.

In other words, strong detection corresponds to determining w.h.p. whether an observed tree pair
(t, t′) is drawn under P0 or P1, whereas weak detection corresponds to strictly outperforming ran-
dom guessing. We here argue that neither strong detection nor weak detection are relevant for our
problem.

First, because of the event that the intersection tree does not survive, which is of positive
probability under P1: we always have P1(t, t′) ≥ C · P0(t, t′), with

C :=
πλs(0)πλ(1−s)(c)πλ(1−s)(c

′)

πλ(c)πλ(c′)
,

where c (resp. c′) is the degree of the root in t (resp t′). This implies that P0 is always absolutely
continuous w.r.t. P1, hence strong detection can never be achieved.

Second, weak detection is always achievable as soon as s > 0: with the same notations as here
above, the distribution of c− c′ is always centered but has different variance under P0 and under
P1, hence these two distributions can be weakly distinguished, without any further assumption than
s > 0. Since we know by [13] that partial graph alignment is not feasible for λs ≤ 1, we conclude
that weak detection in tree detection is not a relevant task either for graph alignment.

1.3 Warm-up discussion: the isomorphic case (s = 1)
In this section, we discuss the graph alignment problem in the case where s = 1 in the correlated
Erdős-Rényi model (2), namely when the graphs G and G′ are isomorphic, σ∗ being one of the

10



graph isomorphisms between G and G′. We then ask the question: what is the best fraction of
nodes that can be recovered with high probability?

The answer to the above question comes with the following easy remark: the joint distribution
of (G,G′) is invariant by any relabeling of G according to some σ ∈ Aut(G), where Aut(G)
denotes the automorphism group of G. The set of nodes that can be aligned w.h.p. is hence

I(G) := {i ∈ V (G), ∀σ ∈ Aut(G), σ(i) = i} . (6)

In other words, I(G) is the set of vertices of G invariant under any automorphism.
Let us denote C1(G) the largest connected component of G (the giant component), and C1(G)

the subgraph made of all the smaller components. It is clear that

Aut(G) = Aut(C1(G))×Aut(C1(G)).

Recent work [13] shows that I(G) ∩ C1(G) contains at most a vanishing fraction of the points:
it is not hard to see indeed that smaller components mainly consist in isolated trees, which are
proved to have many copies in the graph when n gets large, yielding some automorphisms that
swap almost all vertices in C1(G). Hence, for our purpose, the main part of I(G) comes from the
study of Aut(C1(G)) and I(C1(G)).

When G ∼ G(n, q), these sets have been thoroughly studied by Łuczak in [24]. Vertices of the
giant component that are not invariant under automorphism are mainly (i.e. up to o(n) errors)
vertices that do not belong to the 2-core2 of G, denoted by C(2)(G).

Figure 6: Sample G from model G(n, λ/n), with λ = 2 and n = 250. Vertices of C1(G) (resp. of
C1(G) \ C(2)(G), C(2)(G)) are drawn in green (resp. blue, red).

Simple structures appearing in C1(G) \ I(G) are leaves (degree one nodes) j, k with common
neighbor i in C1(G). [24] upper-bounds the size of C1(G)\I(G) by the number of (generalizations)
of such structures, thus obtaining the following

Theorem 3 ([24], Theorems 3 and 4). Let G ∼ G(n, q) with q = λ/n. Let (Kn)n be a sequence
such that Kn →∞. There exists λ0 > 0 such that if λ > λ0, then with high probability,∣∣∣C(2)(G)

∣∣∣− ∣∣∣I(C(2)(G))
∣∣∣ ≤ Kn, and |C1(G)| − |I(C1(G))| ≤ λ(λ+ 5)e−2λn. (7)

2The 2-core of a graph is defined as the maximal subgraph of minimal degree at least 2.
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Equation (7) of Theorem 3 states that for λ large enough, almost all vertices of the 2-core of
G are invariant, whereas at most a fraction λ(λ+ 5)e−2λ of the nodes are in the giant component
and not in I(G). In this case, with high probability, any isomorphism σ̂ between G and G′ will
achieve partial recovery and will satisfy

ov (σ̂,σ∗) ≥ 1− pext(λ)− λ(λ+ 5)e−2λ,

where pext(λ) is defined as the probability that a Galton-Watson tree of offspring Poi(λ) survives.
However, finding efficiently such an isomorphism σ̂ is known to be challenging in the general

case (see e.g. [1]): hence, whether there exists a polynomial time algorithm achieving this optimal
bound remains an open question.

2 Derivation of the likelihood ratio
For t, t′ ∈ Xn, we introduce the likelihood ratio

Ln(t, t′) :=
P1,n(t, t′)

P0,n(t, t′)
. (8)

2.1 Recursive computation
In this section, our aim is to obtain a recursive representation of the likelihood ratio Ln. First
note that for two trees t = (t1, . . . , tc), t′ = (t′1, . . . , t

′
c′) both in Xn, we have

P0,n(t, t′) = GWλ,n(t)×GWλ,n(t′), (9)

and that conditioned to c, GWλ,n(t) satisfies the recursion

GWλ,n(t) = πλ(c)
∏
i∈[c]

GWλ,n−1(ti). (10)

In the construction of τ, τ ′ under H1, partitioning on the permutations σ ∈ Sc, σ′ ∈ Sc′ used
to shuffle the children of the root nodes of τ , τ ′, as well as on the number k of children of the root
in τ∗, we have the following

P1,n(t, t′) =

c∧c′∑
k=0

πλs(k)πλs̄(c− k)πλs̄(c
′ − k)

×
∑

σ∈Sc,σ′∈Sc′

1

c!× c′!

(
k∏
i=1

P1,n−1(tσ(i), t
′
σ′(i))

)

×

(
d∏

i=k+1

GWλ,n−1(tσ(i))

)
×

 d′∏
i=k+1

GWλ,n−1(t′σ′(i))

 .

This together with Equations (9), (10) readily implies the following recursive formula for the
likelihood ratio Ln:

Ln(t, t′) =

c∧c′∑
k=0

πλs(k)πλs̄(c− k)πλs̄(c
′ − k)

πλ(c)πλ(c′)× c!× c′!
∑

σ∈Sc,σ′∈Sc′

k∏
i=1

Ln−1(tσ(i), t
′
σ′(i)). (11)

In this expression, by convention the empty product equals 1. We will use in the sequel the
following shorthand notation

ψ(k, c, c′) :=
πλs(k)πλs̄(c− k)πλs̄(c

′ − k)

πλ(c)πλ(c′)
× (c− k)!× (c− k′)!

c!× c′!

= eλs × sks̄c+c
′−2k

λkk!
,
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which enables an alternative, more compact recursive expression:

Ln(t, t′) =

c∧c′∑
k=0

ψ(k, c, c′)
∑

σ∈S(k,c)
σ′∈S(k,c′)

k∏
i=1

Ln−1(tσ(i), t
′
σ′(i)), (12)

where we recall that S(k, `) denotes the set of injective mappings from [k] to [`] and that by
convention |S(0, `)| = 1.

Remark 2.1. The above expression (12) will be useful for efficient computations of the likelihood
ratio in Algorithm 1 in Section 6 through message passing.

2.2 Explicit computation
We now use the recursive expression (12) to prove by induction on n the following explicit formula
for Ln.

Lemma 2.1. With the previous notations, we have

Ln(t, t′) =
∑
τ∈Xn

∑
σ∈S(τ,t)
σ′∈S(τ,t′)

∏
i∈Vn−1(τ)

ψ (cτ (i), ct(σ(i)), ct′(σ
′(i))) . (13)

Proof of Lemma 2.1. We prove this result by recursion. An empty product being set to 1, there
is nothing to prove in the case n = 0. Let us first establish formula (13) for n = 1. In that case,
the depth 1 trees t, t′ are identified by the degrees d, d′ of their root node. Since X0 is a singleton,
L0 is identically 1, and from (11) we have that

L1(t, t′) =

c∧c′∑
k=0

πλs(k)πλs̄(c− k)πλs̄(c
′ − k)

πλ(c)πλ(c′)
. (14)

On the other hand, in evaluating expression (13), we only need consider trees τ in X1 with root
degree k ≤ c∧ c′, since for larger k, one of the two sets S(τ, t) or S(τ, t′) is empty. For such k, we
have |S(τ, t)| = c!/(c− k)!. The right-hand term in (13) thus writes

c∧c′∑
k=0

c!× c′!
(c− k)!× (c′ − k)!

ψ(k, c, c′),

which gives precisely (14).
Assume that (13) has been established up to some n− 1 ≥ 1. Expressing Ln in terms of Ln−1

based on (11), and replacing in there the expression of Ln−1 by (13) , we get

Ln(t, t′) =

c∧c′∑
k=0

ψ(k, c, c′)

(c− k)!(c′ − k)!

×
∑

σ∈Sc,σ′∈Sc′

k∏
i=1

 ∑
τi∈Xn−1

∑
σi∈S(τi,tσ(i))

σ′i∈S(τi,t
′
σ(i))

∏
u∈Vn−1(τi)

ψ
(
cτi(u), ctσ(i)(si(u)), ct′

σ′(i)
(σ′i(u))

) .
Note that the product term in the above expression depends on the permutations σ, σ′ only

through their restriction to [k]: for given such restrictions there are (c−k)!×(c′−k)! corresponding
pairs of permutations σ, σ′.

Moreover, there is a bijective mapping between an integer k ∈ {0, . . . , c ∧ c′}, pairs of injections
σ : [k] → [c], σ′ : [k] → [c′], k trees τ1, . . . , τk ∈ Xn−1, injections σi ∈ S(τi, tσ(i)) and σ′i ∈
S(τi, t

′
σ′(i)) for all i ∈ [k] and a tree τ ∈ Xn together with a pair of injections σ, σ′ ∈ S(τ, t)×S(τ, t′).

This establishes formula (13) at step n.
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2.3 Martingale properties and the objective of one-sided test
In this part, we assume that we observe t, t′ drawn under one of the two models P0 or P1. For
n ≥ 0, let Fn := σ(pn(t), pn(t′)) be the sigma-field of the two trees t, t′ observed down to depth
n. We then have

Lemma 2.2. The sequence {Ln := Ln(pn(t), pn(t′))}n≥0 is a Fn-martingale under P0.

The above martingale property follows from general considerations of likelihood ratios. It is
however informative to derive it by calculus, which we now do.

Proof of Lemma 2.2. There are several ways to see that {Ln}n≥0 is a Fn-martingale under P0,
depending on the formula used to write Ln+1 in terms of Ln. We here choose to use the developed
expression (13), enabling simple computations:

Ln+1 =
∑

τ∈Xn+1

∑
σ∈S(τ,t)
σ′∈S(τ,t′)

∏
i∈Vn(τ)

ψ (cτ (i), ct(σ(i)), ct′(σ
′(i)))

=
∑
χ∈Xn

∑
σ∈S(χ,pn(t))
σ′∈S(χ,pn(t′))

∏
i∈Vn−1(χ)

ψ
(
cχ(i), cpn(t)(σ(i)), cpn(t′)(σ

′(i))
)

×
∏

i∈Ln(χ)

ct(σ(i))∧ct′ (σ
′(i))∑

k=0

ct(σ(i))!ct′(σ
′(i))!

(ct(σ(i))− k)!(ct′(σ′(i))− k)!
ψ(k, ct(σ(i)), ct′(σ

′(i))).

The last product is independent from Fn. Moreover, under P0, all terms in the last product
are independent, the ct(i) and ct′(i) being independent Poi(λ) random variables. Since for any
independent Poi(λ) random variables c, c′, one has

E

c∧c′∑
k=0

πλs(k)πλs̄(c− k)πλs̄(c
′ − k)

πλ(c)πλ(c′)

 = 1,

taking the expectation conditionally to Fn entails the desired martingale property.

We now consider the martingale almost sure limit L∞, and define ` := E0 [L∞]. Using the
recursive formula (11) and conditioning on the root degrees c and c′, it follows that ` verifies the
following fixed point equation

` =
∑
k≥0

πλs(k)`k. (15)

This is also (!) the fixed point equation for the extinction probability pext(λs) of a Galton-Watson
branching process with offspring distribution Poi(λs). For λs ≤ 1, the only solution of (15) is
` = 1. For λs > 1, the equation also admits a non-trivial solution pext(λs) ∈ (0, 1).

Our goal is to find conditions on (λ, s) for which the martingale {Ln}n≥0 is not uniformly
integrable and looses mass at infinity, i.e. the conditions for which the martingale limit L∞ has
expectation E0 [L∞] < 1. By the previous calculation we know that if this holds, then necessarily
E0 [L∞] = pext(λs) < 1. Simulations of Ld displayed on Figure 8 seem to indicate that its
transition to non-uniform integrability does not coincide with the condition λs > 1. We shall
obtain a theoretical confirmation of this fact with Theorem 6.

Our interest in conditions for non-uniform integrability stem from the following simple Lemma:

Lemma 2.3. Assume that E0 [L∞] < 1. Then there exists a one-sided test.

Proof of Lemma 2.3. Let us take a > 0 a continuity point of the law of L∞ under P0. We have

lim
n→∞

P0(Ln > a) = P0(L∞ > a). (16)

Moreover,

1 = E0 [Ln] = E0 [Ln1Ln>a] + E0 [Ln1Ln≤a]

= P1(Ln > a) + E0 [Ln1Ln≤a] .
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The last equation implies, under the assumption E0 [L∞] < 1, that

lim inf
n→∞

P1(Ln > a) ≥ 1− E0 [L∞] = 1− pext(λs) > 0. (17)

In view of (16) and (17), we can thus choose an →∞ such that:

lim
n→∞

P0(Ln > an) = 0 and lim inf
n→∞

P1(Ln > an) ≥ 1− pext(λs) > 0.

2.3.1 Proof of (i) ⇐⇒ (iii) ⇐⇒ (iv) in Theorem 1

Proof. The previous proof shows first that (i) ⇐⇒ (iii) in Theorem 1 (applying Neyman-
Pearson’s Lemma and a diagonal extraction procedure) as well as (iii) ⇐⇒ (iv), since condition

∃ ε > 0, ∀a > 0, lim inf
n→∞

P1(Ln > a) ≥ ε > 0 (18)

is exactly the condition of non-uniform integrability of the martingale (Ln)n with respect to P0.

2.4 A Markov transition kernel on trees
In this section, we introduce a Markov transition semi-group on trees that arises naturally in our
study. Indeed, the joint distribution of the pair of trees (t, t′) under P1 will be, up to relabeling,
interpreted as the joint distribution of (X0, XT ), where X0 is the initial state of this Markov
process, distributed according to its stationary distribution GWλ,n, and XT is its state at time
T . The time parameter T is in one-to-one correspondence with the correlation parameter s of our
model, through the relation

T = − log(s).

For n > 0, we define Mn the linear operator indexed on trees of Xn, defined as follows:

Mn(t, t′) :=
P1,n(t, t′)

P0,n(t)
. (19)

Mn is identified to the transition kernel of the Markov chain with transitions denoted t −→
λ,s

t′

where t′ is obtained from t following the following three-step procedure:

1. Extracting τ , a s−subsampling of t;

2. Draw τ+, a (λ, s)−augmentation of τ , pruned at depth n;

3. Take t′ to be a uniform relabeling of τ+.

We next denote Mn(s) this transition kernel to emphasize its dependence on s.

Figure 7: Example of a transition described hereabove, with λ = 1.85, s = 0.85, pruned at depth
d = 5. The original tree t is drawn on the left. On the right, t′ is obtained as follows: first extracting
a s−subsampling τ of t (dashed blue edges are deleted), and drawing a (λ, s)−augmentation of τ
– first attaching new children to all vertices of τ (dark red nodes with thick edges), and attaching
new Galton-Watson trees to these new children (light red nodes with standard edges). Labels are
not shown.
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Figure 8: Simulations of Ld under model P1.
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A remarkable property of this kernel is the following semi-group structure:

Proposition 2.1 (Consistency of kernelsMn(s)). Let λ > 0 and s, s′ ∈ [0, 1]. Then, for all n ≥ 1,

Mn(s)Mn(s′) = Mn(s′)Mn(s) = Mn(ss′). (20)

Proof. The proof consists in verifying that applying transitions Mn(s) and Mn(s′) successively is
equivalent in distribution to applying transition Mn(ss′).

Let us first show that the unlabeled structures of the trees are equivalent in distribution. For
t ∈ Xn, let us sample a sequence t −→

s
t̃ −→

s′
t′ as follows.

For t ∈ Xn, let us apply a first transition t −→
s
t̃: we extract τ̃ , a s−subsampling of t. To each

vertex u of τ̃ we attach an independent number Poi(λ(1 − s)) of new children. The set of these
new vertices is denoted Ṽ+. Then, to each vertex u ∈ Ṽ+ we attach an independent tree t̃u with
distribution GWλ. We just sampled the unlabeled version of t̃.

Let us now apply the second transition t̃ −→
s′

t′. We sample t as follows:

1. First, we sample all vertices of τ̃ in t̃, keeping them independently with probability s′. The
obtained subtree is denoted by τ ;

2. To any vertex u of τ , we keep each previous child vertex in Ṽ+ independently with probability
s′, the set of children that are kept is denoted by V 1

+;

3. To any vertex u of τ , we attach an independent number Poi(λ(1− s′)) of new children. The
set of these new vertices are referred to as V 2

+.

4. To any vertex u ∈ V 1
+, we sample a transition t̃u −→

s′
tu, and attach tu to node u.

5. To each vertex v ∈ V 2
+ we attach an independent tree tv with distribution GWλ.

Eventually we performed the following process: from the initial tree t, we extracted τ as a
ss′−subsampling of t, and we attached to each vertex of τ some new children: the sum of two
independent Poi(λ(1 − s)s′) (for children in V 1

+) and Poi(λ(1 − s′)) (for children in V 2
+), hence

again of Poisson distribution with parameter λ(1−s)s′+λ(1−s′) = λ(1−ss′). By steps 4. and 5.,
the trees attached to every vertex in V+ := V 1

+∪V 2
+ are i.i.d. with distribution GWλ, independent

of t. Hence, the unlabeled version of t′ can also be obtained from t with the transition t −→
ss′

t′.
Finally, the definition of the tree subsampling ensures that the composition of the two relabel-

ings in the two steps gives indeed a uniform relabeling of t, which ends the proof.

3 Conditions based on Kullback-Leibler divergences
In the sequel we shall denote

KLd := KL(P1,d‖P0,d) = E1 [log(Ld)] . (21)

Note that by convexity of φ : u→ u log(u), the martingale property of likelihood ratios Ld under
P0 and Jensen’s inequality, the sequence KLd is increasing with d and therefore admits a limit
KL∞ as d→∞.

3.1 Phase transition for KL∞

Let us start with a simple proposition.

Proposition 3.1. One has KLd ≤ Ent(GWλs,d).

Proof. Consider the Markov transition kernel Kd from X 2
d to X 2

d such that Kd((τ, τ
′), (t, t′)) is the

probability that independent (λ, s) augmentations and relabelings of (τ, τ ′) to depth d produce
the two trees (t, t′).
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Thus P1,d is the law obtained by applying kernel Kd to the distribution of (τ, τ), where
τ ∼ GWλs,d whereas P0,d is the law obtained by applying kernel Kd to the distribution of two in-
dependent GWλs,d trees (τ, τ ′). Standard monotonicity properties of Kullback-Leibler divergence
then guarantee that KLd is upper-bounded by KL(L(τ, τ)‖L(τ, τ ′)). This divergence reads∑

τ∈Xd

GWλs,d(τ) log

(
GWλs,d(τ)

GWλs,d(τ)2

)
= Ent(GWλs,d).

This readily implies the following

Corollary 3.1. Assume λs < 1. Then

KL∞ = lim
d→∞

KLd ≤
1

1− λs
Ent(πλs) < +∞. (22)

Proof. Entropy Ent(GWλs,d) can be evaluated by the conditional entropy formula as

Ent(GWλs,d) = Ent(GWλs,d−1) + (λs)d−1Ent(πλs).

The result follows from Proposition 3.1.

We then have the following result:

Proposition 3.2. Existence of one-sided tests holds if λs > 1 and KL∞ = +∞, whereas it fails
if KL∞ < +∞.

Proof. Assume existence of one-sided tests. As previously mentioned, equivalently there exists
ε > 0 such that

∀a > 0, lim inf
d→∞

P1(Ld > a) ≥ ε.

Fix a > 0, and define for d ∈ N, Cd := {x ∈ X 2
d : Ld(x) > a}. Write then, noting φ(u) := u log(u):

KLd ≥ P1,d(Cd) log(a) +
∑
x∈Cd

P1,d(x) log
P1,d(x)

P0,d(x)

≥ P1,d(Cd) log(a) + P0,d(Cd)
∑
x∈Cd

P0,d(x)

P0,d(Cd)
[Ld(x) log(Ld(x))]

≥ P1,d(Cd) log(a) + P0,d(Cd)φ

∑
x∈Cd

P0,d(x)

P0,d(Cd)
Ld(x)


= P1,d(Cd) log(a) + P1,d(Cd) log

(
P1,d(Cd)

P0,d(Cd)

)
≥ P1,d(Cd) log(a) + inf

u∈[0,1]
φ(u) ≥ P1,d(Cd) log(a)− e−1.

It thus follows from characterization of one-sided testability that for all a > 0,

KL∞ ≥ ε log(a)− e−1,

and thus KL∞ = +∞.
Conversely, assume λs > 1 and KL∞ = +∞. Let under P1, w := limd→∞ |Ld(τ ∗)| (λs)−d. On

the event that τ ∗ survives, which has strictly positive probability for λs > 1, it holds that w > 0.
In addition, we let σ∗, σ′∗ denote the injections from τ ∗ to t and t′ respectively that result from
uniform shuffling of the augmentations of τ ∗.

Let m,n be two integers. One then has the lower bound:

Lm+n(t, t′) ≥
∏

i∈Vm−1(τ∗)

ψ(cτ∗(i), ct(σ
∗(i)), ct′(σ

′∗(i))
∏

i∈Lm(τ∗)

Ln(tσ∗(i), t
′
σ′∗(i))

≥
∏

i∈Vm−1(τ∗)

ψ(cτ∗(i), ct(σ
∗(i)), ct′(σ

′∗(i)))e|Lm(τ∗)|[E1[log Ln]−o(1)].
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For m large, by the law of large numbers, the first product is with high probability lower-bounded
by eCw(λs)m for some fixed constant C. Choosing n of order 1 but sufficiently large, since by
assumption limn→∞ E1 [log(Ln)] = +∞, we can ensure that the second factor is larger than
eC
′w(λs)n for some arbitrary C ′. In particular taking C ′ ≥ 2C ensures that, on the event that τ∗

survives, limd→∞ Ld = +∞ almost surely. This readily implies one-sided testability.

3.1.1 Proof of (i) ⇐⇒ (ii) ⇐⇒ (v) in Theorem 1

Proof. Proposition 3.2 gives the implication (ii) =⇒ (i). Its proof further gives (ii) =⇒ (v).
The converse (v) =⇒ (ii) is obvious. The second statement in Proposition 3.2 gives (i) =⇒
KL∞ = +∞. To obtain that (i) =⇒ (ii) and conclude, it thus only remains to show that
(i) =⇒ λs > 1.

As will be shown in Section 6, one-sided testability implies (polynomial-time) feasibility of
partial graph alignment. However, [13] established that partial alignment is not feasible when
λs ≤ 1. This establishes (i) =⇒ λs > 1 as required.

3.2 Applications
To apply condition (ii) of Theorem 1, let us first establish the following

Lemma 3.1. For all d ≥ 1, one has

KLd+1 ≥ λsKLd + λs (log(s/λ) + 1) + 2λ(1− s) log(1− s). (23)

Proof. Let c denote under P1 the degree of τ ∗’s root, and c + ∆ (respectively c + ∆′) the degree
of the root nodes in t and t′. By the recursive formula for Ld, considering only the term for k = c
in the first summation as well as the injections σ : [c]→ [c + ∆], σ′ : [c]→ [c + ∆′] that correctly
match the c children of τ ∗’s root in t and t′, of which there are exactly c! pairs, one has:

Ld(t, t
′) ≥ ψ(c, c + ∆, c + ∆′)× c!×

c∏
i=1

Ld−1(ti, t
′
i)

≥ eλs s
c(1− s)∆+∆′

λc
×

c∏
i=1

Ld−1(ti, t
′
i).

Taking logarithms and then expectations, since E1 [c] = λs and E1 [∆] = E1

[
∆′
]

= λ(1− s), the
result follows.

We then have

Corollary 3.2. Assume that λs > 1 and

KL1 >
1

λs− 1
[λs(log(λ/s)− 1)− 2λ(1− s) log(1− s)] . (24)

Then KL∞ = +∞.

Proof. This follows from (23): indeed together with (24) it implies that for all d ≥ 1,

KLd+1 −KL1 ≥ λs(KLd −KL1),

hence KLd diverges geometrically to infinity, provided we have KL2 > KL1. The latter property
is established by writing

KL2 = E0 [φ(L2)] = E0 [E0 [φ(L2)|F1]]

where φ(x) = x log(x) is strictly convex. Jensen’s inequality thus guarantees KL2 ≥ KL1 =
E0 [φ(L1)], with equality only if almost surely, L2 = L1. However this almost sure equality does
not hold, hence the result.

These results have the following consequence:
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Theorem 4. Assume that λ ∈ (1, e). Let

s∗(λ) := sup{s ∈ [0, 1] : s(log(λ/s)− 1)− 2(1− s) log(1− s) ≥ 0}. (25)

Then s∗(λ) < 1, and under the conditions

λ ∈ (1, e) and s ∈ (s∗(λ), 1], (26)

one-sided detectability holds.

Proof. The fact that s∗(λ) < 1 follows by continuity, since for s = 1 the function

s→ s(log(λ/s)− 1)− 2(1− s) log(1− s)

evaluates to log(λ)−1, which is negative by the assumption λ < e. By definition, for s ∈ (s∗(λ), 1],
the right-hand side of (24) is less than or equal to zero. Since KL1 > 0, the result is a consequence
of Corollary 3.2 and Proposition 3.2.

Remark 3.1. A result similar to that of Theorem 4 follows from [11]. The present derivation is
however more direct, and allows for more explicit upper bound λ0 = e on the range of values of λ
considered, as well as characterization of the function s∗(λ) involved.

Condition (24) of Corollary 3.2 can also be used to identify conditions on s for one-sided
testability for large values of λ, based on corresponding evaluations of KL1. However, the resulting
conditions do not appear as sharp as those obtained by the analysis of automorphisms of τ∗, that
is the object of the next Section.

4 Number of automorphisms of Galton-Watson trees
In this Section, we show how counting automorphisms of Galton-Watson trees gives a sufficient
condition for the existence of one-sided tests in the tree correlation detection problem, and provide
evaluations of this number of automorphisms.

4.1 A lower bound on the likelihood ratio
Under P1, recall that τ ∗ is the true intersection tree used to perform correlated construction of t
and t′, and σ∗, σ′∗ denote the injections from τ ∗ to t and t′ respectively that result from uniform
shuffling of the augmentations of τ∗. Without loss of generality, we assume in this section that
σ∗ and σ′∗ are the identity map. We denote, for each i ∈ Vn−1(τ ∗):

ci := cτ∗(i), ∆i := ct(i)− cτ∗(i), ∆′i := ct′(i)− cτ∗(i). (27)

We now prove the following

Lemma 4.1. Under P1 we have the lower bound:

Ln = Ln(t, t′) ≥ |Aut(τ ∗)|
∏

i∈Vn−1(τ∗)

sci s̄∆i+∆′i

e−λsλci

∏
i∈Ln−1(τ∗)

(
ci + ∆i

ci

)(
ci + ∆′i

ci

)
, (28)

where we recall that Aut(τ ∗) denotes the set of tree automorphisms of τ ∗.

Proof. In view of the developed expression (13), we can lower-bound Ln(t, t′) by writing

Ln(t, t′) ≥
∑
τ∈Xn
τ≡τ∗

∑
σ∈S(τ,t)
σ′∈S(τ,t)

∏
i∈Vn−1(τ)

ψ (cτ (i), ct(σ(i)), ct′(σ
′(i))) , (29)

where ≡ is used to denote equality up to some relabeling. Let us compute the right hand term in
(29).

Note that any tree τ ∈ Xn such that τ ≡ τ ∗ can be determined by a collection

ξ(τ) :=
{
ξi(τ) ∈ Scτ∗ (i), i ∈ Vn−1(τ ∗)

}
,
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giving the reordering of the children of each node of τ ∗ at depth n− 1. Moreover, the number of
such permutations that produce this particular tree τ is precisely given by |Aut(τ ∗)|. Thus the
number of trees in the summation (29) is precisely

|{τ ∈ Xn : τ ≡ τ ∗}| =
∏
i∈Vn−1(τ∗) cτ∗(i)!

|Aut(τ ∗)|
· (30)

Note that for any tree τ ≡ τ ∗, we can construct

|Aut(τ ∗)|2 ×
∏

i∈Ln−1(τ∗)

(
ci + ∆i

ci

)(
ci + ∆′i

ci

)
(31)

pairs of injections (σ, σ′) ∈ S(τ, t) × S(τ, t′). Indeed the factor
(
ci+∆i

ci

)
(respectively,

(
ci+∆′i

ci

)
)

denotes the number of subsets of the ci+∆i children of i in t (respectively, of the ci+∆′i children
of i in t′) that we can associate as children of i in the injection σ (respectively, σ′), the order in
which they are considered being determined by the permutation ξi in ξ.

We thus have the following lower bound, for any tree τ ≡ τ ∗:

∑
σ∈S(τ,t)
σ′∈S(τ,t)

∏
i∈Vn−1(τ)

ψ (cτ (i), ct(σ(i)), ct′(σ
′(i)))

≥ |Aut(τ ∗)|2
∏

i∈Vn−1(τ∗)

sci s̄∆i+∆′i

ci!e−λsλci

∏
i∈Ln−1(τ∗)

(
ci + ∆i

ci

)(
ci + ∆′i

ci

)
. (32)

Combined, (30) and (32) imply (28).

We now turn to lower-bounding the number |Aut(τ ∗)| of automorphisms for τ ∗ ∼ GWλs,n:

Proposition 4.1. Let r be a sufficiently large constant (in particular, r > 1). For τ ∗ ∼ GWr,n,
let us denote by w the almost sure limit:

w := lim
n→∞

1

rn
|Ln(τ ∗)| . (33)

We place ourselves on the event on which τ ∗ survives, which occurs with probability 1−pext(r) > 0,
and on which w > 0. We let

K :=
wrn

r − 1
· (34)

We then have with high probability the lower bound

log

(
|Aut(τ ∗)|∏

i∈Vn−1(τ∗) e
−rrcτ∗ (i)

)
≥ K(1− oP(1))

[
log3/2 r

3
√
r

+Or

(
log5/4 r√

r

)]
. (35)

Proposition 4.1, proved in Appendix B.1, could be of independent interest. We believe that a
little more work could easily show that inequality (35) is exponentially tight, i.e. gives the right
exponential order for the estimation of the number of automorphism of a Galton-Watson tree.
We next show that Lemma 4.1 together with Proposition 4.1 yield a sufficient condition for the
existence of one-sided test.

4.2 A sufficient condition for one-sided tests
We are now in a position to prove the following

Theorem 5. There exists a constant r0 such that if

λs > r0 and 1− s ≤ 1

(3 + η)

√
log(λs)

λ3s
, (36)

for some η > 0, then one-sided detectability of tree correlation holds.
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Proof. The proof consists in showing that in this regime, Ln goes to +∞ with positive probability
under P1. Throughout, Xµ will denote a Poisson random variable with parameter µ. In the lower
bound (28) of Lemma 4.1, consider the factor

∏
i∈Vn−1(τ∗)

sci s̄∆i+∆′i

e−λsλci

∏
i∈Ln−1(τ∗)

(
ci + ∆i

ci

)(
ci + ∆′i

ci

)
.

Placing ourselves on the event on which τ ∗ survives, reusing the notations w and K defined in
equations (33) and (34), another appeal to the law of large numbers gives the following equivalents:

A := log

 ∏
i∈Vn−1

sci s̄∆i+∆′i

e−λsλci

 ∼ K (λs(log(s/λ) + 1) + 2λs̄ log s̄) (37)

and

B := log

 ∏
i∈Ln−1(τ∗)

(
ci + ∆i

ci

)(
ci + ∆′i

ci

)
∼ w(λs)n−1 (2E [log(Xλ!)]− 2E [log(Xλs̄!)]− 2E [log(Xλs!)]) . (38)

Let us introduce the notations r := λs, α := λs̄, such that λ = α + r and s = r
α+r . We will

identify equivalents of exponents of interest as α→ 0 and r →∞. In this regime, (37) becomes

A ∼ K

(
−2r log(1 + α/r) + 2α log

(
α/r

1 + α/r

)
− r log r + r

)
∼ K (−r log r + r − 2α log r + 2α logα+O(α))

We have the classical estimate for large µ:

E [log(Xµ!)] = µ log(µ)− µ+
1

2
log(2πeµ) +O

(
1

µ

)
, (39)

Using (39) and noting that in this regime, E [log(Xα!)] = O(α2), (38) becomes

B ∼ 2wrn−1

(
(r + α) log(r + α)− r − α+

1

2
log(2πe(r + α))− r log(r) + r − 1

2
log(2πer)−O(α2)

)
∼ 2wrn−1

(
r log(1 + α/r) + α log(1 + α/r) + α log r − α+

1

2
log(1 + α/r) +O(α)

)
∼ 2wrn−1 (α log(r) +O(α)) .

Combined, these approximations give:

A+B ∼ K

((
1− 1

r

)
× 2α log(r)− r log r + r − 2α log(r) + 2α log(α) +O(α)

)
∼ K (−r log r + r + 2α log(α) +O(α)) . (40)

Combining (40) with the results of Proposition 4.1 entails

log Ln ≥ K

[
r log r − r +

log3/2(r)

3
√
r

+O

(
log5/4 r√

r

)]
+ K [−r log r + r + 2α log(α) +O(α)]

= K

[
2α logα+

log3/2(r)

3
√
r

+O

(
log5/4 r√

r

)
+O(α)

]
.

Then, under assumption (36), we have α ≤ 1
3+η

√
log(r)/r so that, for sufficiently large r,

2α logα+
log3/2(r)

3
√
r

> Ω

(
log3/2(r)√

r

)
.

It follows that on the event on which τ ∗ survives, which happens with probability 1−pext(λs) > 0,
under condition (36), Ln goes to +∞ with n. Thus one-sided detectability holds.
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5 Impossibility of correlation detection: conjectured hard
phase for partial graph alignment

In the present section we establish that, for λs2 < 1 and sufficiently large λ, KL∞ < +∞ and
hence, by Theorem 1, one-sided testability fails for our tree correlation problem. Since there exists
a range of parameters (λ, s) for which partial alignment can be information-theoretically achieved
while λs2 < 1 (it suffices to have 4 < λs < s−1 in view of [23]) we therefore conclude that the
conjectured hard phase for partial graph alignment (see Conjecture 1) is non empty.

5.1 Mutual information formulation
Note that the Kullback-Leibler divergence KLd also coincides with the mutual information between
td := pd(t) and t′d := pd(t

′) under P1. To emphasize this interpretation we rewrite

KLd = I(td; t
′
d).

Note that under P1, conditionally on τ ∗d := pd(τ
∗), td and t′d are mutually independent, a property

that we will depict with the dependence diagram

td —- τ ∗d —- t′d.

By the data processing inequality, we thus have

KLd = I(td; t
′
d) ≤ I(τ ∗d; td).

To establish that KL∞ <∞, it therefore suffices to prove that I(τ ∗d; td) is bounded. Write then

I(τ ∗d, td) = E1 ln

(
P1(τ ∗d, td)

P1(τ ∗d)P1(td)

)
≤ E1

[
P1(τ ∗d, td)

P1(τ ∗d)P1(td)
− 1

]
≤ E1

[
P1(τ ∗d, td)

P1(τ ∗d)P1(td)

]
.

We have established the bound

I(τ ∗d, td) ≤ Vd := E1

[
P1(τ ∗d|td)
P1(τ ∗d)

]
. (41)

5.2 Bounding the mutual information
Let us denote by c the degree of the root node in τ ∗ and c + ∆ the degree of the root node in t.
Let us further write

τ ∗ = (τ ∗1, . . . , τ
∗
c), t = r(A(τ ∗1), . . . ,A(τ ∗c),θ1, . . . ,θ∆) = (t1, . . . , tc+∆),

where the A(τ ∗i ) are (λ, s)-augmentations, the θi are GWλ,d−1 trees, and r is a uniform relabeling.
Observe that

P1,d(τ
∗|t) =

GWλs,d(τ
∗)

GWλ,d(t)
e−λ(1−s) (λ(1− s))∆

∆!

∑
σ∈S(c,c+∆)

∆!

(c + ∆)!

∏
i∈[c]

P1,d−1(tσ(i)|τ ∗i )
c+∆∏
i=c+1

GWλ,d−1(tσ(i))

=
e−λs(λs)c/c!

e−λλc+∆/(c + ∆)!
e−λ(1−s) (λ(1− s))∆

∆!

∑
σ∈S(c,c+∆)

∆!

(c + ∆)!

∏
i∈[c]

P1,d−1(τ ∗i |tσ(i))

=
sc(1− s)∆

c!

∑
σ∈S(c,c+∆)

∏
i∈[c]

P1,d−1(τ ∗i |tσ(i)),

so that
P1,d(τ

∗|t)

P1,d(τ ∗)
=
sc(1− s)∆

c!πλs(c)

∑
σ∈S(c,c+∆)

∏
i∈[c]

P1,d−1(τ ∗i |tσ(i))

P1,d−1(τ ∗i )
.

Taking expectation entails the following formula for Vd defined in equation (41):

Vd =
∑
c≥0

∑
∆≥0

πλ(1−s)(∆)
sc(1− s)∆

c!

∑
σ∈S(c,c+∆)

E1,d−1

[
c∏
i=1

P1,d−1(τ ∗i |tσ(i))

P1,d−1(τ ∗i )

∣∣∣∣c = c,∆ = ∆

]
. (42)

To evaluate the previous expression, we need to introduce the following notion of cycles.
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Open paths, closed cycles For two integers c,∆ ≥ 0 and an injective mapping σ ∈ S(c, c+∆),
a sequence (i1, . . . , i`) of elements of [c] is

• an open path of σ if

i1 /∈ σ([c]), ∀k = 1, . . . , `− 1, σ(ik) = ik+1, and σ(i`) /∈ [c].

• a closed cycle of σ if

∀k = 1, . . . , `− 1, σ(ik) = ik+1 and σ(i`) = i1.

It is an easy fact to check that each injective mapping σ ∈ S(c, c + ∆) can be factorized in
disjoint open paths and closed cycles. Since each term i in the product in (42) only depends on
the other terms j in its own open path (resp. closed cycle), the expectation term in (42) factorizes
according to the path/cycle decomposition of σ.

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9

Figure 9: Representation of σ ∈ S(c, c+ ∆) with c = 6,∆ = 3, and σ(1) = 4, σ(2) = 6, σ(3) = 2,
σ(4) = 5, σ(5) = 1, σ(6) = 8. In this example, (1, 4, 5) (resp. (3, 2, 6)) is an open path (resp.
closed path) of σ.

First consider an open path O` of σ of length `, assumed without loss of generality to be
given by (1, . . . , `), so that σ(1) = 2, . . . , σ(` − 1) = `, and σ(`) = c + 1. The expectation of the
corresponding factor reads:

E1,d−1

[∏
i∈O`

P1,d−1(τ ∗i |tσ(i))

P1,d−1(τ ∗i )

]
= E1,d−1

[
`−1∏
k=1

P1,d−1(τ ∗k|A(τ ∗k+1))

P1,d−1(τ ∗k)
× P1,d−1(τ ∗` |θ1)

P1,d−1(τ ∗` )

]
.

Now integrated over θ1, P1,d−1(τ ∗` |θ1) evaluates to P1,d−1(τ ∗` ) and the last factor disappears.
Integrating then successively with respect to A(τ ∗k), k = `, `− 1, . . . , 2, we obtain that the factors
corresponding to open cycles evaluate to 1.

Consider next a closed cycle C` of σ of length `. Assuming without loss of generality that
ti = A(τ ∗i ), the expectation reads

E1,d−1

[∏
i∈C`

P1,d−1(τ ∗i |tσ(i))

P1,d−1(τ ∗i )

]
= E1,d−1

[∏̀
k=1

P1,d−1(τ ∗k|A(τ ∗(k+1) (mod `)))

P1,d−1(τ ∗k)

]
.

This reads, using for t, τ ∈ Xd−1 the notations pd−1(t) := GWλ,d−1(t), qd−1(τ |t) := P1,d−1(τ |t),
rd−1(τ) := GWλs,d−1(τ):

∑
τ1,t1,...,τ`,t`∈Xd−1

∏
i∈[`]

pd−1(ti)qd−1(τi|ti)×
qd−1(τi|t(i+1) (mod `))

rd−1(τi)
. (43)
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Introduce the operator Md−1, indexed by trees in Xd−1:

Md−1(τ1, τ2) :=
∑

t∈Xd−1

pd−1(t)
qd−1(τ1|t)qd−1(τ2|t)√
rd−1(τ2)rd−1(τ2)

. (44)

M is symmetric and semi-definite positive, hence the operator is diagonalizable and its spectrum
lies in R+. Note that the expectation in (43) coincides with the trace of matrix M `. It follows
that 3

E1,d−1

[∏
i∈C`

P1,d−1(τ ∗i |tσ(i))

P1,d−1(τ ∗i )

]
= Tr(M `

d−1) ≤ Tr(Md−1)` = Vd−1.

We now have the ingredients in place to prove the following

Lemma 5.1. The quantity Vd verifies

Vd ≤ f(Vd−1), (45)

where
f(x) =

1

1− sx
exp

(
κ(1− s)(x− 1)

1− sx

)
(46)

with κ := λs2.

Proof. For given c,∆ ≥ 0 and an injection σ ∈ S(c, c+∆), let F (σ) denote the number of elements
i ∈ [c] that belong to closed cycles of σ. From the previous evaluations (42) – (44) we already
have obtained the bound

Vd ≤
∑
c,∆≥0

πλ(1−s)(∆)
sc(1− s)∆

c!

∑
σ∈S(c,c+∆)

V
F (σ)
d−1 .

To upper-bound this quantity, we use the facts that Vd−1 ≥ 1 and that F (σ) ≤ |[c] ∩ σ([c])|. Then,
for any 0 ≤ k ≤ c, there are

(
c
k

)(
∆
c−k
)
ways to chose the set σ([c]) such that |[c] ∩ σ([c])| = k, and

c! distinct injections σ with the same set σ([c]). Hence Vd ≤ f(Vd−1) with

f(x) :=
∑
c,∆≥0

e−λ(1−s) s
c(λ(1− s)2)∆

∆!

c∑
k=0

(
c

k

)(
∆

c− k

)
xk

= e−λ(1−s)
∑
k,∆≥0

xk
(λ(1− s)2)∆

∆!

∑
c≥k

(
c

k

)(
∆

c− k

)
sc

= e−λ(1−s)
∑
k,∆≥0

xk
(λ(1− s)2)∆

∆!
sk

∆∑
c=0

(
c+ k

k

)(
∆

c

)
sc

= e−λ(1−s)
∑
k,c≥0

1

c!

(
c+ k

k

)
(sx)ksc(λ(1− s)2)c

∑
∆≥c

(λ(1− s)2)∆−c

(∆− c)!

= e−λs(1−s)
∑
c≥0

(λs(1− s)2)c

c!

∑
k≥0

(
c+ k

k

)
(sx)k

= e−λs(1−s)
1

1− sx
∑
c≥0

1

c!

(
λs(1− s)2

1− sx

)c
=

1

1− sx
exp

(
λs2(1− s)(x− 1)

1− sx

)
.

We are now in a position to prove the following
3To make this argument fully rigorous we can consider truncated summations so that we are dealing with finite

dimensional matrices, for which the trace inequality to follow clearly holds, and then use monotone convergence to
obtain the desired inequality as written.
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Theorem 6. Assume κ = λs2 is fixed such that κ < 1. Then for λ sufficiently large, it holds that

lim sup
d→∞

Vd < +∞, (47)

so that one-sided testability fails.

Proof. Let κ < 1 be fixed, together with ε ∈ (0, 4κ) such that κ+ε < 1. Let γ > 0 be an arbitrary
constant chosen such that

γ >
1

1− κ− ε
.

We shall consider s > 0 sufficiently small, or equivalently λ large enough, in particular such that
γs < 1. Let y ∈ [0, γs]. Note that

exp

(
κ

y(1− s)
1− s(y + 1)

)
≤ exp (κy/(1− 2s)) .

Then, assuming 1
1−2s ≤ 1 + ε/(4κ) as well as 2e2κ2γs/ε ≤ 1, we get

exp (κy/(1− 2s)) ≤ exp (κy + εy/4) ≤ 1 + (κ+ ε/2)y. (48)

Note also that, 1/(1− t) ≤ 1 + t+ 3t2 for t ∈ (0, 2/3). Assuming s(y + 1) ≤ 2s < 2/3, and using
y ≤ γs ≤ 1, we get

1

1− s(y + 1)
≤ 1 + s(y + 1) + 3[s(y + 1)]2 ≤ 1 + s+ Cs2, (49)

where C := γ + 12. Together, these last two bounds (48) and (49) entail, for any y ∈ [0, γs]:

f(1 + y)− 1 ≤ (1 + (κ+ ε/2)y)(1 + s+ Cs2)− 1 ≤ s+ Cs2 + (κ+ ε)y,

where we assumed s sufficiently small that (κ+ε/2)(1+s+Cs2) ≤ κ+ε. Note now that, provided

1 + (γ + 12)s+ (κ+ ε)γ ≤ γ,

it holds that
f(1 + y)− 1 ∈ [0, γs]. (50)

Note that this condition can be enforced, for any choice of γ such that γ > 1
1−κ−ε taking s

sufficiently small.
By induction on d, monotonicity of f (which is easily obtained from the series expansion of

f), and the initialization V0 = 1, it follows from (50) that for sufficiently small s one has:

Vd − 1 ≤ (s+ Cs2)

d−1∑
i=0

(κ+ ε)i.

Since the right-hand side is uniformly bounded in d, the result follows.

6 Consequences for polynomial time partial graph alignment
We now apply the previous results of Sections 2-4 to one-sided partial graph alignment. Recall
that we work under the correlated Erdős-Rényi model (2).

We will now describe our polynomial-time algorithm and its theoretical guarantees when one-
sided detectablity holds in Theorem 1 – in particular under condition (26) of Theorem 4 or
condition (36) of Theorem 5.

6.1 Intuition, algorithm description
In all this part we assume that (λ, s) satisfy one of the conditions in Theorem 1.
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Extending the tree correlation detection problem Let (G,G′) ∼ G(n, q = λ/n, s), with
underlying alignment σ∗. In order to distinguish matched pairs of nodes (i, u), we consider their
neighborhoods Nd,G(i) and Nd,G′(u) at a given depth d: these neighborhoods are close to Galton-
Watson trees. In the case where the two vertices are actual matches, i.e. u = σ∗(i), we are exactly
in the setting of our tree correlation detection problem under P1: Point (v) of in Theorem 1 shows
that there exists a threshold βd such that with probability at least 1− pext(λs) > 0,

Ld(i, u) := Ld (Nd,G(i),Nd,G′(u)) > βd,

when d→∞. Point (v) of Theorem 1 shows that this threshold βd can be e.g. taken to be exp(nγ)
for some γ ∈ (0, c log(λs)).

At the same time, when nodes u and σ∗(i) are distinct and sufficiently far away, we can argue
that we are also – with high probability – in the setting of the tree correlation detection problem
under P0: since E0 [Ld] = 1, Markov’s inequality shows that with high probability when d→∞,

Ld(i, u) ≤ βd.

Computation of the likelihood ratios As mentioned in Remark 2.1, Formula (12) enables
to compute such likelihood ratios efficiently on a graph, giving the exact expression for a message
passing procedure, assuming that all neighborhoods are locally tree-like at depth d. Let us first
define oriented likelihood ratios: for any i, j ∈ V (G) and u, v ∈ V (G′), we write Ld(i← j, u← v)
for the likelihood ratio at depth d of two trees, the first one (resp. second one) being rooted at i
in G (resp. u in G′) where the edge {i, j} (resp. {u, v}), if initially present, has been deleted. In
view of (12) these oriented likelihood ratios satisfy the following recursion:

Ld(i← j, u← v) =

di∧d′u−1∑
k=0

ψ (k, di − 1, d′u − 1)
∑

σ∈S([k],NG(i)\{j})
σ′∈S([k],NG′ (u)\{v})

k∏
`=1

Ld−1(σ(`)← i, σ′(`)← u),

(51)
where di := dG(i) and d′u := dG′(u). The likelihood ratio at depth d between i and u is then
obtained by computing

Ld(i, u) =

di∧d′u∑
k=0

ψ (k, di, d
′
u)

∑
σ∈S([k],NG(i))
σ′∈S([k],NG′ (u))

k∏
`=1

Ld−1(σ(`)← i, σ′(`)← u). (52)

A natural idea is then to compute for each pair (i, u) the likelihood ratio Ld(i, u) with d large
enough (typically scaled in Θ(log n) where n is the number of vertices in G and G′) and to compare
it to βd to decide whether i in G is matched to u in G′.

The dangling trees trick However, as previously noted in [11], without additional constraint,
this strategy produces many falsely positive matches, tending e.g. to match i with v if (i, j) is
an edge of G and (v, σ∗(j)) is an edge of G′, making the errors increase and the performance
collapse.

To fix this issue, we use the dangling trees trick, already introduced in [11] (and improved
here by consideration of three rather than two dangling trees): instead of just looking at their
neighborhoods, we look for the downstream trees from distinct neighbors of i in G and of u in G′.
The trick is now to match i with u if and only if there exists three distinct neighbors j1, j2, j3 of
i in G (resp. v1, v2, v3 of u in G′) such that all three of the likelihood ratios Ld−1(jt ← i, vt ← u)
for t ∈ {1, 2, 3} are larger than β. The proof of Theorem 8 explains how this trick avoids false
positives and why three dangling trees is a good choice.
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Algorithm description Our algorithm is as follows:
Algorithm 1: MPAlign: Message-passing algorithm for sparse graph alignment
Input: Two graphs G and G′ of size n, average degree λ, depth d, threshold parameter β
Output: A set of pairsM⊂ V (G)× V (G′).
M← ∅
Compute Ld(i← j, u← v) for all {i, j} ∈ E and {u, v} ∈ E′ with (51)
for (i, u) ∈ V (G)× V (G′) do

if NG(i, d) and NG′(u, d) contain no cycle, and
∃ {j1, j2, j3} ⊂ NG(i),∃ {v1, v2, v3} ⊂ NG′(u) such that Ld−1(jt ← i, vt ← u) > β for
all t ∈ {1, 2, 3} then
M←M∪ {(i, u)}

end
end
returnM

Remark 6.1. Each iteration in (51) requires the computation of a matrix of size O(n2), each
entry of which can be computed in time O

(
(dmax!)2

)
– where dmax is the maximum degree in G and

G′. Under the correlated Erdős-Rényi model, dmax = O
(

logn
log logn

)
[3], so that dmax! is polynomial

in n. Each iteration is thus polynomial in n and since d is taken order log(n), the algorithm runs
in polynomial time.

The two results to follow will readily imply Theorem 2.

Theorem 7. Let (G,G′) ∼ G(n, λ/n, s) be two s−correlated Erdős-Rényi graphs such that any
of the equivalent conditions of Theorem 1 holds. Let d = bc log nc with c log (λ (2− s)) < 1/2.
Let M be the output of Alg. 1, taking β = exp(nγ) for some γ ∈ (0, c log(λs)). Then with high
probability

1

n

n∑
i=1

1{(i,σ∗(i))∈M} ≥ Ω(1). (53)

In other words, a non vanishing fraction of nodes is correctly recovered by Algorithm 1.

Theorem 8. Let (G,G′) ∼ G(n, λ/n, s) be two s−correlated Erdős-Rényi graphs. Assume that
d = bc log nc with c log λ < 1/4. Let M be the output of Alg. 1, taking β = exp(nγ) for some
γ ∈ (0, c log(λs)). Then with high probability

err(n) :=
1

n

n∑
i=1

1{∃u 6=σ∗(i), (i,u)∈M} = o(1), (54)

i.e. only a vanishing fraction of nodes are incorrectly matched by Algorithm 1.

Remark 6.1. The set M returned by Algorithm 1 is not necessarily an injective mapping. Let M′

be obtained by removing all pairs (i, u) of M such that i or u appears at least twice. Theorems 7
and 8 guarantee that M′ still contains a non-vanishing number of correct matches and a vanishing
number of incorrect matches, hence one-sided partial alignment holds. Theorem 2 easily follows,
the proposed local algorithm achieving one-sided partial graph alignment.

A slight adaptation MPAlign2 (Alg. 2) of MPAlign (Alg. 1) can be found in Appendix A,
where some results are also reported. These confirm our theory, as the algorithm returns many
good matches and few mismatches. A similar algorithm has been recently studied in [20].

6.2 Proof strategy
We start by stating Lemmas that precise the link between sparse graph alignment and correlation
detection in trees, as explained in Section 6.1. These Lemmas are directly taken from [11] (to
which we refer for the proofs, see Lemmas 2.1-2.4) and are instrumental in the proofs of Theorems
7 and 8.
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Lemma 6.1 (Control of the sizes of the neighborhoods). Let G ∼ G(n, λ/n), d = bc log nc with
c log λ < 1. For all γ > 0, there is a constant C = C(γ) > 0 such that with probability 1−O (n−γ),
for all i ∈ [n], t ∈ [d]:

|SG(i, t)| ≤ C(log n)λt. (55)

Lemma 6.2 (Cycles in the neighborhoods in an Erdős-Rényi graph). Let G ∼ G(n, λ/n), d =
bc log nc with c log λ < 1/2. Then there exists ε > 0 such that for any vertex i ∈ [n], one has

P (NG,d(i) contains a cycle) = O
(
n−ε

)
. (56)

Lemma 6.3 (Two neighborhoods are typically independent). Let G ∼ G(n, λ/n) with λ > 1, d =
bc log nc with c log λ < 1/2. Then there exists ε > 0 such that for any fixed nodes i 6= j of G, the to-
tal variation distance between the joint distribution of the neighborhoods L

(
(SG(i, t),SG(j, t))t≤d

)
and the product distribution L

(
(SG(i, t))t≤d

)
⊗ L

(
(SG(j, t))t≤d

)
tends to 0 as O (n−ε) when

n→∞.

Lemma 6.4 (Coupling neighborhoods with Galton-Watson trees). We have the following cou-
plings:

(i) Let G ∼ G(n, λ/n), d = bc log nc with c log λ < 1/2. Then there exists ε > 0 such that for
any fixed node i of G, the variation distance between the distribution of NG,d(i) and the
distribution GWλ,d tends to 0 as O (n−ε) when n→∞.

(ii) For (G,G′) ∼ G(n, λ/n, s) with planted alignment σ∗, d = bc log nc with c log(λs) < 1/2
and c log(λ(1 − s)) < 1/2, there exists ε > 0 such that for any fixed node i of G, the
variation distance between the distribution of (NG,d(i),NG′,d(σ

∗(i))) and the distribution
P1 (as defined in Section 1.2) tends to 0 as O (n−ε) when n→∞.

Proof of Theorems 7 and 8

Proof of Theorem 7. First, since c log (λ (2− s)) < 1/2, we also have c log (λ (1− s)) < 1/2 and
c log (λs) < 1/2. For i ∈ [n], point (ii) of Lemma 6.4 thus implies that the two neighborhoods
NG,d(i) and NG′,d(σ

∗(i)) can be coupled with trees drawn under P1 as defined in Section 1.2 with
probability ≥ 1−O(n−ε).

Under this coupling, there is a probability α3 > 0 that the root in the intersection tree has at
least three children, and since we work under the conditions of Theorem 1 point (v) implies that
the three likelihood ratios are greater than β with positive probability (1− pext(λs))

3 > 0. Hence,
the probability of Mi := {(i, σ∗(i)) ∈M} is at least (1− o(1))α3(1− pext(λs))

3 =: α > 0.
Let G∪ be the true union graph, that is G∪ := Gσ∗ ∪G′ where Gσ∗ is the relabeling of G

according to permutation σ∗. We have G∪ ∼ G(n, λ(2 − s)/n). For i 6= j ∈ [n], define Ii,j the
event on which the two neighborhoods of i and j in G∪ coincide with their independent couplings
up to depth d. Since c log (λ (2− s)) < 1/2, by Lemma 6.3, P(Ii,j) = 1−o(1). Then for 0 < ε < α,
Markov’s inequality yields

P

(
1

n

n∑
i=1

1{(i,σ∗(i))∈M} < α− ε

)
≤ P

(
n∑
i=1

(P(Mi)− 1Mi
) > εn

)

≤ 1

n2ε2
(nVar (1M1

) + n(n− 1)Cov (1M1
,1M2

))

≤ Var (1M1
)

nε2
+

1− P (I1,2)

ε2
→ 0,

which ends the proof.

Remark 6.2. Note that in view of the proof here above, the recovered fraction Ω(1) guaranteed
by in Theorem 7 can be taken as close as wanted to

α(λs) := (1− pext(λs))
3 (1− πλs(0)− πλs(1)− πλs(2)) .

This fraction is a priori not optimal, and can be interestingly compared with recent results in [13]
showing that no more than a fraction 1− pext(λs) of the nodes can be recovered.
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Proof of Theorem 8. First, we condition on the event A that all d−neighborhoods in G and G′

are of size at most C(log n)λd, which happens with probability 1− o(1) by Lemma 6.1. Note that
by assumption this uniform upper bound is O((log n)n1/4).

In order to control the probability that i is matched with some ’wrong’ u by our algorithm,
we follow the same first steps as in the proof of Theorem 2.2. in [11]: we will first fix i in G and
work on the event Ei where NG∪,2d(i) has no cycle. Since c log(λ) < 1/4, this event happens with
probability 1− o(1) by Lemma 6.2.

Consider then u in G′ such that u 6= σ∗(i). If i and u are matched by MPAlign, then necessarily
NG(i, d) and NG′(u, d) contain no cycle: the d−neighborhoods are thus tree-like. For any choice
of distinct neighbors j1, j2, j3 of i in G (resp. v1, v2, v3 of u in G′), we define the corresponding
pairs of trees of the form (T`, T

′
`), where T` (resp. T ′`) is the tree of depth d − 1 rooted at j` in

G (resp. v` in G′) after deletion of edge {i, j`} in G (resp. {u, v`} in G′). A moment of thought
shows that, no matter the choice of j1, j2, j3 and v1, v2, v3, on event Ei, one of these pairs must be
made of two disjoint trees.

We now focus on a pair (t, t′) of such disjoint trees: these trees of depth d − 1 can be built
recursively by sampling a binomial number of children for each vertex. Since we condition on
the fact that the trees are not intersecting, if at some point v vertices have been uncovered, then
the number of children to be drawn is exactly of distribution Bin (n− v, λ/n). With this exact
construction, we denote by P̃0 the distribution of the pair (t, t′). Define

M :=
P̃0(t, t′)

P0(t, t′)
. (57)

We have that

P̃0(Ld−1(t, t′) > β ∩ A) = E0

[
M× 1A × 1Ld−1(t,t′)>β

]
≤ E0[M21A]1/2β−1/2,

by a successive use of Cauchy-Schwarz and Markov’s inequalities. We now state the following
Lemma, proved in Appendix B.3:

Lemma 6.1. With the previous notations, we have

E0

[
M21A

]
= O(1). (58)

Together with the previous Lemma, noting that with high probability the maximum degree in
G and G′ is less than log n, union bound gives

P (A ∩ {∃u 6= σ∗(i), (i, u) ∈M}) ≤ P(Ēi) + o(1) + n× log6 n× β−1/2

= O
(

(log6 n)× n× exp(−nγ/2)
)

= o(1).

The proof follows by appealing to Markov’s inequality.

Conclusion, open questions
Detection of correlation in trees, introduced and studied in this paper, is a fundamental statisti-
cal task of intrinsic interest besides its original motivation from graph alignment. While in this
paper we focus on Erdős-Rényi graphs and hence Poisson branching trees, more general locally
tree-like graphs could be considered, giving rise to correlation detection problems on more general
branching trees.

The present work suggests the following open questions:

Q1. Recall that the non-planted version of graph alignment of two graphs with adjacency matrices
A and B consists in solving the quadratic assignment problem (1).

In the case where A,B are independent Erdős-Rényi graphs, what is the value of the objective

max
Π
〈A,ΠBΠT 〉
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in the large size limit?

Some upper bounds are obtained in the literature [22] – to study the detection problem –
but to the best of our knowledge no exact equivalent is known.

Q2. In a previous paper [11], another similarity score between trees t are t′ is studied: the tests
are based on the matching weight, defined as the largest number of leaves at depth n of
a common subtree of t and t′. Under the null model, where t and t′ are e.g. independent
Galton-Watson trees, what is the typical matching weight of t and t′?

Q3. What is the optimal overlap – or, the largest subset C∗ – that one can hope to align in the
sparse regime? It is shown in [13] that – up to some vanishing fraction of the nodes – C∗ is
contained in the giant component C1 of the intersection graph. In Section 1.3 we dealt with
the exact isomorphism case s = 1, for which C∗ is almost – i.e, up to some vanishing fraction
– the set of all points invariant by any automorphism. We conjecture that this observation
could be generalized to the non-isomorphic case s < 1, namely that C∗ is almost the set I of
invariant nodes in the intersection graph. This would imply that the partial recovery task
exhibits an information-theoretic threshold at λs = 1, completing the phase diagram.

Q4. A locally tree-like model in which graph alignment appears very challenging is the regular
model. In particular, any method based on exploiting the locally tree-like structure – if no
other information such as labels on nodes is known – will fail. So, we may ask the question:
what are the information-theoretic and computational limits for regular graph alignment?
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A Numerical experiments for MPAlign2
In this section, we give some details on a practical implementation of our algorithm. We start by
introducing some notations. Given an edge {i, j} of a graph, we denote by i → j and j → i the
directed edges from i to j and j to i resp. Now given two graphs G = (V,E) and G′ = (V ′, E′),
we define the matrix (mt

i→j,u→v){i,j}∈E,{u,v}∈E′ ∈ R2|E|×2|E′|
+ recursively in t, as follows:

mt+1
i→j,u→v =

di∧du−1∑
k=0

ψ̃(k, di − 1, du − 1)
∑

{`1,...`k}∈∂i\j
{w1,...wk}∈∂u\v

∑
σ∈Sk

k∏
a=1

mt
`a→i,wσ(a)→v, (59)

where di := dG(i), d′u := dG′(i), ψ̃(k, d1, d2) = k!ψ(k, d1, d2), and ∂i\j (resp. ∂u\v) is a shorthand
notation for NG(i) \ {j} (resp. NG′(u) \ {v}) and by convention m0

i→j,u→v = 1.
Denoting ∂i := NG(i) (resp. ∂u := NG′(u)), for t ∈ N we define the matrix (mt

i,u) ∈ RV×V
′

+ :

mt
i,u =

di∧du∑
k=0

ψ̃(k, di, du)
∑

{`1,...`k}∈∂i
{w1,...wk}∈∂u

∑
σ∈Sk

k∏
a=1

mt
`a→i,wσ(a)→v. (60)

It is easy to see that if the graphs G and G′ are trees then mt
i,u is exactly the likelihood ratio

Lt(si, s
′
u) where si (resp. su) is the tree rerooted at i in G (resp. at u in G′).

In experiments, we run our algorithms on correlated Erdős-Rényi model with possible cycles
so that the matrix mt

i,u is interpreted as an approximation of the true likelihood ratio. From such
an approximation, we compute two mappings πt : V → V ′ as

πt(i) = arg max(mt
i,·)

and σt : V ′ → V as
σt(u) = arg max(mt

·,u)

which are candidates for matching vertices from G to G′ or from G′ to G. If t is small, then the
approximation mt

i,u will not be accurate as it does not incorporate sufficient information (only at
depth t in both graphs). When t is large, cycles will appear in both graphs so that the recursion is
not anymore valid. In order to choose an appropriate number of iterations t, we adopt the following
simple strategy: we compute all the matrices mt

i,u for all values of t less than a parameter d; then
from these matrices, we compute the corresponding mappings πt and σt as described above; we
then compute:

e(t) := match-edges(G,G′, πt, σt)

:=
1

|E|
∑

(i,j)∈E

1(πt(i),πt(j))∈E′ +
1

|E′|
∑

(u,v)∈E′
1(σt(u),σt(v))∈E . (61)

Finally, we choose
t∗ = arg max(e(t)).

Note that, we are considering sparse Erdős-Rényi graphs which are typically not connected (the
diameter is infinite). We know from [13], that only the "giants" components of G and G′ can
possibly be aligned. Hence as a first pre-processing step, we remove all the small connected
components from G and G′ and keep only the largest one. As a result, our algorithm takes as
input 2 connected graphs of (possibly) different sizes. The pseudo-code for our algorithm is given
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below:
Algorithm 2: MPAlign2
Input: Two connected graphs G = (V,E) and G′ = (V ′, E′), parameter d and parameters
of the correlated Erdős-Rényi model λ (average degree) and s

for t ∈ {1, . . . , d} do
compute mt

i→j,u→v thanks to (59)
compute mt

i,u thanks to (60)
compute πt : V → V ′ as πt(i) = arg max(mt

i,·)
compute σt : V ′ → V as σt(u) = arg max(mt

·,u)
compute e(t) = match-edges(G,G′, πt, σt) thanks to (61)

end
t∗ = arg max(e(t))
Return πt

∗
, σt

∗
, mt∗

Figure 10 shows some empirical results for graphs of size 200 for values λ = 2; 2, 5; 3 where the
overlap is the mean of the overlaps given by πt

∗
and σt

∗
. The maximum number of iterations is

fixed to d = 15. For more numerical experiments on this algorithm, see [20].

Figure 10: Overlap as a function of the parameter s for graphs with (initial) size n = 200 for
various values of λ (parameter d = 15). Each point is the average of 10 simulations.

This choice of d = 15 is validated by the results presented in Figure 11. We plot for each
simulation the mean overlap of πt and σt as a function of t ≤ 15. We see that for low values of s
(on the left s = 0.4), the overlap behaves randomly. In this scenario, increasing the value of d will
probably not help as cycles will deteriorate the performance of the algorithm. For high value of s
(on the right s = 0.9), we see that the overlap starts by increasing and then decreases abruptly to
zero, this is due to numerical issues: some messages in mt are too large for our implementation of
the algorithm to be able to deal with them. Finally for values of s, where signal is detected (in the
middle s = 0.675), we see that when the signal is detected, the overlap start by increasing until
reaching a maximum and then decreases before numerical instability. We also note that our choice
of t∗ thanks to the number of matched edges can be fairly sub-optimal. We believe that a better
understanding of the performance of our algorithm for finite n is an interesting open problem.
Indeed, we refer to [20] which provides more detailed experimental results on a similar algorithm.
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Figure 11: Overlap as a function the number of iterations t for graphs with (initial) size n = 200 for
λ = 2.5 (parameter d = 15) and various values of s. The dotted point on each curve corresponds
to t∗. Note that the y-axis of each plot have different scale. When overlap reaches zero, our
algorithm hits infinity.

B Additional proofs

B.1 Proof of Proposition 4.1
Proof. Throughout the proof, let Xµ denote a Poisson random variable with parameter µ. A
node i ∈ Ln−2(τ ∗) has, independently for each k ∈ N, a number Nk ∼ Poi(rπr(k)) children who
themselves have k children. To each such node, we can associate∏

k∈N
Nk!

permutations of its children that will preserve the labeled tree. Likewise, for each node i ∈
Ln−1(τ ∗), there are ci! permutations of its children that don’t modify the tree, where ci := cτ∗(i).
Thus by the strong law of large numbers, we have:

log |Aut(τ ∗)| ≥ (1 + oP(1))

[
wrn−1E [log(Xr!)] + wrn−2

∑
k∈N

E
[
log(Xrπr(k)!)

]]
. (62)

Recall the classical estimate for large µ:

E log(Xµ!) = µ log(µ)− µ+
1

2
log(2πeµ) +O

(
1

µ

)
, (63)

and Stirling’s formula gives

log(k!) = k log k − k +
1

2
log(2πk) +O

(
1

k

)
. (64)

We now give some estimates of the distribution πr(k) in the following Lemma, which proof is
deferred to Appendix B.2.

Lemma B.1. Let ε(r) be such that ε(r)→ 0 and ε(r) log r → +∞ when r → +∞. Let

Ir,ε :=
[
r − (1− ε(r))

√
r log r, r + (1− ε(r))

√
r log r

]
.

Then
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(i) we have
P (Xr /∈ Ir,ε) = O

(
r−1/2eε(r) log r

)
. (65)

(ii) for all k ∈ Ir,ε, letting xk = k−r√
r
, we have

πr(k) =
1√
2πr

e−x
2
k/2

[
1 +

x3
k

6
√
r
− xk

2
√
r

+O

(
x6
k

r

)]
. (66)

(iii) Note that (66) implies that for each k ∈ Ir,ε, it holds that rπr(k) = Ω
(
eε(r) log r(1−o(1))

)
,

thus diverges to +∞.

Consider the function ε(r) := log log r
4 log r , which satisfies the assumptions of Lemma B.1. Using

expansion (66) together with (63) gives:∑
k∈Ir,ε

E
[
log(Xrπr(k)!)

]
=
∑
k∈Ir,ε

rπr(k) log(rπr(k))− rπr(k) +
1

2
log(2πerπr(k)) +O

(
1

rπr(k)

)

=
∑
k∈Ir,ε

rπr(k)

[
1

2
log(r)− 1

2
log(2π)− x2

k

2
+

x3
k

6
√
r
− xk

2
√
r

+O

(
log2 r

r

)
− 1

]

+
∑
k∈Ir,ε

1

2

[
log(2πe) +

1

2
log(r)− 1

2
log(2π)− x2

k

2
+O

(
log3/2(r)√

r

)]
+O

(√
r log r

)
(a)
=

1

2
r log(r)−

(
1

2
log(2π) +

1

2
+ 1

)
r +O(

√
r log5/4 r)

+O(
√
r log r) +

1

2
(1− ε(r))

√
r log3/2(r)− 1

4

∑
k∈Ir,ε

x2
k

(b)
=

1

2
r log(r)−

(
1

2
log(2π) +

3

2

)
r +

1

3

√
r log3/2(r) +O(

√
r log5/4 r). (67)

Let us give hereafter all the required details for the above computation.

• At step (a), we first used point (i) of Lemma B.1, which gives that

r log r × P (Xr /∈ Ir,ε) = O
(√

r log1/4 r
)

= O
(√

r log5/4 r
)
.

For the sum of the x2
k, we remark that

∑
k∈Ir,ε

rπr(k)
x2
k

2
=
r

2

(
1− E

[(
Xr − r√

r

)2

1Xr /∈Ir,ε

])
,

and that the expectation in the right-hand term can be written as follows

E

[(
Xr − r√

r

)2

1∣∣∣Xr−r√
r

∣∣∣≥2
√

log r

]
+ E

[(
Xr − r√

r

)2

1
(1−ε(r))

√
log r≤

∣∣∣Xr−r√
r

∣∣∣≤2
√

log r

]

≤ E

[(
Xr − r√

r

)4
]1/2

P
(∣∣∣∣Xr − r√

r

∣∣∣∣ ≥ 2
√

log r

)1/2

+ 4 log r × P (Xr /∈ Ir,ε)

≤ O
(
r−1/2

)
+O

(
r−1/2 log5/4 r

)
.

Hence,
∑
k∈Ir,ε rπr(k)

x2
k

2 = r
2 − O

(√
r log5/4 r

)
. Finally, using the fact that E

[(
Xr−r√

r

)3
]

and E
[

Xr−r√
r

]
are O(1), the sums of the x3

k and xk easily incorporate into the O
(√

r log5/4 r
)

term.
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• At step (b), we first used the fact that ε(r)
√
r log3/2 = O

(√
r log5/4 r

)
. The only term

needing more computations is

∑
k∈Ir,ε

x2
k =

∑
k∈Ir,ε

(
k − r√

r

)2

= 2×
(1−ε(r))

√
r log r∑

`=0

`2

r
=

2

3

√
r log3/2 r +O

(√
r log5/4 r

)
.

Copying (67) together with (63) in (62) yields:

log(|Aut(τ∗)|) ≥ (1 + oP(1))wrn−1

[
r log(r)− r +

1

2
log(2πer) +O

(
1

r

)]
+ (1 + oP(1))wrn−1

[
1

2
log(r)− 1

2
log(2π)− 3

2
+

log3/2 r

3
√
r

+O

(
log5/4 r√

r

)]

= (1 + oP(1))wrn−1

[
r log(r)− r + log(r)− 1 +

log3/2(r)

3
√
r

+O

(
log5/4 r√

r

)]
.

Another appeal to the strong law of large numbers entails that

log

 ∏
i∈Vn−1(τ∗)

e−rrcτ∗ (i)

 = (1 + oP(1)) |Vn−1(τ ∗)|E [−r + cτ∗(ρ(τ ∗)) log r]

= (1 + oP(1))K (−r + r log(r)) .

Combined, these last two evaluations yield a lower bound of log

(
|Aut(τ∗)|∏

i∈Vn−1(τ∗) e
−rrcτ∗ (i)

)
under

the event on which τ ∗ survives, of the form

(1− oP(1))K

[
−r log(r) + r +

(
1− 1

r

)(
r log(r)− r + log(r)− 1 +

log3/2(r)

3
√
r

+O

(
log5/4 r√

r

))]

= (1− oP(1))K

[
log3/2(r)

3
√
r

+O

(
log5/4 r√

r

)]
.

B.2 Proof of Lemma B.1
Proof. (i) The result follows directly from the classical Poisson concentration inequality

P (|Xr − r| ≥ x) ≤ 2 exp

(
− x2

2(r + x)

)
,

noting that for x = (1− ε(r))
√
r log r, x2

2(r+x) ≥
1
2 log r − ε log r − o(1).

(ii) When k runs over Ir,ε, xk runs over
[
−(1− ε(r))

√
log r, (1− ε(r))

√
log r

]
. Using Stirling’s

38



formula (64), we get

log πr(k) = log πr(r + xk
√
r) = −r + k log r − log(k!)

= −r + (r + xk
√
r) log r − (r + xk

√
r) log(r + xk

√
r) + r + xk

√
r − 1

2
log(2π(r + xk

√
r)) +O

(
1

r

)
= −r + r log r + xk

√
r log r − (r + xk

√
r)

[
log r +

xk
r1/2

− x2
k

2r
+

x3
k

3r3/2
+O

(
x4
k

r2

)]
+ r + xk

√
r − 1

2
log(2π)− 1

2
log(r)− 1

2

xk
r1/2

+O

(
x2
k

r

)
= −r − xk

√
r − x2

k +
x2
k

2
+

x3
k

2
√
r
− x3

k

3
√
r

+O

(
x4
k

r

)
+ r + xk

√
r − 1

2
log(2πr)− 1

2

xk
r1/2

+O

(
x2
k

r

)
= −x

2
k

2
− 1

2
log(2πr) +

x3
k

6
√
r
− xk

2
√
r

+O

(
x4
k

r

)
.

Taking the exponential gives

πr(k) =
1√
2πr

e−x
2
k/2

[
1 +

x3
k

6
√
r
− xk

2
√
r

+O

(
x6
k

r

)]
.

(iii) follows directly from (ii).

B.3 Proof of Lemma 6.1
Proof. We condition on T be the number of recursive steps in the previous construction, which is
O((log n)n1/4) under A. For each s ∈ [T ], we denote by cs the number of newly sampled children,
and vs :=

∑s−1
s′=0 cs′ the number of uncovered vertices before step s (we set v0 := 0). With these

notations, it is easily seen than M can be factorized as follows:

M =
∏
s∈[T ]

P (Bin (n− 2− vs, λ/n) = cs)

πλ(cs)

≤
∏
s∈[T ]

exp

(
λ

n
(vs + 2 + cs)

)

= exp

2λT

n
+
λ

n

∑
s∈[T ]

(T − s)cs

 .

Under P0, the variables cs are independent Poi(λ) variables, hence

E0

[
M21A

]
≤ exp

4λT

n
+ λ

∑
s∈[T ]

(
e2λ(T−s)/n − 1

)1T=O((logn)n1/4)

≤ exp
(
C ′T 2/n+ o(T 2/n)

)
1T=O((logn)n1/4) = O(1).
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