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Summary 
Computational biologists have long sought to automatically infer transcriptional regulatory 
networks (TRNs) from gene expression data, but such approaches notoriously suffer from false 
positives. Two points of failure could yield false positives: faulty hypothesis testing, or erroneous 
assumption of a classic criterion called causal sufficiency. We show that a recent statistical 
development, model-X knockoffs, can effectively control false positives in tests of conditional 
independence in mouse and E. coli data, which rules out faulty hypothesis tests. Yet, 
benchmarking against ChIP and other gold standards reveals highly inflated false discovery 
rates. This identifies the causal sufficiency assumption as a key limiting factor in TRN inference.  
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Background 
 
The prospect of reliably determining transcriptional regulatory networks (TRNs) from gene 
expression measurements has been enticing since the advent of gene expression profiling 
(Duggan, Bittner, Chen, Meltzer, & Trent, 1999; Liang, Fuhrman, & Somogyi, 1998). We define 
a TRN as a graph where edges connect transcription factors (TF’s) to target genes that they 
directly regulate. To the extent that such networks are accurate, they would enable systems-
based approaches to study complex biological processes. Examples of applications that 
accurate TRNs would enable include: predicting the effects of genetic perturbations during 
differentiation and development (Kamimoto et al., 2023), revealing genetic architecture of 
complex traits (Boyle, Li, & Pritchard, 2017; Freimer et al., 2022; Krishnan et al., 2016); and 
reverse engineering transcriptional changes to aid in drug development for cancer (Baca et al., 
2021) (Reddy et al., 2021), aging (Lee et al., 2021), and heart disease (Amrute et al., 2022). 
These are just a few of the many applications across diverse fields of biological research in 
which accurate TRN models would yield useful advances. 
 
Given the huge potential of accurate TRNs, dozens of TRN inference methods have been 
invented (reviewed in (Nguyen, Tran, Tran, Pehlivan, & Nguyen, 2021) and (Sanguinetti & 
Huynh-Thu, 2019)). It is reassuring that some TRNs inferred using these methods are enriched 
for functionally relevant gene pairs or sets (e.g. (Parsana et al., 2019), (Margolin et al., 2006), 
(Chasman et al., 2019), (Cote, Young, & Huckins, 2022; Morgan, Tjärnberg, Nordling, & 
Sonnhammer, 2019), (Diaz & Stumpf, 2022)), but this enrichment does not guarantee the 
reliability of individual regulatory hypotheses. In fact, the best performing TRN inference 
methods showed early precision around ~50% in a seminal E. coli benchmarking project 
(Marbach et al., 2012), and in recent benchmarks on mammalian data, early precision with 
respect to cell-type specific ChIP data is at most 1.7 times better than random (Pratapa, Jalihal, 
Law, Bharadwaj, & Murali, 2020). Therefore, a key obstacle to realizing the potential of TRN 
inference methods is the risk of false positives (Diaz & Stumpf, 2022).  
 
False discovery rate (FDR) control is a way to cull conclusions from experiments that yield 
thousands of statistical hypothesis tests by estimating the expected proportion of false positives 
among the significant findings (Benjamini & Hochberg, 1995). FDR control has become 
standard in many fields, including differential gene expression analysis (Korthauer et al., 2019) 
and neuroimaging (Genovese, Lazar, & Nichols, 2002), due to its simple interpretation and 
useful balance between stringency and power (Benjamini & Hochberg, 1995). While TRN 
methods would similarly benefit from FDR control, there are unique challenges to achieving 
FDR control in this context, as exemplified by the TRN inference methods that attempt it. These 
fall into two broad categories. One type forms a background distribution by randomly permuting 
expression levels of a given gene across samples (Chasman et al., 2019), (Kimura, Fukutomi, 
Tokuhisa, & Okada, 2020; Morgan et al., 2019). This strategy implies the following strong null 
hypothesis: each gene is independent of all other genes unless it directly regulates them. Thus, 
permutation tests will mistake indirect effects for direct effects (Barber & Candès, 2015); (Fithian 
& Lei, 2020) (Fig. 1A). Other FDR-controlled TRN inference methods do account for indirect 
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effects, but they assume target transcript levels are a linear function of their regulators (Kim, 
2015; Schäfer & Strimmer, 2005a) or have at most one regulator (Mukhopadhyay & Chatterjee, 
2007). Kinetic models of transcription are not linear, and also not fully understood (Eck et al., 
2020), so any method assuming linearity may incur excess false discoveries (Fig. 1A). An ideal 
method would require minimal or no assumptions about the quantitative relationship between 
each gene and its regulators. Finally, we note that popular TRN inference methods based on 
tree ensembles or mutual information can account for both nonlinearity and indirect 
relationships, but they do not provide finite-sample FDR control (Fig. 1A). Importantly, empirical 
tests of advertised FDR rates have not been reported for any category of TRN inference 
method.  
 
Part of the difficulty in empirical checks on FDR is that excess FDR could have a variety of 
causes. Of the assumptions required for causal inference (Spirtes, Glymour, & Scheines, 1993), 
two are most relevant to FDR control. First, conditional independence structure must be 
correctly inferred, which cannot be guaranteed when also assuming independence or linearity 
as discussed above. Second, all factors affecting transcript levels must be observed; this 
assumption is called causal sufficiency. It is unclear whether measuring mRNA levels of 
candidate regulators is enough to approximate causal sufficiency in a typical application of a 
TRN inference method, especially given the possibility of batch effects (Parsana et al., 2019). In 
principle, either type of obstacle could explain false discoveries generated by TRN inference 
methods, which limits the insight available even from careful real-data benchmarks.  
 
In this work, we address these issues via recent statistical advances known as the knockoff filter 
and model-X knockoffs (supplementary file S1). The knockoff filter accounts for indirect effects 
without assuming all effects are linear. Importantly, knockoff-based FDR control on real data 
can be checked in a way that claims only conditional independence, without causal 
interpretation. We use such checks to determine whether the knockoff filter controls FDR in 
tests of conditional independence on mouse and E. coli datasets. We release open-source 
software to facilitate re-use of our methods for fast conditional independence testing 
(supplementary file S2). 
 
Next, to improve causal interpretation of conditional independence findings, we devise a method 
to compare expected FDR from the knockoff filter against observed FDR on gold standards. 
This method yields unbiased results even when the gold standards are incomplete. Finally, we 
apply the entire pipeline to real data, producing high-confidence sets of conditional dependence 
relationships and comparing them to incomplete gold standards compiled from ChIP and 
knockout data. This provides the first empirical tests of FDR control and causal sufficiency on a 
real TRN task.  

Results 
In biochemical simulations, model-X knockoffs control FDR in TRN inference without 
using the true data-generating distribution 
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To test the reliability of model-X knockoffs in a controlled setting, we used the previously 
published simulated network data from the BEELINE TRN inference benchmarking framework 
(Pratapa et al., 2020). We generated knockoffs under three different modeling assumptions. The 
method labeled “Gaussian” used Gaussian knockoffs with the sample covariance matrix, which 
are simple to construct and may be adequate given the robustness properties of the knockoff 
filter (Barber, Candès, & Samworth, 2020). The method labeled “mixture” used a Gaussian 
mixture model (Gimenez, Ghorbani, & Zou, 2019), which provides more flexibility than a 
Gaussian for cases where the data are nonlinear or multimodal. The method labeled “permuted” 
randomly permuted samples within each gene (independent of the permutation applied to the 
other genes). Permutation implies very strict assumptions on the distribution of the features and 
is not expected to yield adequate knockoffs; we included it as an approximation of several 
existing permutation methods for error control in TRN inference (Chasman et al., 2019) (Kimura 
et al., 2020) (Morgan et al., 2019) (Verny, Sella, Affeldt, Singh, & Isambert, 2017). We provided 
the simulated data to the knockoff filter using only RNA expression levels (“RNA only”) or 
revealing RNA expression, RNA production rate, and protein levels (“RNA + protein”). With RNA 
only, static methods cannot infer directionality, so for RNA only, FDR was calculated with 
backwards edges counted as correct (Fig. 1B). Using networks capable of generating a variety 
of temporal trajectories, these experiments provide a baseline expectation for the behavior of 
the knockoff filter in TRN inference. 
 
Results demonstrated that FDR control relies on two requirements: the assumed distribution of 
the regulators must match the true distribution closely, and causes of transcription must be 
completely observed (causal sufficiency). Regarding distributional assumptions, more flexible 
knockoffs improved FDR control, with the mixture model performing best, and with the cyclic 
network structure being especially difficult for Gaussian knockoffs to accommodate (Fig. 1B). 
Examples of knockoffs plotted against original data demonstrated obvious deficits of permuted 
knockoffs as negative controls, but only subtle weaknesses for Gaussian knockoffs, while 
mixture-model knockoffs were visually indistinguishable from the original data (Fig. 1C,D). 
Regarding causal sufficiency, this criterion was satisfied given RNA + protein data, which led to 
better FDR control, while RNA only did not satisfy causal sufficiency and had worse FDR 
control. Correlations between protein and RNA levels or RNA production rate and RNA levels 
were sometimes low or negative (Fig. 1E,F), and can also be poor in real data (de Sousa Abreu, 
Penalva, Marcotte, & Vogel, 2009). In principle, distributional assumptions and causal 
sufficiency are both important for error control in TRN inference, although in real datasets, either 
requirement may be limiting. 
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Figure 1 

Figure 1. Under ideal conditions, model-X knockoffs control FDR on a standard 
benchmark of network inference performance. This figure contains only simulated data. 
A) Schematic depicting expected causes of false discoveries for permutation-based, Gaussian, 
and tree-based or information-theoretic TRN methods.  
B) Expected versus observed FDR for knockoff-based hypothesis tests used to nominate 
regulators in the toy networks from the BEELINE benchmarking framework (Pratapa et al. 
2019). The six networks are listed across the top: bifurcating (BF), bifurcating converging (BFC), 
cyclic (CY), linear (LI), linear long (LL), and trifurcating (TF). In the bottom rows (“rna only”), 
RNA concentrations are used as input to the algorithm, following Pratapa et al. In the top row 

 

), 
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(“RNA + protein”), also revealed are protein concentrations and RNA production rates. Three 
methods of knockoff construction are used: independent permutation of all features 
(“permuted”), second-order knockoffs (“Gaussian”), and Gaussian mixture model knockoffs 
(“mixture”); (Gimenez et al. 2019). Results are averaged over 10 independent simulations. 
C) Protein expression for all genes in a realization of the “BFC” network (n=500), along with 
three types of knockoffs (n=500 each), all jointly reduced to two dimensions via t-Stochastic 
Neighbor Embedding (t-SNE)(van der Maaten & Hinton, 2008). 
D) Protein concentration and corresponding knockoff features for gene 1 in a realization of the 
“CY” network, plotted against time. No cell is measured twice; each dot is the terminus of an 
independent trajectory. Time is not used as input for generating knockoffs.  
Pearson correlation between RNA and protein concentration for each gene across all 
simulations used.  
E) Correlation between each TF and its knockoff when using Gaussian model-X knockoffs with 
sample covariance. 
F) Pearson correlation between RNA concentration and RNA production rate for each gene 
across all simulations used.  
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Model-X knockoffs control FDR in testing conditional independence on a large, diverse E. 
coli dataset  
 
To isolate the issue of distributional assumptions, we will use several diagnostics that test 
model-X knockoff performance on real data without requiring causal interpretation or external 
gold standards. We chose the Many Microbe Microarrays Database, which comprises gene 
expression data for 4,511 genes, including 334 transcription factors (TF), across 805 E. coli 
samples (Faith et al., 2008). As with the BEELINE data, knockoffs were constructed using a 
Gaussian distribution based on the sample covariance matrix; using a Gaussian mixture model 
(cluster assignments are shown in Fig. S1A); and using independent permutation of each gene. 
However, the Many Microbe Microarrays dataset is higher-dimensional than the BEELINE data 
and the sample covariance matrix may be a poor estimator (Schäfer & Strimmer, 2005b). 
Therefore, we tested four additional sets of Gaussian knockoffs based on established methods 
for high-dimensional covariance estimation. The “shrinkage” method used an adaptive 
shrinkage method (Schäfer & Strimmer, 2005b). The “glasso_0.01”, “glasso_0.001”, and 
“glasso_1e-4” methods used graphical LASSO with penalty parameters 10-2, 10-3, and 10-4 
(Friedman, Hastie, & Tibshirani, 2008). Stronger regularization may lead to estimates that fit the 
data worse and also to worse-fitting knockoffs. Because setting the strength of shrinkage 
parameters is not fully understood in the context of knockoff construction, we tested a range of 
options empirically.  
  
We evaluated the resulting knockoffs using three types of diagnostic. The first diagnostic 
determined how well each knockoff construction method preserved the data distribution. We 
concatenated the TF expression matrix with all TF expression knockoffs and jointly reduced to 
two dimensions via t-Stochastic Neighbor Embedding (t-SNE) (van der Maaten & Hinton, 2008) 
(Fig. S1A). Most methods appeared similar to the original data, but in the “permuted” method, 
the distribution of the knockoffs has very little overlap with the distribution of the original data. 
Based on this diagnostic, permuted knockoffs will not control FDR.  
 
The second diagnostic is a technique based on k-nearest neighbors (KNN) that is sensitive to 
any violation of the key mathematical relationship to the data distribution that knockoffs must 
satisfy (Romano, Sesia, & Candès, 2019). For data with D variables and N observations, this 
test creates a matrix of size 2N by 2D, including data, knockoffs, and data randomly swapped 
with knockoffs. For any row of this matrix, the expected proportion of nearest neighbors that is 
swapped is 50%, and Romano et al. describe how to test this 50% proportion as a null 
hypothesis. Low p-values indicate evidence that knockoffs are invalid. Most knockoff generation 
methods failed this test, but the “sample”, “glasso_0.001”, and “glasso_1e-04” methods showed 
no evidence of poor fit (Fig. 2A). Based on this test, the “sample”, “glasso_0.001”, and 
“glasso_1e-04” model-X knockoff constructions would be expected to control FDR in testing for 
conditional independence.  
 
In the third diagnostic, we followed a commonly used simulation scheme that uses real TF 
expression and simulated target gene expression (Algorithm 1). Using real regulator data and 
simulated targets adequately tests the assumptions of model-X knockoff construction, which 
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only requires modeling of regulators, and not targets. Using the same simulated targets, we also 
benchmarked the GeneNet R package, which controls FDR assuming the target gene is a linear 
function of its regulators (Schäfer & Strimmer, 2005a). GeneNet and most knockoff-based 
methods fail to control FDR, with permuted knockoffs performing worst. The “sample” and 
“glasso_1e-04” knockoff constructions control FDR in testing conditional independence (Figure 
2B).  
 
These three diagnostics characterized several attempts at FDR control in tests of conditional 
independence using real TF expression data. Based on the combined results, we conclude that 
the “sample” and “glasso_1e-04” knockoff constructions controlled FDR in testing conditional 
independence. 
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A modification to the knockoff filter allows empirical checks of FDR on incomplete gold 
standard data  
 
In addition to tests on simulated target genes, tests on real target genes are desirable, because 
unlike simulated target genes, real data may not conform to the causal sufficiency assumption. 
A key obstacle to empirical tests of FDR control is incomplete or inaccurate gold standard data. 
Below, we will describe gold standards based on direct binding data (ChIP-chip, ChIP-seq, and 
ChIP-exo) and genetic perturbations followed by transcriptomics. Where the two sources 
disagree, edges will be annotated as unknown. The resulting gold standards should contain 
minimal errors, since each edge has two types of supporting evidence. However, these gold 
standards may contain disproportionately more positive or negative examples, because they 
include only the most confident conclusions and they focus on only a few genes. Because the 
base rate of positive examples does not match the network as a whole, naive checks of 
observed versus expected FDR are misleading.  
 
To remove bias in FDR checks using incomplete gold standards, we partitioned the TF-target 
relationships from each gold standard into three sets: a set of positives P, a set of negatives N, 
and a set of unknowns U. Each hypothesis was considered testable if it was in P or N. We 
carried out the final step of the knockoff filter (the Selective SeqStep procedure (Barber & 
Candès, 2015)) on testable hypotheses or on all hypotheses using simulation studies. Focusing 
the analysis on testable hypotheses aligned the expected FDR from the knockoff filter with the 
observed FDR from the gold standard, whereas including all hypotheses failed to align the FDR 
(Fig 2C). This simulation suggests that the knockoff filter will control FDR against gold standards 
consisting of high-confidence positive and negative TF-target relationships, as long as the final 
step is applied to testable hypotheses only. 
 
We developed two gold standards based on convergent results of distinct experimental designs. 
For a TF-target relationship to be included as a testable hypothesis we required concordant 
evidence from both ChIP data and genetic perturbation followed by transcriptomic analysis, 
rather than a replicated result between similar experiments (eg. multiple ChIP experiments). For 
one gold standard, we collected ChIP targets and knockout data from RegulonDB v10.9 
(Santos-Zavaleta et al., 2019), and for the other we combined RegulonDB ChIP data with all 
genetic perturbation outcomes from the Many Microbe Microarrays Database (except where 
genetic effects were confounded by differences in growth medium). To check the reliability of 
these sources, we compared each dataset against the others and against RegulonDB v10.9 
(Santos-Zavaleta et al., 2019), which is a manually curated collection supported by evidence 
from binding motif occurrences, binding assays, site mutation, or gene expression assays. We 
also compared against a small number of validation experiments from the Dream5 competition 
(Marbach et al., 2012). The various sources were well-supported by one another, except for 
RegulomeDB knockout data, which frequently did not support hypotheses from other sources 
and thus may be under-powered (Fig. S1B). These two gold standards contained 754 positive 
and 8496 negative examples across 6 TF’s, with each example having two types of concordant 
evidence. Combined with our method for testing FDR control on unbalanced gold standards, 
this resource provides a tractable method to check FDR control on a real TRN task. 
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Figure 2 

 
Figure 2. Formal tests of conditional independence control FDR in testing conditional 
independence, but not in TRN inference. This figure contains a mixture of real and simulated 
data. 
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A) KNN-based exchangeability diagnostic from Romano et al. 2020 with k=20 and swapping all 
variables (“full”, not “partial” per Romano et al.). Low p-values (vertical axis) and high 
proportions of non-swapped neighbors (horizontal axis) indicate a poor fit.  
B) Expected and observed FDR of various knockoff generation methods and the GeneNet R 
package in selecting regulators for each of 1000 simulated E. coli target genes. Real regulator 
expression is used to simulate target genes. Each target genes is a step function applied to a 
single regulator. 
C) Expected FDR (from the knockoff filter) versus observed FDR (from the gold standards) on 
fully synthetic data using biased gold standards that contain excess positive or negative 
examples compared to the true proportion of positive or negative examples. The top row applies 
the final step of the knockoff filter to all hypotheses, while the bottom row applies the final step 
to testable hypotheses only. 
D) Comparison of expected FDR (from the knockoff filter) and observed FDR (from gold 
standards) across different gold standards and knockoff-generation methods, using real data. 
Ranges show 1.96 times the typical binomial standard error sqrt( p*(1-p) / n ).  
E) Expected and observed FDR when correcting for labeled and unlabeled indicators of 
confounding. Knockoffs are constructed using the “glasso_1E-04” method conditioning on 
labeled perturbations, or on both labeled perturbations and the top (10, 20, 30, 50) principal 
components of the full expression matrix. Ranges show 1.96 times the typical binomial standard 
error sqrt( p*(1-p) / n ). 
F) Power (number of discoveries) in the same analysis shown in panel E.  
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Conditional dependence does not imply direct regulation in the DREAM5 E. coli 
expression data 
 
In the case of a TRN, causal sufficiency requires that all factors regulating transcription be 
observed; if causal sufficiency is met, then the observed and expected FDR should align when 
tested with real target genes as it did with simulated targets. We performed knockoff-based TRN 
inference, checked results on the testable hypotheses from the two gold standards. Greater 
excess FDR on calibration checks using simulated targets in the previous analysis (Fig. 2B) 
predicts greater excess FDR relative to gold standard data (Fig. 2D), and relative to gold 
standards, conditional independence testing via the knockoff filter outperforms permutation-
based testing. The “sample” and “glasso_1e-04” methods, which successfully controlled FDR on 
simulated data (Fig 2B), also had the best FDR control of the included models (Fig 2D). 
However, the “glasso_1e-04” method failed to control FDR overall when applied to real target 
genes. The “sample” method displayed very low power on real data, with almost no q-values of 
testable hypotheses below 0.5, so we were unable to assess observed FDR for sets of 
hypotheses with low expected FDR. 
 
As an example of how different FDR control methods can affect biological interpretation, 
consider the melibiose regulator MelR, which has in total 3 or 4 targets (Grainger et al., 2004; 
Wade, Belyaeva, Hyde, & Busby, 2000). Analyses using permuted knockoffs yielded 131 
predicted targets of MelR. These discoveries were nominally at 1% FDR, but only one discovery 
(MelA) was a known target. The spurious targets detected by permutation-based FDR control 
span diverse biological functions, and if taken literally, these findings would massively revise the 
functional role of MelR. By contrast, the “glasso_1e-04” and “sample” methods do not discover 
any MelR targets at 1% FDR. This shows that using modern conditional independence tests can 
reduce FDR on a real TRN task, with meaningful improvement in interpretation.  
 
Since FDR control with simulated targets does not translate to FDR control with real targets, this 
microarray dataset must not meet the causal sufficiency criterion. There are many possible 
reasons that the causal sufficiency assumption could fail. One possible reason is confounding 
by technical factors (Cote et al., 2022; Parsana et al., 2019). Another is exogenous 
perturbations: for example, repressor proteins can be activated by binding to a ligand, and this 
does not require altered mRNA levels (Semsey et al., 2013). We sought to address these 
possibilities with a combination of labeled perturbations present in the data and estimation of 
unobserved confounders via unsupervised machine learning. 
 
To address possible confounding, we tested against gold standards while conditioning on 
labeled perturbations and principal components. Combined with the “glasso_1e-04” knockoff 
construction method, this approach effectively removed associations with all factors explicitly 
conditioned upon, producing very high q-values that indicate no evidence for conditional 
dependence (fig. S1C). Conditioning on labeled perturbations and principal components had 
little effect on the calibration relative to either gold standard or on the total number of 
discoveries (fig. 2E,F). However, power was low and very few discoveries contributed to the 
final benchmarks (fig. 2F). It remains unclear whether accounting for confounders in 
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transcriptome data alone could mitigate the false discoveries driven by the causal sufficiency 
assumption, and furthermore, use of PCA as a proxy for unmeasured confounders may limit 
power by removing useful signal. 
 
In principle, excess FDR on real target genes compared to simulated targets can have other 
causes aside from failure of the causal sufficiency assumption. Many TRN inference methods 
do not estimate the causal graph structure; instead, they infer a closely related undirected graph 
called the Markov random field (MRF) structure (Friedman et al., 2008), (Haury, Mordelet, Vera-
Licona, & Vert, 2012) (Schäfer & Strimmer, 2005a), (Meinshausen & Bühlmann, 2010) (Kim, 
2015), (Kotiang & Eslami, 2020), (Margolin et al., 2006; McDavid, Gottardo, Simon, & Drton, 
2019)). Though the nodes of the MRF are identical to the nodes of the causal graph, the MRF 
has extra edges (Spirtes et al., 1993). Specifically, the neighbors of a node Y in the MRF consist 
of the parents, the children, and the spouses (parents of children) of node Y in the causal graph. 
This has been recognized as a complication by some causal structure learning methods (Pellet 
& Elisseeff, 2008). We accounted for this by treating all TF-TF edges as unknown and excluding 
them from the real-data calibration estimates. Thus, spousal relationships cannot explain the 
excess FDR we observe, and failure of the causal sufficiency assumption remains the likely 
culprit.  
 
Conditional dependence does not imply direct regulation in mouse skin RNA-seq data 
with paired chromatin state 
 
Statistical assumptions that work or fail for TRN inference in E. coli may not work or fail the 
same way in eukaryotes (Marbach et al., 2012). Furthermore, modern multi-omic methods 
merge mRNA measurements with much more molecular information, and this may suffice to 
capture influences missed in mRNA data. In particular, genome-wide averages of activity near 
specific motifs may contain information about TF activity that is not present in transcript counts 
(Pemberton-Ross, Pachkov, & van Nimwegen, 2015). To evaluate knockoff filter FDR control on 
multi-omic data, we turned to a mouse skin and hair follicle dataset consisting of paired RNA 
and chromatin measurements on 34,774 single cells from female mice (S. Ma et al., 2020). We 
first applied our models to the RNA portion of the SHARE-seq data to demonstrate excess FDR, 
and then we incorporated the ATAC portion to check if excess FDR was reduced. 
 
To reduce the effect of measurement error, we averaged the data across cells within 100 k-
means clusters and discarded any cluster with <10 cells, producing 57 clusters. This is a 
reasonable method for separating biological and technical variation, since a similar approach 
has been shown to yield groups of cells that are consistent with an identical expression profile 
perturbed by multinomial measurement error (Baran et al., 2019). We generated permuted 
knockoffs and Gaussian knockoffs for the resulting TF expression matrix (57 clusters by 1,972 
TF’s). Since there are more TF’s than expression profiles, Gaussian knockoffs could not be 
constructed using the “sample” method as done in the E. coli analyses; instead, a positive-
definite optimal shrinkage estimator was used (Schäfer & Strimmer, 2005b). We did not attempt 
to fit Gaussian mixture models to the data, since there are only 57 observations and each 
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cluster would require estimation of a mean parameter of dimension 1,972 as well as a 1,972 by 
1,972 covariance matrix. 
 
As in the E. coli analysis, we used two diagnostics to evaluate conditional independence tests 
prior to addressing questions of causality: simulated target genes and the swap-based KNN 
test. For simulated target genes, Gaussian knockoffs controlled FDR and permuted knockoffs 
did not (Fig. 3A). The KNN exchangeability diagnostic found no evidence against Gaussian 
knockoffs, but strong evidence for failure of permuted knockoffs, suggesting that genes in 
natural data are not all statistically independent (Fig. 3B). This demonstrates that permutation-
based methods are unlikely to control FDR in TRN inference or in the simpler sub-task of 
conditional independence testing, but the knockoff filter can control FDR at least in conditional 
independence tests. 
 
To test FDR on real gold standards, we selected four TF’s from ChIP-atlas with epidermal ChIP-
seq data: NFIB, AHR, HIF1A, and TFAP2A (Oki et al., 2018). TFAP2A and HIF1A ChIP data 
were available in melanocyte cell lines and AHR and NFIB ChIP data were available in 
keratinocyte-related cell types. We used Gaussian knockoffs to infer regulators of all genes 
passing a minimum expression cutoff. ChIP-based results indicated poor enrichment and many 
false positives with highly confident results, with 37,824 findings at an FDR of 0.1 (Fig. 3C). This 
shows that conditional independence testing via knockoffs is not sufficient to control FDR in 
TRN inference on the RNA portion of the SHARE-seq data.  
 
One potential explanation for this issue is measurement error: in a simple causal structure 
where A regulates B and B regulates C, then C and A are independent only given observations 
of B that are noiseless. To reduce the effect of measurement error, we increased the cutoff to 
100 cells or 500 cells per cluster (38 and 28 clusters remained). Fewer discoveries were made 
(9,349 and 6,453 with q<0.1) but effects on enrichment were inconsistent (Fig. 3D). Increasing 
read depth in this way does not eliminate all measurement error, so we devised an independent 
method to estimate the degree to which measurement error increases false discoveries. We 
simulated measurement error starting from the cluster-aggregated data. Specifically, we 
resampled each TF expression count Xij by replacing it with a Poisson draw having expectation 
equal to Xij. We constructed knockoffs based on the resampled TF expression. We tested the 
results on real target genes and on target genes that were simulated prior to resampling. 
Resampling caused slight deleterious effects in simulations, especially at high expected FDR, 
but had a weak effect on ChIP-seq benchmarks (Fig. 3E). Measurement error was not able to 
explain the degree of miscalibration we observed, implying a different type of missing 
information is driving the causal insufficiency that we observe. 
 
Aside from transcript quantification errors, another driver of differences between conditional 
dependence and direct regulation is the inability of transcriptomics to directly measure TF 
activity. TF activity may be better captured by global motif accessibility, rather than the mRNA 
level of the TF (Balwierz et al., 2014; Madsen et al., 2018; C. Z. Ma & Brent, 2021). Therefore, 
we repeated our experiments while also conditioning on two types of global summaries of motif 
activity: the total fragments overlapping all occurrences of JASPAR 2018 mouse motifs (Khan et 
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al., 2018) in the called peaks, and the top 10 principal components of the ATAC-seq count 
matrix. We also attempted to remove unmeasured confounding by conditioning on 5, 10, or 15 
principal components of the gene expression matrix during knockoff construction. Results show 
hardly any difference (Fig. 3F), so in this case, even summaries of global chromatin accessibility 
do not contain enough additional information to approach causal sufficiency.  
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Figure 3 
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Figure 3. Formal tests of conditional independence do not control false discovery rates 
with respect to ChIP-based gold standard data in a mouse skin network inference task, 
whether or not information on chromatin state is included. This figure contains a mixture of 
real and simulated data. 
A) Error control in detecting regulators based on simulated target gene expression. Simulation 
uses real SHARE-seq TF expression data. Targets are simulated by applying a step function to 
a randomly chosen regulator. Knockoffs are constructed via independent permutation of each 
gene’s values (“permuted”) or Gaussian model-X knockoffs using an optimal shrinkage 
estimator (Schäfer & Strimmer, 2005b) for the covariance matrix.  
B) KNN exchangeability diagnostic results from Romano et al. with k=5 and swapping all 
variables (“full”, not “partial” per Romano et al.) (Romano et al., 2019). Low p-values (vertical 
axis) and high proportions of non-swapped neighbors (horizontal axis) indicate a poor fit. 
Results are shown for permuted and Gaussian knockoffs deployed on SHARE-seq TF 
expression data.  
C) Expected FDR from the knockoff filter versus observed FDR relative to ChIP-seq data when 
using the knockoff filter to infer regulators of each gene in the SHARE-seq data. Gaussian 
knockoffs are used. Error bars are 1.96 times the typical Binomial standard error.  
D) Variant of the experiment in panel C where clusters having fewer than the indicated number 
of cells are omitted.  
E) Variant of panels A (left column, simulated targets) and D (remaining columns) where 
covariates are contaminated with additional Poisson error prior to construction of knockoffs.  
F) Variant of panel C where knockoffs are constructed conditional on principal components of 
the SHARE-seq RNA matrix, principal components of the SHARE-seq ATAC matrix, or global 
activities of JASPAR mouse motifs in the ATAC matrix. The entire dataset (top row) or only 
keratinocyte-related cell types (bottom row) are used.   
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Discussion  
 
TRN inference methods are notorious for false positives (Diaz & Stumpf, 2022). For example, 
analyses using permuted genes as negative controls, which is sometimes claimed to control 
FDR in TRN inference (Chasman et al., 2019); (Kimura et al., 2020; Morgan et al., 2019), 
yielded 131 MelR targets spanning diverse biological functions. This conflicts with ChIP and 
perturbation experiments showing three or four targets of MelR, almost all located in the 
melibiose operon (Grainger et al., 2004; Wade et al., 2000). If MelR were not well-studied, 
follow-up experiments based on these findings could have wasted considerable resources. 
Such overconfidence is hard to detect and avoid in systems that lack ChIP or perturbation data, 
leaving users of TRN methods with no practical alternative but to distrust the results. Calibrated 
FDR control is an urgent unmet need for end users of TRN inference software.  
 
Conditional independence testing and evaluation of causal sufficiency are two key steps 
towards successful FDR control in TRN inference. To advance this agenda, we departed from 
existing methods in two key ways. First, we controlled FDR in conditional hypothesis tests using 
model-X knockoffs. This does not require the strong linearity or independence assumptions of 
prior methods (Kim, 2015); (Chasman et al., 2019; Schäfer & Strimmer, 2005b); (Kimura et al., 
2020; Morgan et al., 2019); (Mukhopadhyay & Chatterjee, 2007; Schäfer & Strimmer, 2005b). 
Though we recommend the knockoff filter be separately validated on each dataset it is applied 
to, we find that Gaussian knockoffs with regularized covariance estimates are a sensible initial 
choice for transcriptome data with low sample size and high dimension. Second, we used gold 
standards to evaluate FDR and calibration rather than area under the curve or other metrics. To 
detect a mismatch between simulated and real target genes, or between conditional 
dependence and direct regulation, known FDR is crucial, even if another method could obtain 
better AUPR against gold standard data without knowing the FDR. We demonstrated a way to 
evaluate FDR using incomplete gold standards, and we compiled incomplete E. coli gold 
standards with each example having concordant evidence from both perturbation 
transcriptomics and ChIP data. 
 
In analyses of model-X knockoffs on mouse and E. coli datasets, FDR remained inflated. This 
was not explained by failure of conditional independence tests, which implies violation of causal 
sufficiency as the culprit. This is concordant with a recent report based on realistic simulations in 
which lack of causal sufficiency is expected to limit statistical TRN inference (Erbe et al. 2023). 
In light of these findings, existing results based on conditional independence alone should not 
be taken to reflect direct causal effects or direct binding, unless the underlying causal 
sufficiency assumption has been tested on the relevant datasets. Failure of causal sufficiency 
casts doubt on recent TRN work making explicit causal interpretations of conditional 
independence structure (Buschur, Chikina, & Benos, 2020; van Duin, Krautz, Rennie, & 
Andersson, 2022; Mohan, London, Fazel, Witten, & Lee, 2014; Qiu et al., 2020; Wang, Solus, 
Yang, & Uhler, 2017). 
 
Where TF binding motifs are known, we expect motif analysis of open chromatin to substantially 
reduce false discoveries of TF-target interactions. Methods like Cicero (Pliner et al., 2018) often 
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find motifs in enhancers, then pair enhancers with target genes via co-accessibility. Using co-
accessibility to select upstream enhancers is similar to using co-expression to select upstream 
TF's, and the knockoff filter could potentially be used for FDR control in enhancer-gene pairing, 
with the gold standard being chromatin conformation capture or expression quantitative trait 
locus data instead of ChIP-seq or TF knockouts. Pairing of enhancers with target genes is a 
crucial goal in the study of transcriptional regulation, with important consequences for 
interpreting genetic variants; this is a promising area of future study. 
 
Other methods or technologies may yield measurements that reflect TF activity better than 
mRNA levels alone (Chung et al., 2021); (Chen et al., 2021; Qiu et al., 2020; Specht et al., 
2021). Even given transcriptome data alone, methods like ARMADA (Pemberton-Ross et al., 
2015) use genome-wide average motif activity, not mRNA levels, as a proxy for TF activity. 
These alternatives may come closer to satisfying the causal sufficiency assumption, but this will 
need to be empirically tested for each new system and data type. In the SHARE-seq skin 
example, we found the causal sufficiency assumption was violated even for TF mRNA plus 
global frequency in open chromatin of all JASPAR mouse motifs.  
 
If measurements are never able to attain causal sufficiency, different analytical approaches may 
be needed. Causal structure inference methods not requiring causal sufficiency exist (Pellet & 
Elisseeff, 2008; Verny et al., 2017), and they have been deployed for TRN inference (Pellet & 
Elisseeff, 2008; Verny et al., 2017), but they lack FDR control. Equipping these methods with 
realistic and empirically validated guarantees on FDR control is an important area for future 
work.  
 

Conclusions 
 
Lack of FDR control is a crucial bottleneck in biological interpretation of inferred TRN’s. 
Permutation tests do not control FDR in TRN inference or in the easier sub-task of conditional 
independence testing. Model-X knockoffs control FDR in conditional independence testing, but 
not in TRN inference. This mismatch occurs because the data used for TRN inference does not 
satisfy causal sufficiency. Methods controlling FDR in TRN inference must either explicitly check 
the assumption of causal sufficiency, or avoid it.  
 

Methods 
 
Code and data availability 
 
All code used in this study will be made available at 
https://github.com/ekernf01/knockoffs_paper. All non-simulated data used in this study were 
publicly available when acquired, and will be made available as a collection via Zenodo at DOI 
10.5281/zenodo.6573413. 
 
Knockoff filter usage 
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Knockoff construction is done via the R package rlookc, which is released along with this 
paper. The knockoff filter is applied using the same measure of variable importance throughout 
unless otherwise noted. It is the signed max lasso coefficient at entry 
(stat.lasso_lambdasmax from the R package knockoff) with one computational speedup: 
LASSO paths are fitted by glmnet with dfmax=21, corresponding to the assumption that no gene 
has over 20 direct regulators. In situations where FDR control is desired for a collection of 
discoveries from separate runs of the knockoff filter, for example across multiple E. coli target 
genes, FDR is estimated after pooling knockoff statistics. 
 
Speed and memory tests (Fig. S2AB) 
 
Runtime was measured using the microbenchmark R package and peak memory usage was 
measured by the peakRAM R package.  
 
Threshold selection tests (Fig. S2C) 
 
Covariates were simulated with the same mean, covariance, and sample size as the E. coli TF 
expression data. Knockoffs are constructed using the exact mean and covariance (not an 
estimate from the simulated dataset). Responses are set equal to the covariates, so each 
column has a single relevant feature. The knockoff filter is applied using the difference in linear 
model coefficients as the variable importance measure. Thresholds are selected separately for 
each target (“separate”) or using a single shared threshold (“merged”). FDR is calculated as the 
number of false discoveries across all targets divided by the number of discoveries over all 
targets.  
 
BEELINE benchmarking  (Fig. 1) 
 
Gaussian knockoffs were constructed using the sample mean and covariance. Gaussian 
mixture model parameters were inferred using mclust (Scrucca et al. 2016). We used 100 
clusters, all having equal, spherical covariance. BoolODE does not separate production from 
decay, so RNA decay rates were inferred from RNA rates of change using piecewise quantile 
regression on RNA level. Self edges cannot be reliably inferred by our method and are ruled out 
a priori. 
 
E. coli datasets and gold standard processing 
 
E. coli microarray data were downloaded from the DREAM5 challenge website at 
https://www.synapse.org/#!Synapse:syn2787211 . The DREAM5 competition contains decoy 
genes with values chosen at random from the rest of the dataset (Cokelaer et al., 2015). These 
are absent from all gold standards, but we left them unchanged to facilitate comparison with 
previous work. They are easily distinguished from real genes by their low correlation with their 
knockoffs (Fig. S1D). E. coli transcriptional units were downloaded from the Biocyc smart table 
"All transcription units of E. coli K-12 substr. MG1655", available at 
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https://biocyc.org/group?id=:ALL-TRANSCRIPTION-UNITS&orgid=ECOLI .  Gold standard data 
were collected as follows.  

● "dream5 validation”: interactions were manually extracted from Supplementary Data 7 of 
(Marbach et al., 2012). 

● “M3Dknockout” includes all single-knockout samples and their controls from the 
DREAM5 training data, downloaded from 
https://www.synapse.org/#!Synapse:syn2787211 .  Experiments with aliased effects 
were not included; e.g. if the knockout was accompanied by a change in growth 
conditions relative to the controls. Any sample used in this gold standard was removed 
from the training data prior to knockoff construction whenever this gold standard was 
used for evaluation. 

● "regulondb10_9" consists of manually curated regulatory interactions downloaded from 
https://regulondb.ccg.unam.mx/menu/download/full_version/files/10.9/regulonDB10.9_D
ata_Dist.tar.gz on 2022 Jan 28.  

● "chip" and "regulonDB knockout": ChIP-based and knockout-based TF-target pairs were 
downloaded from RegulonDB version 10.9; a complete list of accessions is given in table 
S6. In E. coli ChIP data, IHF targets were regarded as targets of both IHF genes (ihfA 
and ihfB). MelR targets MelA and MelB were added manually, since they were missing 
despite having high-quality ChIP evidence (Grainger et al. 2005). ChIP-chip and ChIP-
seq studies lacking loss-of-function controls were excluded to reduce risk of false 
positives (Waldminghaus & Skarstad, 2010); otherwise, all datasets listed were included.  

 
E. coli targets are often determined at the level of a transcription unit, which may contain 
multiple genes (e.g. Nonaka et al. 2006, Kim et al. 2018). We thus augment E. coli ChIP and 
knockout-based gold standards to include any gene sharing a transcriptional unit with a target 
gene listed in the RegulonDB high-throughput downloads. For figures mentioning "chip and 
M3Dknockout" or "chip and RegulonDB_knockout", regulatory relationships consistent with both 
ChIP data and knockout data are treated as positive. Relationships missing from both are 
treated as negative. Additionally, the target and the regulator must each appear at least once in 
both datasets, or else the example is treated as unknown. 
 
E. coli analysis 
 
Knockoff filter. For the 334 TF’s in the E. coli microarray data, knockoff features were 
constructed under multivariate Gaussian or Gaussian mixture model assumptions. When n>p, 
the semidefinite program implementation in the R package knockoff was used to determine 
optimal valid correlations of knockoff features with the original features. When p>n, a new 
method was used as described in Supplemental File S4. For mixture models, hard cluster 
assignments were set using the k-means clusters described below, and per-cluster covariance 
was estimated using the method for p>n.  
 
Users simulating target variables to test reliability of Gaussian model-X knockoffs should be 
aware of a peculiar “double robustness” property: if Y is linear in X, FDR control will be 
maintained, even if X is wildly non-Gaussian (Huang & Janson, 2020). Therefore, Y should not 
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be linear in X, or the diagnostic will never detect problems. After observing this phenomenon, 
we selected a family of unit step functions as the default for simulating Y in our software. 
Simulated target genes were constructed by selecting a single TF at random and simulating a 
target as I(X>m), where X contains the expression levels of the selected TF, m is the mean of X, 
and I() is an indicator function equal to 0 or 1. 1000 simulations were performed, and 
experiments cycled through 10 independently generated sets of knockoffs.  
 
For each gene in turn, TF regulators were selected via the knockoff filter. To find regulators of 
TF’s, new knockoffs were created omitting the TF in question, and regulators were otherwise 
inferred in the same way. The efficient implementation described in Appendix 1 was used.  
 
To adjust for confounders, knockoffs were computed after appending columns (features) to the 
TF expression matrix containing either non-genetic perturbations or non-genetic perturbations 
and the top principal components (Fig. 2E). The principal components were computed using the 
full expression matrix as input, scaled and centered. (These knockoffs thus violate the dictum to 
construct knockoffs without influence of the target variable, but the effect is to make the results 
more conservative.) Association with the confounding variables (Fig. S1C) was tested using the 
Pearson correlation as the measure of variable importance inside the knockoff filter. 
 
T-SNE embeddings were computed using the R package tsne with default settings, using as 
input the 334 by 805 TF expression matrix concatenated with many 334 by 805 matrices of 
knockoffs (yielding a a 334 by 805*(k+1) matrix). K-means clusters were computed using the 
kmeans function from the R package stats with the entire expression matrix (TFs and non-TF 
genes) as input. Where multiple knockoff analyses are shown in the main figure, the t-SNEs in 
the supplement correspond to the analysis with no adjustment for confounders and no special 
handling of genetic perturbations. 
 
Since the knockoff filter tests conditional independence, not the direction of causality, 
backwards edges confirmed by a given gold standard are marked as correct. To rule out 
spouses as a source of false positives (appearing in MRF structure but not gold standards), all 
TF-TF edges are marked as unknown, even if they appear to be ruled in or out by a given gold 
standard.  
 
Incomplete gold standard simulations (Fig. 2C) 
 
Data are simulated, and knockoff statistics are computed, as in Fig. S2C. Gold standard 
positives (negatives) are marked unknown with 80% probability in the negative (positive) bias 
trials. Q-values are computed via Selective SeqStep (Barber & Candès, 2015) on all hypotheses 
(top row of figure), or only hypotheses that are testable with gold standard data (bottom row). 
Observed FDR is computed using gold standard data. Ten independent replicates are 
performed. 
 
Share-seq analysis 
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SHARE-seq skin count matrices were downloaded from GEO accessions GSM4156608 and 
GSM4156597 and reformatted as 10x-format HDF5 matrices using the DelayedArray and 
HDF5Array R packages. To successfully merge ATAC read counts with cell metadata, it was 
necessary to subtract 48 from the number in the final barcode associated with each cell in the 
count data. SHARE-seq data were briefly reanalyzed using the bioconductor packages scran, 
scater, and mbkmeans. Data were normalized by dividing by total counts per cell. 2000 highly 
variable genes were selected as input for PCA. 50 principal components were used as input for 
mbkmeans. Raw counts were summed within 100 clusters determined by mbkmeans. For 
keratinocyte-only experiments, existing cell-type annotations were used, and cells with the 
following labels were retained: ahighCD34+ bulge, alowCD34+ bulge, Basal, Hair Shaft-
cuticle.cortex, Infundibulum, IRS, K6+ Bulge Companion Layer, Medulla, ORS, Spinous, TAC-1, 
TAC-2. 
 
Pseudo-bulk expression profiles were normalized by dividing by total counts and multiplying by 
1,000,000. Genes below 1CPM were excluded. Each gene was centered and scaled to have 
mean 0 and variance 1. Genes with constant expression were replaced with standard Gaussian 
random draws. Mouse TF’s and cofactors were downloaded from AnimalTFDB 3.0 (Hu et al. 
2019). Cofactors were used in addition to TFs since they can alter the effect of the TFs on 
downstream expression. Knockoffs were constructed for the centered, scaled TF expression 
matrix using the “permuted” method (permuting samples within each gene independently) or 
using the scalable Gaussian knockoff implementation in the function 
“createHighDimensionalKnockoffs'' released in the rlookc package accompanying this paper. 
In cases where we test independence conditional on principal components of the ATAC or RNA 
data, these were computed using all genes/features, and they were concatenated onto the TF 
expression data prior to knockoff construction.  
 
ChIP-seq data were downloaded from ChIP-atlas (Oki et al., 2018), counting all peaks for AHR, 
TFAP2A, NFIB, and HIF1A that fell within 10kb of a promoter as evidence that the respective TF 
regulates that gene. The following files were used: 

 
http://dbarchive.biosciencedbc.jp/kyushu-u/mm10/target/Ahr.10.tsv 
http://dbarchive.biosciencedbc.jp/kyushu-u/mm10/target/Hif1a.10.tsv 
http://dbarchive.biosciencedbc.jp/kyushu-u/mm10/target/Nfib.10.tsv 
http://dbarchive.biosciencedbc.jp/kyushu-u/mm10/target/Tfap2a.10.tsv 

 
Hardware and software used 
 
All code used will be released prior to publication. Tests in figures 1 and S2 were run on a Dell 
XPS 13 with 8GB RAM and an Intel Core i5 processor. BoolODE was run in a virtual 
environment according to the maintainers’ instructions, with minimal changes made to export 
protein concentrations and RNA rates of change. BEELINE was run within a conda environment 
according to the maintainers’ instructions (https://github.com/Murali-group/Beeline). Minimal 
modifications were made in order to test multiple sets of parameters (https://github.com/Murali-
group/Beeline/issues/59) and to benchmark directed and undirected FDR. E. coli and SHARE-
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seq experiments ran on Amazon Web Services EC2 t2.2xlarge instances based on the Ubuntu 
18.04 image or on a Dell XPS15 running Ubuntu 20.04. Experiments used R version 4.1.2 and 
R package versions installed from either Bioconductor 3.14 or from MRAN’s archives from 
November 5, 2021. Seeds were set and package installation was automated for exact 
repeatability.  
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Figure Legends 
 
Figure 1. Under ideal conditions, model-X knockoffs control FDR on a standard 
benchmark of network inference performance. This figure contains only simulated data. 
A) Schematic depicting expected causes of false discoveries for permutation-based, Gaussian, 
and tree-based or information-theoretic TRN methods.  
B) Expected versus observed FDR for knockoff-based hypothesis tests used to nominate 
regulators in the toy networks from the BEELINE benchmarking framework (Pratapa et al. 
2019). The six networks are listed across the top: bifurcating (BF), bifurcating converging (BFC), 
cyclic (CY), linear (LI), linear long (LL), and trifurcating (TF). In the bottom rows (“rna only”), 
RNA concentrations are used as input to the algorithm, following Pratapa et al. In the top row 
(“RNA + protein”), also revealed are protein concentrations and RNA production rates. Three 
methods of knockoff construction are used: independent permutation of all features 
(“permuted”), second-order knockoffs (“Gaussian”), and Gaussian mixture model knockoffs 
(“mixture”); (Gimenez et al. 2019). Results are averaged over 10 independent simulations. 
C) Protein expression for all genes in a realization of the “BFC” network (n=500), along with 
three types of knockoffs (n=500 each), all jointly reduced to two dimensions via t-Stochastic 
Neighbor Embedding (t-SNE)(van der Maaten & Hinton, 2008). 
D) Protein concentration and corresponding knockoff features for gene 1 in a realization of the 
“CY” network, plotted against time. No cell is measured twice; each dot is the terminus of an 
independent trajectory. Time is not used as input for generating knockoffs.  
Pearson correlation between RNA and protein concentration for each gene across all 
simulations used.  
E) Correlation between each TF and its knockoff when using Gaussian model-X knockoffs with 
sample covariance. 
F) Pearson correlation between RNA concentration and RNA production rate for each gene 
across all simulations used. 
 
Figure 2. Formal tests of conditional independence control FDR in testing conditional 
independence, but not in TRN inference. This figure contains a mixture of real and simulated 
data. 
A) KNN-based exchangeability diagnostic from Romano et al. 2020 with k=20 and swapping all 
variables (“full”, not “partial” per Romano et al.). Low p-values (vertical axis) and high 
proportions of non-swapped neighbors (horizontal axis) indicate a poor fit.  
B) Expected and observed FDR of various knockoff generation methods and the GeneNet R 
package in selecting regulators for each of 1000 simulated E. coli target genes. Real regulator 
expression is used to simulate target genes. Each target genes is a step function applied to a 
single regulator. 
C) Expected FDR (from the knockoff filter) versus observed FDR (from the gold standards) on 
fully synthetic data using biased gold standards that contain excess positive or negative 
examples compared to the true proportion of positive or negative examples. The top row applies 
the final step of the knockoff filter to all hypotheses, while the bottom row applies the final step 
to testable hypotheses only. 
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D) Comparison of expected FDR (from the knockoff filter) and observed FDR (from gold 
standards) across different gold standards and knockoff-generation methods, using real data. 
Ranges show 1.96 times the typical binomial standard error sqrt( p*(1-p) / n ).  
E) Expected and observed FDR when correcting for labeled and unlabeled indicators of 
confounding. Knockoffs are constructed using the “glasso_1E-04” method conditioning on 
labeled perturbations, or on both labeled perturbations and the top (10, 20, 30, 50) principal 
components of the full expression matrix. Ranges show 1.96 times the typical binomial standard 
error sqrt( p*(1-p) / n ). 
F) Power (number of discoveries) in the same analysis shown in panel E.  
 
Figure 3. Formal tests of conditional independence do not control false discovery rates 
with respect to ChIP-based gold standard data in a mouse skin network inference task, 
whether or not information on chromatin state is included. This figure contains a mixture of 
real and simulated data. 
A) Error control in detecting regulators based on simulated target gene expression. Simulation 
uses real SHARE-seq TF expression data. Targets are simulated by applying a step function to 
a randomly chosen regulator. Knockoffs are constructed via independent permutation of each 
gene’s values (“permuted”) or Gaussian model-X knockoffs using an optimal shrinkage 
estimator (Schäfer & Strimmer, 2005b) for the covariance matrix.  
B) KNN exchangeability diagnostic results from Romano et al. with k=5 and swapping all 
variables (“full”, not “partial” per Romano et al.) (Romano et al., 2019). Low p-values (vertical 
axis) and high proportions of non-swapped neighbors (horizontal axis) indicate a poor fit. 
Results are shown for permuted and Gaussian knockoffs deployed on SHARE-seq TF 
expression data.  
C) Expected FDR from the knockoff filter versus observed FDR relative to ChIP-seq data when 
using the knockoff filter to infer regulators of each gene in the SHARE-seq data. Gaussian 
knockoffs are used. Error bars are 1.96 times the typical Binomial standard error.  
D) Variant of the experiment in panel C where clusters having fewer than the indicated number 
of cells are omitted.  
E) Variant of panels A (left column, simulated targets) and D (remaining columns) where 
covariates are contaminated with additional Poisson error prior to construction of knockoffs.  
F) Variant of panel C where knockoffs are constructed conditional on principal components of 
the SHARE-seq RNA matrix, principal components of the SHARE-seq ATAC matrix, or global 
activities of JASPAR mouse motifs in the ATAC matrix. The entire dataset (top row) or only 
keratinocyte-related cell types (bottom row) are used.  
 
Figure S1. Technical characteristics of knockoff construction on the E. coli TF 
expression dataset. This figure contains only real data. 
A) T-SNE embeddings produced using TF expression and corresponding knockoff features. 
Samples are colored based on k-means cluster assignments, which were trained on the TF 
features.  
B) Comparison of gold standards. Hypotheses are extracted from the gold standard labeled in 
the top margin and checked to see if they are supported by the gold standard labeled in the left-
hand margin. Hypotheses are omitted if they cannot be checked by the gold standard on the 
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left, for instance if it is based on ChIP or knockout data and the regulator was never ChIPped or 
knocked out.  
C) Q-values for testing of conditional independence between each TF and each of the principal 
components or perturbation indicators that was explicitly conditioned on in Figure 2E. Knockoff 
generation method is “glasso_1E-04”. 
D) Correlation between variables and their knockoff copies. Gaussian knockoffs are generated 
for the 805 by 332 matrix of E. coli TF expression, using the sample covariance matrix.  
 
Figure S2. Knockoff construction for transcriptome-scale data. This figure contains only 
simulated data. 
A) Runtime and memory consumption for leave-one-out Gaussian knockoff construction with 
1000 observations using our method and the reference implementation in the R package 
“knockoff”. 
B) Runtime and memory consumption for high-dimensional Gaussian knockoff construction with 
10 observations using our method and the reference implementation in the R package 
“knockoff”. 
C) Threshold selection. Expected FDR from knockoff filter (x-axis) versus observed FDR (y-
axis) in a simulated variable selection problem with 805 observations, 334 features, and 334 
response variables. One trend line shows separate threshold selection for each target and the 
other shows a single threshold used across all targets. 
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Supplementary info to be submitted: 
Supplementary info S1 (in this document): a user’s introduction knockoff filter concepts 
Supplementary info S2 (in this document): performance enhancements included in our software 
Supplementary info S3 (separate file): derivation of leave-one-out knockoffs 
Supplementary info S4 (separate file): derivation of fast high-dimensional Gaussian knockoffs 
Supplementary info S5 (separate file): rationale for choosing a single threshold across all target 
genes 
Supplementary info S6 (separate file): table with high-throughput datasets downloaded from 
RegulonDB.  
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Supplementary file S1 
 
The knockoff filter (Barber & Candès, 2015; Candes, Fan, Janson, & Lv, 2018) is a framework 
for selecting a subset of features in a supervised machine learning model. The knockoff filter 
has been applied in genome-wide association studies and CRISPR-QTL studies; it has 
improved FDR control in cases where alternative methods fail, especially when the target 
variable has many inputs or when its functional relationship to the predictors is poorly 
understood (Sesia, Katsevich, Bates, Candès, & Sabatti, 2020) (Barry, Wang, Morris, Roeder, & 
Katsevich, 2021). 
 
The principle underlying the knockoff filter is formal testing of conditional independence. Two 
variables Y and X are conditionally independent given a third set of variables S if P(Y|X,S) = 
P(Y|S). In other words, they are conditionally independent if X contains no new information 
about Y once S is known. The version of the knockoff filter we use accepts, as input: a desired 
FDR (Q); observations of a target (Y); observations of some features (X); and a distribution or 
probability model (P) that is assumed to have generated each observation in X. Due to the 
assumption that the model P generated X, this version of the knockoff filter is said to use model-
X knockoffs. The knockoff filter returns a subset S(1), S(2), … S(k) of features in X where the 
FDR is below Q. The FDR is defined as the expected fraction of features in S where XS(k) is 
independent of Y conditional on all of X except XS(k). In other words, the knockoff filter returns a 
set of features that mostly contain non-redundant information about Y. 
 
To use the knockoff filter, one must generate a carefully constructed negative control feature (a 
knockoff) for each feature in X. These knockoffs are not uniquely determined by P(X) but are 
heavily constrained by it. Different software implementations have enabled knockoff 
construction from different families of distributions (Sesia et al., 2020); (Romano et al., 2019), 
and the simplest method of constructing knockoffs is to predict each variable in turn from the 
other variables and knockoffs ((Barber & Candès, 2015; Candes et al., 2018)). Users can check 
via standard visualization methods whether a given set of knockoffs shares the topology and 
multimodal structure of their original data, and can also check validity of knockoffs via certain 
automated tests based on nearest neighbors (Romano et al., 2019). Recent work has shown 
that when an incorrect distribution is used, FDR control is not suddenly lost but rather declines 
gradually with an increase in the KL divergence to the true distribution (Barber et al., 2020; 
Zhou, Li, Zheng, & Li, 2022). However, if knockoffs appear inadequate, then the knockoff 
generation method should be revised. 
 
Independently permuting the entries of each feature yields valid knockoffs, but only if the 
features are assumed to be independent under P(X) (Huang & Janson, 2020). This suggests 
that existing permutation-based methods for FDR-controlled TRN inference (Chasman et al., 
2019); (Kimura et al., 2020; Morgan et al., 2019) will only work if all genes are statistically 
independent, which is an overly strong assumption. Throughout our experiments, we include 
permuted features as a baseline type of knockoff construction. 
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The conditional independence structure targeted by the knockoff filter is closely related to many 
TRN inference methods, including Scribe and ARACNE (Margolin et al., 2006; Qiu et al., 2020), 
and it is closely related to classic work on inference of causal mechanisms from observational 
data (Spirtes et al., 1993). The key insight of these methods is to disambiguate direct from 
indirect regulation. For example, in a simple pathway where A regulates transcription of B and B 
regulates transcription of C, then A and C will be independent conditional on B, correctly 
reflecting the absence of direct regulation. Certain additional assumptions are required for 
conditional independence to correctly infer causal structure. These are explained in classic texts 
on causal inference (Spirtes et al., 1993) and an accessible introduction is given by Scheines 
(Scheines, 1997). Pinpointing issues with these assumptions relative to known biology is a key 
focus of our work, and the knockoff filter is a crucial tool to generate findings about conditional 
independence structure at a known level of confidence.  
 

Supplementary file S2 
 
To make our analysis methods more accessible, we have created an open-source R package 
called rlookc (for leave-one-out knockoff construction). The rlookc package speeds up 
computations, reduces memory requirements, and provides diagnostic tools for practical use. 
Compared to the existing R package knockoff, our software speeds up analyses that require 
leaving out one gene at a time and constructing knockoffs for the remaining genes. If done 
naively, these calculations scale with the fourth power of the number of genes; we reduce this to 
the cube, amounting to a 1000-fold speedup for a 1000-gene network (Supplementary file S3; 
Figure S2A). The software also generates fast knockoffs for datasets with many genes and few 
samples using much less time and RAM than the existing R package knockoff (Figure S2B and 
Supplementary file S4). It generates knockoffs for Gaussian mixture models, a simple and 
flexible class of distributions previously lacking an open-source software implementation 
(Gimenez et al., 2019; “Unable to find information for 13741696,” n.d.). We solve a technical 
issue related to combining sets of discoveries, which requires that a certain thresholding step be 
applied jointly to results on all target genes, rather than separately for each gene 
(Supplementary file S5; Fig S2C). Our software also includes tools for model assessment, such 
as a goodness-of-fit test that can detect individual outliers or inadequacy of knockoffs. These 
features lower barriers to entry for users hoping to apply the knockoff filter to functional 
genomics data. The software is available at https://github.com/ekernf01/rlookc.  
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