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Abstract

We provide a combinatorial description of exclusion statistics in terms of minimal

difference p partitions. We compute the probability distribution of the number of

parts in a random minimal p partition. It is shown that the bosonic point p = 0 is

a repulsive fixed point for which the limiting distribution has a Gumbel form. For

all positive p the distribution is shown to be Gaussian.
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1 Introduction

Integer partition problem has a long history going back to Euler. The classical question
asks: in how many ways ρ(E) can one partition an integer E into nonzero integer parts
E =

∑

j hj such that hj ≥ hj+1 for all j = 1, 2, . . .? For example, ρ(4) = 5: 4 = 4 =
3+ 1 = 2 +2 = 2 + 1+ 1 = 1 + 1+ 1 +1. Pictorially, one can represent the part hj as the
height of the j-th column with nonincreasing heights such that the total height under the
columns is E. Hardy and Ramanujan proved [1] that for large E, ρ(E) ≃ 1

4
1

31/2E
ea

√
E , with

a = π
√

2/3. Similarly, one can ask the number of ways of partitioning the integer E into
distinct integer summands, i.e., E =

∑

j hj such that hj > hj+1 with strictly decreasing
heigth. For example, the integer 4 can be partitioned into distinct summands in only two
ways, 4 = 4 = 3+1. In this restricted case it is known that asymptotically for large E [2],

ρ(E) ≃ 1
4

1
31/4E3/4

eb
√

E where b = a/
√

2 = π/
√

3.
Another way of representing integer partitions makes clear the connection with a gas

of noninteracting quantum particles. Let ni be the number of columns of height h = i in
a given partition, i.e. the number of times the summand i appears in a given partition.
For example, in the partition 4 = 2 + 1 + 1, one has n1 = 2, n2 = 1 and nj = 0 for all
j > 2. Then, E =

∑

i niǫi where ǫi = i for i = 1, 2, . . . represent equidistant single particle
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energy levels and ni = 0, 1, 2, . . . represents the occupation number of the i-th level. In
the unrestricted problem, the occupation number ni = 0, 1, 2 . . . (Bosons) whereas in the
restricted problem ni = 0, 1 (Fermions). Therefore, E =

∑

i niǫi is the total energy of the
system and

ρ(E) =
∑

ni

δ

(

E −
∞
∑

i=1

niǫi

)

. (1)

If in addition, one restricts the number of summands to beN , then the number ρ(E,N)
of ways of partitioning E into N parts is simply the micro-canonical partition function of
a gas of quantum particles with total energy E and total number of particles N

ρ(E,N) =
∑

ni

δ

(

E −
∞
∑

i=1

niǫi

)

δ

(

N −
∞
∑

i=1

ni

)

. (2)

Evidently, ρ(E) =
∑∞

N=0 ρ(E,N). Even though the sum ρ(E) has similar asymptotic

behavior for large E for Bosons and Fermions, i.e., ln(ρ(E)) ∼
√
E (up to a constant

prefactor), we will show in this paper that ρ(E,N), as a function of N for a fixed E, has
rather different behavior for Bosons and Fermions.

Thus a gas of non-interacting Bosons or Fermions occupying a single particle equidis-
tant spectrum (ǫi = i) both have a combinatorial interpretation in terms of partitions of
an integer E into N parts.

• Bose statistics corresponds to the case of unrestricted partitions ni = 0, 1, 2 . . ..

• Fermi statistics corresponds to the case of restricted partitions with distinct sum-
mands ni = 0, 1.

A natural question, that we address in this paper, is how to provide a combinatorial
description of a quantum gas obeying exclusion statistics. Exclusion statistics is a gener-
alization of Bose and Fermi statistics [4, 5, 6, 7]. It has been found explicitly in quantum
models of interacting particle systems, notably in the two dimensional lowest-Landau-
level (LLL) anyon model [5] (i.e. the anyon model projected into the LLL of a strong
magnetic field) and the one dimensional Calogero model [8, 9, 10, 11, 12, 13]. Note that
the Calogero model can be obtained as a particular limit of the LLL-anyon model [14], the
latter being a particular exactly solvable projection of the anyon model: it follows that
exclusion statistics is deeply rooted in the more general concept of anyon statistics [15].
Unlike the Bose and Fermi statistics which describes noninteracting particles, a combi-
natorial description of exclusion statistics is a priori quite nontrivial since the underlying
physical models with exclusion statistics describe truly interacting N -body systems.

We show in this paper that a combinatorial interpretation of exclusion statistics in-
volves a generalization of the partition problem known as the minimal difference partition
(MDP) problem. In MDP, one partitions a positive integer E into N nonzero parts,
E =

∑N
j=1 hj (with hj > 0 for all j = 1, 2, . . . , N) such that each summand exceeds the

next by at least an integer p, i.e. (hj − hj+1) ≥ p for all j = 1, 2, . . . , N − 1. Therefore,
p = 0 corresponds to unrestricted partitions (Bosons) and p = 1 to restricted partitions
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(Fermions) into distinct parts. Even though the parameter p in MDP is an integer, one
can analytically continue the results to noninteger values of p and we will show that
for 0 < p < 1, the MDP corresponds to a gas of quantum particles obeying exclusion
statistics.

Apart from establishing this equivalence between the MDP problem and exclusion
statistics, we also provide a detailed analysis of the asymptotic behavior of ρp(E,N), i.e.,
the number of ways the integer E can be partitioned into N parts in the MDP problem, for
all p ≥ 0. This analysis tells us how the variableN fluctuates from one partition to another
for fixed E. Indeed, defining ρp(E) =

∑

N ρp(E,N) as the total number of partitions of
E and treating all such partitions equally likely, the ratio Pp(N |E) = ρp(E,N)/ρp(E)
is the probability distribution of the random variable N , given E. We show that this
distribution, properly centered and scaled, has rather different limiting shapes for p = 0
and p > 0. While for p = 0 the scaled distribution is asymmetric and has a Gumbel
shape, for p > 0 (including the Fermionic case p = 1) the scaled distribution is symmetric
and has a Gaussian shape.

At this point, it may be useful to summarize our main mathematical results for the
asymptotic behavior of Pp(N |E). For the Bosonic case (p = 0), the limiting shape of
the distribution was first derived by Erdös and Lehner using rigorous methods involving
upper and lower bounds [16]. In this paper we calculate the limiting shapes of Pp(N |E)
for all p ≥ 0. Moreover, our method allows us to compute the probabilities of atypical

large fluctuations which go beyond the range of validity of the limiting distributions.
For p = 0 we show that P0(N |E), as a function of N for fixed E, has a peak at a

characteristic value N∗
0 (E) ≃ 1

a

√
E log(4E/a2) for large E, where a = π

√

2/3, and the

random variable N typically fluctuates around N∗
0 (E) over a scale ∼

√
E. Moreover, in

the vicinity of N∗
0 (E) over a range |N −N∗

0 (E)| ∼ O(
√
E), the distribution P0(N |E) has

a scaling form (or a limiting law). In terms of the cumulative probability,

Q0(N |E) =

N
∑

N ′=0

P0(N |E) ≈ F0

(

a

2
√
E

(N −N∗
0 (E))

)

, (3)

where the scaling function F0(z) has an asymmetric Gumbel form, thus recovering the
Erdös-Lehner result [16]

F0(z) = exp[− exp[−z]]. (4)

In contrast, for p > 0, the distribution Pp(N |E) has quite a different asymptotic
behavior. It has a peak at a characteristic value N∗

p (E) ≃ a1(p)
√
E and N typically

fluctuates around N∗
p (E) over a scale of ∼ E1/4 for all p. Moreover we show that, on

this scale, the fluctuations are Gaussian. More precisely, we show that in the vicinity of
N∗

p (E), the cumulative probability Qp(N |E) has a scaling form

Qp(N |E) ≈ F

(

(N − a1(p)
√
E)

a2(p)E1/4

)

where F (z) =
1√
2π

∫ z

−∞
e−y2/2dy (5)

is a universal scaling function independent of p (> 0). The two nonuniversal scale factors
a1(p) and a2(p) however depend explicitly on p and can be computed exactly. For example,
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for Fermions (p = 1), we recover the Erdös-Lehner result for the mean

a1(1) =
2
√

3

π
ln(2) (6)

and get a new result for the variance

a2(1) =

[

3π2 − 36 ln2(2)√
3 π3

]1/2

. (7)

Thus, as far as the limiting shape of the scaled distribution of Pp(N |E) is concerned,
it is a universal Gaussian for all p > 0. The Fermionic case p = 1 is thus a representative
of all p > 0 and can be considered as an attractive fixed point along the p-axis (see Fig.
(1). In contrast, the Bosonic case p = 0 represents a repulsive fixed point where the shape
is Gumbel.

p= 0 p= 1
BOSON FERMION

( GUMBEL ) ( GAUSSIAN )

Figure 1: Schematic flows along the p axis. The p = 0 represents the Bosonic fixed point
where the limiting distribution of Pp(N |E) is Gumbel. In contrast, the behavior for all
p > 0 is controlled by the Fermionic fixed point at p = 1 where the limiting distribution
is Gaussian.

The limit laws above describe the probabilities of typical fluctuations of N around
its characteristic value N∗

p (E)? In this paper, we have also investigated the probability
of atypical large fluctuations of N away from N∗

p (E) and calculated the corresponding
large deviation functions exactly. Like the limit laws, the large deviation properties for
p > 0 turns out to be rather different from the p = 0 case, thus confirming the fixed point
picture of Fig. 1. Curiously though, we show that the large deviation function for any
p > 0 is related to that of p = 0 via an exact nonlinear relation.

The paper is organized as follows. In Section 2, we precisely define the MDP prob-
lem, provide an exact derivation of the generating function of ρp(E,N) and establish a
nonlinear relation between ρp(E,N) with p > 0 and ρ0(E,N). In Section 3, we show
how the MDP problem with 0 < p < 1 corresponds to exclusion statistics. In Section 4,
we provide detailed asymptotic analysis of ρp(E,N) for all p ≥ 0 and obtain the limiting
shapes of the scaled distribution Pp(N |E) and also calculate exactly the associated large
deviation functions. Finally, we conclude with a summary and open problems in Section
5.
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2 Minimal Difference Partition Problem: A Combi-

natorial Approach

In the minimal difference partition (MDP) problem, one partitions an integer E into N
nonzero parts, E =

∑N
j=1 hj (with hj > 0 for each j = 1, 2, . . .N) such that each part

exceeds the next one by at least an integer p, i.e., (hj−hj+1) ≥ p for all j = 1, 2, . . . , N−1
(see Fig. 2). Let ρp(E,N) denote the number of ways one can achieve this. Clearly, the
cases p = 0 and p = 1 reduce respectively to the unrestricted partitions (Bosons) and the
restricted partitions (Fermions). The generating function for ρp(E,N) is well known [3]
and is given in Eq. (11). However, here we provide a simple derivation of this result that
brings out in a direct way a nontrivial connection between the cases p > 0 and p = 0
which will be used later for the analysis of the asymptotic behavior.

j

h j

}> p

}> 0

h jE Σ
j=1

N
=

Figure 2: A typical partition configuration of the MDP problem with N = 5. The column
heights hj > 0 for all j = 1, 2, . . .N and their total height is E =

∑N
j=1 hj . In addition,

they satisfy the constraint, (hj − hj+1) ≥ p for an integer p for all j = 1, 2, . . . , N − 1.

Let us first establish an exact one to one correspondence between a partition con-
figuration of the MDP with nonzero p > 0 and a partition configuration with p = 0.
Let {hj} denote the set of nonzero heights in the partition of E =

∑N
j=1 hj for p = 0

(Bosonic case). Thus, hj ≥ hj+1 for all j = 1, 2, . . . , N − 1. Let us now define a new set
of heights h′j = hj + p(N − j) for j = 1, 2, . . . , N . Thus, h′j − h′j+1 = hj − hj+1 + p for
all j = 1, 2, . . . , N − 1 and h′N = hN > 0. The new heights thus satisfy the constraint
(h′j − h′j+1) ≥ p for all j = 1, 2, . . . , N − 1 and their total height is given by

E ′ =

N
∑

j=1

h′j = E + pN(N − 1)/2 =

N
∑

j=1

hj + pN(N − 1)/2. (8)

Therefore, the primed heights correspond to a partition configuration of the integer E ′

into N parts with p > 0. This exact correspondence then provides us with the following
identity valid for all N

ρp(E,N) = ρ0

(

E − p

2
N(N − 1), N

)

. (9)
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Thus if one can compute the partition function ρ0(E,N) for the Bosonic case (p = 0),
this identity can be used to obtain exact results for any arbitrary p > 0, including the
Fermionic case p = 1.

For the Bosonic (p = 0) case, a straightforward calculation gives the generating func-
tion

∞
∑

E=1

ρ0(E,N)xE =
xN

(1 − x)(1 − x2) . . . (1 − xN)
. (10)

Using the correspondence in Eq. (9) gives the general result for all p ≥ 0

∞
∑

E=1

ρp(E,N)xE =
xN+pN(N−1)/2

(1 − x)(1 − x2) . . . (1 − xN)
. (11)

It turns out to be convenient sometimes to use the cumulative partition function
Cp(E,N) =

∑N
N ′=0 ρp(E,N). For p = 0, its generating function can be easily derived

from Eq. (10) and has a particularly simple form which turns out to be rather useful,

∞
∑

E=1

C0(E,N)xE =
1

(1 − x)(1 − x2) . . . (1 − xN )
. (12)

Comparing Eqs. (11) and (12) one gets another identity

ρp(E,N) = C0

(

E −N − p

2
N(N − 1), N

)

(13)

which we will be using later.

3 The MDP with 0 < p < 1 and Exclusion Statistics

In this section we show that the MDP problem with integer parameter p, continued an-
alytically to the range 0 ≤ p ≤ 1 corresponds to a quantum gas of interacting particles
obeying exclusion statistics. This correspondence is established at two levels: (i) at a
microscopic level where we show in subsection 3.1 that the ρp(E,N) of the MDP problem
corresponds precisely to the micro-canonical partition function of the one dimensional
Calogero model in an external harmonic potential and (ii) at a more general thermody-
namical level in section 3.2.

3.1 Equivalence between the MDP problem and the spectrum

of the Calogero model in a harmonic well

The aim of this subsection is to show that there is an exact one to one correspondence
between the energy levels of the one dimensional Calogero model in an external harmonic
well and the partition configurations of the MDP problem, continued analytically to
0 ≤ p ≤ 1 in the sense explained below.
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The Calogero model (for a review see [17], [18]) describes an interacting quantum
particle system on a line where the particles attract each other by an inverse square
potential. In order to have a proper thermodynamic limit, one can either put the N
particles in a finite box of size L and then take the N → ∞, L → ∞ limit keeping the
density N/L fixed. Alternatively, one can keep the particles on the infinite line, but switch
on an external harmonic potential of strength ω. In the latter case, one has to eventually
take the limit ω → 0 in a suitable way. It turns out that while the model in a box is not
integrable, the model in a harmonic potential is integrable. Setting the Planck’s constant
~ = 1 and the mass of each particle m = 1, the quantum Hamiltonian of the model is

Ĥ = −1

2

N
∑

i=

∂2

∂x2
i

+ α(1 + α)
∑

i<j

1

(xi − xj)2
+

1

2
ω2

N
∑

i=1

x2
i (14)

where xi represents the position of the i-th particle, ω represents the frequency of the
external harmonic well and α ∈ [−1, 0] represents the coupling strength of mutually
attractive interaction between the particles. In addition, the many body wavefunction
must vanish at xi = xj for any pair (i 6= j) of coordinates for α 6= 0. It turns out that
while α = 0 represents non-interacting Bosons (where the many body wavefunction is
symmetric under the exchange of xi and xj), α = −1 represents noninteracting Fermions
(where the wavefunction vanishes at xi = xj). For other values of α, this model is known
to exhibit fractional statistics (see in particular in the next subsection its manifestation
in the thermodynamics of the model).

The many-body energy spectrum of this model is known exactly [8]. The energy
E({hj}) is labelled by non-increasing integers h1 ≥ h2 ≥ h3 . . . ≥ 1

E({hj}) = ω

[

N
∑

j=1

hj −
1

2
αN(N − 1)

]

. (15)

By making a shift as in Eq. (8), i.e., defining a new set of variables h′j = hj + α(N − j),

one can express the energy as E = ω
∑N

j=1 h
′
j with the constraint that (h′j − h′j+1) ≥ −α.

Thus the spectrum of the Calogero model in a harmonic potential corresponds exactly to
partition configurations of the MDP with parameter p = −α, but now p is a real number
such that 0 ≤ p ≤ 1. Hence, the micro-canonical partition function of the Calogero model
ρCal(E,N) denoting the number of configurations with energy E and number of particles
N is directly related to the number of partitions ρp(E,N) of the MDP model via

ρCal(E,N) = ρp(E/ω,N) (16)

This implies that the grand-canonical partition functions of the two models are also re-
lated. Let ZCal(β, z) =

∑

E,N ρCal(E,N)e−β E zN be the grand-canonical partition function
in the Calogero model in a harmonic well of frequency ω, where β is the inverse temper-
ature and z is the fugacity. Similarly, we define Zp(β, z) =

∑

E,N ρp(E,N)e−β E zN as the
double generating function in the MDP problem with parameter p. The relation in Eq.
(16) then translates into the following relation between the grand partition functions

ZCal(β, z) = Zp(ωβ, z). (17)
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3.2 Thermodynamic equivalence to exclusion statistics

Exclusion statistics can be most conveniently defined in the following thermodynamical
sense. Let Z(β, z) denote the grand partition function of a quantum gas of particles at
inverse temperature β and fugacity z. Such a gas is said to obey exclusion statistics with
parameter 0 ≤ p ≤ 1 if Z(β, z) can be expressed as an integral representation

lnZ(β, z) =

∫ ∞

0

ρ(ǫ) ln yp(ze
−βǫ)dǫ (18)

where ρ(ǫ) denotes an effective single particle density of states and the function yp(x),
which encodes fractional statistics, is given by the solution of the functional equation

yp(x) − x y1−p
p (x) = 1. (19)

Note that for p = 0, one gets yp(x) = 1/(1 − x) and for p = 1, yp(x) = (1 + x). In
these two extreme cases, Eq. (18) reduces to the standard grand partition functions of
noninteracting Bosons and Fermions respectively. The fractional statistics with parameter
0 < p < 1 (that corresponds to an interacting gas) then smoothly interpolates between
these two extreme cases.

There are at least two microscopic quantum models whose grand-canonical functions
have the form of Eq. (18). The first example is the LLL anyon model [5] in the infinite
volume limit which can be shown to satisfy Eq. (18) with an effective density of states
ρ(ǫ) = B V

φ0

δ(ǫ−ωc) where B is the external magnetic field, φ0 = 2π/e is the flux quantum,

ωc = eB/2m is the cyclotron frequency and V is the infinite area of the system. In this
model, the parameter p = φ/φ0 corresponds to the the flux carried by each anyon in units
of the flux quantum. The second example corresponds to the one dimensional Calogero
model defined in Eq. (14) again in the infinite box limit. In this case, one can show that the
grand partition function again can be written in the form as in Eq. (18) with an effective
single particle density ρ(ǫ) = L/

√
8π2ǫ where L is the infinite length of the system. In

both cases, the thermodynamics is computed in the presence of a long distance harmonic
well regulator, and the thermodynamic limit where the external frequency ω → 0 is taken
in such a way so that one correctly recovers the infinite box limit.

Here we show, using the equivalence to the MDP problem in Eq. (17), that the grand
partition function of the one dimensional Calogero model in an external harmonic well of
frequency ω, in the limit ω → 0 can again be written in the general form as in Eq. (18),
but now with an effective constant density of states ρ(ǫ) = 1/ω. Note that this is different
from the Calogero model in a infinite box of size L (the second example mentioned in the
preceding paragraph): here, the particles are sitting inside a harmonic well with almost
vanishing but non zero frequency.

To proceed, we first calculate the grand partition function of the MDP problem,
Zp(ωβ, z) =

∑

E,N ρp(E,N)e−ωβEzN , starting from Eq. (11). We set x = e−βω in Eq.

(11), multiply it by zN and sum over N . Next we take the logarithm on both sides and
then make a cluster expansion, lnZp(ωβ, z) =

∑∞
n=1 bnz

n. Now, taking the ω → 0 limit

8



(keeping β fixed), one gets

b1 ≃
1

ωβ
e−ωβ bn≥2 ≃

1

ωβ

e−nωβ

n2

n−1
∏

k=1

(1 − pn

k
) (20)

Consequently, since from (19) ln yp(x) =
∑∞

n=1
xn

n

∏n−1
k=1(1− pn

k
), one infers that, provided

the series is convergent, that is ze−ωβ < 1

lnZp(ωβ, z) =

∫ ∞

1

ln yp(ze
−ωβǫ)dǫ. (21)

Making a further change of variable ωǫ→ ǫ, it follows that in the limit ω → 0

lnZp(ωβ, z) →
1

ω

∫ ∞

0

ln yp(ze
−βǫ)dǫ. (22)

This is again of the form in Eq. (18) with ρ(ǫ) = 1/ω. Using the equivalence in Eq. (17)
we then conclude that the Calogero model in an external harmonic well with vanishing
frequency, which precisely corresponds to the MDP problem with parameter 0 ≤ p ≤ 1,
can be viewed as a gas of particles obeying exclusion statistics with a statistical parameter
α = −p and a constant density of states.

4 Partition Asymptotics in MDP with p ≥ 0

In this section we compute explicitly the asymptotics of the probability distribution
Pp(N |E) in the MDP problem for all p ≥ 0. We show that while the limiting shape
of this distribution (properly centered and scaled) is Gumbel for p = 0, it is Gaussian for
all p > 0 including the Fermi case p = 1.

4.1 Bosonic case p = 0

Our starting point is the generating function for the C0(E,N) in Eq. (12). We formally
invert this generating function using Cauchy’s theorem and write

C0(E,N) =
1

2πi

∫

dx

xE+1

1

(1 − x)(1 − x2) . . . (1 − xN )

=
1

2πi

∫

dβ exp

[

βE −
N
∑

k=1

ln
(

1 − e−βk
)

]

, (23)

where the integration is in the complex x plane along a contour around the origin and we
have made a change of variable x = exp(−β) in going to the second line. For large E, one
can then analyze the leading asymptotic behavior by employing the saddle point method
in the complex β plane. Anticipating that for large E, the most important contribution
to the integral will come from small β, we first obtain the leading small β behavior of
the action SE,N(β) = βE −

∑N
k=1 ln

(

1 − e−βk
)

. Using the Euler-Mclaurin summation
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formula, one can easily show that in the limit of β → 0, N → ∞ limit but keeping βN
fixed, the action can be written as

SE,N(β) ≃ βE +
1

β

∫ βN

0

t dt

et − 1
−N ln

(

1 − e−βN
)

. (24)

We next maximize the action with respect to β, i.e., we set ∂S/∂β = 0 to get

E =
1

β2

∫ βN

0

t dt

et − 1
. (25)

For a given large E, one gets β∗ by implicitly solving the saddle point equation (25) and
substitute it back in the action SE,N(β∗). Thus, to leading order,

C0(E,N) ≃ exp [SE,N(β∗)] (26)

where the micro-canonical entropy SE,N(β∗) can be written as

SE,N(β∗) =
1

β∗

[

2

∫ β∗N

0

t dt

et − 1
− β∗N ln

(

1 − e−β∗N
)

]

. (27)

To bring out the scaling form of C0(E,N) explicitly for large E and N , we next proceed
as follows. It is evident from the structure of the saddle point solution that β∗ ∼ E−1/2

for large E, whereas β∗ ∼ 1/N for large N indicating that the correct scaling variable is
x = N/

√
E. Next we set β∗N = H(x). In terms of these new scaling variables, the saddle

point solution in Eq. (25) can be recast as

H2(x)

x2
=

∫ H(x)

0

t dt

et − 1
. (28)

Thus, given x, one has to find H(x) by implicitly solving Eq. (28). The entropy in Eq.
(27) becomes SE,N(β∗) =

√
E g(x) where the scaling function g(x) is given from Eq. (27)

as

g(x) = 2
H(x)

x
− x ln

(

1 − e−H(x)
)

. (29)

Thus, asymptotically for large N and E, keeping the ratio x = N/
√
E fixed, the cumula-

tive number of configurations C0(E,N) for Bosons can be written as

C0(E,N) ≃ exp

[√
E g

(

N√
E

)]

(30)

where g(x) is the large deviation function given exactly by Eqs. (29) and (28). This is
the main result of this subsection.

The function g(x) has to be determined numerically by solving the implicit equations
(29) and (28). A plot of this function is given in Fig. (3). The asymptotic properties of
g(x) for small and large x can be worked out easily. It can be shown that

g(x) ≈ −2x ln(x) as x→ 0

≈ a− 2

a
exp(−ax/2) as x→ ∞ (31)
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Figure 3: The large deviation function g(x) for Bosons (p = 0).

where a = π
√

2/3 = 2.5651 . . . .
The result g(x → ∞) = a implies, from Eq. (30) that ρ(E) = C(E,N → ∞) ∼

exp[a
√
E] to leading order for large E, thus recovering the famous Hardy-Ramanujan

result[1]. The normalized cumulative distribution ofN (given E), Q0(N |E) = C0(E,N)/ρ(E)
then has the large deviation form

Q0(N |E) ≃ exp

[

−
√
EΦ

(

N√
E

)]

where Φ(x) = a− g(x) (32)

and Φ(x) has the asymptotic behavior

Φ(x) ≈ a + 2x ln(x) as x→ 0

≈ 2

a
exp(−ax/2) as x→ ∞. (33)

As x → ∞, i.e., as N >>
√
E, clearly Q(N |E) → 1 as expected, since it is the

normalized cumulative distribution of N . The precise approach to 1 can be obtained
using the large x asymptotics of Φ(x) in Eq. (33). Substituting this behavior in Eq. (32)
one gets for N >>

√
E,

Q0(N |E) ≃ exp

[

−2

a

√
E exp(−aN/2

√
E)

]

= F0

(

a

2
√
E

(N −N∗
0 (E))

)

, (34)

where the characteristic value of the random variable N is N∗
0 (E) ≃ 1

a

√
E log(4E/a2)

and the scaling function has the Gumbel form, F0(z) = exp[− exp[−z]]. Evidently, the
probability distribution P0(N |E) = Q(N |E) − Q(N − 1|E) ≃ ∂Q0(N |E)/∂N has the

11



scaling form

P0(N |E) ≃ a

2
√
E
F ′

0

(

a

2
√
E

(N −N∗
0 (E))

)

where F ′
0(z) = exp[−z− exp[−z]] (35)

which is highly asymmetric around the peak at N = N∗
0 (E). This limiting distribution

of N that describes the probability of typical fluctuations of N of ∼ O(
√
E) around the

peak at N∗
0 (E), was originally derived by Erdös and Lehner by computing upper and lower

bounds to the probability[16]. Our method allows us to obtain a more general result in
Eq. (32) which is valid over a wider range and reduces to the Gumbel limiting form near
the peak. A rigorous mathematical derivation of this result, including the exponential
prefactor, can be found in the work of Szekeres [19].

4.2 The case p > 0

For p > 0, one can directly obtain the asymptotic behavior of ρp(E,N) by using the
identity in Eq. (13) and the already derived asymptotic behavior of C0(E,N) in Eq.
(30). In the scaling limit when N and E are both large but the ratio x = N/

√
E is kept

fixed, one gets to leading order

ρp(E,N) ≃ exp

[√
E fp

(

N√
E

)]

(36)

with

fp(x) =
√

1 − px2/2 g

(

x
√

1 − px2/2

)

(37)

where g(x) is given in Eqs. (29) and (28).

Note that the function fp(x) has nonzero support only over x ∈
[

0,
√

2/p
]

. This is

easy to understand from the fact that for p > 0, E has a minimum value for any given
N , or equivalently N has a finite maximum value for any given E. For example, for the
Fermionic case (p = 1), the lowest value of E for a given N corresponds to the Fermi
energy EF = N(N + 1)/2 where one puts one Fermion at each single particle level ǫi = i
for i = 1, 2, . . . , N . Thus, E ≥ N(N + 1)/2 for all N . In other words, for large N ,
N ≤

√
2E, i.e., x ≤

√
2. Similar arguments can be given for any positive p > 0. Unlike

the function g(x) which is monotonically increasing, the function fp(x) in Eq. (37) is a

non-monotonic function in x ∈
[

0,
√

2/p
]

. It vanishes at the two ends as

fp(x) ≈ −2x ln(x) as x→ 0

≈ π
√

6

3
(2p)1/4

√

√

2/p− x (38)

and has a unique maximum at x∗(p) = a1(p), where a1(p) can be obtained by setting
dfp(x)/dx = 0 in Eq. (37) and then using the known properties of g(x). A plot of fp(x)
for p = 1 (Fermi case) is given in Fig. (4).
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Figure 4: The large deviation function f1(x) for Fermions (p = 1).

By playing around with the form of fp(x) in Eq. (37) and that of g(x) in Eqs. (29)
and (28) one can derive a number of explicit results. We skip the details here and just
mention the results. For example, the location of the maximum x∗(p) = a1(p) is given by

a1(p) =
ln y⋆

0
√

p(ln y⋆
0)

2/2 + Li2(1 − 1/y⋆
0)

(39)

where y⋆
0 − y⋆1−p

0 = 1 and Li2(z) =
∑∞

k=0
zk

k2 is the dilogarithm function. For example,

in the Fermionic case p = 1, we get y⋆
0 = 2 and a1(1) = 2

√
3 ln(2)/π = 0.764304 . . ..

Similarly, the value of the function at the maximum fp(x = a1(p)) can be shown to be

fp(x = a1(p)) = 2
√

Li2(1 − 1/y⋆
0) + p(ln y⋆

0)
2/2 (40)

For example, for p = 1, it gives fp(x = a1(1)) = π/
√

3. For an arbitrary p, this formula
which goes back to Meinardus [21] , provides a generalization of the Hardy-Ramanujan
formula for ρ(E). One can check that Eq.(40 ) cöıncides with the integral formula obtained
by Blencowe et al [20] who also investigated the Haldane statistics but didn’t provide any
combinatorial interpretation of their result. Around the maximum at x = a1(p), the
function fp(x) can be expanded in a Taylor series and up to the quadratic order

fp(x) ≃ fp(a1(p)) +
1

2a2
2(p)

(x− a1(p))
2 + . . . (41)

where a2(p) can also be evaluated. For example, for p = 1, we get

a2(1) =

[

3π2 − 36 ln2(2)√
3π3

]1/2

= 0.478815 . . . (42)
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Evidently, one can easily evaluate the asymptotic behavior of ρp(E) =
∑

N ρp(E,N)
for large E by replacing the sum by an integral, use the large deviation form in Eq. (36)
for ρp(E,N) and then using the saddle point method. To leading order, this gives

ρp(E) ≃ exp
[

fp(a1(p))
√
E
]

. (43)

The normalized probability distribution of N (for fixed E) Pp(N |E) = ρp(E,N)/ρp(E)
then has the large deviation asymptotics

Pp(N |E) ≃ exp

[

−
√
E ψp

(

N√
E

)]

where ψp(x) = fp(a1(p)) − fp(x) (44)

Thus for all p > 0, the probability distribution Pp(N |E) has a peak at a characteristic
value N∗

p (E) = a1(p)
√
E (note the difference from the Boson case p = 0 where N∗

0 (E) ∼√
E ln(E)). Using the expansion in Eq. (41) it follows that in the vicinity of N∗

p (E) (over

a scale of ∼ O(E1/4)), Pp(N |E) has a Gaussian limiting form

Pp(N |E) ≃ 1

a2(p)E1/4
F ′

(

(N − a1(p)
√
E)

a2(p)E1/4

)

where F ′(z) =
1√
2π
e−z2/2 (45)

Note in particular, that the standard deviation measuring the root mean square fluctua-

tion of N , σp(E) =
√

〈(N −N∗
p (E))2〉 grows with E as a power law, σp(E) ≃ a2(p)E

1/4

where the exponent 1/4 is universal for all p > 0. Moreover, apart from nonuniversal p
dependent scale factors such as a1(p) and a2(p), the full distribution Pp(N |E) also has
the same universal Gaussian limiting form for all p > 0. Thus, the Fermi point p = 1 is a
generic point that is representative of all values of p > 0 as far as the limiting distribution
is concerned. In this sense, all p > 0 behavior is controlled by the attractive Fermi fixed
point as shown in Fig. (1). The Bosonic fixed point at p = 0, on the other hand, is a
repulsive one.

5 Summary and open problems

To summarize, in this paper we have provided a combinatorial interpretation of exclusion
statistics in terms of minimal difference partitions(MDP). This correspondance is based
on the observation that the grand-canonical partition function of the Calogero model
coincides with the generating function of MDP. By going to the grand-canonical ensemble
and taking a suitable thermodynamic limit, we have recovered the functional equation
characteristic of exclusion statistics. Apart from establishing this correspondance, we
have also provided a detailed analysis of the asymptotic behaviour of ρp(E,N). Our
approach uses a mapping with the bosonic problem which holds for arbitrary p ∈ [0, 1].
In physical terms this generalises the well known mapping between fermions and bosons
with a linear dispersion law [22, 23]. The fact that this mapping has a number theoretical
interpretation was apparently not known before. By using this mapping, we obtain a
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general description of the limiting laws of Pp(N |E) for all p > 0. We find that the bosonic
point is a repulsive fixed point where the statistics is Gumbel. In contrast for all p > 0,
the distribution is Gaussian. Several questions emerge from this work and would be worth
investigating.

1) The regime p < 0. In this case the functional equation (19) still holds where yp(x)
can be interpreted as the generating function of connected clusters on a p-ary tree. A
preliminary investigation of this model shows that the scaling behaviour of ρp(E,N) is
quite different from the previous case [24].

2) In this work we have limited ourselves to the integer partition problem or equiva-
lently to a quantum gas of particles with equidistant single particle spectrum, i.e., with
a constant density of states ρ(ǫ) = const.. It would be interesting to investigate general
partitions of the form E =

∑

nii
s that corresponds to having a power-law density of

states, ρ(ǫ) ∼ ǫ1/s−1. In this case we have shown in a recent work [25] that the bosonic
sector gives rise to the three universal distribution laws of extreme statistics, namely the
Gumbel, Weibull and Fréchet distributions. It would be interesting to explore the general
p > 0 case including the fermionic sector and see if the bosonic point p = 0 is still a
repulsive fixed point.

3) For the bosonic case (p = 0), Vershik [26] and Temperley [27] calculated the limiting
shapes of the Young diagram, i.e., the average height profile for a fixed but large E. This
result can be generalized [24] to the case p > 0 using the functional equation (19).
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