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Phenotype robustness to environmental fluctuations is a common
biological phenomenon. Although most phenotypes involve mul-
tiple proteins that interact with each other, the basic principles of
how such interactome networks respond to environmental unpre-
dictability and change during evolution are largely unknown.
Here we study interactomes of 1,840 species across the tree of
life involving a total of 8,762,166 protein–protein interactions.
Our study focuses on the resilience of interactomes to network
failures and finds that interactomes become more resilient during
evolution, meaning that interactomes become more robust to net-
work failures over time. In bacteria, we find that a more resilient
interactome is in turn associated with the greater ability of the
organism to survive in a more complex, variable, and competi-
tive environment. We find that at the protein family level proteins
exhibit a coordinated rewiring of interactions over time and that
a resilient interactome arises through gradual change of the net-
work topology. Our findings have implications for understanding
molecular network structure in the context of both evolution and
environment.

protein–protein interaction networks | molecular evolution | ecology |
network resilience | network rewiring

The enormous diversity of life shows a fundamental ability of
organisms to adapt their phenotypes to changing environ-

ments (1). Most phenotypes are the result of an interplay of many
molecular components that interact with each other and the envi-
ronment (2–5). The study of life’s diversity has a long history and
extensive phylogenetic studies have demonstrated evolution at
the DNA sequence level (6–8). While studies based on sequence
data alone have demonstrated evolution of genomes, mecha-
nistic insights into how evolution shapes interactions between
proteins in an organism remain elusive (9, 10).

DNA sequence information has been used to associate genes
with their functions (11), determine properties of ancestral life
(12, 13), and understand how the environment affects genomes
(14). Despite these advances in understanding DNA sequence
evolution, little is known about basic principles that govern
the evolution of interactions between proteins. In particular,
evolution of DNA and amino acid sequences could lead to per-
vasive rewiring of protein–protein interactions and create or
destroy the ability of the interactions to perform their biological
functions.

The importance of protein–protein interactions has spurred
experimental efforts to map all interactions between proteins
in a particular organism, its interactome, namely the com-
plex network of protein–protein interactions in that organ-
ism. A large number of high-throughput experiments have
reported high-quality interactomes in a number of organisms
(15–19). Because interactomes underlie all living organisms,
it is critical to understand how these networks change dur-
ing evolution (20, 21) and elucidate key principles of their
structure.

Here, we use protein interactions measured by these large-
scale interactome mapping experiments and study the evolu-
tionary dynamics of the interactomes across the tree of life.
Our protein interaction dataset contains a total of 8,762,166

physical interactions between 1,450,633 proteins from 1,840
species, encompassing all current protein interaction infor-
mation at a cross-species scale (SI Appendix, section S1 and
Table S4). We group these interactions by species and repre-
sent each species with a separate interactome network, in which
nodes indicate a species’ proteins and edges indicate exper-
imentally documented physical interactions, including direct
biophysical protein–protein interactions, regulatory protein–
DNA interactions, metabolic pathway interactions, and kinase–
substrate interactions measured in that species. We integrate
into the dataset (22) the evolutionary history of species pro-
vided by the tree of life constructed from small subunit ribosomal
RNA gene sequence information (12) (SI Appendix, section
S2). Using network science, we study the network organiza-
tion of each interactome, in particular its resilience to net-
work failures, a critical factor determining the function of the
interactome (23–26). We identify the relationship between the
resilience of an interactome and evolution and use this resilience
to uncover relationships with natural environments in which
organisms live. Although the interactomes are incomplete and
biased toward much-studied proteins and model species (SI
Appendix, section S1 and Fig. S7), our analyses give results
that are consistent across taxonomic groups, that are not sen-
sitive to network data quality or network size change (SI
Appendix, section S8 and Fig. S8), and indicate that our conclu-
sions will still hold when more protein interaction data become
available.

Significance

The interactome network of protein–protein interactions cap-
tures the structure of molecular machinery that underlies
organismal complexity. The resilience to network failures is
a critical property of the interactome as the breakdown of
interactions may lead to cell death or disease. By study-
ing interactomes from 1,840 species across the tree of life,
we find that evolution leads to more resilient interactomes,
providing evidence for a longstanding hypothesis that inter-
actomes evolve favoring robustness against network failures.
We find that a highly resilient interactome has a beneficial
impact on the organism’s survival in complex, variable, and
competitive habitats. Our findings reveal how interactomes
change through evolution and how these changes affect their
response to environmental unpredictability.
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Results
Modeling Resilience of the Interactome. Natural selection has
influenced many features of living organisms, both at the level
of individual genes (27) and at the level of whole organisms (13).
To determine how natural selection influences the structure of
interactomes, we study the resilience of interactomes to network
failures (23, 25, 26). Resilience is a critical property of an inter-
actome as the breakdown of proteins can fundamentally affect
the exchange of any biological information between proteins in a
cell (Fig. 1A). Network failure could occur through the removal
of a protein (e.g., by a nonsense mutation) or the disruption of a
protein–protein interaction (e.g., by environmental factors, such
as availability of resources). The removal of even a small number
of proteins can completely fragment the interactome and lead
to cell death and disease (4, 5) (SI Appendix, section S5.1 and
Table S3). Disruptions of interactions can thus affect the inter-
actome to the extent that its connectivity can be completely lost
and the interactome loses its biological function and increases
the risk of disease (5).

We formally characterize the resilience of an interactome of a
species by measuring how fragmented the interactome becomes
when all interactions involving a fraction f of the proteins
(nodes) are randomly removed from the interactome (Fig. 1A).
The resulting isolated network components then determine the
interactome fragmentation. A network component is a con-
nected subnetwork of the interactome in which any two nodes
can reach each other by a path of edges. The smaller the network
component is, the fewer nodes can be reached from any given
node in the component. To characterize how the interactome
fragments into isolated components we use the Shannon diver-
sity index (28–31), which we modify to ensure that the resilience
of interactomes with different numbers of proteins can be com-
pared (Fig. 1B and SI Appendix, section S5.2). In particular, when
the interactome G is subjected to a network failure rate f , it
is fragmented into a number of isolated components of vary-
ing sizes (SI Appendix, Fig. S1). We quantify connectivity of the
resulting fragmented interactome Gf by calculating the modified
Shannon diversity on the resulting set of isolated components.
Let {C1, C2, . . . , Ck} be k isolated components in Gf . The modi-
fied Shannon diversity of Gf is then calculated as the entropy of
{C1, C2, . . . , Ck} as

Hmsh(Gf )=−
1

logN

k∑
i=1

pi log pi , [1]

where N is the number of proteins in the interactome and
pi = |Ci |/N is the proportion of proteins in the interactome G
that are in component Ci . We can interpret pi as the proba-
bility of seeing a protein from component Ci when sampling
one protein from the fragmented interactome Gf . That is,
Eq. 1 quantifies the uncertainty in predicting the component
identity of a protein that is taken at random from the interac-
tome. Finally, we use the normalization factor 1/ logN because
it corrects for differences in the numbers of proteins in the
interactomes and ensures that interactomes of different species
can be compared. The range of possible Hmsh values is between
0 and 1, where these limits correspond, respectively, to a con-
nected interactome in which any two proteins are connected
by a path of edges and a completely fragmented interactome
in which every protein is its own isolated component. If the
fragmented interactome has one large component and only
a few small broken-off components, then the modified Shan-
non diversity is low, providing evidence that the interactome
has network structure that is resilient to network failures (23)
(SI Appendix, Fig. S2). In contrast, if the interactome breaks
into many small components, it becomes fragmented, and its
modified Shannon diversity is high (SI Appendix, Fig. S2),

indicating that the interactome is not resilient to network
failures.

To fully characterize the interactome resilience of a species we
measure fragmentation of the species’ interactome across all pos-
sible network failure rates (SI Appendix, Fig. S3). Consider the
interactome of the pathogenic bacterium Haemophilus influenzae
and the interactome of humans, which have different resilience
(Fig. 1C). In the H. influenzae interactome, on removing small
fractions of all nodes many network components of varying sizes
appear, producing a quickly increasing Shannon diversity. In
contrast, the human interactome fragments into a few small com-
ponents and one large component whose size slowly decreases as
small components break off, resulting in Shannon diversity that
increases linearly with the network failure rate (Fig. 1C). Thus,
unlike the fragmentation of the H. influenzae interactome, the
human interactome stays together as a large component for very
high network failure rates, providing evidence for the topological
stability of the interactome. In general, the calculation of mod-
ified Shannon diversity over all possible network failure rates f
yields a monotonically increasing function that reaches its min-
imum value of 0 at f =0 (i.e., a connected interactome) and its
maximum value of 1 at f =1 (i.e., a completely fragmented inter-
actome) as the interactome becomes increasingly fragmented
with increasing network failure rate f (SI Appendix, section S5.3
and Fig. S3). We therefore define resilience of interactome G as
one minus the area under the curve defined by that function,

Resilience(G)= 1−
∫ 1

0

Hmsh(Gf ) df , [2]

which takes values between 0 and 1; a higher value indicates a
more resilient interactome.

Resilience of Interactomes Throughout Evolution. We characterize
systematically the resilience of interactomes for all species in
the dataset (Fig. 1D and SI Appendix, Table S5). We find that
species display varying degrees of interactome resilience to net-
work failures (Fig. 1E). At a global, cross-species scale, we find
that a greater amount of genetic change is associated with a
more resilient interactome structure [locally weighted scatterplot
smoothing (LOWESS) fit; R2 =0.36; Fig. 1F], and this associ-
ation remains strong even after statistical adjustments for the
influence of many other variables (SI Appendix, section S8). The
more genetic change a species has undergone, the more resilient
is its interactome. The evolution of a species, which is repre-
sented by the total branch length from the root to the leaf taxon
representing that species in the tree of life (12), thus predicts
resilience of the species’ interactome, providing empirical evi-
dence that interactome resilience is an evolvable property of
organisms (26). This finding also suggests that the structure of
present-day interactomes reflects their history or that interac-
tomes must have a certain structure because that structure is well
suited to the network’s biological function. From an evolutionary
standpoint, this finding points in the direction of topologically
stable interactomes, which suggests that evolutionary forces may
shape protein interaction networks in such a way that their large-
scale connectivity, i.e., the network’s biological function, remains
largely unaffected by small network failures as long the failures
are random.

We also find that species from the same taxonomic domain
have more similar interactome resilience than species from
different domains (P =6 · 10−11 for bacteria against eukary-
otes; see SI Appendix, Fig. S10 for comparisons between other
taxonomic groups). Furthermore, the degree of interactome
resilience is significantly higher than expected by chance alone
(SI Appendix, Fig. S9); that is, in a similar random net-
work of identical size and degree distribution (P =5 · 10−12),
indicating that naturally occurring interactomes have higher
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Fig. 1. Protein interaction data of 1,840 species consisting of 8,762,166 interactions by 1,450,633 proteins reveal the resilience of interactomes across vast
evolutionary distances. (A) The interactome of an organism consists of all physical interactions between proteins in the organism. When interactions involv-
ing a certain fraction (f = 5/45 in this example) of the proteins are removed from the interactome, the interactome fragments into a number of isolated
network components. (B) Modified Shannon diversity Hmsh (SI Appendix, section S5) measures how the interactome fragments into isolated components
at a given network failure rate f . (C) The resilience of the interactome integrates modified Shannon diversity Hmsh across all possible failure rates f (SI
Appendix, section S5). Resilience value 1 indicates the most resilient interactome, and resilience value 0 indicates a complete loss of the connectivity of the
interactome (SI Appendix, Fig. S3). Homo sapiens (H. influenzae) has the most (least) resilient interactome (their resilience is 0.461 and 0.267, respectively)
among the three selected organisms. (D) A small neighborhood of the interactome in a eukaryotic and a bacterial species. As ancestral species have gone
extinct, older interactomes have been lost, and only interactomes of present-day species are available to us. (E) Phylogenetic tree showing 1,539 bacteria,
111 archaea, and 190 eukarya (12). Evolution of a species is represented as the total branch length (nucleotide substitutions per site) from the root to the
corresponding leaf in the tree (SI Appendix, section S2). The outside circle of bars shows the interactome resilience of every species. Current protein–protein
interaction data might be prone to notable selection and investigative biases (SI Appendix, section S1). (F) This plot shows the interactome resilience for 171
species with at least 1,000 publications in the NCBI PubMed (SI Appendix, Fig. S7). Across all species, evolution of a species predicts resilience of the species’
interactome to network failures (LOWESS fit; R2 = 0.36); more genetic change implies a more resilient interactome. Three species with the most nucleotide
substitutions per site (far right on the x axis) have on average a 20.4% more resilient interactome than the three species with the least substitutions (far left
on the x axis).

4428 | www.pnas.org/cgi/doi/10.1073/pnas.1818013116 Zitnik et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ja
nu

ar
y 

3,
 2

02
2 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818013116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818013116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818013116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818013116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818013116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818013116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818013116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1818013116


EV
O

LU
TI

O
N

resilience than their random counterparts. These findings are
independent of genomic attributes of the species, such as genome
size and the number of protein-coding genes, and are not direct
effects of network size, the number of interactions in each
species, broad-tailed degree distributions (23), or the presence
of hubs in the interactome networks (SI Appendix, Fig. S8 and
Table S1). Furthermore, these findings are consistent across a
variety of assays that are used to measure the interactome (SI
Appendix, Table S2).

Relationship Between Interactome Resilience and Ecology. We next
ask whether there is a relationship between species’ interac-
tome resilience and aspects of species’ ecology (SI Appendix,
section S4). We examine the relationship between interac-
tome resilience and the fraction of regulatory genes and find
that bacteria with more resilient interactomes have significantly
more regulatory genes in their genomes (R2 =0.32; Fig. 2A).
Bacteria with highly resilient interactomes can also survive in
more diverse and competitive environments, as revealed by
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Fig. 2. Bacteria with more resilient interactomes survive in more complex, variable, and competitive environments. We use ecological information for
287 bacterial species (32) to examine the relationship between species’ interactome resilience and their ecology (SI Appendix, section S4). (A) Interactome
resilience positively correlates with the fraction of regulatory genes in bacteria, an established indicator of environmental variability of species’ habitats (32)
(R2 = 0.32). (B and C) For environmental viability of a species, we use a cohabitation index that records how many organisms populate each environment
in which the species is viable (i.e., the level of competition in each viable environment) and an environmental scope index that records a fraction of the
environments in which the species is viable (i.e., species’ environmental diversity) (32). The resilience of the interactome positively correlates with the level
of cohabitation encountered by bacteria (R2 = 0.21), and bacteria with resilient interactomes tend to thrive in highly diverse environments (R2 = 0.09).
(D) Terrestrial bacteria have the most resilient interactomes (P = 7 · 10−3), and host-associated bacteria have the least resilient interactomes (P = 4 · 10−6).
In bacteria, interactome resilience is indicative of oxygen dependence. Aerobic bacteria have the most resilient interactomes (P = 8 · 10−4), followed by
facultative and the anaerobic bacteria. Error bars indicate 95% bootstrap confidence interval; P values denote the significance of the difference of the
means according to a Mann–Whitney U test.
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Fig. 3. Evolution mitigates local network structural changes in protein interactomes. (A) A hypothetical phylogenetic tree illustrates a speciation event
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orthologous protein pair. As the two newly arising species diverge and protein sequences evolve, protein network neighborhoods (SI Appendix, Fig. S4) in
their interactomes can rewire independently over time. Shown are also in-paralogs, proteins which arise through gene duplication events in species 1 and
2 after speciation. (B) A hypothetical protein family with three protein members (A′, A′′, A′′′), each from a different organism. In the phylogenetic tree,
organism 1 is located at the tip of the lineage with the shortest branch length, whereas organism 3 is in the lineage with the longest branch length in the
tree. We represent the protein family by a sequence of orthologous proteins ordered by the branch length of proteins’ originating species (SI Appendix,
section S3). We then characterize the network neighborhood of each protein in the family by calculating two network metrics (SI Appendix, Fig. S5). Isolated
components are given by the degree-adjusted number of connected components in the neighborhood that arise when the central protein is removed from
the interactome (gray) (SI Appendix, section S6). The neighborhood size down-weighted by the redundancy of local interactions gives the effective size of
the neighborhood (SI Appendix, section S6). (C and D) The number of isolated network components and the effective size of protein neighborhoods both
decrease with evolution (P = 3 · 10−8 and P = 0.03, respectively; Spearman’s ρ rank correlation), suggesting that local interaction neighborhoods rewire via
a coordinated evolutionary mechanism. Lines in C and D show the LOWESS fit of median-aggregated network metric values for 81,673 proteins from 2,224
protein families; color bands indicate 95% confidence band for the LOWESS fit; gray lines show random expectation.
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exceptionally strong associations between the resilience and the
level of cohabitation and the environmental scope (Fig. 2 B and
C). Furthermore, using a categorization of bacteria into five
groups based on their natural environments [NCBI classification
for bacterial lifestyle (terrestrial, multiple, host cell, aquatic, spe-
cialized) ordered by the complexity of each category (32)], we
find that terrestrial bacteria living in the most complex ecolog-
ical habitats have the most resilient interactomes (P =7 · 10−3;
Mann–Whitney U test) and that host-associated bacteria have
the least resilient interactomes (P =4 · 10−6; Fig. 2D). Our anal-
ysis further reveals that interactome resilience is indicative of
oxygen dependence; the most resilient interactomes are those
of aerobic bacteria (P =8 · 10−4), followed by facultative and
then anaerobic bacteria, which do not require oxygen for growth
(Fig. 2D).

These relationships suggest that molecular mechanisms that
render a species’ interactome more resilient might also allow it
to cope better with environmental challenges. In the network
context, high interactome resilience suggests that proteins can
interact with each other even in the face of high protein fail-
ure rate. High interactome resilience indicates that a species has
a robust interactome, in which many mutations represent net-
work failures that are neutral in a given environment, have no
phenotypic effect on the network’s function, and are thus invis-
ible to natural selection (26). However, neutral mutations may
not remain neutral indefinitely, and a once-neutral mutation may
have phenotypic effects in a changed environment and be impor-
tant for evolutionary innovation (25). Although a large number

of mutations in a resilient interactome might not change the net-
work’s primary function, they might alter other network features,
which can drive future adaptations as the environment of the
species changes (33). Changes that are neutral concerning one
aspect of the network’s function could lead to innovation in other
aspects, suggesting that a resilient interactome can harbor a vast
reservoir of neutral mutations.

Structural Changes of Protein Network Neighborhoods. A resilient
interactome may arise through changes in the network structure
of individual proteins over time (Fig. 3A). To investigate such
changes in local protein neighborhoods, we decompose species
interactomes into local protein networks, using a 2-hop subnet-
work centered around each protein in a given species as a local
representation of a protein’s direct and nearby interactions in
the species’ interactome (SI Appendix, section S6.1 and Fig. S4).
We obtain 81,673 protein network neighborhoods and then use
orthologous relationships between proteins to group them into
2,224 protein families, with an average of 38 protein neighbor-
hoods originating from 12 species in each family (SI Appendix,
section S3). Each family represents a group of orthologous
proteins that share a common ancestral protein (Fig. 3B).

By examining protein families, we find that the number of iso-
lated network components in protein network neighborhoods
and the effective size of the neighborhoods (Fig. 3B and SI
Appendix, section S6.2) both decrease with evolution (P =3 ·
10−8 and P =0.03, respectively; Fig. 3 C and D), indicating
that protein neighborhoods become more connected during
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Fig. 4. The rewiring rate of interactions in local protein neighborhoods varies with the topology of network motifs. (A) Interaction rewiring rate (IRR)
measures the fold change between the probability of observing a particular network motif in the network neighborhood of protein A′ and the probability
of observing the same motif in the neighborhood of an evolutionarily younger orthologous protein A. A positive (negative) rate of change indicates the
motif becomes more (less) common over time (SI Appendix, section S7). Shown are the rewiring rates for interactions (i.e., edges; the number of interactors
of A′ vs. A), triangle motifs touching the orthologous protein (yellow), square motifs touching the orthologous protein (green), and triangle motifs in
the protein network neighborhood (orange). (B) Square motifs become more common in protein neighborhoods during evolution (P< 10−33), which
is supported by a range of biological evidence (18, 37, 38). However, triangle motifs become less common over time (P< 10−33 for both types of triangle
motifs). Gray bars indicate random expectation (SI Appendix, section S7), either for random orthologous relationships (dark gray) or for random evolutionary
distances (light gray); error bars indicate 95% bootstrap confidence interval; and P values denote the significance of the difference of IRR distributions using
a two-sample Kolmogorov–Smirnov test.
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evolution. These structural changes in the neighborhoods sug-
gest a molecular network model of evolution (Fig. 3B): For
orthologous proteins in two species, as the evolutionary distance
between the species increases, the proteins’ local network neigh-
borhoods become increasingly different and the neighborhood
becomes more interconnected in the species that has undergone
more genetic change.

Network Rewiring of Protein–Protein Interactions. To study evolu-
tionary mechanisms of structural changes in the interactomes, we
investigate network motifs (34, 35). We first identify orthologous
protein pairs from evolutionarily close species (SI Appendix, sec-
tion S3), resulting in 2,485,564 protein pairs, which we then use
to calculate interaction rewiring rates (IRRs) for selected net-
work motifs (Fig. 4A). We calculate the number of times each
motif appears in each protein neighborhood and derive the IRR
by comparing the motif occurrences between the interactomes
of the older and the younger species of each protein pair (SI
Appendix, section S7.1). We find strong statistical evidence that
network motifs rewire during evolution (P < 10−33 for all net-
work motifs; Fig. 4B), suggesting that rewiring of interactions is
an important mechanism for the evolution of interactomes. For
example, proteins in evolutionarily older species on average par-
ticipate in a factor of 0.861 fewer protein–protein interactions
compared with proteins in evolutionarily younger species (IRR=
−0.215; Fig. 4B). This significant negative correlation between a
protein’s number of interactions and the protein’s evolutionary
age confirms earlier studies of Saccharomyces cerevisiae (36). We
also find that square motifs of interactions become more com-
mon in protein neighborhoods during evolution (IRR=0.016;
Fig. 4B). A range of biological evidence (18, 37, 38) supports
this positive rate of change in the number of square motifs:
From a structural perspective (38), protein–protein interactions
often require complementary interfaces; hence two proteins with
similar interfaces share many of their neighbors. However, they
might not interact directly with each other, which manifests in the
interactome as a square motif of interactions (see SI Appendix,
Fig. S6 for an illustration of interaction interfaces recognizing
the binding sites in proteins). Evolutionary arguments follow-
ing gene duplication (18) reach the same conclusion; proteins
with multiple shared interaction partners are likely to share
even more partners and thereby produce new square motifs of
interactions. To test the predictive power of our motif-based
model of structural network changes, we estimate the size of the
whole human interactome by extrapolating the S. cerevisiae inter-
actome, using IRRs from Fig. 4B (SI Appendix, section S7.3).
Assuming one splice isoform per gene, we predict the number
of interactions in humans to be ∼160,000. This prediction is
in surprisingly good agreement with three previous estimates of
the size of the human interactome, which range from 150,000
to 370,000 interactions (15, 17, 39) and have proved crucial in
establishing the complexity of the human interactome (19).

Discussion
Our analyses reveal how protein–protein interaction networks
change through evolution and how changes in these networks
affect phenotypes and organismal response to environmen-
tal complexity. This systematic investigation of protein–protein
interaction networks from an evolutionary perspective was
enabled by a dataset of interactomes, consisting of protein–
protein interaction networks from 1,840 species. To date, most
evolutionary analyses of biological networks have focused on a
small number of organisms with high-coverage protein–protein

interaction data, such as S. cerevisiae, Mus musculus, and humans.
This is because interactomes mapped by unbiased tests of all
possible pairwise combinations of proteins on the same plat-
form remain scarce, an important limitation of the present study.
Furthermore, experimentally documented protein interactions
are currently subject to a high number of false positives and
negatives. As more protein interaction data are collected, and
more genomes become available, the generalizability of our
findings can be further evaluated. However, our results are con-
sistent across both different subsets of protein interaction data
(SI Appendix, Table S2) and different phylogenetic lineages (SI
Appendix, Fig. S10) and are not explained by many possible
genomic and network confounders (SI Appendix, section S8,
Fig. S8, and Table S1), thus providing confidence that our key
findings cannot be attributed to biases in the datasets.

Interactome resilience is an important aspect of our study. The
resilience measures fragmentation of the interactome into iso-
lated components and thus represents a global measure of the
interactome’s topological stability. Beyond fragmentation, there
are other possible modifications of the interactome that could
alter the network’s biological function without necessarily dis-
connecting the network (40–42). As more detailed information
about functions of individual proteins in the interactome (43), as
well as dynamic protein-expression data (44), becomes available,
our measure of interactome resilience could be adapted to give
a more complex definition of resiliency, which might yield more
detailed evolutionary predictions. Additionally, information on
how protein–protein interactions change dynamically both in
time and space (45–47) might reveal how topological stability of
the interactome depends on large-scale interactome connectivity
as well as on the interactome’s dynamic properties (40).

Our study presents an additional paradigm for evolutionary
studies by demonstrating that interactomes reveal fundamental
structural principles of molecular networks. Our findings high-
light evolution as an important predictor of structural network
change and show that evolution of a species predicts resilience
of the species’ interactome to protein failures. The findings
offer quantitative evidence for the biological proposition that
an organism that has undergone more genetic change has a
more resilient interactome, which, in turn, is associated with
the greater ability of the organism to survive in a more com-
plex, variable, or competitive environment. Our findings can also
help clarify the mechanisms of how interactomes change dur-
ing evolution, why currently observed network structures exist,
and how they may change in the future and facilitate the extrap-
olation of functional information from experimentally charac-
terized proteins to their orthologous proteins in poorly studied
organisms.

Materials and Methods
Detailed description of data, statistical methodology, and additional analy-
ses are provided in SI Appendix.

Code and Data Availability. Software implementation of statistical method-
ology is publicly available at snap.stanford.edu/tree-of-life. All data used
in this paper, including the processed interactomes, are shared with the
community and available from snap.stanford.edu/tree-of-life.
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