Bayesian Analysis
- Bayesian Anal.
- Volume 11, Number 1 (2016), 247-263.
Recursive Learning for Sparse Markov Models
Jie Xiong, Väinö Jääskinen, and Jukka Corander
Full-text: Open access
Abstract
Markov chains of higher order are popular models for a wide variety of applications in natural language and DNA sequence processing. However, since the number of parameters grows exponentially with the order of a Markov chain, several alternative model classes have been proposed that allow for stability and higher rate of data compression. The common notion to these models is that they cluster the possible sample paths used to predict the next state into invariance classes with identical conditional distributions assigned to the same class. The models vary in particular with respect to constraints imposed on legitime partitions of the sample paths. Here we consider the class of sparse Markov chains for which the partition is left unconstrained a priori. A recursive computation scheme based on Delaunay triangulation of the parameter space is introduced to enable fast approximation of the posterior mode partition. Comparisons with stochastic optimization,
Article information
Source
Bayesian Anal. Volume 11, Number 1 (2016), 247-263.
Dates
First available in Project Euclid: 15 April 2015
Permanent link to this document
http://projecteuclid.org/euclid.ba/1429105670
Digital Object Identifier
doi:10.1214/15-BA949
Mathematical Reviews number (MathSciNet)
MR3447098
Keywords
clustering Delaunay triangulation recursive learning sequence analysis sparse Markov chains
Citation
Xiong, Jie; Jääskinen, Väinö; Corander, Jukka. Recursive Learning for Sparse Markov Models. Bayesian Anal. 11 (2016), no. 1, 247--263. doi:10.1214/15-BA949. http://projecteuclid.org/euclid.ba/1429105670.
References
- Begleiter, R., El-Yaniv, R., and Yona, G. (2004). “On prediction using variable order Markov models.” Journal of Artificial Intelligence Research, 22: 385–421.
- Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 1st edition.
- Bühlmann, P., Wyner, A. J., et al. (1999). “Variable length Markov chains.” The Annals of Statistics, 27(2): 480–513.Mathematical Reviews (MathSciNet): MR1714720
Zentralblatt MATH: 0983.62048
Digital Object Identifier: doi:10.1214/aos/1018031204
Project Euclid: euclid.aos/1018031204 - Corander, J., Connor, T. R., O’Dwyer, C. A., Kroll, J. S., and Hanage, W. P. (2012). “Population structure in the Neisseria, and the biological significance of fuzzy species.” Journal of The Royal Society Interface, 9(71): 1208–1215.
- Dahl, D. B., et al. (2009). “Modal clustering in a class of product partition models.” Bayesian Analysis, 4(2): 243–264.Mathematical Reviews (MathSciNet): MR2507363
Digital Object Identifier: doi:10.1214/09-BA409
Project Euclid: euclid.ba/1340370277 - De Berg, M., Van Kreveld, M., Overmars, M., and Schwarzkopf, O. C. (2000). Computational geometry. Springer.Mathematical Reviews (MathSciNet): MR1763734
- Deng, M., Liu, Q., Cheng, T., and Shi, Y. (2011). “An adaptive spatial clustering algorithm based on Delaunay triangulation.” Computers, Environment and Urban Systems, 35(4): 320–332.
- Farcomeni, A. (2011). “Hidden Markov partition models.” Statistics & Probability Letters, 81(12): 1766–1770.Mathematical Reviews (MathSciNet): MR2845887
- Gonzalez-Lopez, J. E., et al. (2010). “Minimal Markov Models.” arXiv:1002.0729.
- Hubert, L. and Arabie, P. (1985). “Comparing partitions.” Journal of Classification, 2(1): 193–218.
- Jääskinen, V., Xiong, J., Corander, J., and Koski, T. (2013). “Sparse Markov Chains for Sequence Data.” Scandinavian Journal of Statistics.
- Koski, T. (2001). Hidden Markov models for bioinformatics, volume 2. Springer.
- Lee, D.-T. and Schachter, B. J. (1980). “Two algorithms for constructing a Delaunay triangulation.” International Journal of Computer & Information Sciences, 9(3): 219–242.
- Liu, D., Nosovskiy, G. V., and Sourina, O. (2008). “Effective clustering and boundary detection algorithm based on Delaunay triangulation.” Pattern Recognition Letters, 29(9): 1261–1273.
- Marttinen, P., Myllykangas, S., and Corander, J. (2009). “Bayesian clustering and feature selection for cancer tissue samples.” BMC Bioinformatics, 10(1): 90.
- Rissanen, J., et al. (1983). “A universal data compression system.” IEEE Transactions on Information Theory, 29(5): 656–664.
- Xiong, J., Jääskinen, V., and Corander, J. (2015). “Appendix of article by Xiong, Jääskinen, and Corander.” Bayesian Analysis.
- Yang, X. and Cui, W. (2008). “A novel spatial clustering algorithm based on Delaunay triangulation.” In: International Conference on Earth Observation Data Processing and Analysis, 728530. International Society for Optics and Photonics.
Supplemental materials
- Appendix of article by Xiong, Jääskinen, and Corander. Digital Object Identifier: doi:10.1214/15-BA949SUPP

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- The Maclaurin series for performance functions of Markov chains
Cao, Xi-Ren, Advances in Applied Probability, 1998 - A Bayes method for a monotone hazard rate via S-paths
Ho, Man-Wai, The Annals of Statistics, 2006 - Sample Path Large Deviations and Convergence Parameters
Ignatiouk-Robert, Irina, The Annals of Applied Probability, 2001
- The Maclaurin series for performance functions of Markov chains
Cao, Xi-Ren, Advances in Applied Probability, 1998 - A Bayes method for a monotone hazard rate via S-paths
Ho, Man-Wai, The Annals of Statistics, 2006 - Sample Path Large Deviations and Convergence Parameters
Ignatiouk-Robert, Irina, The Annals of Applied Probability, 2001 - Covariance Estimation: The GLM and Regularization Perspectives
Pourahmadi, Mohsen, Statistical Science, 2011 - Similar states in continuous-time Markov chains
Yap, V. B., Journal of Applied Probability, 2009 - Automated state-dependent importance sampling for Markov jump processes via sampling from the zero-variance distribution
Grace, Adam W., Kroese, Dirk P., and Sandmann, Werner, Journal of Applied Probability, 2014 - Multinomial-Poisson homogeneous models for contingency tables
Lang, Joseph B., The Annals of Statistics, 2004 - Modal clustering in a class of product partition models
Dahl, David B., Bayesian Analysis, 2009 - A Bayesian approach to estimating the long memory parameter
Chakraborty, Sounak, Holan, Scott, and McElroy, Tucker, Bayesian Analysis, 2009 - Outperforming the Gibbs sampler empirical estimator for nearest-neighbor random fields
Greenwood, Priscilla E., McKeague, Ian W., and Wefelmeyer, Wolfgang, The Annals of Statistics, 1996