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Using long-term computer simulations and mean-field-like arguments, we investigate the transient time and
the properties of the stationary state of the Olami-Feder-Christensen model as function of the coupling param-
eter � and the system size N. The most important findings are that the transient time increases with a
nonuniversal exponent of the system size, and that the avalanche size distribution will not approach a power
law with increasing system size.
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I. INTRODUCTION

The Olami-Feder-Christensen �OFC� earthquake model
�1� is probably the most studied nonconservative and suppos-
edly self-organized critical �SOC� model. Systems are called
self-organized critical if they reach a stationary state charac-
terized by power laws without the need for fine-tuning an
external parameter such as the temperature. Many research-
ers in the field agree on confining the term self-organized
critical to those systems that are slowly driven and that dis-
play fast, avalanchelike dissipation events. This means that
there is a separation of time scales, which can be interpreted
as a way of tuning a parameter to a small value �2�.

The prominent example for self-organized criticality is the
sand-pile model by Bak, Tang, and Wiesenfeld �3� �BTW�,
where it can be shown analytically that the avalanche size
distribution is a power law, implying a scale invariance: Ava-
lanches of all sizes are due to the same mechanism. The
BTW model satisfies a local conservation law, which can
naturally lead to power laws �4,5�, and without local particle
conservation the model is not critical �2�. The mechanisms
leading to SOC in nonconservative systems are not yet well
understood, and for the OFC model there is yet no agreement
on whether it is critical at all. While some authors find criti-
cal behavior when going to larger systems sizes and employ-
ing multiscaling methods �6,7�, others interpret similar data
as showing a breakdown of scaling �8�, and groups using
branching ratio techniques claim to find what they call al-
most criticality �9,10�.

Despite the simplicity of its dynamical rules, the OFC
model shows a variety of interesting features that are un-
known in equilibrium physics and appear to be crucial for
generating the apparent critical �or almost critical� behavior.
Among these features are a marginal synchronization of
neighboring sites driven by the open boundary conditions
�11�, and the violation of finite-size scaling �7,12� together
with a qualitative difference between system-wide earth-
quakes and smaller earthquakes �6�. Also, small changes in
the model rules �such as replacing open boundary conditions
with periodic boundary conditions �13�, introducing frozen
noise in the local degree of dissipation �14� or in the thresh-
old values �15�, including lattice defects �16��, destroy the
SOC behavior. Recently, it was found that the results of com-
puter simulations are strongly affected by the computing pre-
cision �17�, and that the model exhibits sequences of fore-

shocks and aftershocks �18,19�. If energy input occurs in
discrete steps instead of continually and if thresholds are
random but not quenched, one finds quasiperiodicity com-
bined with power laws �20�. The SOC behavior fully breaks
down in OFC systems in one dimension �21�, where only
small and system-wide avalanches are observed.

Since dynamics become extremely slow for large system
sizes and for small values of the control parameter �implying
strong dissipation� it is very difficult to obtain reliable results
for the model based on computer simulations only. Thus, we
find in the literature contradicting results concerning the
transient time needed for the invasion of the self-organized
region from the boundary into the middle of the system, and
concerning the avalanche size distribution. While the tran-
sient time is found by some authors to scale with system size
with an exponent depending on the level of dissipation �11�,
this exponent is found by others to be a constant �22�, while
still others find that above some critical degree of dissipation
the invasion stops and never proceeds to the system’s center
�12�.

Similarly, the avalanche size distribution is found either to
be a power law with a universal exponent independent of the
level of dissipation for large enough system sizes �however,
different values for this exponent are reported in Ref. �23�
and in Refs. �6,7��, or a power law with a nonuniversal ex-
ponent �11,24�. Some authors found no power law at all
above a critical degree of dissipation, but disagree on the
value above which no power laws occur �25,26�. Still other
authors suggest that the dissipative OFC model is not critical
at all �just like the random-neighbor version of the model
�27�, which is a mean-field approximation �28–30��, but dis-
plays the new feature of being close to criticality, as men-
tioned above. If this is correct, only the conservative case
leads to power laws in the distribution of avalanches �8,9�.

By combining extensive computer simulations with ana-
lytical arguments, we will in this paper propose a phenom-
enological theory for the transient as well as the stationary
behavior particularly in the limit of large dissipation. The
most important conclusions are that the transient time in-
creases as a nonuniversal power law of the system size, and
that the avalanche size distribution will not approach a power
law with increasing system size.

The outline of the rest of this paper is as follows: In the
next section, we present the definition of the model and ex-
plain the simulation algorithm. Then, we investigate the tran-
sient dynamics that brings the system from a random initial
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state to the stationary state as function of the system size and
the model parameter. Section IV investigates the scaling be-
havior of the self-organized patches displayed by the system
in the stationary state. The results flow into the interpretation
of our simulation results for the avalanche size distribution,
which is studied in Sec. V. Finally, in Sec. VI, we summarize
and discuss our findings.

II. THE MODEL

The OFC model originated by a simplification of the
spring-block model by Burridge and Knopoff �31�. To each
site of a square lattice we assign a continuous variable zij
� �0,1� that represents the local energy. Starting with a ran-
dom initial configuration taken from a constant distribution,
the value z of all sites is increased at a uniform rate until a
site ij reaches the threshold value zt=1. This site is then said
to topple, which means that the site is reset to zero and an
energy ��zij is passed to every nearest neighbor. If this
causes a neighbor to exceed the threshold, the neighbor
topples also, and the avalanche continues until all zkl�1.
Then the uniform increase resumes. The number of topplings
defines the size s of an avalanche or earthquake. The cou-
pling parameter � can take on values in �0,0.25�. Smaller �
means more dissipation, and �=0.25 corresponds to the con-
servative case. Apart from the system size N, the edge length
of the square lattice, � is the only parameter of the model.
Except for the initial condition, the model is deterministic.
After a transient time, the system reaches an attractor of its
dynamics. For periodic boundary conditions, the attractor is
marginally stable and has a period of N2 topplings for all �
�12,17�. All avalanches have the size 1, and a site topples
again only after all its nearest neighbors have toppled. Mea-
sured in units of energy input per site, the period is 1−4�.
The behavior of the model is completely different for open
boundary conditions, which we are using throughout this pa-
per, and where sites at the boundary receive energy only
from three or two neighbors. They topple therefore on an
average less often than sites in the interior, leading to the
formation of “patches” of sites with a similar energy. Sites
within a patch topple within a short time interval, and from
time to time all sites belonging to the same patch participate
in the same avalanche. Patches can be identified by visual
inspection, but later in Sec. IV, we will evaluate their size
also numerically by using a properly defined correlation
length. The patch formation proceeds from the boundaries
inwards, and when the patch formation reaches the center of
the system, the simulations enter the stationary state, where
avalanche size distributions are evaluated.

Computer simulations of the model suffer from the long
times needed to reach the stationary state for large N or small
�. Most of the time is spent on searching for the site that will
start the next avalanche, i.e., for the site with the largest
value of z. Grassberger therefore used an algorithm that
searches only among the sites with the largest values of z
�12�. In our simulations, we used a different algorithm, based
on a hierarchical search. The system size is chosen to be a
power of 2. The system is divided into four boxes, each of
which is again divided into four boxes, etc., down to the box

on the lowest level, which consists of four lattice sites. Each
box knows which of its four subboxes contains the site with
the largest z value. Thus, the number of steps to find the site
with the largest z value is log2 N, since after an avalanche
only those boxes must be updated that have been affected by
the avalanche.

III. TRANSIENT TIME

The transient time is the time needed for the patch forma-
tion to reach the center of the system. Figure 1 shows a
system with N=128 and �=0.09 at three different times, the
last snapshot being taken in the stationary state. The energy
value of a site is encoded by its gray shade, with black cor-
responding to the energy value 0 and white to the value 1.

One clearly distinguishes the patches close to the bound-
aries and the disordered inner part of the system, which be-
haves as if it was part of a periodic system. The time needed
to establish a patchy boundary starting from a random initial
configuration is very short, and virtually all of the transient
time is needed to expand the patchy region to the entire
system. The patches become larger with increasing distance
from the boundary.

The first ones to investigate the transient behavior were
Middleton and Tang �11�, who found that the transient time
increases as a power of N, with an exponent that depends on
�. Later work on larger systems and for values of � larger
than 0.15 by Lise �22� found an exponent around 1.3, which
does not depend on �.

We will argue that the exponent does indeed depend on �,
and that it increases rapidly for �→0. Figure 2 shows our
simulation results for the transient time for different system
sizes N as function of �.

Each data point is based on the simulation of one system.
Averaging over several initial conditions is not possible be-
cause of the long computation times. We looked at snapshots
of the system at regular time intervals in order to see whether
dynamics have reached the stationary state. In order to make
sure that the system becomes stationary once the patch for-
mation has reached the center, we evaluated the avalanche
size distribution immediately after the patches had reached
the center, and at much later times. These distributions
agreed with each other. Further evidence for the stationarity
of the system once patch formation has reached the center
comes from the observation that patches that have been
formed initially do not change their characteristic size at later
times �see Sec. IV below�.

The transient time increases with decreasing � and in-
creasing N, and it becomes very large for �→0. For small �,
one might therefore obtain the impression that the dynamics
get completely stuck before the disordered block vanishes, as
was suggested by Grassberger �12�. However, we found no
solid evidence and no good reason why this process should
stop before the patches fill the entire system. The dashed-
dotted lines in Fig. 2 are a fit of the form �14�, which is a
generalized version of the result obtained in the following by
using mean-field-like arguments, and which will be dis-
cussed in more detail further below.

We start with a local balance equation, which will lead us
to an expression for the toppling profile as function of time.
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This consideration is similar to the one applied in Ref. �21�
to the one-dimensional model. Let tij be the mean number of
topplings of site ij per unit time. If site ij topples usually
when zij is at the threshold �and not above�, tij must equal the

mean amount of energy that this site obtains per unit time.
For small values of � this assumption is well satisfied. Let g
denote the rate of uniform energy input, and let �̃ denote the
average amount of energy passed to a neighbor during a
toppling event. For small �, the value of �̃ deviates very
little from �, and we therefore replace �̃ with �. When dis-
cussing the size distribution of avalanches further below, we
will see that with increasing system size the proportion of
avalanches larger than 1 decreases towards zero, implying
that the average amount of energy passed to a neighbor ap-
proaches � even for larger values of �, and that most sites
are exactly at the threshold when they topple, as was already
observered numerically in Refs. �17,32�. The assumption that
the value of �̃ is constant throughout time and throughout the
system is a mean-field assumption. While we neglect spatial
and temporal variations of �̃, we take into account other
aspects of the spatial structure, in particular the fact that the
toppling rate depends on the distance to the boundary. Due to
the approximations involved, we can expect that our theory
makes predictions that are qualitatively correct, but that the
quantitative features could be different.

With the mentioned assumptions, the balance equation
reads

tij = g + ��ti+1,j + ti−1,j + ti,j−1 + ti,j+1� . �1�

Now, we must take into account the structure of the system
during the transient time. The outer part consists of patches
of different sizes �24�, and sites sitting in the same patch
must topple equally often for the patch to persist for a long
time �which is observed by watching the system on the com-
puter screen�, and we treat therefore a patch as one effective
site. The patch size cannot be predicted by our mean-field
theory, since patches are the product of a local synchroniza-
tion process, and it will be determined further below by nu-
merical methods. Since toppling differences occur between
effective sites, the value of tij depends on the distance to the
boundary, measured in terms of the number of patches, x,
between site ij and the boundary. �We ignore here the fact
that the system has corners, which should not fundamentally
change the argument. In any case, one could consider a sys-
tem that is periodic in one dimension and open in the other,
in order to avoid corners altogether.� Sites in the disordered
block topple like in a system with periodic boundary condi-

FIG. 1. Snapshots for a system with N=128, �=0.09 after 105,
5�105 and 8�105 topplings per site. Darker gray shades indicate
lower energy values zij.

FIG. 2. Time measured in topplings per site until the inner block
vanishes for N=64 �circles�, N=128 �stars�, and N=256 �squares�
as function of �; the lines correspond to the function T�� ,N�
= f̃���N�̃��� as given below Eq. �14�.
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tions, i.e., they receive the same input from all four neigh-
bors. For these sites we have therefore t=g+4�t, or

t = t0 �
g

1 − 4�
. �2�

We now assume that the balance equation �1� must be
applied to effective sites and not to real sites, since the ef-
fective sites are the units that experience toppling differ-
ences. In terms of the parameter x, the above balance equa-
tion for the patchy part of the system becomes

t�x� = g + ��t�x − 1� + t�x + 1� + 2t�x�� , �3�

or, in a continuum notation

1 − 4�

�
t�x� −

d2

dx2 t�x� −
g

�
= 0. �4�

The boundary conditions are t�0�=0 �x=0 signifying the
nonexistent neighbor of a boundary site� and t�d�= t0, with
d−1 denoting the index of the patch next to the disordered
block. The solution of the balance equation is then

t�x� = t0�1 −
sinh���d − x��

sinh��d� � , �5�

where � is given by �=��1−4�� /�.
Next, we must consider the advancement of the patchy

structure into the inner part of the system. A site that is part
of the inner block can become part of a patch only if the
difference of its energy value z to that of its outer neighbor is
less than �. This difference changes with time due to the
different toppling rates. The patch next to the inner block
topples less often than a neighbor of that patch, which is part
of the inner block, the difference in the number of topplings
per unit time being t0�sinh���� / �sinh��d��, which is obtained
from �5� by inserting x=d−1. The difference in the number
of topplings per unit time is identical to the rate of change of
the difference in the energy value z between the two neigh-
bors. When this difference has increased by 1, it has taken
any intermediate value �in steps of size �� and has therefore
certainly assumed a value smaller than �. At that moment,
the site of the inner block becomes part of the patch. The
time �or number of topplings per site� needed to add an ad-
ditional site to a patch is therefore proportional to

nc��,d� 	
sinh �d

sinh �
. �6�

In the limit of small �, nc�� ,d� is given by

nc��,d� 	 exp�d − 1
��

� , �7�

which must be summed over all patches, weighted with the
mean size of each generation of patches. The total transient
time is therefore

T��,N� 	 

d=1

dmax��,N�

l�d�nc��,d� �8�

with l�d� being the extension perpendicular to the boundary
of a patch of type d. Below in Sec. IV, we will see that
l�d�	Q���d−1, where Q is a function of � only and ap-
proaches 1 �from above� for �→0. From the condition

N

2
= 


d=1

dmax

l�d� �9�

we obtain then

dmax��,N� �
ln�N�Q − 1�

2q0
+ 1�

ln Q
�

ln
N�Q − 1�

2q0

ln Q
�10�

for large enough system sizes. q0 is some constant �the ex-
tension of the patches of the first generation�. The result for
small � is therefore

T��,N� � �N�Q − 1�
2q0

�����

exp�− 2
��

� �11�

with the exponent ����=1+ 1
�� ln Q��� . Using the ansatz

Q���=exp�f����, also motivated in Sec. IV, with a leading
term f����A�a and A and a positive, yields

���� = 1 +
1

A�a+0.5 �12�

and

T��,N� � � N

2q0
f��������

exp�− 2
��

� . �13�

Inspired by this result of the mean-field theory, we expect
that the transient time is for small � given by an expression
of the form

T��,N� 	 f̃���N�̃���. �14�

The data shown in Fig. 2 agree with this expression, but
the details differ from the mean-field predictions. In order to

find a good fit for �̃��� and f̃���, we first plotted the loga-
rithm of the transient times for different � as function of
ln�N� and fitted the obtained curves by linear functions �̃x
+ t. The result for �̃ is shown in Fig. 3.

The values t��� were then fitted to obtain f̃���
=exp�t���� explicitly as function of �. The results are

f̃��� 	 exp�m� + l + C�c�

and

�̃��� 	 E exp�− e�� .

The numerical values of the parameters are m	887,
l	−35,C	−1079 and c	1.126 for the N-independent part
and E	15.00 and e	−15.53 for the exponent of N. While
the data for �̃ appear too good to allow for other fits, the
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function f̃��� might well have a somewhat different analyti-
cal form.

Thus, the simulation results do not show the nonanalytical
divergence of the mean-field theory, which was due to the
factor exp�d /��� in the number of topplings nc needed to
integrate the next site into patch number d. The dependence
of this factor on � in the two-dimensional system appears
from our fit to be instead the exponential of a negative ex-
ponential of �. But of course, since very small values of �
were not accessible to our simulations, we cannot rule out
that �̃ diverges after all for �→0. If this was the case, the
limit �→0 would agree with the case �=0, where the tran-
sient time is infinite.

IV. CORRELATION FUNCTION
AND CORRELATION LENGTH

As has become clear from the preceding section, the size
distribution of patches as function of N and � and of their
distance from the boundary is an important feature of the
system. It affects not only the transient time, but also the
avalanche size distribution, which will be discussed in the
next section.

We therefore investigate in this section how the extension
of the patches in the directions parallel and perpendicular to
the boundary increases with the distance from the boundary.
For this purpose, we evaluate the correlation function

C�r� = ��zij − zi,j+r�2 − �zij2 �15�

for a fixed distance i from the boundary for different times,
starting again at a random initial configuration. We per-
formed our simulations with systems that are periodic in the
direction of the second coordinate, i.e., site j+N is identical
to site j. We chose N=215 in order to obtain good statistics.
The length of the system in the other direction was chosen
just as large as needed, between 48 �for small �, where the
invasion front proceeds very slowly� and 512 �for large ��.

Figure 4 shows the correlation function for �=0.08 at
distance 10 and distance 20 �measured in number of sites�
from the boundary for three different times. One can see that
at distance 10 the correlation function does not change any
more with time, which means that the patch structure has
been established at least up to this depth before the first
measurement. We can furthermore conclude that the typical
scale of the patches at a given distance from the boundary
does not change any more when new patches are formed

further inside. At distance 20, we see that the correlation
function builds up with time from zero to an exponentially
decaying function C�r�	e−r/�. Figure 5 shows the correla-
tion length � for �=0.12 as a function of the distance to the
boundary for three different times. In the region where the
patches are already present, � appears to increase as a power
law in the distance from the boundary, and then falls down to
zero. We see again that � remains constant once the patches
have emerged. The large fluctuations seen before the de-
crease to zero occur in the region where the patches are just
being formed. Due to large fluctuations in space, the averag-
ing over the length of the system does not lead to a smooth
curve for the system sizes used.

Figure 6 shows the correlation length as function of depth
for different values of �. The data are compatible with a

FIG. 3. The exponent �̃��� as obtained from the data shown in
Fig. 2. The dashed line is the function 15 exp�−15.53��.

FIG. 4. Correlation function C�r� for �=0.08 for a distance d
=10 sites �top� and d=20 sites �bottom� from the boundary at three
different times �after 2570 �solid line�, 5130 �dashed line�, and
12 490 �dotted line� topplings per site�.

FIG. 5. Correlation length � as function of the distance d to the
boundary for �=0.12 after 650 �dotted line�, 1290 �dashed line�,
and 2570 �solid line� topplings per site.
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linear increase of � with the distance d from the boundary,
but with a factor that decreases with decreasing �. However,
we cannot rule out a power law �	d� with an exponent �
�1 that increases with �.

The linear �or power law� increase of the correlation
length together with the patchy structure leads to the follow-
ing schematic picture �see Fig. 7�.

The characteristic size of patches increases with distance
from the boundary. From one generation of patches to the
next, the width and height of the patches increase with fac-
tors P��� and Q���, respectively. In the case �=1, we have
P=Q. �Of course, the patches at a given distance from the
boundary do not all have exactly the same size, but a size of
the indicated order of magnitude.� From snapshots of the
systems, it is clear that P��� and Q��� increase with �. Fur-
thermore, there must be a lower bound of 1 to both factors in
the limit �→0. Thus, we can write Q���=exp�f���� with a
monotonically increasing function f��� and f�0�=0. The

leading dependence on � can be expected to be f���=A�a

with positive A and a.
The correlation length in the ith generation of patches

�counting from the boundary� is

� 	 Pi 	 d� �16�

and the distance from the boundary is

d 	 

j=1

i

Qj . �17�

Based on this picture, we can write down an expression
for the size distribution of patches, which will be an impor-
tant tool when discussing the size distribution of avalanches.
A line at the distance d from the boundary cuts through
	N /�h new patches of width � and height h	�1/�, through
which a line at the distance d−1 from the boundary does not
cut, since there are 	N sites along this line. The width dis-
tribution of patches is therefore given by

nP���d� =
N

�h
d�d� ,

leading to

nP��� 	
N

�2 . �18�

Transforming this into the size distribution nP�s� with s
	�h, we obtain

nP�s� 	 Ns−��1+2��/�1+���. �19�

In the likely case that �=1, we have an exponent −3/2 in the
size distribution of patches. Expressed in terms of P and Q
instead of �, the last equation becomes

nP�s� 	 Ns−�ln P/ln PQ�−1, �20�

where P and Q depend on �. This expression can also be
obtained directly from the recursion relation

� nP�sP���Q����ds =� nP�s�
1

P���
ds , �21�

where the integral is taken over one generation of patch
sizes.

V. AVALANCHE SIZE DISTRIBUTION

Now we turn to the size distribution of avalanches in the
stationary state. We made sure that the process of patch for-
mation has reached the center of the system, before we
evaluated the avalanche size distribution.

In view of the results in Sec. III, we are now in the posi-
tion to check how trustworthy the results reported in the
literature are. As was already pointed out by Grassberger
�12�, transient times are extremely long, and Refs. �1,33–35�
have considered stationary systems only for the largest val-
ues of �.

It appears that many avalanche size distributions pre-
sented in the last decade were actually obtained during the

FIG. 6. Correlation length � as a function of the distance d to the
boundary for �=0.06,0.09,0.12, and 0.15 �from bottom to top� at
the largest times simulated for a given value of � �solid lines�. The
dashed lines correspond to lines of slope 1.

FIG. 7. Schematic view of the system’s structure: the width and
height of patches increase with a power law in the distance to the
boundary. Different generations of patches are coupled via nc, the
increase in the size of the patches is P��� parallel to the boundary
and Q��� perpendicular to it, starting with a size s0= p0q0.
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transient stage. We can check this only when the authors
state how many initial avalanches they discarded for given N
and �. Unfortunately, not all authors write how they decided
if the system is in the stationary state. By observing statisti-
cal properties and comparing them at different times, one can
be mislead to believe that the system has become stationary,
although the advancement of the patches has only become
very slow. Generally, the larger � and the smaller the system
size, the more likely is it that the avalanche size distributions
in the literature were obtained in the stationary state. For
example, the results presented in Refs. �16,23� with L
=25,45 were probably not taken in the stationary state for �
below 0.2. Even Grassberger was evaluating avalanche size
distributions during the transient stage in some parameter
regimes.

While taking small system sizes has the advantage of
reaching the stationary state fast, they have the disadvantage
of being strongly affected by finite-size effects. It is therefore
very difficult to predict the avalanche size distributions in the
thermodynamic limit.

Figure 8 shows avalanche size distributions for varying �
with fixed N and for varying N with fixed �. The value of N
in the top figure has been chosen small enough that the sys-
tem could reach the stationary state even for the smallest
value of �, which was 0.03. We can discern the following
features:

�1� At least for value of � smaller than 0.17, the ava-
lanche size distribution is no power law. A fit of the form
n�s�	s−	���−
���ln s approximates the data much better than a
pure power law.

�2� n�s� changes its shape with increasing N, implying
that the system size affects the relative weight even of small
avalanches, at least for the system sizes considered. This
effect is stronger for smaller �. Only for the largest value of
� is the main effect of the finite system size a rather sharp
cutoff at N2.

�3� The weight of avalanches of size 1 increases with
increasing system size, while the weight of all larger ava-
lanches decreases as 1/N �see below�.

In the following, we will explain these features based on
the results obtained in the preceding sections, and on what is
known from literature. Described in words, the scenario is
the following: Patches persist for a long time before they
change their shape �24�, due to an avalanche that enters the
patch from outside �12�, and patches further inside the sys-
tem are rearranged less often. Large, patch-wide avalanches
are mainly triggered at the boundaries of the system �6�.
Whenever a patch-wide avalanche took place, there is a se-
quence of aftershocks with decreasing size according to
Omori’s law �18�, and after a short time there occur mostly
single topplings within a patch, until the next large avalanche
comes from a patch of the previous generation.

Let us quantify these statements. Analogous to the process
of synchronizing neighboring sites discussed in Sec. III,
neighboring patches also need a certain number nc��� of
patch-wide avalanches in the patch closer to the boundary,
before the inner patch experiences a patch-wide avalanche.
This can be evaluated using Eq. �5� for the situation that d
=dmax. We therefore obtain the recursion relation �compare
�21��

� npw�P���Q���s�ds =� npw�s�
1

P���nc���
ds , �22�

for the size distribution of patch-wide avalanches. If nc was
independent of the generation number i, this would result in
a power law npw�s��Ns−	���−1 with an exponent

	��� =
ln P���nc���
ln P���Q���

. �23�

For systems not too big, and for large enough �, there are
only a few generations, and the approximation of a constant
nc is not too bad. Evaluating Eq. �5� for small �, we obtain
the following result for nc that depends on the generation
index i:

FIG. 8. Size distribution of avalanches for different parameter;
top, system size N=64 and �=0.03,0.08,0.13,0.18, steeper curves
correspond to smaller �; the s axis extends up to the total number of
sites 4096; the distributions are normed on the total number of
topplings; solid lines correspond to f�s�	s−	−
 ln s. Middle and bot-
tom, size distribution for system sizes N=64,128,256,512; �
=0.09 �middle� and �=0.17 �bottom�; the distributions are divided
by n�2�.
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nc��,i� 	 exp� i − 1
��

� �24�

�see also Eq. �7��. Iterating Eq. �22�, we need to evaluate the
product

�
j=1

i � 1

P���nc��, j�� = � 1

P���
�i

exp�−
i�i − 1�

2��
� , �25�

which leads �using i	 ln s / ln PQ� to a size distribution of
patch-wide avalanches of the form

npw�s� 	 Ns−	���−1−
���ln s, �26�

where 	��� and 
��� are given by

	��� =
1

ln�P���Q�����ln P��� −
1

2��
� ,


��� =
1

2���ln�P���Q�����2
. �27�

Just as in the case of the transient time, we expect the precise
analytical form of 
 and 	 to be different from this result,
which is based on mean-field arguments. In particular the
factors 1 /�� will most likely be modified. However, the
qualitative features of our result are captured in the simula-
tion data, as will be shown below.

Now, we must estimate the effect of aftershocks on the
size distribution of avalanches. These aftershocks will lead to
an avalanche size distribution that differs from that of the
patch-wide avalanches. Aftershocks are avalanches that oc-
cur within a patch after a patch-wide avalanche. We assume
that their size distribution is a power law with a cutoff at the
size of the patch. This is motivated by the finding that sys-
tems that are dominated by one large patch display a power-
law size distribution of avalanches �see also Refs. �18,19��.
Therefore, we set

nas�s�s�� = s�	0s−	0��s� − s� ,

with nas�s �s�� being the number of aftershock avalanches of
size s in a patch of size s�, and with an exponent 	0, which
has a value around 1.8 �i.e., the value found in Ref. �7� for
systems that have essentially one large patch�. The size dis-
tribution of avalanches is then given by

n�s� � N�
s



npw�s��nas�s�s��ds�

= Ns−	0�
s



s�−	���−1−
���ln s�s�	0

	 Ns−	���−
���ln s �28�

apart from a factor containing terms that depend on ln s.
Thus, the avalanche size distribution is not a power law, but
it has an exponent that depends logarithmically on s. As we
have shown above, the data agree well with such a law. Fig-
ure 9 shows our results obtained for the coefficients 
 and 	
by fitting the avalanche size distribution with the expression
�28�. Although we can expect that the data are affected by

finite-size effects particularly for small �, they appear to co-
incide for different system sizes for larger �, and we see that
the functions 
��� and 	��� show a behavior that is in quali-
tative agreement with our expressions �27�: For small �, 	
decreases rapidly and will eventually become negative, while

 tends to large positive values.

The cutoff of the avalanche size distribution is determined
by the size of the largest patch. As this size becomes smaller
with smaller �, the cutoff decreases also. Furthermore, since
larger patches make a contribution to smaller avalanches via
aftershocks, the effect of the finite system size will be felt
down to avalanche sizes much smaller than the largest patch.
This is what is observed in the data.

Finally, let us discuss the weight of avalanches of size 1.
After a patch-wide avalanche and the resulting aftershocks, a
patch has single topplings �i.e., avalanches of size 1�, just as
a system with periodic boundary conditions, until a new
patch-wide avalanche comes from outside. The total number
of avalanches of size larger than 1 per unit time is given by

�
2



n�s�ds � N .

However, the total number of topplings per unit time is pro-
portional to the number of sites in the system N2. We con-
clude, that only a proportion of the order 1 /N of avalanches
has a size larger than 1.

VI. CONCLUSION

In this paper, we have shown that the transient time for
the OFC model increases as function of the system size N
and the coupling parameter � as T�� ,N�	N�̃��� with a func-
tion �̃ that increases rapidly with decreasing �. This finding
is in contrast to earlier predictions that the transient time
increases as a ��-independent� power law with system size
�22�, or that the transient time becomes infinite when � is
smaller than some value �12�. We obtained these results by
combining phenomenological arguments with a mean-field-
like calculation for the number of topplings per site and for
the advancement of the patchy structure into the inner part of
the system.

Furthermore, by evaluating the correlation length of the
energy values we found that the size of the patches appears

FIG. 9. The coefficients 
��� �lower set of curves� and 	���
�upper set� as function of � as found by fitting the distributions n�s�
for N=64, 128, and 256 for those values of � where stationary
systems were reached.
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to increase as a power law with the distance from the bound-
ary, leading to power-law size distribution of the patches.
Even if we assume that the size distribution of avalanches
within a patch is also a power law, we find based on the
results mentioned so far that the overall size distribution of
avalanches is no power law, but has a logarithmic depen-
dence in the exponent on the avalanche size, i.e., is of a
log-Poisson form. This finding is supported by the simulation
data and is valid at least for smaller �, where the system is
not dominated by one large patch.

We obtained our simulation results by using an efficient
algorithm, however, the sharp increase of the transient time
with system size especially for small � made it impossible to
study system sizes as large as necessary to see the true
asymptotic behavior of the avalanche size distributions.

Our findings are interesting for several reasons. First, the
OFC model appears to show many features found in real
earthquakes. As far as earthquake predictability �36� or
Omori’s law �18,19� are concerned, this model appears to be
closer to reality than others. If � is chosen above 0.17, the
avalanche size distribution agrees best with the Gutenberg-
Richter law �7�. Second, the OFC model demonstrates that
apparent power laws need not reflect a true scale invariance
of the system. We expect that this is true for many natural
driven systems. Due to the dynamics of the model, there
occur avalanches of all sizes, however the mechanisms pro-
ducing these avalanches are different on different scales.

Large avalanches are mainly patch-wide avalanches, while
smaller avalanches occur within patches during a series of
foreshocks or aftershocks. Also, avalanches at different dis-
tance from the boundaries have different sizes. The observed
“power laws” are thus dirty power laws, which appear like
power laws over a wide range of parameters and over a few
decades on the avalanche size axis, while the “true” analyti-
cal form is no power law. Third, the lack of a true scale
invariance is accompanied by a decreasing weight of ava-
lanches larger than 1 with increasing system size. This indi-
cates again that the avalanche size distribution of the model
does not approach some asymptotic shape with increasing
system size, but that the weights of different types of ava-
lanches shift with the system size. This effect has most
clearly been seen in one dimension, where the distributions
split into a �-dependent part at small avalanche sizes and a
peak at sizes of order of the system size. Fourth, the ex-
tremely long transient times point to the possibility that some
driven natural systems with avalanchelike dynamics are not
in the stationary regime either.
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