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Let G be a finite undirected graph with no  loops or  multiple edges. We define the Laplacian 
matrix of G, A(G), by Ai, = degree of vertex i and Ai, = - 1 if there is an edge between 
vertex i and vertex j .  In this paper we relate the structure of the graph G to the eigenvalues of 
A(G);  in particular we prove that all the eigenvalues of A(G)  are non-negative, less than or 
equal to the number of vertices, and less than or  equal to twice the maximum vertex degree. 
Precise conditions for equality are given. 

1. INTRODUCTION 

Let G be a finite undirected graph with no loops or multiple edges. We 
define the Laplacian matrix of G, A(G), by Aii = the degree of vertex i and 
A,, = - 1 if there is an edge between vertex i and vertex j. This matrix is 
discussed by Harary [ 5 ] .  Our name for A is chosen because A arises in 
numerical analysis as a discrete analog of the Laplacian operator [3]. In 
this paper we relate the structure of the graph G to the eigenvalues of 
A(G); in particular, we prove that all the eigenvalues of A are non- 
negative, less than or equal to the number of vertices, and less than or 
equal to twice the maximum vertex degree. 

There is a considerable body of literature relating the eigenvalues of 
the adjacency matrix of a graph to its structure [6]; except for Fisher's 
paper [2], little seems to be known about the Laplacian. 

The authors wish to thank Professor Henry P. McKean, Jr. for 
suggesting this study. 

* This is the original of a paper which has been widely circulated in preprint form, as 
University of Maryland technical report TR-71-45, October 1971. 
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2. PRELIMINARIES 

Our basic graph theory reference is Harary [5]. The definitions of A 
and E,  as well as Lemma 1, are taken from Chapter 13 of Harary. To 
define E, the certex-edge incidence matrix, we first orient G. Then E i j  = 1 
if edge j points toward vertex i,  Ei j  = - 1 if edge j points away from 
vertex i, and Eij = 0 otherwise. Let E* denote the transpose of E. 

LEMMA 1 A = EE*. 

Proof Two distinct rows of E will have a non-zero entry in the same 
column if and only if an edge joins the corresponding vertices; the 
corresponding entry will be 1 in one row and - 1 in the other, giving a 
product of - 1. Q.E.D. 

We will also need to consider the matrix N defined by N = E*E. The 
important property of N is that if ,? is a non-zero eigenvalue ofA, then it is 
also an eigenvalue of N ,  and conversely. In fact, if Ax = Ax with 3, # 0, 
then NE*x = E*Ax = AE*x so that A is an eigenvalue of N with 
eigenvector E*x. The matrix N of course depends on the choice of 
orientation; we will vary the orientation as needed. In particular, if G is a 
bipartite graph, we may point all edges toward vertices of one class. Then 
all entries of N are non-negative; in fact N = 21 + A, where A is the 
adjacency matrix of the line graph of G. Results about line graphs of 
bipartite graphs thus translate directly into the present context [I]. 

If M is a matrix, let p ( M )  denote the spectral radius of M. 
Let G denote the graph complementary to G. That is, G has the same 

set of vertices as G, and vertices v and w are joined in G if and only if they 
are not joined in G. 

Let K ,  denote the complete graph on n vertices. 

3. THE GLOBAL STRUCTURE OF G 

In this section we obtain bounds for the eigenvalues of A(G) in terms of 
the number of vertices and the number of components of G. 

LEMMA 2 The eigenvalues of A(K,) are 0, with multiplicity 1,and n ,  with 
multiplicity n - 1. 

Proof Let u be the vector with all components equal to  1; then 
A(K,)u = 0. If x is any vector orthogonal to u, it may be easily verified 
that A(K,)x = nx. Q.E.D. 
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THEOREM 1 If thegraph G has n vertices, and 2 is an eigenvalue of A(G)  
then 0 < i 6 n. The  multiplicity of 0 equals the number of components of 
G ;  the multiplicity of n is equal to one less than the number of components 
of c. 

Proof Suppose A is an eigenvalue of A. Then for some vector x ,  with 
ljxlj = 1, AX = AX. Thus 2 = (Ax, X )  = ( A X ,  X )  = (EE*x, X )  = ~ I E * x ~ / ~ .  
Therefore A is real and non-negative. 

Let the vertices v,, . . . ,zl, be the vertices of a connected component of 
G ;  then the sum of the corresponding rows of E is 0, and any K - 1 of 
these rows are independent. Therefore the nullity of E, and thus of EE*, is 
equal to the number of components of G. 

If G has n vertices, then A(G) + A(G) = A(K,). If u is the vector with all 
components 1, then A(G)u = A(G)u = A(Kn)u  = 0. If A(G)x = Ax for 
some vector x orthogonal to u, then using Lemma 2 we have A(G)x = 

A(Kn)x  - A(G)x = (n - A)x. Since the eigenvalues of A(G) are also non- 
negative, we must have A < n. Moreover A = n if and only if A ( G ) X  = 0, 
and the dimension of the space of such vectors is one less than the nullity 
of A(G) (since all such x are orthogonal to u). Q.E.D. 

f GROLLARY If G has n vertices, and A = n is an eigenzjalue of A(G),  then 
G is connected. 

Proof If G were not connected, then G would be, and by the theorem 
n could not be an eigenvalue of A(G). Q.E.D. 

4. THE LOCAL STRUCTURE OF G 

In this section we obtain an upper bound for the eigenvalues of A(G) in 
terms of vertex degrees. 

Before proceeding we need to recall afew facts from the theory of non- 
negative matrices; our basic reference is Chapter XI11 of Gantmacher 
[4]. Briefly, a matrix M is said to be non-negative if M i j  3 0 for all i and j. 
If M is a matrix, denote by M +  the matrix obtained by replacing each 
entry of M by its absolute value. If M is irreducible, and A is an eigenvalue 
of M, then 111 < p(M+) ,  with equality if and only if M = ei4DM+D-' 
where D+ = I. For an irreducible non-negative matrix M, p(M) 6 the 
maximum row sum with equality if and only if all row sums are equal. 

THEOREM 2 Let G be a graph. Then p(A(G)) 6 Max(deg v + deg w )  
where the maximum is taken over all pairs of vertices (v, w )  joined by an 
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edge of G. I f  G is connected, then equalitjt holds i f  and only if G is bipartite 
and the degree is constant on each class of tlertices. 

Proof We will work with the matrix N rather than A. 
First consider a connected graph G, then N is irreducible, and thus 

p(N) 6 p(N+)  6 maximum row sum of N'. But if e is an edge of G 
joining vertices c and w, then the row sum in the row corresponding to e 
is deg v + deg w. The inequality is thus established for connected graphs. 

If G is bipartite, then we may orient G with all edges pointing toward 
the vertices in one of the two classes; thus N(G) = N+(G). Then 
p(N) = max row sum if and only if all row sums are equal; i.e. if and only 
if the condition of the theorem holds. Equivalently, equality holds if and 
only if the line graph of G is regular. 

If G is not bipartite, then we will show that p(N) < p(N+),  so that 
equality cannot hold in the theorem. In fact, suppose N = e i 4 ~ N + ~ - l .  
Then since Nii = 2 ,  we have 2 = e i $ . D i i . 2 .  D;', so that ei4 = 1. Now 
suppose that the edges 1 , .  . . , K form an odd cycle (if no odd cycle exists, 
then G is bipartite); we may orient G so that the corresponding entries of 
N are - 1. Then N , ,  = -1 = D l , .  1 .  D Z ,  so that D,, = - D l , ;  
continuing around the cycle we have D l ,  = - D l , ,  contradicting the 
requirement that D+ = I. Therefore, if G is not bipartite, equality cannot 
hold in the theorem. 

If G is not connected, the inequality, and the corresponding equality 
statement, follow by applying the theorem to each component 
separately. Q.E.D. 

COROLLARY Let G be a connected graph. Then p(A(G)) 6 twice the 
maximum certex degree with equality i f  and only if G is a regular bipartite 
graph. 

Proof This is a special case of the theorem. Q.E.D. 

5. EXPLICIT COMPUTATIONS 

Theorems 1 and 2 were conjectured from explicit computations with 
eigenvalues; many of these were done on a digital computer. Some of 
these results are stated below; the reader may verify them without 
difficulty. 

If G is the complete bipartite graph K,,n, then the eigenvalues of A(G) 
are m + n, m,  n,  0 with respective multiplicities 1, n - 1 ,  m - 1,  1. 
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If G is the cycle with n vertices, then the eigenvalues of A(G) are 
4 s i n2 (n~ /n ) ,  K = 1,2 , .  . . , n. 

If G is the path with n vertices, the eigenvalues of A(G) are 
4 sin2(nK/2n), K = 0. 1,. . . , n - 1. 

If G is the wheel with n + 1 vertices, the eigenvalue of A(G) are n + 1,1, 
and 1 + 4 sin2(nK/n), K = 1 , 2 , .  . . , n - 1. 
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