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Estimating Causal Peer Influence in Homophilous
Social Networks by Inferring Latent Locations
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Abstract

Social influence cannot be identified from purely observational data
on social networks, because such influence is generically confounded with
latent homophily, i.e., with a node’s network partners being informative
about the node’s attributes and therefore its behavior. If the network
grows according to either a latent community (stochastic block) model,
or a continuous latent space model, then latent homophilous attributes
can be consistently estimated from the global pattern of social ties. We
show that, for common versions of those two network models, these esti-
mates are so informative that controlling for estimated attributes allows
for asymptotically unbiased and consistent estimation of social-influence
effects in linear models. In particular, the bias shrinks at a rate which di-
rectly reflects how much information the network provides about the latent
attributes. These are the first results on the consistent non-experimental
estimation of social-influence effects in the presence of latent homophily,
and we discuss the prospects for generalizing them.

1 Introduction: Separating Homophily from So-
cial Influence

It is an ancient observation that people are influenced by others (nearby) in their
social network—that is, the behavior of one node in a social network adapts or
responds to that of neighboring nodes. Such social influence is not just a curios-
ity, but of deep theoretical and empirical importance across the social sciences.
It is also of great importance to various kinds of social engineering, e.g., mar-
keting (especially, but not only, “viral” marketing), public health (over-coming
“peer pressure” to engage in risky behaviors, or using it to spread healthy ones),
education (“peer effects” on learning), politics (“peer effects” on voting), etc.
Conversely, it is an equally ancient observation that people are not randomly
assigned their social-network neighbors. Rather, they select them, and tend to
select as neighbors those who are already similar to themselves. (This is not
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necessarily because they prefer those who are similar; all more-desirable poten-
tial partners might have already been claimed or otherwise excluded [Martin)
2009].) This homophily means that network neighbors are informative about
latent qualities a node possesses, providing an alternative route by which a
node’s behavior can be predicted from their neighbors. Efforts to separate ho-
mophily from influence have a long history in studies of networks [Leenders,
1995|. Motivated by the controversy over [Christakis and Fowler| [2007], [Shalizi
and Thomas| [2011] showed that unless all of the nodal attributes which are
relevant to both social-tie formation and the behavior of interest are observed,
then social-influence effects are generally unidentified. The essence of this result
is that a social network is a machine for creating selection biasﬂ

Shalizi and Thomas| [2011} §4.3] did hint at a possible approach for identi-
fication of social influence, even in an homophilous network. When a network
forms by homophily, a node is likely to be similar to its neighbors. Follow-
ing this logic, these neighbors are likely to be similar to their neighbors and
therefore the original node. In the simplest situations, where there are only a
limited number of node types, this means that a homophilous network should
tend to exhibit clusters with a high within-cluster tie density and a low density
of ties across clusters. Breaking the network into such clusters might, then, pro-
vide an observable proxy for the latent homophilous attributes. The same idea
would work, mutatis mutandis, when those attributes are continuous. [Shalizi
and Thomas| [2011] therefore conjectured that, under certain assumptions on
the network-growth process (which they did not specify), unconfounded causal
inferences could be obtained by controlling for estimated locations in a latent
space. Subsequently, [Davin et al.| [2014] and [Worrall [2014] showed that, in lim-
ited simulations, such controls can indeed reduce the bias in estimates of social
influence, at least when the network grows according to certain, particularly
well-behaved, models.

In this paper, we complement these simulation studies by establishing suf-
ficient conditions under which controlling for estimated latent locations leads
to asymptotically unbiased and consistent estimates of social-influence effects.
Additionally, we show that for a particular class of network models, the remain-
ing finite-sample bias shrinks exponentially in the size of the network, while
this bias shrinks polynomially for a more general class of network models. To
the best of our knowledge, our results provide the first theoretical guarantees of
consistent estimation of social-influence effects from non-experimental data, in
the face of latent homophily. Additionally, we provide our own simulations to
support and explore our theoretical results.

Section [2| lays out the basics of our setting, starting with assumptions about
the processes of network formation and social influence (and the links between
them), and rehearsing relevant results from the prior literature on latent com-
munity models (§2.2) and continuous latent space models (§2.3). Section
presents our main results about the asymptotic estimation of social influence in
the presence of latent homophily (proofs are deferred to . Section [4| provides
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a set of simulations that confirm our theoretical results and explore settings that
diverge from ours. Section [5] discusses the strengths and limits of our results in
the context of the related literature.

2 Setting and Assumptions

The graphical causal modeﬂ capturing social influence in our setting is shown
in Figure More specifically, we are interested in the patterns of a certain
behavior or outcome over time, across a social network of n nodes. The behavior
of node i € {1,...,n} at time ¢t € {1,...,T} is observed and represented by
random variable Y;; € R, for some given time-horizon 7". Social network ties
(or links) are also observed and represented through an n x n adjacency matrix
A, with A;; = 1 if 4 receives a tie from j, and A;; = 0 otherwise. In many
contexts these ties are undirected, so 4;; = A;;, but generally our results do not
require this. (In the latent community setting [, the procedure considered
by |Gao et al|[2017] assumes an undirected network, and therefore the results of
ours which rely on that procedure also make this assumption.) As this notation
suggests, we assume that the network of social ties does not change, at least
over the time-scale of the observationd?|

In addition to the observed behaviors and ties of node i, we assume there
exist a d-dimensional latent vector C; which controls its location in the net-
work; we define C' as the array [C1,Cs,...,Cy]. Furthermore, we assume that
Pr(A;; = 1|C) = w(C;, C;) for some measurable function w, and that the ran-
dom variables A;; and A;,,, are conditionally independent given C, V 4, j # [, m.
The time-invariant vector X; represents the set of all other (i.e., network irrel-
evant) attributes for node 4, which effect Y;; but not A;;.

The linear structural-equation model that explains the behavior of node i at
time ¢ is thus

> (YjieAsj)
> Aij

where 77 and v, serve as appropriately-sized vectors of coefficients. Under
the assumptions of linearly-independent regressors and strict exogeneity—i.e.,
E (€ t+1|Yit, Aij, Ci, X;] = 0 Vi, j, t—our goal is to identify, and estimate, 3, the
coefficient for social influence. Given that we neither observe X; nor C;, we
cannot estimate the regression coefficients in a model of the form presented in

Yitvi=ao+ oY+ 3 + 9 Ci + 71 Xi+ €y (1)

2We do not mean to take sides in the dispute between the partisans of graphical causal
models and those of the potential-outcomes formalism. The expressive power of the latter
is strictly weaker than that of suitably-augmented graphical models [Richardson and Robins)
2013|, but we could write everything here in terms of potential outcomes, albeit at some cost
in space and notation.

3Latent space modeling of dynamic networks is still in its infancy. For some preliminary
efforts, see, e.g., DuBois et al.| [2013], |(Ghasemian et al.| [2015] for block models, and |Sarkar|
and Moore| [2006| for continuous-space models.
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Figure 1: The graphical causal model for our setting. Boxes indicate observ-
ables, and circles latent variables; solid lines indicate causal relations between
observables (either autoregressive or peer-influence), while dotted lines indicate
the influence of latent homophilous variables, and dashed lines indicate the in-

fluence of other covariates. For simplicity, we omit Y (j,¢ 4+ 1) and Y (I,¢ + 1),
as well as their associated arrows.



. However, we can estimate the coefficients of the following model:

> (YieAij)

Ty A4, +90 Ci + Mgt (2)
; Aij

Yitvi =ap+ oY+ B

where C; is an estimated or discovered location for node i and the noise term
Mi,t+1 can be defined as

Mitr1 = €is1 + 73 Xi+ (Vfci - %:)Féi) :
Our general setting is therefore defined by an additional assumption:
XLy |Cs. (3)

The assumptions of independence must be justified on substantive grounds, in
the specific context of the study where social influence is being estimated.

2.1 Discussion on the General Setting

We find it beneficial to provide intuition on how various facets of our setting
enable the identification of social-influence effects. We begin by recognizing that
the relatively permanent attributes of node ¢ can be divided in two cross-cutting
ways. On the one hand, some attributes are (in a given study) observable or
manifest, and others are latent. On the other hand, a given attribute could be
a cause of the behavior of interest Y;, or a cause of network ties (A;;), or of
both. (Attributes which are irrelevant to both behavior and network ties are
ignored here as they have no bearing on our ultimate goal).

One of the key assumptions embedded in our tie formation process (i.e.,
Pr(A4;; = 1|C) = w(C;, C;)) is that all of the network-relevant attributes of node
1 can be represented by a single vector-valued latent variable C;, whether or not
they are also relevant to the behavior of interest. There may be attributes that
are incorporated into C; which are relevant only to network ties, not behavior,
and independent of the other attributes; these are of no concern to us, and can be
regarded as part of the noise in the tie-formation process. Network models that
satisfy this assumption—i.e., that all ties are conditionally independent of each
other given the latent variables for each node—are sometimes called “graphons”
or “w-random graphs” and are clearly exchangeable (permutation-invariant)
over nodes. Conversely, the Aldous-Hoover theorem [Kallenberg, 2005, ch. 7]
shows that this condition is, in fact, the generic form of exchangeable random
networks. Our subsequent assumption, speaking roughly, is that by observing
the whole network A;; (which inherently includes the information it contains
with respect to the latent array C), Y;; provides no additional information (in
the limit) for node 4’s latent location C;.

We also recognize that as a result of the assumptions of linear-dependence
and strict exogeneity in , if all the variables relevant to tie-formation and node
behavior are observed, the ordinary least squares (OLS) estimator provides an



unbiased estimate (BO 1s) of 8. However, since C; and X; are both unobserved,
and therefore their effects are contained in the n; 141 of , BO s will generally
contain omitted variable bias if either of these latent variables are correlated
with Y}, conditional on the observed regressors. Intuitively, the latent nature
of X; will not produce bias because implies that given estimated locations,
nothing can be learned about a node’s unobserved, network-irrelevant attributes
by observing a neighbor’s behavior (or vice-versa). Mathematically, this means
that the contribution of 'yg X; to m; 41 is uncorrelated with Yj,, given the
estimated locations, and therefore this term does not bias the estimates of /3;
instead it just increases the variance of the noise term. It is also not necessary
that E[n; +1] = 0; if it has a non-zero value, it would then be incorporated into
the estimate of the intercept (), and therefore not induce bias in 5. We have
therefore to only consider the other contribution to n; 141, (1Ci — ’Yoéz'), and
whether it is correlated with Yj; given C; and Yi:.

|C; — ;| is the error in estimating the true location, which manifests as
measurement error in OLS estimation of § in . Given that Yj; is a causal
descendant of C;, and C; is positively correlated with C; if 4;; = 1 (from
homophily), this measurement error induces bias in the estimate of 5. Intuitively
(and formally shown in Lemmabelow) if ¢ = C (i.e., there is no measurement
error) the OLS estimate of § in will be unbiased and consistent; although,
this estimate will likely have a larger variance than would the OLS estimate of
B from , given that the former estimate does not control for X;. It should
further be plausible (and is formally shown in §3| below) that if C' is a “good
enough” estimate of C—i.e., one which is consistent and converges sufficiently
rapidly—the covariance between 7,41 and Y;; shrinks fast enough that the
OLS estimate from will still yield asymptotically unbiased and consistent
estimates of 5. Essentially, the OLS estimator for § in trades-off the bias
(experienced by the OLS estimator for 3 in (1)) from omitting the latent location
variable C;, with the bias from measuring (estimating) the location imprecisely
with ;. However, the ability to obtain a “good enough” estimate of C' will make
this trade-off worthwhile; if the measurement error converges to zero, then the
bias it induces should also converge to zero, while the omitted variable bias
persists.

There does not (yet) exist results providing such “good enough” estimates
of latent node locations C' for arbitrary graphons. For this reason, our re-
sults specialize to two settings, where the latent node locations C' and the
link-probability function w take particularly tractable forms: latent commu-
nity (stochastic block) models and the more general (continuous) latent space
models. Both model types have been extensively explored in the literature.
It is by building on results for these models that we can find regimes where
the social-influence coefficients can be estimated consistently. It is, however,
worth noting that for any graphon model where “good enough” estimates of
latent node locations C' exist, an analog to our results for latent space models
(Theorem [2]) can be built.



2.2 The Latent Communities Setting

In our first setting, we presume that nodes split into a finite number of discrete
types or classes (k), which in this context are called blocks, modules or com-
munities. More precisely, there exists a function o: {1,...,n} — {1,...,k}
assigning nodes to communities. We specifically assume that the network is
generated by a stochastic block model, which is to say that there are k£ com-

munitie that o (7) “ p, for some fixed (but unknown) multinomial distribution
p, and that w is given by a k x k affinity matrix, so that

Pr(Ay; =1|o(i) = a,0(j) =b) = was -

We may translate between o (a sequence of categorical variables) and our earlier
C (an nxd matrix of node locations) by the usual device of introducing indicator
or “dummy” variables for k — 1 of the communities, so that C; is a k — 1 binary
vector (i.e., d = k — 1) which is a function of o (i) and vice versa. Each possible
value of Cj is either the origin, or a corner of the simplex; this basic observation
will be important below.

The objective of community detection or community discovery is to provide
an accurate estimate & or C' from the observed adjacency matrix A, i.e., to say
which community each node comes from, subject to a permutation of the label
set. (“Accuracy” here is often measured as the proportion of mis-classification.)
Since the problem was posed by |Girvan and Newman| [2002] a vast literature
has emerged on the topic, spanning many fields, including physics, computer
science, and statistics; see [Fortunato| [2010] for a review. However, we may
summarize the most relevant findings as follows.

1. For networks which are generated from latent community models, under
very mild regularity conditions, it is possible to recover the communities

consistently, i.e., as n — oo, Pr (C’ #+ C) — 0 |Bickel and Chenl, [2009,

Zhao et al., |2012]. That is, with probability tending to one, all of the
community assignments are correct, up to a global permutation of the
labels between C' and C.

2. Such consistent community discovery can be achieved by algorithms whose
running time is polynomial in n.

3. The minimax rate of convergence is in fact exponential in n (and can be
achieved by the algorithms mentioned below).

These points, particularly the last, will be important in our argument below,
and so we now elaborate on them.

Recently, Zhang and Zhou [2016] proved that under very mild regularity
conditions the minimax rate of convergence for undirected networks generated

4Some of the theory we rely on below allows the number of communities to grow with the
size of the network, though with at a rate posited to be known a priori, and not too fast. We
leave dealing with this complication to future work.



from latent community models is in fact exponential in n. Furthermore, |Gao
et al.| [2017] exploits techniques provided by [Zhang and Zhou| [2016] to propose
an algorithm polynomial in n that achieves this minimax rate, under slightly
modified but equally mild regularity conditions. More precisely, |Gao et al.
[2017] considers a general undirected stochastic block model, parametrized by
n, the number of nodes; k, the number of communities; ¢ and « > 1, where
2 = min; w(i,4) < max; w(i,i) < 22, ensuring that within-community edges
are “sufficiently” dense; b, where % < ﬁzi# w(i, ) < max;z;w(i,j)2,
with 0 < % < & < 1, ensuring that between-community edges are “suf-
ficiently” sparse; and 8 > 1, where the number of nodes in community k,

ng € [ﬁ, %L], ensuring that community sizes are “sufficiently” comparable.

Zhang and Zhou [2016] and |Gao et al| [2017] diverge slightly as the former
only requires max;.; w(i,j) < 2 and ¢ < min; w(i,i). Additionally, the latter
slightly restricts the parameter space by requiring the k' singular value of the
affinity matrix w to be greater than some parameter A\. The general context
of the theory described in |Zhang and Zhou [2016], (Gao et al.| [2017] is defined
for absolute constant 5 > 1 and also in |Gao et al.|[2017] for absolute constant
a > 1, while k, a, b, and X are functions of n and therefore vary as n grows.
However, in our context, the network does not change (over the time-scale of
interest); therefore, we only consider latent communities where &, =, %, and \
are also absolute constants. We shall refer to this whole set of restrictions on
the latent community model as “the GMZZ conditions”.

For a latent community model satisfying the GMZZ conditions, the minimax
rate of convergence for the expected proportion of errors is

exp (-(1 + 0(1))”2]), k=2 (@)

nl
exp( (1—&—0(1))@7{:)7 k>3, (5)
where T is the [Rényi| [1961] divergence of order % between two Bernoulli distri-
butions with success probabilities (%) and (%): D% (Ber (%) || Ber (%)) Recall
that 8 in addition to k, &, % are, in our context, constant in n; therefore, (4))
and (5]) both reduce to exp (—O(n)). The algorithm of |Gao et al.|[2017] achieves
this rate at a computational cost polynomial in n. More specifically, the time
complexity of the algorithm is (by our calculations) at most O(n?), but we do
not know whether this is tight. It would be valuable (but beyond the scope of
this work) to know whether this rate is also a lower bound on the computational
cost of obtaining minimax error rates, and if the complexity could be reduced
in practice for very large graphs via parallelization.

We close this section by introducing a bit of notation (which will simplify
some later statements) and making a claim (which will be supported later). We
will write 6(n) for the error probability, i.e., the probability that C; # C; for at
least one ¢ € 1 : n. The claim is that even though the results of [Zhang and Zhou
[2016] and |Gao et al.[[2017] concern the proportion of mis-classified nodes, they



actually constrain the probability of making any mis-classifications at all, and
imply 6(n) = e"9™ (Lemma .

2.3 The Continuous Latent Space Setting

The second setting we consider is that of continuous latent space models. In this
setting, the latent variable on each node, Cj, is a point in a continuous metric
space (often but not always R¢ with the Euclidean metric), and w(C;, C;) is a
decreasing function of the distance between C; and C}, e.g., a logistic function of
the distance. This link-probability function is often taken to be known a priori.

The latent locations C; “p , where F' is a fixed but unknown distribution,
or, more rarely, a point process. Different distributions over networks thus
correspond to different distributions over the continuous latent space, and vice
versa.

Parametric versions of this model have been extensively developed since
Hoff et al|[2002], especially in Bayesian contexts. Less attention has been paid
to the consistent estimation of the latent locations in such models, than to
the estimation of community assignments in latent community models. Recent
results by |Astal [2015] ch. 3], however, show that when w is a smooth function
of the metric whose logit transformation is bounded, the maximum likelihood
estimate C converges to C. Moreover, the probability of an error of size € or
larger is O(exp (—HG’RQ)), where the constant £ depends on the purely geometric
properties of the space (see below). This result holds across distributions
of the C;, but may not be the best possible rate.

3 Control of Confounding

Given the (assumed) true structural equation in , our ultimate goal is to
provide both an estimator of 3, and the corresponding sufficient conditions
under which that estimator will have desirable statistical properties. Recall
that these properties of the estimator are evaluated in the presence of estimated
or discovered node locations C , rather than the true locations C'. Going forward,
therefore, unless otherwise noted, our estimator of interest is OLS for 3 in .
Finally, all proofs of the results stated below are provided in §6]

We begin by establishing this estimator’s properties in a baseline case: when

the estimates of node locations are perfect, Pr (C #+ C‘) = 0.

Lemma 1. Under the assumptions from Section |2, if Pr (C’ #* C’) = 0, then

the ordinary least squares estimate of B in is unbiased and consistent.

Given that we establish that OLS estimator will exhibit unbiasedness and
consistency, when node locations can be perfectly inferred, let us now consider
its properties when the node location are inferred with error. The covariance

. . (Y6 Aij . . .
of interest is that between % and the contribution to the error—i.e.,
J 52



Mi,t+1 10 —arising from using the estimated rather than the real communities.
We have seen (, that in our setting, under assumption , this term is
just v{C; — A& C;. Moreover, we will only need to consider that covariance
conditional on C; and C’j, and the other regressor in , ie, Y.

Lemma 2. Suppose that the assumptions from Section[q hold. Then

>, (YjiAi)
Ay
Zj Aij’y,ir (COV [CZ, C]|A] + QjVar [CZ|A] + Zl;ﬁi,j CileOV [Cz, C’”AD Y1

; 225 Aij ’

where by Cov [C;, C;] we mean the d x d matriz of coordinate-wise covariances,
and similarly for Var[C;], and the £s and (s are constants calculable in terms
of the model coefficients and the adjacency matriz (and are made explicit in the
proof of the lemma).

Cov (11 C; =18 Ci)|A, Vi (6)

Lemma establishes an important relationship between the bias experi-
enced by the OLS estimator and the degree of homophily in the network. Recall
that we observe a network (represented by A) whose ties are formed under ho-
mophily, based on (unobserved) node locations. Furthermore, it is precisely the
fact that this network is observed (and conditioned on) that opens the confound-
ing backdoor pathway in the causal graph (Figure . For clarity, the network
is conditioned on because it enables the true structural equation to select if
the behavior of node 7 is regressed on the behaviors of nodes j. Moreover, when
homophily has a large impact on tie formation, the value Cov [C;, C;] will be
large, as node i will have more connections from closer nodes j (i.e., roughly,
C; = C;). We then recognize that although observing the network A (and failing
to observe the latent locations C') opens the homophilous confounding pathway,
the network also manifests this homophily in the ties that are formed, which
can be used to form estimates of the latent locations C'. Further, condition-
ing on A implies conditioning on C; and C'j, as they are deterministic (albeit
complicated) functions of A. From Lemma we then see that the bias in our
estimate BO s is proportional to the amount of covariance between the true
latent locations of nodes that share a tie, beyond that which is accounted for
by their location estimates. Therefore, when this conditional covariance is zero,
BO s is unbiased and consistent.

There are two individually sufficient (but not necessary) conditions for (6]
to be zero:

1. CiJLCj|C'i, C'j, i.e., C; and C; are independent given their estimates,
2. C; = C; and C; = C’j, i.e., C; and C; are equal to their estimates.

The second condition will generally not be true at any finite n. The first con-
dition is also very strong; it implies that C is (roughly speaking) a sufficient

10



statistic for C'. This sufficiency property implies that even in learning C; (the
true location of node i) we obtain no additional information about C; (the lo-
cation of any other node j) not already captured in C. We are not aware of any
estimates of latent node locations in network models which have such a suffi-
ciency property, and we strongly suspect this is because they generally are not
sufficient. (To get a sense of what would be entailed, suppose that A;; = 1, and
we knew we were dealing with a homophilous latent community model. Then
C would have to be so informative that even if an Oracle told us C;, our poste-
rior distribution over C; would be unchanged.) We may, however, make further
progress in the two specific settings of latent communities and of continuous
latent spaces.

3.1 Control of Confounding with Latent Communities

Let us first consider the setting where the network formation is that of a ho-
mophilous latent community process, which follows the conditions laid out in
§22] In such a setting, we can make additional statements with respect to the
Cov [C’i, C; ’C’“ C’]] , and subsequently the bias experienced by the OLS estima-
tor. More specifically, these statements are made assuming a deterministic and
minimax algorithm—one that achieves the minimax rate of convergence for the

expected proportion of node location errors —is utilized to estimate C' as in
Gao et al.| [2017].

Lemma 3. Suppose that the assumptions from Section [3 hold, the network
forms according to a latent community model, satisfying the GMZZ conditions,
and C' is estimated using a minimaz algorithm. Then

Pr <i ]l{él 7& Cz} Z 1) S e_O(").

7

We therefore have that the probability of making any error in the estimation
of latent node locations converges (exponentially) to zero in n. This result from
Lemma 3| will play a critical role in proving the next result:

Lemma 4. Suppose that the assumptions from Section |4 hold, the network
forms according to a latent community model, and C is estimated by a deter-
ministic algorithm with error rate 6(n). Then

Cov [C;, C4|A] = O(3(n)).

If, in addition, the latent community model satisfies the GMZZ equations,
and C is estimated using a minimaz algorithm, then

Cov [Cy,C4A] = O (e—0<">> .

The ability to not only show the convergence of Cov [C;, C;|A], but also its
rate of decay for finite-n leads to a number of important conclusions.

11



Theorem 1. Suppose that the assumptions from Section [3 hold, the network
forms according to a latent community model, and C is estimated with error rate
d(n). Then the ordinary least squares estimate for B in is asymptotically
unbiased and consistent, and the pre-asymptotic bias is O(6(n)). If, in addition,
the latent community model satisfies the GMZZ conditions and C is estimated
using a deterministic and minimax algorithm, then the pre-asymptotic bias is
exponentially small in n.

We suspect that it is also possible to provide a precise expression of a de-
terministic finite-n bound on the bias—Ilikely as the solution to an optimization
problem involving (unknown) parameters of the structural equation —but
leave this as a useful topic for future investigation.

Note: We have stated Lemma |4 and Theorem [1| (and the subsidiary Lemma
5) in two parts to clarify that most of their logic will apply whenever some
deterministic algorithm is capable of community discovery with a vanishing
error rate 6(n). The GMZZ conditions are invoked as regularity conditions under
which §(n) can be made exponentially small at only a polynomial computational
cost. If the GMZZ conditions are implausible for a particular application, but
some other algorithm can, in that situation, deliver §(n) — 0, then it can be
used instead within the scope of our analysis.

3.2 Control of Confounding with Continuous Latent Space

We now turn our attention to setting where the network follows a homophilous
continuous latent space model. Recall that our treatment of the latent commu-

nity setting relies on the fact that Pr (C' #* C) — 0, i.e., with probability tend-

ing to one the estimated communities match the actual communities exactly.
Importantly, this is not known to happen for continuous latent space models,
and seems very implausible for estimates of continuous quantities, however we
still can make progress.

As mentioned in Astal[2015] ch. 3] has shown that if the link-probability
function is known and has certain natural regularity properties (detailed below),
then the probability that the sum of the distances between true locations and
their maximum likelihood estimates exceeds € goes to zero exponentially in en?
(at least). More specifically, the result requires the link-probability function to
be smooth in the underlying metric and bounded on the logit scale, and requires
the latent space’s group of isometriesﬂ to have a bounded number of connected
components. (This is true for Euclidean spaces of any finite dimension, where
the number of connected components is always 2.) If these above conditions are
met—which we shall refer to as “the Asta conditions”—then

Pr <Z d(é7,7 C?,) Z 6) S N(n,€)e—)§n2€
=1

5An isometry is a transformation of a metric space which preserves distances between
points. These transformations naturally form groups, and the properties of these groups
control, or encode, the geometry of the metric space |Brannan et al., [1999].

12



where the NV is a known function, polynomial in n and in 1/¢, depending only on
the isometry group of the metric, and & is a known constant, calculable from the
isometry group and the bound on the logit. Since the maximum of n distances
is at most the sum of those distances, this further implies that

Pr (max d(C;, Cy) > 6)) < N(n, e)e e, (7)

i€lin
With this, we can make the following asymptotic result.

Theorem 2. Suppose that the assumptions from Section [3 hold, the network
forms according to a continuous latent space model satisfying the Asta condi-
tions, that the node-location distribution F' has compact support, and that C is
estimated by maximum likelihood. Then the ordinary least squares estimate for
B in is asymptotically unbiased and consistent, and the pre-asymptotic bias
s polynomially small in n.

The Asta conditions do not require F' to have compact support, but we use
this assumption for mathematical convenience in our derivation of the bound
on the bias. The assumption does, strictly speaking, rule out using a Gaussian
distribution for the latent locations. It is, however, compatible with using a
Gaussian that is truncated to 0 beyond some (large) distance from the origin.
We suspect the compact-support assumption can be weakened to merely as-
suming that F' is tight, or that it has sufficiently light tails, but leave this to
future work. We suspect that it is also possible to provide a precise expression
of a deterministic finite-n bound on the bias—though likely not the solution to
optimization problem, as we suspect for latent community models—and leave
this too as a useful topic for future investigation.

4 Simulations

In observational studies over social networks, consistent estimation of the social-
influence parameter requires the ability to disentangle its effect from that of
homophily. Above, we gave conditions under which consistent (and asymptot-
ically unbiased) estimates of social influence is possible. The simulations here
alm to provide an empirical complement to these theoretical results, verifying
that our approach does in fact provide consistent estimates of peer-influence,
and achieves relatively small amounts of bias even at manageable sample sizes.
Additionally, we explore how estimates of the peer-influence parameter behave
as we (smoothly) depart from the conditions of our theory, confirming that the
results are robust to at least some violations of the assumptions. Finally, the
evaluation of our approach in these simulations are done in the context of other
estimation approaches, for proper comparisons.

4.1 Simulation Setup

Given that [Davin et al.| [2014] has already conducted an empirical simulation
study in the context of latent space models, we will consider the latent com-
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munity model setting to investigate our theoretical results via simulation. We
use the following R [R Core Team)| 2020] packages to build our simulated net-
work models: hergm [Schweinberger and Luna, 2018], mlergm [Stewart and
Schweinberger, 2018], and igraph |Csardi and Nepusz, [2006]. In our simula-
tion setting, we have three network parameters of interest: n, or the number
of nodes in the network; pywithin, or the probability of an edge between nodes
in the same communities; Ppetween, Or the probability of an edge between nodes
in different communities. For our simulations, we specifically consider n €
{20, 25,50, 100, ...,1000} and both pywithin, Pbetween € {0.1,0.15,0.2,...,0.9}.
Instead of considering all combinations of parameter values, we select a value of
each parameter as a reference point (n = 500, Pwithin = 0.75, Pbetween = 0.25),
measuring how estimator properties of interest (e.g., bias) change for one pa-
rameter, while keeping the others fixed. We take the number of blocks and
the probability of community membership to be fixed at £k = 4 and %, respec-
tively. (As suggested by our theory, we find that the results of our approach are
consistent for any fixed number of blocks, of comparable sizes.) Therefore, the
latent community network (i.e., adjacency matrix A € [0,1]"*" and community
membership o € [k]™) for each simulation is drawn from the model space param-
eterized as © (n, k, a, b, 8), which satisfies the conditions described in |Gao et al.
[2017]@ More specifically, in our simulations, a & n - Pwithin, ® = 1 * Pbetween,
k=4, and E[5] = 1.

Given our network class and parameter set, we now define the data gener-
ation process of interest that will describe the behavior of node level variables
across the network. We again consider the causal model defined in Figure
and the subsequent linear structural-equation model defined in , which we
restate for clarity:

> (YjeAij)
> Aij

In each simulation, using [Sofrygin et al.| [2017], we generate structural equa-
tions with parameters following a normal distribution N(u,0?): ag ~ N(1,1),
a; ~ N(10,1), B ~ N(0.1,1), v1 ~ N(10,1) and v ~ N(1,1). Note that
C; € {1,...,k} starts as an integer (community identification) label, but for the
purpose of the regression is translated into a k — 1 binary vector, and therefore,
v is also appropriately translated into a k — 1 vector. Additionally, we generate
the following node-level variables: €; ;41 ~ N(0,10) and X; ~ N(0,1), the lat-
ter which we treat as a single variable capturing un-changing, network-irrelevant
attributes for each node. Finally, our goal is to estimate 3, the coefficient for
social influence.

When the above is the structural-equation model generating our data, OLS
will provide an unbiased and consistent estimate of 8, assuming we can observe

Yitvi=ao+ oY+ 5 + T C VT X+ €ipa1

6The GMZZ conditions also include a parameter to control the differences across communi-
ties of the within- and between-community connection probabilities. We omit this parameter
as the within- and between-community connection probabilities are both constant across com-
munities in our simulations. This restricted parameter space is discussed in |Gao et al.[[2017]
as Op.
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each of the variables relevant to the network (i.e., A;; and C;) as well as those
that are irrelevant to the network but still relevant to behavior (Y;,, Yj+, and
X;). However, in practice, we do not observe either C; or X;, and therefore
consider the OLS estimator of 5 in to be our “Oracle” estimator. Moreover,
in practice, we can obtain the OLS estimation of 5 in , which again we restate
for clarity:

> (YiAi)
> Aij

where C; is an estimated location for node ¢ and the noise term n; ;11 is now

Yiip1 =ao+an Y + 5 + G + e

i1 = €pr1 + 73 Xi + (71 Ci — 74 Ci) -

It is the OLS estimator of 8 in this equation that our proposed theory (in
conjunction with algorithms for deriving éz) provides sufficient conditions for
consistency and asymptotically unbiasedness; therefore we consider this to be
our “Algorithm” estimator. Critically, the bias present in this estimator is
induced by measurement error, resulting from the use of C; in place of the
(unobserved) correct C;; therefore we also estimate

>, (Yjedis)
> Aij

and consider this our “Correct” estimator. Note that this estimator is the limit

of our consistent Algorithm estimator; additionally, unlike the Oracle estimator,

it is unable to condition on the (unobserved) X;. Finally, we also consider the
OLS estimator of 5 in

Yite1 =ag+anYi + B + ’Yifci + €it+1

> (Yidij)

Y; = Y; % )
t+1=ap+o Y+ B Zj Aij + Ut

which will have omitted variable bias because it incorrectly ignores the impact
of homophily all together; therefore, we consider this our “Incorrect” estimator.

Our primary goal in the simulations is to observe changes in the bias expe-
rienced by each estimator (i.e., Oracle, Algorithm, Correct, and Incorrect) de-
scribed above, as conditions change. Additionally, we are also interested in the
relative variation of the estimators (as this has direct implications for confidence
intervals and coverage probabilities), and again how this variation changes as
conditions change. Finally, given that our Algorithm estimator trades bias from
omitted variables for that from measurement error, fundamentally its efficacy
will be related to its degree of (estimation) error in node locations; therefore, we
also are interested in observing how this estimation error changes as conditions
change.

4.2 Simulation Results

In Figure [2| we observe how various outcomes of interest vary as the sample
size (number of nodes) increases (while the latent community model parameters
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Figure 2: Comparison of the expected properties of the estimators where ex-
pectations is computed over 50 random samples, allowing also for the forma-
tion of 95% confidence intervals. The parameter of interest is sample size
n, which varies, while the latent community model parameters remain fixed
(k = 4apwithin = 0~757pbetween = 025)
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remain fixed at their reference values). We note that this simulation complies
with our assumed setting and therefore our predictions (based on our theoretical
results) of each estimator’s behavior should be consistent with what we observe.
Let us begin by considering the first two plots, which show each estimator’s

bias (top)—i.e., E [B - B} —and expected standard error relative to that of the

Oracle estimator (middle)— E 05 =040, }— as a function of sample size.

These plots confirm that the Oracle and Correct estimators are unbiased at all
sample sizes, but the Correct estimator has larger variance, because it does not
observe X;. Additionally, the plots confirm that ignoring the latent community
(as in the Incorrect estimator) leads to (omitted variable) bias at all sample sizes,
which in our simulation amounts to a bias exceeding 2 numerical units for 8 in
the limit. (Since the expected true value of 5 across simulations, E[5] = 0.1,
a bias of 2 units is a relative error of a remarkable 2,000%.) Beyond this
extreme bias, the estimator, additionally, becomes overconfident in its (biased)
estimation, which will lead to inaccurate confidence intervals and poor coverage
probability. Finally, the plots confirm that the Algorithm estimator (based
on estimated node locations) converges to the Correct estimator, and achieves
consistent and (asymptotically) unbiased estimation of peer-influence.

Figure [2] also provides additional insight in the properties of the Algorithm
estimator, in comparing it to the other estimators. Importantly, we observe
that even at moderate sample sizes (n = 100) the estimator appears to reach
its asymptotic behavior (e.g., unbiasedness). Moreover, prior to reaching this
asymptotic behavior, the Algorithm and Incorrect estimators have similar levels
of bias, while the Algorithm estimator has larger variance. This implies that the
biases resulting from omitting the node locations and using estimated locations
(i.e. measurement error) are comparable, while the measurement error induces
larger variance; therefore, at small sample sizes, the Incorrect estimator appears
to provide a better estimation risk (with respect to loss in mean squared error).
However, as sample size increases, the trade-off between these two sources of
bias (and variance) begins to increasingly favor the measurement error, and
the Algorithm estimator provides better estimation risk. We can see from the
bottom plot in Figure 2] that the risk of the Algorithm estimator is, as expected,
a function of the overall error in the node locations. Additionally, this estimator
reaches its asymptotic behavior relatively quickly given the exponential decay
in the measurement error.

Assumption Violation Although we are able to confirm our theoretical guar-
antees when our (sufficient) conditions are met, we also aim to explore the be-
havior of our estimator when these assumptions are violated. In Figure [3] we
allow the probability of forming ties between nodes in different communities
(Pbetween) to vary, and we capture the same three plots as before. As expected,
when the between community ties probabilities are low, the Algorithm esti-
mator, as before, has behavior equivalent to that of the Correct estimator.
However, when the probability of between community exceeds 0.5, we notice
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Figure 3: Comparison of the expected properties of the estimators where ex-
pectations is computed over 50 random samples, allowing also for the formation
of 95% confidence intervals. The parameter of interest is pyetween, Which varies,
while the sample size and other latent community model parameters remain
fixed (n = 500,k = 4, pwithin = 0.75).
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that the Algorithm begins to exhibit different behavior: both increased bias
and variance. More specifically, we notice it converges to the behavior of the
Incorrect estimator, indicating that the bias resulting from measurement error
in the latent locations becomes as large as that resulting from the omission of
the locations. The bottom plot in Figure [3] indicates that the Algorithm esti-
mator’s degradation in behavior corresponds to its increase in latent location
estimation error. The source of this error, can be explained by revisiting
as the bound it provides on the expected proportion of errors, includes the
term [ = D% (Bcr (%) ||IBer (%)), where E [%] = Pbetween- More specifically,

I = (a—b)*/(an) up to a constant factor Zhang and Zhou [2016], therefore
I — 0 as Ppetween — Pwithin, increasing the probability of location estimation
erTors.

Figure [3| also shows that when ppetween = Pwithin (&t 0.75) the biases of
the Incorrect and Algorithm estimators are zero. At this point, the network
is no longer homophilous (edges within and between communities are equally
likely), implying that there are no longer arrows from C; and C; to A;; in the
graphical causal model (Figure . As a result there is no longer a confounding
backdoor pathway and there is no omitted variable bias. AS Ppetween iNCreases
beyond pywithin, We see that the magnitude of the bias begins to increase again,
but in the opposite direction. This is because the network is now increasingly
heterophilous, and therefore C; and C; are increasingly more negatively corre-
lated. We observe that both the bias and variance of the Algorithm estimator
increases slightly beyond that of the Incorrect estimator, which is likely because
the Algorithm’s assumption of homophily is violated, and therefore it is group-
ing precisely the wrong nodes together in a community. If there existed an
approach that could achieve consistent identification of latent communities for
heterophilous networks, consistent and (asymptotically) unbiased estimation of
peer-influence can be obtained with similar arguments to those in our theoretical
results.

In Figure[d] we allow the probability of forming ties between nodes in the same
community (pwithin) to vary, which leads to conclusions that are very similar to
those for Figure [3] above, mutatis mutandis. The additional insight that we
obtain from Figure 4] is that the increased bias and variance in the Incorrect
and Algorithm estimators resulting from heterophily is smaller in magnitude
than that in Figure We suspect this is because, overall, the graph is more
sparse in the heterophilous facets of Figure (as compared to those in Figure|3));
therefore, there is less potential for peer-influence, and the subsequent bias that
results from its confoundment with homophily.

5 Discussion

We have shown that if a social network is generated by (a large class of) either
latent community models or continuous latent space models, and the pattern
of influence over that network then follows a linear model, it is possible to
obtain consistent and asymptotically unbiased estimates of the social-influence
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Figure 4: Comparison of the expected properties of the estimators where expec-
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main fixed (n = 500,k = 4, Ppetween = 0.25).
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parameter by controlling for estimates of the latent location of each node.

These are, to our knowledge, the first theoretical results which establish con-
ditions under which social influence can be estimated from non-experimental
data without confounding, even in the presence of latent homophily. Previous
suggestions for providing such estimates by means of controlling for lagged ob-
servations [Valentel |2005] or matching |Aral et al., 2009] are in fact all invalid
in the presence of latent homophily [Shalizi and Thomas|, [2011]. Instrumental
variables which are also associated with network location have been proposed
| Tucker}, 2008]; however, valid instruments are difficult to obtain and even more
difficult to verify, as fundamentally their satisfaction of the exclusion restriction
must be justified based on the specific context and argued from (behavioral)
theory. An alternative to full identification is to provide partial identification
[Manskil, [2007], i.e., bounds on the range of the social-influence coefficient. [Van-
derWeele| [2011] provides such bounds under extremely strong parametric as-
sumptions (among other things, C; must be binary and it must not interact
with anything); [Ver Steeg and Galstyan| [2010, |2013| provide non-parametric
bounds, but must assume that each Y;; evolves as a homogeneous Markov pro-
cess, i.e., that there is no aging in the behavior of interest. None of these
limitations apply to our approach.

Without meaning to diminish the value of our theoretical results, we feel it
is also important to be clear about their limitations. The following assumptions
were essential to our theoretical arguments:

1. The social network was generated exactly according to either a latent com-
munity model or a continuous latent space model.

2. We know whether it is a latent community model or a continuous latent
space model.

3. We know either how many blocks there are (or how the number of blocks
grows with n), or the latent space, its metric, and its link-probability
function.

4. Fixed attributes of the nodes relevant to the behavior are either fully
incorporated into the latent location, or stochastically independent of the
location.

5. All of the relevant conditional expectation functions are linear.

To augment our theory with empirical results, we also conduct a simula-
tion study specifically in the setting of networks generated according to a latent
community model. We find that if locations are estimated with a (determin-
istic) minimax algorithm, our proposed estimator behaves as predicted by the
theory, when all assumptions are satisfied. However, we also find that the the-
ory is not fragile in the presence of small violations of the assumptions, e.g.,
the (asymptotic) bias in the estimation increases smoothly as the network for-
mation process diverges from precisely a homophilous latent community. As a
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result, in practice, even if the assumptions are not (perfectly) satisfied the es-
timates should still exhibit bias reduction and (roughly) be “close” to the true
parameter of interest.

We suspect—though we have no proofs—that similar theoretical and empiri-
cal results will hold for a somewhat wider class of well-behaved graphon network
models. (Graphon estimation is an active topic of current research |Choi and
Wolfe, |2014) Wolfe and Olhede| [2013], but it has focused on estimating the link-
probability function w, rather than the latent locations C, though see Newman
and Peixoto| [2015] for a purely-heuristic treatment.) We also suspect such re-
sults will hold for nonlinear but smooth conditional-expectation functions quite
generally. (The simulations of Worrall| [2014] indicate that the approach works
with at least some generalized linear models.) Additionally, it’s plausible that
improved results can be achieved with these well-behaved graphon models, when
a subset of the features relevant to tie formation (i.e., which impact node lo-
cation) are observed. We however note that incorporating these features will
require additional (careful) analysis, as any such feature may become redundant
to C' and have an undesirable impact on the statistical properties of the esti-
mator. We also feel it is important to emphasize that there are many network
processes which are perfectly well-behaved, and are even very natural, which
fall outside the scope of our results; if, for instance, both ties A;; and behaviors
Y.+ are influenced by a latent variable C; which has both continuous and discrete
coordinates, there is no currently known way to consistently estimate the whole
of Ci-

Despite these disclaimers, we wish to close by emphasizing the following
point. In general, the strength of social influence cannot be estimated from
observational social network data, because any feasible distribution over the
observables can be achieved in infinitely many ways that trade off influence
against latent homophily. What we have shown above is that if the network
forms according to either of two standard models, and the rest of our assump-
tions hold, this result can be evaded, because the network itself makes all the
relevant parts of the latent homophilous attributes manifest. To the best of our
knowledge, this is the first situation in which the strength of social influence
can be consistently estimated in the face of latent homophily—the first, but we
hope not the last.

6 Proofs

Lemma 1. Under the assumptions from Section |2, if Pr (C #* C’) = 0, then

the ordinary least squares estimate of B in is unbiased and consistent.

Proof. We are chiefly concerned with BO LS, the ordinary least squares estimate
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of B in

Ni,t41
> (YjeAij) R N
Yitv1 =ap+ oY + 5% + ’YOTCz' + €1+ 75 X; + (’YlTCi - ’YOTCz')
j Aij
MNi,t+1

> (YjieAij)

= ag+ Yy, +
0 1,t52inj

47 Ci €141 + 95X — AT (Cz - Ci)7
where C’i is an estimated location for node 4, 7; 441 is the (unobserved) noise

term, and the equality follows from recognizing that C' = C; — (C’Z — C'¢>. By

the assumption that Pr (C’ #+ C’) = 0, allowing for the replacement of C with
C, this becomes

MNi, t+1

> (YieAiz) . \
T 4T + €1 + 98 X

Y; = Y; —
i1 =ag+ a1+ 8 Z_j A,

Given that XiiLAij, Y; +|Ci, C;, we have Cov {%f:?”), m’tﬂ} = 0 and there-
S A
fore the OLS estimator for § is unbiased and consistent. O

Lemma 2. Suppose that the assumptions from Section[q hold. Then
> (YjeAij)
Ay
> At (COV [Ci, C5|A] + & Var [Ci|A] + 32,4, ;5 GijnCov [C, Cl|A}) gf!
a > Aij ’
where by Cov [C;, C;] we mean the d x d matriz of coordinate-wise covariances,
and similarly for Var [C;], and the £s and (s are constants calculable in terms

of the model coefficients and the adjacency matriz (and are made explicit in the
proof of the lemma).

Cov ({7 C; =& C)| A, Yiy (6)

Proof. First, recognize that

> (YjeAij)
25 Aij
>_; AijCov [Yj,m (i —+ECy) AvY;l,t} -

a 225 Aij ’

which follows from the linearity of covariance and the fact that A is conditioned
on (and therefore constant). Therefore, we consider the terms in the sum in the

Cov L (0 Ci =75 Ci)| A, Y

23



numerator:
Cov |Yiu, (1 Cs = 1§ €A, Vi
= Cov [}/j,ta 7?07,|A7 }/7;,t:| (9)
= 71 Cov [Yj4, Ci|A, Y; 4] (10)

where @D follows because we are conditioning on A (C’Z is a deterministic func-
tion of A) and additive constants do not change covariances. Additionally, (10])
follows by linearity of covariance.

We are thus interested in the conditional covariance between Yj; and Cj.
We can at this point use the fact that is a linear structural equation system.
This allows us to use the Wright rules [Wright} [1934] to “read oft” (conditional)
covariances from the DAG corresponding to the structural equations [Moran,
1961]. Briefly stated, to find the covariance between two variables F' and G
conditional on a set of variables H, these rules require us to (i) find all paths
between F' and G in the DAG, (ii) discard those paths which are “closed” when
conditioning on H, (iii) multiply the linear regression coefficients encountered
at each step along a path, (iv) multiply by a “source” variance for the common
ancestor of all the variables along a path (conditional on H), when one exists,
or (v) multiply by the conditional covariance of two “sources” linked by condi-
tioning on a collider, and (vi) sum up over paths. (For the notion of a path in
a DAG being “open” or “closed” when conditioning on a set of variables, see,
e.g., |[Pearl [2009, Definition 1, p. 106].) Before presenting the relevant paths,
it is convenient to introduce the abbreviation d; = )", A;; for the “degree” of
node j, i.e., the number of social ties it has.

o Path: Y, + C; — A;; < C;. Contribution: Cov [C;, C;|A] 1.

o Path: Y + Y1+ Yo« C;. Contribution: oy ’8:2” Var [C;]|A] 71.

o Path: Y <Y1 < Y0« Y, 3 C;. Contribution: a%%ﬂ_"j\/ar [C;i|A] 7.

o Path: Yj; <~ Yji1 « ... < Y « Yip_1 < C;. Contribution:

By Var [O,L ‘A] Y1-

h
«
1 dj

o Path: Yj < Yo ... < Y, ,_p, < C;. Contribution: %a}f_z\/ar [Ci|A] 7.

o Path: Yj; < Y11 < C; — Ay < C;. Contribution: ﬁjﬂ Cov [Cy, C;|A] 7.

(This must be summed over all possible nodes [.)

o Path: Y;, < Y1 < Y —0 < C; — Ay < C;. Contribution: oy ﬁ;_” Cov [Cy, C;|A] 71

(Similar paths extending back into the past add powers of a2, a3, etc. This
must also be summed over all possible nodes [.)
o Path: Y;, < Y11 < Y10 < C; = Ai; < C;. Contribution: oq B;ﬁ Cov [Cy, Ci|A] 71.
J
(Similar paths extending back into the past add powers of a2, a3, etc.)
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From this enumeration, two things are clear: 1) all the paths lead to terms
involve a single power of 71, and 2) every term involves a factor of either
Cov [C}, C;|A] or Var [C;|A]. Combining paths with the same source terms,
we therefore have

COV D/j',ta CZ|A3 }/’i,t}
= Cov [01,0]|A] Y1
T—1 T—1
nBAij BAij h2
Var [C;|A
(ot X Bt v

J

T-1 BA
+ Z < 05]11(1 + Oél) jl) Cov [Cl, Cz|A]’}/1
—~ d;
1#4,j \h=0
= COV[CZ‘,CJ‘|A]’71

+&j\/'ar [CAA] Y1

+ > GjCov [C1, Ci|Alm
1#4,j

introducing &;; and (;;; as the abbreviations for the appropriate sums. Substi-
tuting back into amounts to multiplying every term here by 7{ from the
left. Substituting in turn into yields the promised lemma. O

Remark: The form of the covariance Cov [V}, C;|A,Y; ] is somewhat com-
plicated, because it turns out that many paths connect Y;,; and C;. Most of
these paths would, however, be closed if we also conditioned on Y;;_; and
Y; t—1. Conditioning on lagged values of Y for both ego and alters in this way
is sometimes done by practitioners, and would indeed leave open only the path
Y;+ < C; = A;; < C;. This would simplify the conditional covariance between
Y, and C; to just vI Cov [C;, C;|A] 1. However, conditioning on these lagged
values would mean altering the regression specification, and with it the coef-
ficients and their interpretation. In particular, if autoregressive effects within
nodes are strong, then Y'(j,¢) and Y (j,¢t — 1) will be strongly correlated, which
will introduce its own potential biases into the estimation of 3. The net result
may be to reduce the bias, but this would require detailed calculation. Since (as
we show below) we are able to get consistent estimation of 8 without introducing
these lagged terms, we do not pursue this further here.

Lemma 3. Suppose that the assumptions from Section [3 hold, the network
forms according to a latent community model, satisfying the GMZZ conditions,
and C' is estimated using a minimaz algorithm. Then

K2

Proof. First, we let M, = > " 1{C; # C;}, then from @-(5), we have
E[M,/n] <e™ "
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for an appropriate constant ¢ > 0 (and large enough n), which implies
E[M,] < ne .
We now turn our focus to the probability that M > 1:

Pr(M, >1)<E[M,]/1 (Markov’s Inequality)

< ne—CTL

_ e—cn+log n

e O,

Therefore, the probability of making any latent location estimation errors
at all goes to zero exponentially fast in n, and we note that it does so almost
surely. Indeed, the almost sure convergence follows since ) ne™ " is ﬁniteﬂ
and the Borel-Cantelli lemma [Grimmett and Stirzaker] (1992, Theorem 7.3.10a,
p. 288] tells us that with probability 1, M,, > 1 only finitely often, i.e., that
M,, — 0 almost surely. Therefore, with probability tending to one almost surely,

as n — 00, C = C. As a direct consequence, Cov C’Z,C’ |C’1, 225 0. We

note that although we have almost sure convergence in Lemma [3] only weaker
consistency (convergence in probability) is required for the results that build
atop this Lemma. O

Lemma 4. Suppose that the assumptions from Section [3 hold, the network
forms according to a latent community model, and C is estimated by a deter-
ministic algorithm with error rate 6(n). Then

Cov [C;, C4|A] = O(3(n)).

If, in addition, the latent community model satisfies the GMZZ equations,
and C is estimated using a minimax algorithm, then

Cov [C;,C4|A] = O (e—0<">> .

Proof. The second part of the lemma follows automatically from the first part,
and the fact that assuming the GMZZ conditions means that the requirements
of Lemma [3| are satisfied, implying that d(n) = e=©(™. Accordingly, we focus
on establishing the first part of the lemma.

We now evoke the law of total covariance and decompose

Cov [Cz; CJ|A]
= E[Cov[C;,Cj|A, G, |A] + Cov [E[C4|A, G, E[C;|A,G,] |A], (11)

where G,, = 1 if all the nodes are assigned to their correct blocks (so C; = C; for
all i) and G,, = 0 otherwise. Given this decomposition, we will need to make a

cn

"To see this, differentiate the geometric series >, € " with respect to c.
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series of steps, dealing in turn with the expected covariance and the covariance
of the expectations.
Step 1: Looking at the conditional covariance, we know

E [Cov [C;, C}|A, Gn] |A]
= Pr(G, = 1]A4) Cov|[C;,Cj|A, G, = 1] + Pr (G, = 0|A) Cov [C;, C}|A, G,y = 0].

We also recognize that

Cov [C1, C4|A, Gy = 1] = Cov [C1, G| A, G, = 1] —0,

where the first equality follows from G,, =1 (i.e., C; = O, Vi) and the second
equality follows because C; and C'j are functions A, which we condition on.
Next we note that

Cov [Cz, Cj|A, Gn = 0] 7é O;

)

however, because C; and C; are “dummy” or indicator vectors, they are points
on the corners of the k — 1 dimensional simplex (or the origin). Moreover,
Cov [C;,C4|A, G, = 0] is a k x k covariance matrix, whose entries are bounded
above by 1 and below by —1. Therefore, the magnitude of ||Cov [C;, C;|A, G, = 0]||
is bounded by a constant (with respect to n) whose value depends on the spe-
cific norm ||-|| used to measure magnitude. Therefore, combining the results for
G, =1and G, =0, we have

E [Cov [C;, Cj|A, Gl [A] = 0+ O(5(n)). (12)
Step 2: Turning to the conditional expectations, we similarly know that
E[Ci|A, G, =1] = C;, (13)

because when G,, =1, CA’l = (; Vi. We can also define a new variable C‘Z such
that R
C; =E[C;|A, G, =0]. (14)

This new random variable C; is a function of A, and takes values within the
interior of the convex hull of the k¥ — 1 dimensional simplex and the origin
(rather than at the simplex’s corners and the origin). Because G, is an indicator
variable, we can combine and to write

E[Ci|A,Gn) = CiGp + (1 — G)C, (15)

and similarly for E[C}|A,G,,]. Using we can compute the covariance be-
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tween the conditional expectations of the node locations:
Cov [E[Cs|A, G,],E[C;|A, G, |4]
= Cov [Oian +Ci(1 = G), GG + C(1 — Gn)|A]
— Cov [C‘iGn, OjGn|A} + Cov [(:*i(l — G, (1 — Gn)\A}

+Cov [CyGn, Ci(1— Gn)|A} + Cov [a(l — Gy, C*jGn|A}

= CVar[Gu|A]CT + C;Var[1 — G,|A] CT (16)
+CiCov[Gn,1 — Gu|A]CT + CiCov [1 — Gy, Gy | A]CT

= O(Var[G,|A]) + O (Var[1 — G,|A]) (17)
+0 (Cov [Gp,1 — Gy|A]) + O (Cov [1 — G, G| A))

= 0((n)). (18)

follows from the fact that the four vectors —C’i, Ci, C’j and C'j—are all func-
tions of A and therefore conditionally constant. Moreover, follows from the
fact that these vectors all lie within the convex hull of the £ —1 dimensional sim-
plex and the origin, and therefore their outer products—éiC'J-T, C’ZC'JT, C’ZC’]T and
C'ié’f—are also bounded by a constant (with respect to n). Finally, follows
from two realizations. First, that 1 — G,, is a binary variable whose expectation
is O(d(n)), so Var [l — G,|A4] = Var [G,|A] = §(n)(1 —d(n)) = O(6(n)). Sec-
ondly, since G, (1 — G,,) = 0 always, Cov [G,,1 — G,|A] = E[G(1 — G)n|4] —
E[Gul AJE[1 — GalA] = —(1 = 6(n))d(n) = O(3(n)).
Thus plugging and into , we have

Cov [C;, Cj]A] = O(3(n)) + O(6(n)) = O(5(n))
O

Lemma 5. Suppose that the assumptions from Section [3 hold, the network
forms according to a latent community model, and C can be estimated with
error rate 6(n). Then Var [C;|A] = O(6(n)). If the latent community model also
satisfies the GMZZ conditions and a minimax algorithm is used to estimate C,
then Var [C;|A] = e~ O,

Proof. The proof runs along the same lines as that of Lemma [4] albeit with
somewhat less algebra, and so only sketched. We can write Var[C;|4] =
E [Var [C;|4, G, |A] + Var [E [Ci]A, Gy] |A]. Var [C|A, Gy, = 1] = 0, because,
conditional on G,, = 1, C; = C; which is a function of A. If G, = 0, how-
ever, the variance of C; is bounded, since every possible value of C; is a corner
on the simplex (or the origin), hence E [Var [C;|4, G,]|A] = O(6(n)). Simi-
larly, E[C;]|A4, G,, = 1] = C;, which is constant (conditional on A) and does not
contribute to the conditional-on-A variance, while E [C;|A, G,, = 0], which is
random with respect to A, is still bounded within the convex hull of the sim-
plex and the origin. Thus Var [C;|A] = O(d(n)) over-all. Further assuming the
GMZZ conditions tells us d(n) = e~ ™). O
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Theorem 1. Suppose that the assumptions from Section [3 hold, the network
forms according to a latent community model, and C is estimated with error rate
d(n). Then the ordinary least squares estimate for B in is asymptotically
unbiased and consistent, and the pre-asymptotic bias is O(0 ( ) 1f, in addition,
the latent community model satisfies the GMZZ conditions and C is estimated
using a deterministic and minimax algorithm, then the pre-asymptotic bias is
exponentially small in n.

Proof. As in Lemma|l| we are again chiefly concerned with Bors, the ordinary
least squares estimate of 5 in

Ni,t41
Yo Ci+ €1 + 74 Xi + (%Tci - 7{{@)

(19)
where C; is an estimated location for node ¢, 7; ;41 is the (unobserved) noise
term. Moreover, we know that

A> (20)

> (Vi)
ﬁ+o<cov [Z] i) ( 1Ci— %C) ) (21)
g

2 (Y,tA,)
225 Aij

Yitr1 =0+ Y+ f——=—7—

E [BOLS‘A} =B+0 (cov

Z Aw s Mit+1
> Aij

(22)
=/ +0((n)) (23)

where . ) follows from the definition of the OLS estlmate for 8 in . ) fol-
lows from the assumptions of the setting (chiefly . 22) follows from Lemma
2| and finally (23) follows from Lemmas4]and 5] Moreover we have that O (6(n))
can be made exponentially small, and in only a polynomial cost in computational
time, ( above). Therefore, the bias in Bors is itself exponentially small in
n. Hence Borg will be asymptotically unbiased and consistent as n — co. [

Theorem 2. Suppose that the assumptions from Section [3 hold, the network
forms according to a continuous latent space model satisfying the Asta condi-
tions, that the node-location distribution F' has compact support, and that C is
estimated by mazimum likelihood. Then the ordinary least squares estimate for
B in s asymptotically unbiased and consistent, and the pre-asymptotic bias
18 polynomially small in n.

Proof. As in the proof of Theorem it will be enough to show that both
Cov [C;, C;|A] — 0 and Var [C;|A] — 0. To do so, we showed that Cov [C;, C;|A]
and Var [C;|A] were both O(§(n)), where §(n) was the probability of community
discovery mis-labeling any nodes at all. We cannot expect such exact recovery of
the latent variables in a continuous model, so we will work instead with d(e,, n),
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the probability that all estimated positions are within €, of the true positions,
and let ¢, — 0 at a suitable rate.

To be specific, define §(n, €) as Pr (maxielm IC; — C’z|| > e), where C; is the
maximum likelihood estimate of C;. By @

d(n,e) < N(n, 6)67“”2

where N(n, €) is polynomial in both n and in 1/e. Now fix a sequence €, > 0
such that €, — 0 as n — oo, while €,n2 — co at least polynomially fast in n.
(For instance, but not necessarily optimally, €, = n~1.) We will now show that
Cov [C;,C;|A] and Var [C;|A] are both O(e2) + O(3(n, €,,)), which, under these
conditions, is polynomial in 1/n.

We need to modify one more definition from the stochastic block model case:
we re-define G, as the indicator for the event that max;ci.p [|C; — Cil| < €n.
(Thus G,, = 1 with probability 1 — §(n,€,).) With this in place, we can now
proceed much as in Lemma[d} by the law of total covariance,

Cov [Cz; Cj |A]
= E[Cov[C;,Cj|A,G,]|A] + Cov [E[C;|A,G,] ,E[C;|A, G,] |A].

If G, = 1, then C; = C; + O(en) and C; = C'j + O(ep), consequently
Cov [C;,Cj|A, Gy, = 1] = O(€2). If, on the other hand, G,, = 0, we do not have
such nice control over the covariance of the true locations, but the fact that
they lie in a compact set means that there is an upper bound, independent of
n, on the magnitude of their covariance. So we have shown that

E [COV [C“ Cj |A, Gn] ‘A]
— O(1 - 6(n,ea))O(2) + O(3(n, €2))O(1)
= O(en) +0((n, ). (24)
Turning to the conditional expectations,
E[Ci|A, G, =1] = C; + Ole,)

and we may define

which is a function of A, and takes values in the convex hull of the compact set
which supports the distribution of C;. Thus

E[Ci|A, Gn] = GnCs 4+ G O(en) + (1 — Gn)Cs.
Continuing to imitate the proof of Lemma [4]
Cov [E[C4]A, G,], E[C}|A, Gl |A]
= Cov|GuCi + GuO(en) + (1 = Gp)Ci, GuCs + GuOlen) + (1 = Ga)Cy|A
= Var[Gu|A] (CiCT + Ci0(en) + O(2)CT + O(€2))
+Var [1 — G,|A] C;CT

—
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By an argument just like the one used in Lemmal[d] Var [G,,|A] = Var [1 — G,,|A] =
O(0(n, €,)), and likewise Cov [G, 1 — Gy|A] = O(d(n, €,)). On the other hand,

C; and C; are both O(1). Thus

Cov []E [Cz|A7 Gn} E [Cj |A7 Gn] ‘A]
= 0(3(n,€n)) + O(end(n, €0)) + O(nd(n, €))
= 0((n,e,)) (25)

since €, — 0.
Combining with ,
Cov [C;, C;| 4]
= E[Cov[C;,Cj|A,G,] Al + Cov [E [Ci|A, Gr) ,E[C}|A, Gy |A]
O(2) 4+ 0(8(n, en)) + O(3(n, €,))
= O()+0(5(n, ). (26)

A careful inspection of the preceding steps show that none of them assumed
that i # j. We may therefore conclude that

Var [C;]A] = Cov [C;, C|A] = O(€2) + O(8(n, €,))
Since the bias is O(Cov [C;, C;]|A]) + O(Var [C;]A]), the bias is O(e2) +

O((n,€,)). At the corresponding part of the proof of Theorem [l we had a
bias that was O(d(n)), and an invocation of the GMZZ conditions showed that
this must be exponentially small in n. Here, we need to show that ¢2 — 0 and

that d(n, €,) — 0 as well. Invoking the Asta conditions lets us say that
5(n, €,) < N(n,e,)exp(—re,n?)

so it’s enough to have the right-hand side of this equation approaching zero.
Since the function N (n,€) is polynomial in n and 1/¢, we can say that

log d(n, €) = O(logn — log €, + €,n?)

From this, it’s clear that so long as €,n? — oo at some polynomial rate, §(n, €,)
will be exponentially small in some power of n, and Cov [C;, C;|A] will be dom-
inated by the O(€2) term, which will be polynomial in n.

In particular, if €, x n™", for 0 < r < 2, then N (n,€,) is still polynomial
in n, but exp (—re,n?) = exp (—k'n%7"), so over-all §(n, €,) goes to zero expo-
nentially fast in some power of n. Thus we can get Cov [C;, C;|A] = O(n™?")
for any r < 2.

Having established that both Cov [C;, C;|A] and Var[C;|A] are, at most,
O(n=?"), reasoning as in the proof of Theorem [1| shows that the bias, too, is
O(n=2), for some r < 2. O

Note: Attempting to optimize the rate at which Cov[C;, Cj|A] — 0, by
differentiating with respect to €, and setting the derivative to zero, leads
to an un-illuminating transcendental equation, which we omit, because the over-
all convergence rate is still polynomial in n.
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