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Alongside the effort underway to build quantum computers, it is important to better understand
which classes of problems they will find easy and which others even they will find intractable. We
study random ensembles of the QMA1-complete quantum satisfiability (QSAT) problem introduced
by Bravyi [1]. QSAT appropriately generalizes the NP-complete classical satisfiability (SAT) prob-
lem. We show that, as the density of clauses/projectors is varied, the ensembles exhibit quantum
phase transitions between phases that are satisfiable and unsatisfiable. Remarkably, almost all in-
stances of QSAT for any hypergraph exhibit the same dimension of the satisfying manifold. This
establishes the QSAT decision problem as equivalent to a, potentially new, graph theoretic problem
and that the hardest typical instances are likely to be localized in a bounded range of clause density.
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I. INTRODUCTION

The potential power of quantum computers motivates
the intense effort in progress to understand and, even-
tually, build them. Much interest has, naturally, been
focused on algorithms that outperform their classical
counterparts. However the development of a complex-
ity theory for quantum computers suggests that we al-
ready know problems, those shown to be QMA-complete,
whose worst case solutions will take even quantum com-
puters a time exponential in problem size. These appro-
priately generalize the class of NP-complete problems–

those which are easy to check but (believed to be) hard
to solve on classical computers–to quantum computers
[2, 3].

The classic technique of complexity theory is assign-
ing guilt by association, i.e. by exhibiting the polyno-
mial time equivalence of a new problem to a particular
problem believed not to be amenable to efficient solution.
For NP-complete problems this leads to the celebrated
Cook-Levin theorem which shows that the satisfiability
problem with clauses in three Boolean variables (3-SAT)
encapsulates the difficulty of the entire class [4]. While
this is a powerful and rigorous approach it has two lim-
itations. It does not directly tell us why a problem has
hard instances and it does not tell us what general fea-
tures they possess.

Over the past decade joint work by computer scien-
tists and statistical physicists has produced an interest-
ing set of insights into these two lacunae for 3-SAT (and
related constraint satisfaction problems). These insights
have come from the study of instances chosen at ran-
dom from ensembles where the density of clauses α acts
as a control parameter. One can think of this as repre-
senting the study of typical, but not necessarily worst,
cases with a specified density of clauses/constraints. Us-
ing techniques developed for the study of random systems
in physics, it has been shown that the ensembles exhibit a
set of phase transitions between a trivial satisfiable (SAT)
phase at small α and an unsatisfiable (UNSAT) phase at
large α (see e.g. [5, 6, 7, 8, 9]). These transitions mark
sharp discontinuities in the organization of SAT assign-
ments in configuration space as well a vanishing of SAT
assignments altogether. This information has provided
a heuristic understanding of why known algorithms fail
on random SAT when the solution space is sufficiently
complex and in doing so has localized the most difficult
members of these ensembles to a bounded range of α.

In this work we begin an analogous program for quan-
tum computation with the intention of gaining insight
into the difficulty of solving QMA-complete problems.
Specifically, we introduce and study random ensembles of
instances of the quantum satisfiability (k-QSAT) prob-
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lem formulated by Bravyi [1]. Like classical 2-SAT, 2-
QSAT is efficiently solvable (i.e. it is in P), while for
k ≥ 4, k-QSAT is QMA1-complete [19].

After laying out some important definitions and back-
ground on our problem in Sec. II, we attack the (“easy”)
k = 2 problem in Sec. III. Here, we derive the complete
phase diagram using transfer matrix techniques intro-
duced by Bravyi [1]. In the process, we discover that
the classical geometry of the 2-QSAT interaction graph
determines the generic satisfiability of random instances
without reference to the random quantum Hamiltonian
imposed upon the graph. We further show that our ran-
dom ensemble asymptotically satisfies a technically im-
portant constraint known as the promise gap with prob-
ability exponentially close to 1.

In Sec. IV we move on to establish rigorous bounds on
the existence of SAT and UNSAT phases for the (“hard”)
k ≥ 3 problem. Although the proof is quite different
from the analysis for k = 2, we then directly recover the
unexpected deduction that the satisfiability of a generic
instance of k-QSAT reduces to a classical graph prop-
erty. This allows us to more tightly bound the UNSAT
phase transition. We comment briefly on the straight-
forward generalizations to some related ensembles and
on the satisfaction of the promise gap. Finally, in Sec. V
we lay out the goals for the continued study of random
quantum problems and algorithms.

II. DEFINITION OF RANDOM QSAT

We consider a set of N qubits. We first randomly
choose a collection of k-tuples, {Im,m = 1 . . .M} by
independently including each of the

(
N
k

)
possible tuples

with probability p = α/
(
N
k

)
. This defines an Erdös hy-

pergraph with αN expected edges; we exhibit simple ex-
amples of these for k = 2, 3 in Fig. 1. In classical k-SAT,
the next step is to generate an instance of the problem
by further randomly assigning a Boolean k-clause to each
k-tuple of the hypergraph. In key contrast to the clas-
sical case, where the Boolean variables and clauses take
on discrete values – true or false – their quantum gen-
eralizations are continuous: the states of a qubit live in
Hilbert space, which allows for linear combinations of
|0〉 (“false”) and |1〉 (“true”). Thinking of a Boolean
clause as forbidding one out of 2k configurations leads to
its quantum generalization as a projector ΠI

φ ≡ |φ〉〈φ|,
which penalizes any overlap of a state |ψ〉 of the k qubits
in set I with a state |φ〉 in their 2k dimensional Hilbert
space. In order to generate an instance of k-QSAT the
states |φ〉 (of unit norm) will be picked randomly in this
Hilbert space.

The sum of these projectors defines a positive semidefi-

nite Hamiltonian H =
M∑
m=1

ΠIm

φm
and the decision problem

for a given instance is, essentially, to ask if there exists
a state that simultaneously satisfies all of the projectors,

i.e. to determine whether H has ground state energy,
E0, exactly zero. The qualifier “essentially” is needed
because E0 is a continuous variable and in order that the
problem be checkable by a quantum verifier (and there-
fore in QMA1), H must be accompanied by a promise
that E0 is either exactly zero or exceeds an ε ∼ O(N−a)
where a is a constant. The scaling function ε is also
known as the promise gap. For our random ensemble we
wish to compute the statistics of this decision problem
as a function of α. Specifically we would like to know if
there are phase transitions, starting with a SAT-UNSAT
transition, in the satisfying manifold as α is varied. Ad-
ditionally, we would like to check that the statistics in
the large N limit are dominated by instances that auto-
matically satisfy the promise gap.

We now note a few key properties of the hypergraph
ensemble: At small clause density α, the size distribu-
tion of connected components (“clusters”) is exponential.
Moreover, almost all of these clusters are treelike with a
few, O(N0), containing a single closed loop (see Fig. 1);
the number of clusters with several closed loops vanishes
as N → ∞. Above a critical value αgc(k) = 1

k(k−1) , a
giant component emerges on which a finite fraction of
the qubits reside. Unlike the finite clusters, the giant
component may contain a non-vanishing (hyper)core, de-
fined as the subgraph remaining after recursively strip-
ping away leaf nodes (i.e. nodes of degree 1). For
k = 2, an extensive hypercore emerges continuously at
αhc(2) = αgc(2) = 1

2 ; for k ≥ 3, the hypercore ap-
pears abruptly with a finite fraction of the nodes at
αhc(k) > αgc(k) [10, 11].

III. 2-QSAT

Let us first consider our questions in the specific con-
text of 2-QSAT (phase diagram in Fig. 2). While this
is a classically easy (P) problem, the random ensemble
has much of the structure we also find for the harder
k > 2 case. An instance H of QSAT is satisfiable if its
kernel ker(H) has nonzero dimension; in the following,
we will find the kernel of H explicitly by transforming
the random projector problem almost surely into a sim-
ple Heisenberg ferromagnet, whose ground state space is
well known.

A central tool in this analysis is Bravyi’s transfer ma-
trix T ijφ which, given a vector |ψi〉 of the state of qubit
i yields |ψj〉 = T ijφ |ψi〉 for qubit j, such that the prod-
uct state |ψij〉 = |ψi〉⊗|ψj〉 satisfies the projector onto φ:
〈ψij |Πij

φ |ψij〉 = 0. Concretely, if the projector penalizes a
joint state of both qubits given by the complex vector φ =
(φ00, φ01, φ10, φ11), we have Tφ = εφ† =

(
+φ∗01 +φ∗11
−φ∗00 −φ∗10

)
.

Here ε is the standard antisymmetric matrix (Levi-Civita
symbol) in two dimensions. We note that the transfer
matrix T ij for any given link is almost surely invertible
so this construction finds satisfying product states for
any input |ψi〉.
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FIG. 1: Examples of random graphs and hypergraphs for (a) 2-SAT and (b) 3-SAT, respectively. (a) The clusters, clockwise
from bottom left, are chain, tree, clusters with one and two closed loops (“figure eight”). The short closed loops, as well as
the planarity of the graphs, are not representative of the large-N limit. The two-core of the graphs (shaded blue) is obtained
by removing the (unshaded, green) dangling tree structures. (b) Each square represents a hyperedge connected to 3 nodes.
Clockwise from top left are a tree, a hypercore and a hypergraph with simple loops (shaded red) but vanishing hypercore.

A. Trees are SAT

Consider the clusters that enter the 2-QSAT graph en-
semble. Of these, a tree comprising n qubits and n − 1

edges has a satisfying product state |Ψ〉 =
n⊗
j=1

|ψj〉, where

|ψj〉 is obtained from an arbitrary reference qubit i = 1
by repeated application of the T ’s along the (unique)
path joining i with j. In fact, the satisfying subspace
is, almost always, n + 1 dimensional. To show this, we
will map the random projector problem directly onto the
ferromagnetic Hamiltonian on the same tree. In more
mathematical terms, we construct a non-unitary action
of the permutation group on the qubit Hilbert space that
leaves the zero energy space ker(H) invariant. Thus,
the ground state space is precisely the totally symmetric
space SymnC2, which has dimension n+ 1.

We define a particular, non-orthogonal product basis
for the Hilbert space H = H0 ⊗H1 ⊗ · · · ⊗ Hn−1. First,
choose any two linearly independent unit vectors

∣∣↑0〉 and∣∣↓0〉 as a basis for H0. Second, use the transfer matrix
T 0j to transfer this basis of H0 to a normalized basis

∣∣↑j〉 =
T 0j

∣∣↑j〉
‖T 1j |↑j〉‖∣∣↓j〉 =
T 0j

∣∣↓j〉
‖T 1j |↓j〉‖ (1)

of Hj for each of the neighbors j of 0. Finally, recursively
traverse the tree to produce a pair of vectors

∣∣↑i〉 , ∣∣↓i〉
for each site i in the tree. This procedures produces a
choice of basis for each of the individual qubit Hilbert
spaces which we use to define a product basis we call

the transfer basis. Although we use the notation of spin
up and down, we emphasize that the states need not be
orthogonal.

Finally, we show that the ground state space of the
Hamiltonian H is precisely the space of totally symmet-
ric states defined with respect to the transfer basis. We
consider the constraint that a generic vector Ψ ∈ H is
annihilated by Π01 by factoring Ψ:

|Ψ〉 =
∣∣↑0↑1〉 ∣∣v2...n−1

1

〉
+
∣∣↓0↓1〉 ∣∣v2...n−1

2

〉
+ (

∣∣↑0↓1〉+
∣∣↓0↑1〉) ∣∣v2...n−1

3

〉
+ (

∣∣↑0↓1〉− ∣∣↓0↑1〉) ∣∣v2...n−1
4

〉
. (2)

The first three terms are identically annihilated by the
projector Π01. This follows trivially from the construc-
tion of the transfer basis for the first two terms while for
the third term, keeping track of indices carefully (sum-
mation over repeated indices is understood):

Π01(
∣∣↑0↓1〉+

∣∣↓0↑1〉) =
∣∣φ01

〉 (
(φ01∗)α0,α1 ↑0α0

↓1α1

+(φ01∗)α0,α1 ↓0α0
↑1α1

)
=
∣∣φ01

〉
(↓0T φ01∗εφ01† ↑0 + ↑0T φ01∗εφ01† ↓0)

= 0 (3)

where we have exploited the antisymmetry of ε. Thus,
|v4〉 must be zero and Ψ clearly lies in the symmetric
eigenspace for swaps (01). A similar argument holds for
each of the swaps (ij) on links of the tree B. Since B
is connected, these swaps generate the full permutation
group Sn and Ψ must be in the completely symmetric
subspace of its action. In particular, this means that
the ground state space is isomorphic to SymnC2 which is
n+ 1 dimensional.
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B. Loops

To understand hypergraphs with loops, we first look
for satisfying product states. For a cluster G compris-
ing nL independent closed loops (i.e. n qubits with
n + nL − 1 edges, see Fig. 1), a product state is inter-
nally consistent only if the product of the T ’s around
each closed loop returns the state it started with. For
a graph with a single closed loop, O1, this imposes(∏

jk∈O1
T jk

)
|ψi〉 = λ1|ψi〉, which in general allows two

solutions, so that these graphs are SAT. By contrast, if
a site i is part of a second independent closed loop, O2,
the additional demand

(∏
jk∈O2

T jk
)
|ψi〉 = λ2|ψi〉 al-

ready yields an overconstraint. Thus graphs with more
than one closed loop lack satisfying product states with
probability 1.

In fact, we can generalize the above reasoning to show
that it holds even for the entangled (non-product) states
in the problem as follows. We choose a spanning tree
on G and starting qubit 0 to define a transfer basis –
the ground state space is necessarily a subspace of the
associated symmetric space. In particular, if G contains
a single closed loop O1, we take qubit 0 on the loop.
In this case, we choose the starting basis on qubit 0 to
satisfy the product state consistency condition for O1( ∏

m∈O1

Tm

)
ψ0 = λψ0, (4)

i.e. we take the eigenbasis of the loop transfer matrix,
which we denote ↑0, ↓0 with eigenvalues λ↑, λ↓. These
two states transfer to two linearly independent product
ground states for the loop – all up and all down. A short
calculation verifies that in fact there are no more: write
a generic Ψ ∈ ker(H) ⊂ SymnC2 as

|Ψ〉 =
∣∣↑−1↑0

〉
|v1〉+

∣∣↓−1↓0
〉
|v2〉

+
(∣∣↑−1↓0

〉
+
∣∣↓−1↑0

〉)
|v3〉 , (5)

where −1 is the qubit at the end of the loop O1 and vi
are vectors on the n − 2 other qubits. The projection
Π〈−1,0〉 annihilates the first two terms by choice of the
basis. However:

Π〈−1,0〉 |Ψ〉 =
∣∣∣φ〈−1,0〉

〉
(↑−1T φ〈−1,0〉† ↓0

+ ↓−1T φ〈−1,0〉† ↑0) |v3〉
=
∣∣∣φ〈−1,0〉

〉
(λ↑ ↑0T ε ↓0

+λ↓ ↓0T ε ↑0) |v3〉
=
∣∣∣φ〈−1,0〉

〉
(λ↑ − λ↓)(↑0T ε ↓0) |v3〉 (6)

Since λ↑ 6= λ↓ w.p. 1, v3 must be zero and by symmetry,
ψ must be in the span of the all up and all down states.

An analogous calculation verifies that any additional
closed loops introduce projectors that are violated on

SAT

α

ǫ 0
=

E
0
/N

UNSAT

αc = 1αq = 1
2

O(α− αq)
2 O(α− αc)

3

FIG. 2: Phase diagram of 2-QSAT. The quantum SAT-
UNSAT transition αq = 1

2
coincides with the emergence of

a giant component in the random graph, which lies at half
the classical 2-SAT transition αc = 1 [12]. The solid (dashed)
line marks an asymptotic upper bound on the quantum (clas-
sical) ground state energy density ε0.

this two-dimensional subspace and thus graphs with more
than one loop are unsatisfiable.

It is worthwhile to consider how the usual Heisenberg
ferromagnet fits into the above calculations. In this case,
the transfer matrices are all the identity and thus all of
the loop constraint conditions are identically satisfied.
From the point of view of Eq. 6, the ferromagnet has
λ↑ = λ↓ = 1 and there is no reduction in the ground
state degeneracy due to the introduction of loop-closing
ferromagnetic bonds.

C. Phase diagram

In light of the above analysis, the existence of a
SAT/UNSAT phase reduces to the presence of multiply
connected components in the ensemble of 2-SAT graphs
(rather than the combined ensemble of graphs and pro-
jectors). For α < αgc = 1

2 , the number of such clusters
vanishes in the limit of large N , so any instance is SAT
with probability that goes to 1 as N →∞. At αgc = 1/2,
closed loops proliferate as a giant component appears and
thereafter all instances are UNSAT with probability 1. A
straightforward upper bound on the energy in the UN-
SAT phase, E ≤ O((α − αgc)2N), follows from the fact
that the fraction of sites in the core of the giant compo-
nent grows as (α− αgc)2.

Physical intuition suggests that the ground state en-
ergy should be extensive above the transition and thus
likely saturate the given upper bound. In the next sec-
tion, we adduce strong evidence for this by exhibiting a
minimal lower bound on the energy E > N1−ε for any
ε > 0 which holds except for exponentially rare instances.
This follows from the twin claims that (i) the energy of a
figure eight comprising n sites decays only polynomially
with n, and (ii) that the number of disjoint figure eights
in the random graph grows nearly linearly with N . Ob-
serve that this kind of lower bound is exactly what we
need to establish that our ensemble keeps the promise
that either E = 0 or E > 1/Na with probability ex-
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ponentially close to 1. While this demonstration is not
strictly needed for 2-QSAT (since it is in P), it is sugges-
tive of what we might expect for the k ≥ 3 cases.

D. The promise gap for k = 2: counting figure
eights

We expect on physical grounds that the UNSAT phase
of k-QSAT has extensive ground state energy with rela-
tively vanishing fluctuations for any k. In this case, the
promise that E ≥ O(N−a) fails to be satisfied only with
exponentially small probability by Chebyshev’s inequal-
ity. More generally, so long as the average ground state
energy is bounded below by a polynomially small scale
E ≥ O(N−b) with relatively vanishing fluctuations, the
promise will be violated with only exponentially small
probability for a > b.

Placing rigorous lower bounds on the expected quan-
tum mechanical ground state energy is generally diffi-
cult, but at least for k = 2, we argue as follows to find
a nearly extensive bound scaling as N1−ε for any ε > 0.
As the Hamiltonian for QSAT is a sum of nonnegative
terms, we can bound the ground state energy from below
by considering manageable subgraphs and ignoring the
contribution from other terms. In particular, the aver-
age ground state energy of a figure eight graph, that is
a loop of length L with one additional crossing edge, is
polynomially bounded below by O(L−δ). This already
gives a polynomial lower bound on the expected energy
simply by allowing L to scale as N and knowing that we
will find at least one such subgraph in the giant compo-
nent with probability exponentially close to 1. We will
do better by finding a large number of disjoint such figure
eight graphs.

The expected number of subgraphs A in the random
graph GN,p is given by the following formula:

E#(A ⊂ G) =
N !

(N − |A|)!|Aut(A)|p
e(A) (7)

where |A| is the number of vertices in A, e(A) is the
number of edges in A and Aut(A) is the group of auto-
morphisms of A (|Aut(A)| is the cardinality of this set).
This formula simply counts the number of ways of find-
ing permutations of |A| nodes in G and connecting them
up into an A subgraph. For the fixed clause density en-
semble, we take p = 2α/N .

A figure eight graph is uniquely specified by giving its
size L (we take L even) and the distance d = 2 . . . L/2
between the two nodes that are connected by the crossing
link. We let A be the disjoint union of K figure eight
graphs with L nodes each and cross bars at separation
L/2 − 1. Such a graph has |Aut(A)| = K!2K from the
K! permutations of the disjoint subgraphs and the two-
fold symmetry of each figure eight. Thus, the expected
number of K-fold disjoint figure eights of size L is

E# =
N !pK(L+1)

(N −KL)!K!2K
(8)

We now allow K,L to scale with N such that KL � N
and use Stirling’s formula to find the asymptotic entropy

S ≈ KL
(

log 2α− KL

N

)
+K (logα+ 1− logK − logN) .

(9)
This entropy is positive and growing with N so long as
L� logN , KL� N and α > αg = 1/2. In this regime,
assuming that the fluctuations in S are relatively small,
we find that there are K ∼ N1−ε disjoint figure eights of
size L ∼ N ε/2 with exponentially high probability. These
lead to a nearly extensive lower bound on the expected
ground state energy.

IV. k-QSAT

We now turn to k-QSAT with k > 2. As noted above,
for sufficiently small α, the important hypergraphs have
vanishing cores. In this regime, it is possible to construct
the hypergraph by adding in edges one by one where
each additional edge brings with it at least one new leaf
node. Thus by a generalization of the transfer matrix ar-
guments for k = 2, it is possible to construct a satisfying
product state on the full hypergraph; the details are in
Sec. IV A. Deducing the existence of the UNSAT phase
is not as straightforward however for, unlike in the k = 2
problem, we do not know a set of unsatisfiable graphs
which are present with finite probability as N → ∞; in-
deed these are not known for classical SAT either. Thus,
in Sec. IV B we produce an indirect proof that the di-
mension of the kernel of H vanishes for sufficiently large
α.

Recall that for 2-QSAT the dimension of the satisfying
manifold ended up depending, with probability 1, only
on the topology of the graph and not on the choices of
the projectors. This is in fact a very general result, which
we prove directly in Sec. IV C. For any hypergraph for k-
QSAT (regardless of its likelihood) the dimension of the
satisfying manifold is independent of the choice of pro-
jectors with probability 1. Moreover, non-generic choices
of projectors result in larger satisfying manifolds. Implic-
itly, this means that satisfiability for the random ensem-
ble is a graph theoretic property and raises the extremely
interesting possibility that random k-QSAT can be for-
mulated without reference to quantum Hamiltonians at
all.

Finally, we comment on the satisfaction of the promise
gap in Sec. IV D and on the generalization of QSAT to
higher rank projectors in Sec. IV E.

A. Existence of SAT phase

We prove the existence of a satisfiable phase at low
clause density for rank 1 k-QSAT by constructing prod-
uct states of zero energy for arbitrary hypergraphs con-
taining a hypercore with a satisfying product state. Since
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the core of a random graph vanishes for α < αhc(k), this
proves the existence of a satisfiable phase below the emer-
gence of a hypercore.

Lemma 1. Suppose that H is an instance of QSAT on N
qubits with a satisfying product state |Ψ〉. Let H ′ = H+Π
be an instance of QSAT on N ′ > N qubits where Π is a
QSAT projector touching at least one qubit not among
the original N . Then H ′ has a satisfying product state
|Ψ′〉.

Proof. Assume first that the hyperedge Π adjoins only
one dangling qubit (untouched by H), say qubit 0. Let
the components of |Ψ〉 be Ψi1···iN . The key observation
here is that the projector Π with k−1 of its qubits fixed in
a product state of N qubits uniquely specifies the state
of the dangling qubit 0. If φi0···ik−1 is the vector onto
which Π projects, then the state of qubit 0 must be per-
pendicular to φ∗i0···ik−1

Ψi1···ik−1 .
Thus, contraction with εi

′
0i0 defines a k−1 to 1 transfer

matrix T
i′0
i1···ik−1

generalizing the Bravyi transfer matrix
of 2-QSAT. The new product state given by |Ψ′〉 =

∣∣ψ0
〉
⊗

|Ψ〉 where ψ0
i0

= T i0i1···ik−1
Ψi1···ik−1 satisfies Π. Moreover,

since H does not act on qubit 0, H |Ψ′〉 =
∣∣ψ0
〉
⊗H |Ψ〉 =

0. Thus H ′ = H+Π is satisfied by the product state |Ψ′〉
on N + 1 qubits.

Finally, if Π adjoins more than one dangling qubit,
simply fix all but one of these to an arbitrary state and
then apply the above transfer matrix procedure.

Theorem 2. Suppose that H is an instance of random
QSAT and let HC be the restriction to its hypercore. If
there is a satisfying product state on HC , then there is
almost surely a satisfying product state on H.

Proof. Let Πi, i = 1 · · ·M(G)−M(C) be the sequence of
projectors removed in the process of stripping leaf hyper-
edges from the hypergraph of H to produce the hyper-
core. At each stage of this process, the removed projector
Πi has at least one dangling qubit. Thus, if we iteratively
reconstruct H from HC by adding back the Πi in reverse
order, we can apply the lemma at each stage to lift the
product state on HC to a product state on H.

B. The UNSAT phase exists

For a given random hypergraph, let us construct H via

the sequence Hm =
m∑
j=1

ΠIj

φj
, i.e. we add the projectors

one at a time in some order. Clearly H = HM . Let
Dm be the dimension of the satisfying subspace for Hm;
evidently D0 = 2N . At each step, if the next added
projector involves a set of qubits that were not previously
acted upon, then Dm+1 = Dm(1− 1

2k ) as we may simply
implement the projection by reducing the size of a basis
that can be factorized between the target qubits and all
others. It is intuitively plausible that this is the best we

can do—in cases where the target qubits are entangled
with the rest of the system we should expect to lose even
more states, i.e.

Dm+1 ≤ Dm(1− 1
2k

)

in general. A proof that this bound holds with proba-
bility 1 for projectors randomly chosen according to the
uniform Haar measure is contained in Appendix A. From
this we conclude that

DαN ≤ 2N (1− 1
2k

)αN .

Thus, for α > −1/ log2 (1− 1
2k ) ∼ 2k the problem is

asymptotically almost always UNSAT.

C. Geometrization theorem

Geometrization Theorem. Given an instance H of
random k-QSAT over a hypergraph G, the degeneracy of
zero energy states dim(ker(H)) takes a particular value D
with probability 1 with respect to the choice of projectors
on the edges of the hypergraph G.

Proof. For a fixed hypergraph G with M edges, H =
Hφ =

∑M
i=1 Πi =

∑M
i=1 |φi〉 〈φi| is a matrix valued func-

tion of the 2kM components of the set of M vectors |φi〉.
In particular, its entries are polynomials in those com-
ponents. Choose |φ〉 such that H has maximal rank R.
Then there exists an R × R submatrix of H such that
det(H|R×R) is nonzero. But this submatrix determinant
is a polynomial in the components of |φ〉 and therefore
is only zero on a submanifold of the |φ〉 of codimension
at least 1. Hence, with probability 1, H has rank R and
the degeneracy dim(ker(H)) = 2N −R.

The theorem holds for general rank r problems as well
by a simple modification of the argument to allow extra
φ’s to be associated to each edge.

A nice corollary of this result is a more stringent upper
bound on the size of the SAT phase. Consider any assign-
ment of classical clauses on a given hypergraph: we can
also think of this as a special instance of k-QSAT where
the projectors are all diagonal in the computational basis.
As this is a non-generic choice of projectors, the dimen-
sion of its satisfying manifold is an upper bound on the
dimension for generic choices. We conclude then that
the classical UNSAT threshold is an upper bound on the
quantum threshold. Indeed, if we can identify the most
frustrated assignment of classical clauses on a given hy-
pergraph, i.e. the assignment that minimizes the number
of satisfying assignments, we could derive an even tighter
bound.

Corollary 3. The zero state degeneracy of the random
quantum problem is bounded above (w.p.1) by the number
of satisfying assignments of the most constrained classical
k-SAT problem on the same graph.
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α

0.81 7.494.26

αcav αwb

0.17

SAT UNSAT

αgc αhc

FIG. 3: Phase diagram of 3-QSAT. For α < αhc ≈ 0.81
[11], the problem is rigorously SAT. The UNSAT transition is
bounded below by the weak bound αwb = −1/ log(1− 1/2k),
but also (slightly less rigorously) by the classical cavity tran-
sition αcav [7]. The giant component emerges squarely in the
SAT phase at αgc = 1

k(k−1)
≈ 0.17.

We have encountered many numerical examples in
which the quantum problem has fewer ground states than
the most frustrated classical problem on the same hyper-
graph. Thus, the bound of corollary 3 is not tight.

In the k = 2 case, corollary 3 gives us another way
to show the critical point corresponds to the emergence
of a two-core: once a two-core exists, it will contain a
giant loop with two crossing bonds. This graph can be
made unsatisfiable by setting each of the clauses around
the loop to disallow the state 01 and the crossing bonds
to disallow 00 and 11 respectively. Thus, the quantum
problem is UNSAT w.p. 1. Ideally, we could extend this
geometric characterization to the k > 2 problem, but we
have thus far failed to identify a family of unsatisfiable
hypergraphs that appear in the random hypergraph with
non-vanishing probability.

D. Satisfying the promise

As in the case of 2-QSAT, physical experience sug-
gests that the ground state energy for k-QSAT should be
extensive with small fluctuations above the satisfiability
transition. If this is true, the promise is satisfied with
probability exponentially close to 1, as in the k = 2 case.
Unfortunately, we do not know a set of unsatisfiable sub-
graphs analogous to the figure eight’s that might be used
to provide a more rigorous bound.

E. QSAT at rank r > 2

We now briefly consider the extension of k-QSAT to
(k, r)-QSAT, in which the projectors ΠI have rank r, i.e.
they penalize a uniformly chosen r-dimensional subspace
of the 2k dimensional k qubit Hilbert space. The main
results regarding k-QSAT generalize naturally: satisfia-
bility is almost surely only dependent on the underlying
graph and the weak bound on the ground state degener-
acy becomes D(r)

αN ≤ 2N
(
1− r

2k

)αN , implying a bound
α

(r)
c ≤ −1/ log2

(
1− r

2k

)
. However, there need not be a

SAT phase at all: if r = 2k, the projectors ΠI are each
the identity and the ground state energy is αN > 0 for
any positive α. More generally, there is some critical rank
rc above which the SAT phase disappears.

We bound rc above by 2k/2 by exhibiting an unsat-
isfiable subgraph of the random hypergraph that arises
asymptotically almost surely (N → ∞) in the random
graph ensemble even at small α. Consider a chain with
two clauses and one shared qubit. Classically, this corre-
sponds to a two-clause problem on 2k − 1 bits where we
allow each clause to forbid r = 2k/2 configurations. Now
let the first clause forbid all configurations in which the
shared bit is 0 and the second clause all configurations
in which it is 1. This classical problem is clearly un-
satisfiable and therefore so is any quantum problem on
this subgraph w.p. 1. Indeed, since there are extensively
many such small chain components in the hypergraph,
each with an independently chosen O(N0) ground state
energy, this provides an extensive lower bound on the
total ground state energy.

The bound rc ≤ 2k/2 is not tight however. For ex-
ample, for k = 3, an open chain of length four with
rank 3 < 23/2 = 4 is quantum mechanically unsatisfi-
able w.p. 1, as can be checked numerically, and therefore
so is the ensemble for (k, r) = (3, 3). However, there is
no classically unsatisfiable problem on this chain and it
is harder to construct a rigorous bound that scales with
k using this starting point.

V. CONCLUSIONS AND OUTLOOK

As in the classical work that was our inspiration, we ex-
pect that the phase structure that we have identified also
shows up in the actual performance of potential quan-
tum algorithms. Specifically, the classical results and the
general intuition from the study of quantum phase tran-
sitions [13, 14] both strongly suggest that the decision
problem will be hardest near the SAT-UNSAT bound-
ary and easy away from such a bounded range. This
expectation is given further force by the graph theoretic
formulation of typical instances whereby we may again
expect that graphs with an intermediate clause density
are the ones where it might prove hardest to decipher
the relevant property. As a first step in testing this ex-
pectation, we have begun an investigation of the simplest
adiabatic algorithm for this problem [15] and the relevant
excitation spectra.

Looking ahead, the immediate challenge is to explic-
itly identify the graph theoretic property that character-
izes satisfiable instances of random QSAT without ref-
erence to the quantum mechanical problem. If this can
be accomplished it will shed light on the difficulty of de-
ciding generic instances of random QSAT and provide
a surprising connection to classical complexity classes.
Separately, we intend to investigate whether there are
analogs of the clustering transitions of classical k-SAT in
the quantum problem and whether generalizations of the
cavity method to quantum problems [16, 17, 18] can help
locate them. Finally, we would like to translate this im-
proved understanding of this ensemble of problems into
new algorithms for solving them on the lines of the be-
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lief/survey propagation algorithms for classical SAT.
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APPENDIX A: WEAK UNSAT BOUND

Weak UNSAT Bound. Given an instance of random
(k, r)-QSAT with Hamiltonian H over a hypergraph G
with N qubits and M clauses, the degeneracy of zero

energy states (i.e. the number of satisfying assigments)
D = dim(ker(H)) is bounded above by

D ≤ 2N
(

1− r

2k
)M

(A1)

with probability 1.

Proof. For a given random hypergraph G, we construct
H = HM via the sequence Hm =

∑m
j=1 Πj , where m =

1 . . .M . That is, we add projectors one at a time in some
fixed order. Let Dm be the degeneracy of zero energy
states after m projectors have been added. Clearly,

D0 = 2N . (A2)

The result will follow by induction after we show that
each additional projector reduces the degeneracy by at
least a factor 1− r

2k w.p. 1. That is,

Dm+1 ≤ Dm

(
1− r

2k
)
. (A3)

We consider adding a projector Π =
∑r
α=1 |φα〉 〈φα|,

where
〈
φα|φβ

〉
= δαβ , to the Hamiltonian H to construct

H ′. By appropriate reordering, we can always assume
that Π acts on the first k qubits of the fullN qubit Hilbert
space. We choose a basis for the zero energy subspace
ker(H) prior to the addition of Π as follows

|d〉 =
L∑
i=1

∣∣aid〉 ∣∣li〉 (A4)

where d ∈ {1, ..., D} labels the basis states,
∣∣aid〉 ∈ C2k

are vectors in the first k qubit factor of the Hilbert space
and

∣∣li〉 are L linearly independent vectors on the re-
maining (N − k) qubit factor.

The kernel of H ′ = H+Π is the subspace of the kernel
of H which is annihilated by Π. We write a generic vector
of ker(H) as:

|ψ〉 =
D∑
d=1

ψd |d〉 . (A5)

Annihilation by Π leads to the condition

0 = Π |ψ〉 =
L∑
i=1

r∑
α=1

|φα〉
∣∣li〉∑

d

〈
φα|aid

〉
ψd, (A6)



9

which by linear independence of the |φα〉
∣∣li〉 requires, for

any α, i:

0 =
D∑
d=1

〈
φα|aid

〉
ψd. (A7)

That is, ψd must lie in the kernel of the rL ×D matrix
A(iα)d =

〈
φα|aid

〉
. We now claim that A(iα)d has rank R

at least rD/2k with probability 1, which will prove our
inductive step. This follows from two observations:

1. The rank R of A is a bounded random variable that
takes on its maximal value over the choice of |φα〉
with probability 1. A can be viewed as a matrix
of monomials in the components of |φα〉. Choose
an orthonormal frame |φα〉 maximizing the rank R
of A; with this choice, there exists some R × R
submatrix of A such that det(A|R×R) is nonzero.
But this submatrix determinant is a homogenous
polynomial in the components of |φα〉 and therefore
is only zero on a submanifold of codimension at
least 1 in the complex Grassmannian Gr(r, 2k) (i.e.
the space of choices of rank r projectors Π). Hence,
almost every matrix A will have maximal rank R.

2. We now need only exhibit one set of |φα〉’s such
that A has rank R ≥ rD/2k. This is easy: at least
one R-tuple of the standard basis vectors will pro-
vide such an A. Consider the matrix of vectors

∣∣aid〉
and let r1, r2, · · · , r2k be the ranks of each of the 2k
component matrices (ie. the matrices A obtained
by using the standard basis elements for |φ〉). The
rj are the number of linearly independent rows in
each of these matrices. Now concatenate each of
these component matrices vertically into a giant
2kL ×D matrix. The row rank of this matrix can
be no larger than r1 + r2 + · · · + r2k by construc-
tion, but there must be a full D linearly indepen-
dent columns: any linear relation on the columns
of the giant matrix corresponds to a linear relation∑
d wd

∣∣aid〉 = 0 which lifts trivially to a linear re-
lation among the basis vectors |d〉. Hence,

r1 + r2 + · · ·+ r2k ≥ D.

From this relation, there must exist some collection
rij of size r such that ri1 + · · ·+ rir ≥ rD/2k. This
collection of basis vectors provides the frame we
desire.
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