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Abstract

Relational inference aims to identify interactions between
parts of a dynamical system from the observed dynamics.
Current state-of-the-art methods fit the dynamics with a graph
neural network (GNN) on a learnable graph. They use one-
step message-passing GNNs—intuitively the right choice
since non-locality of multi-step or spectral GNNs may con-
fuse direct and indirect interactions. But the effective interac-
tion graph depends on the sampling rate and it is rarely local-
ized to direct neighbors, leading to poor local optima for the
one-step model. In this work, we propose a graph dynamics
prior (GDP) for relational inference. GDP constructively uses
error amplification in non-local polynomial filters to steer
the solution to the ground-truth graph. To deal with non-
uniqueness, GDP simultaneously fits a “shallow” one-step
model and a polynomial multi-step model with shared graph
topology. Experiments show that GDP reconstructs graphs far
more accurately than earlier methods, with remarkable ro-
bustness to under-sampling. Since appropriate sampling rates
for unknown dynamical systems are not known a priori, this
robustness makes GDP suitable for real applications in sci-
entific machine learning. Reproducible code is available at
https://github.com/DaDaCheng/GDP.

1 Introduction
Understanding interactions is key to understanding the
function of dynamical systems in physics (Arenas et al.
2008), biology, neuroscience (Izhikevich 2007), epidemi-
ology (Pastor-Satorras et al. 2015), and sociology (Castel-
lano, Fortunato, and Loreto 2009), to name a few. It is often
time-consuming or even impossible to determine this struc-
ture experimentally: for example, neuronal connectivity is
determined by painstaking analyses of electron microscopy
images. On the other hand, there has been an explosion of
availability of signal measurements. It is thus attractive to
devise methods which determine interactions from the ob-
served dynamics alone.

The seminal work on neural relational inference (NRI)
showed that in some cases graph neural networks (GNNs)
can perform well on this challenge (Kipf et al. 2018).
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GNN-based methods use a graph generator and a dynam-
ics learner1: the graph generator produces a candidate graph
while the dynamics learner tries to match the dynamics to
data, acting as a surrogate for the original system. Since the
dynamics of a node only depends on its neighbors, it is intu-
itive to try and emulate it with a single-step message-passing
GNN. Multi-step message passing or spectral GNNs may
confuse direct and indirect neighbors. Indeed, single-step ar-
chitectures appear in the original NRI work and its various
adaptations (Alet et al. 2019; Löwe et al. 2022; Graber and
Schwing 2020; Ha and Jeong 2023; Zhu et al. 2022; Zhang
et al. 2022; Wang and Pang 2022).

An implicit assumption in a single-step scheme is that the
sampling rate (the number of samples per unit time) is suf-
ficiently high. With a low sampling rate the effective inter-
action graph is non-local which causes a single-step surro-
gate to confuse direct and indirect interactions. Single-step
message passing also limits the expressivity of neural surro-
gates. The vanilla GCN (Kipf and Welling 2017) and many
other GNNs implicitly assume homophily and act as low-
pass graph filters (Zhu et al. 2020). Although they can han-
dle certain heterophilic data (Ma et al. 2022), single-layer
GNNs can only implement a limited range of graph filters.
Unknown nonlinear dynamics call for graph filters adaptive
to data such as in ChebyNet (Defferrard, Bresson, and Van-
dergheynst 2016) or GPR-GNN (Chien et al. 2021).

In this work, we propose a graph dynamics prior (GDP)
for relational inference. The “prior” terminology is an anal-
ogy with the deep image prior used in inverse problems in
image processing (Ulyanov, Vedaldi, and Lempitsky 2018),
where the inductive bias of model (a convolutional neural
network) steers reconstruction towards images with good
properties, which is an implicit prior. Our model simultane-
ously uses a high-degree non-local polynomial and a “shal-
low” adjacency matrix to approximate the effective interac-
tions between consecutive state samples. The polynomial fil-
ter is sensitive to graph perturbations which helps avoid poor
local minima. As there are, in general, multiple graph matri-
ces that can result in the same polynomial filters, simulta-
neously fitting a parallel single-step model resolves the di-
rect interactions without converging to poor local minima

1Even though they are sometimes called differently, these two
components are always present.
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Figure 1: (a) An illustration of the relational inference problem. (b) The architecture of the full model. We train two dynamics
surrogates with shared topology. The detailed architecture of A model and gθ model can be found in Section 4.

thanks to the gradients from the polynomial model; this re-
solves issues which traditionally prevented the use of poly-
nomial filters in NRI. Experiments show that GDP achieves
significantly higher inference accuracy than any of the ear-
lier approaches. Notably, it finds the direct interactions even
at very low sampling rates where earlier approaches severely
degrade.

1.1 Related Work
Relational Inference. Classical approaches to relational in-
ference (RI) measure correlations (Peng et al. 2009), mutual
information (Wu et al. 2020), transfer entropy (Schreiber
2000) or causality (Quinn et al. 2011) of system trajec-
tories. These approaches do not perform future state pre-
dictions. Other studies focus on RI with known dynami-
cal models (Wang, Lai, and Grebogi 2016; Pouget-Abadie
and Horel 2015). These are often designed for particu-
lar dynamics. When only system trajectories are observed,
NRI (Kipf et al. 2018) infers the interaction graph in an
unsupervised way while simultaneously predicting the state
evolution. The scope of NRI has been extended to dynamic
graphs (Graber and Schwing 2020), graphs with heteroge-
neous interactions (Ha and Jeong 2023), and modular meta-
learning problems (Alet et al. 2019). It has also found ap-
plications in learning protein interactions (Zhu et al. 2022)
and was adapted to make causal claims (Löwe et al. 2022).
The model has been extended to the non-amortized setting,
where the graph encoder is often removed (Löwe et al. 2022;
Zhang et al. 2022). The dynamics learner part of these mod-
els is a GNN with one-step message passing.
Spectral Graph Neural Networks. Two basic design
paradigms for GNNs are via graph (spatial) and spectral
graph convolutions. “Spatial” graph convolution aggregates
neighborhood information; spectral filters are generically
non-local (Ortega et al. 2018). ChebyNet (Defferrard, Bres-
son, and Vandergheynst 2016) parameterizes the convolu-
tion kernel by Chebyshev polynomials of the diagonal ma-

trix of Laplacian eigenvalues. Two other GNNs that use
polynomial graph filters are APPNP (Gasteiger, Bojchevski,
and Günnemann 2018) and GPR-GNN (Chien et al. 2021).
By making the weights of matrix polynomials trainable,
GPR-GNN adaptively implements low-pass or high-pass
graph filters. For relational inference, spatial GNNs more
straightforwardly preserve locality via one-step message-
passing and thus have been widely considered in different
methods.

1.2 Our Contributions
Contrary to prior belief, we show that RI by non-localized
filters can work much better than shallow alternatives. While
earlier work avoids direct–indirect confusion via one-step
message-passing, it suffers from local minima even in the
presence of weak indirect interactions which prevents it
from fitting the dynamics. We conjecture and empirically
demonstrate that a non-local model resolves this issue, pro-
vided that it is properly designed. Concretely, to mitigate the
ambiguities arising from rooting matrix polynomials which
prevented earlier uses of multi-step architectures, we run in
parallel a local, single-step model with a shared adjacency
matrix, but now benefiting from the “steering” by the multi-
step model. This effectively results in a multi (two)-scale
architecture. In addition to yielding better graphs, this strat-
egy yields a much better model for the dynamics and greatly
reduces the number of samples required to learn the graph.
The two-scale architecture brings a remarkable performance
improvement across the board.

2 Preliminaries
We consider a graph G = (V,E) on |V | = n vertices,
which describes the interaction relations among components
of a dynamical system. Let A be the adjacency matrix,
Ã = D−1/2AD−1/2 its symmetric normalized version, and
L̃ = I −D−1/2AD−1/2 the symmetric normalized Lapla-



Model Graph δt Volume MI TE NRI GDP

Michaelis ER-50 1 50× 10 77.84 53.66 54.09±2.22 98.31±1.41
Menten 4 50× 10 55.93 51.95 51.85±0.97 88.66±8.73

BA-50 1 50× 10 88.04 63.96 55.20±1.81 93.02±3.94
4 50× 10 50.18 60.30 52.26±1.23 87.42±6.08

Rössler ER-50 1 50× 10 50.65 54.17 60.35±4.58 99.89±0.23
Oscillators 4 50× 10 52.28 54.13 51.95±1.28 56.82±3.56

BA-50 1 50× 10 56.28 62.64 59.81±5.74 90.55±16.13
4 50× 10 50.46 52.63 52.42±1.76 59.22±5.24

Diffusion ER-50 1 20× 10 56.00 57.63 70.66±7.80 93.44±4.87
4 20× 10 71.28 68.99 60.23±6.73 93.39±4.87

BA-50 1 20× 10 72.06 61.71 72.03±11.62 94.41±3.23
4 20× 10 86.38 69.77 59.01±5.73 90.55±5.14

Spring ER-50 20 15× 10 72.24 76.05 99.84±0.47 99.99±0.02
60 15× 10 71.43 69.17 97.47±2.93 98.96±1.25

BA-50 20 15× 10 91.16 84.67 98.17±5.40 99.88±0.36
40 15× 10 92.82 63.67 67.89±9.89 83.77±9.14

Kuramoto ER-50 1 30× 30 64.69 64.76 82.09±19.14 94.93±12.94
4 30× 30 75.34 63.53 95.96±5.01 99.30±1.67

BA-50 1 20× 30 55.46 61.87 69.70±18.16 90.13±12.38
4 20× 30 51.13 64.62 89.57±11.69 97.48±2.78

FJ ER-50 1 20× 10 53.66 83.64 97.67±1.06 99.82±0.47
4 20× 10 58.98 59.00 65.25±11.98 75.48±10.60

BA-50 1 20× 10 52.32 86.88 91.62±4.67 92.63±13.46
4 20× 10 50.90 67.13 67.27±9.59 73.89±9.84

CMN ER-50 1 20× 10 87.39 64.35 89.76±2.59 97.58±3.38
4 20× 10 93.13 74.08 89.94±1.42 98.40±1.92

BA-50 1 20× 10 87.84 71.51 83.35±2.30 88.83±6.19
4 20× 10 92.28 75.39 83.05±2.35 92.97±5.26

Netsim – 1 5× 200 94.73 74.83 71.57±1.57 95.09±0.68
2 5× 100 94.10 50.20 65.90±6.24 94.70±0.16

Table 1: Interaction graph inference accuracy measured by AUC and for various dynamical systems and inferring models. The
results for NRI and GDP are averaged over 10 independent runs. ER-n or BA-n denotes the name number of nodes (n) of the
graph and δt denotes the sampling interval. The sampling interval refers to second-time samplings in pre-generated trajectories,
not samplings during solving the ODEs. In the VOLUME column, a×b corresponds to #trajectories × #sampled steps. Boldface
marks the highest accuracy.

cian. We also use M to denote a general graph matrix, either
the adjacency matrix or the Laplacian.

2.1 Graph Dynamical Systems and Relational
Inference

Node i at time t is described by a state vector xt
i ∈ Rds .

We write xt = (xt
1,x

t
2, · · · ,xt

n) for the state of all nodes
at time t. We consider both continuous- and discrete-time
graph dynamical systems with synchronized updates,

Continuous Discrete
ẋt
i = fi(x

t
i, (x

t
k)k∈Ni

) xt+1
i = fi(x

t
i, (x

t
k)k∈Ni

),

where Ni is the set of vertex i’s neighbours and the dot
denotes the time derivative. In relational inference, we ob-
serve snapshots of a graph dynamical system {xt, t ∈ T} at
some set T of observation times and aim to find the inter-
action graph from these snapshots, without any knowledge
about the form of fi. Figure 1 (a) illustrates the common
framework for neural network-based RI approach. While

the ground truth graph and the dynamics (top row) are both
unknown, a graph generator and a dynamics surrogate are
trained simultaneously (bottom row). The unknown graph is
then predicted to be the best graph that explains the snap-
shots {xt, t ∈ T}.

2.2 Polynomial Graph Filters
A degree-K polynomial graph filter with coefficients θ =

(θ0, . . . , θK) is defined as gθ(M) =
∑K

k=0 θkM
k. Assum-

ing M is symmetric,2 we let M = UΛU⊤ be its eigen-
value decomposition. Then gθ(M) = Ugθ(Λ)U⊤, where
gθ(Λ) applies element-wise to the diagonal elements of Λ
and gθ(λ) =

∑K
k=0 θkλ

k. The scalar polynomial gθ(λ) is
called the convolution kernel. By the Weierstrass approxi-
mation theorem, any continuous function on a bounded in-

2This assumption is made for simplicity of explanation; our
proposed method easily handles directed graphs.
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Figure 2: Effects of observation intervals on the effective in-
teraction graph. The AUC for (a) continuous and (b) discrete
dynamics. The absolute value of normalized average score
for (c) continuous and (d) discrete dynamics. The shaded re-
gions show the standard deviation of each edge class. The
results are obtained on an Erdös–Rényi graph with n = 30
and p = 0.3.

terval can be approximated by a polynomial with arbitrary
precision.

3 Interaction Retrieval
3.1 Effective Interaction Graph
Unless the sampling rate is very high, the effective graph
modeled by the neural surrogate contains both direct and
indirect interactions. Let us illustrate this. Consider a lin-
ear dynamics with scalar states. Let xt = [xt

1, . . . , x
t
n]

T be
the vector of node states at time t and ẋt = βMxt. Solv-
ing the linear ODE, the states at t and t + δt are related as
xt+δt = exp(βMδt)xt, where exp(βMδt) is the matrix
exponential which encodes the effective interaction graph.
Since

exp(βMδt) = I+ βMδt+
β2

2!
M2δt2 + · · · ,

the interactions in principle exist instantaneously for all
path-reachable nodes. For small δt, the power series can be
approximated by truncating at first order in δt and the inter-
action graph is effectively encoded by M, but for moderate
or large δt, we need to include the higher-order terms.

For general nonlinear dynamics, let N̄i be the set of nodes
that xt+δt

i effectively depends on. Let qi be the effective
transition function, xt+δt

i = qi((x
t
k)k∈N̄i

). If qi is contin-
uous, Kolmogorov–Arnold theorem lets us write (Khesin
and Tabachnikov 2014; Zaheer et al. 2017) xt+δt

i =
ρi(

∑
j∈N̄i

Ji,jϕ(x
t
j)), for some continuous ϕ and ρi. The

function ϕ is independent of qi, and the parameters J =
(Ji,j) can be interpreted as interaction strengths. To build
a neural surrogate for the effective system, we can approx-
imate ϕ and ρi by neural networks and identify the inter-

action strengths via training; the NRI decoder can be inter-
preted in this sense. NRI further distinguishes a node and
its neighbours as xt+δt

i = xt
i +ρ(xi,

∑
j∈Ni

Ai,jϕ(x
t
i, x

t
j)),

where ρ and ϕ are neural networks and A = (Ai,j) trainable
parameters.

While neural networks may approximate effective dy-
namics, the inferred matrix A is (at best) close to the ef-
fective interaction graph J, rather than the true adjacency. In
a linear system the effective graph is generated by a polyno-
mial of the transition matrix which motivates the following
polynomial neural surrogate:

xt+δt
i = xt

i + ρ

(
xi,

∑
j∈Ni

gθ(A)ijϕ(x
t
i, x

t
j)

)
.

We assume the dynamics to be invariant to the neighbour
permutations, and therefore let ρ be node-independent (Za-
heer et al. 2017). Further, although the above form of the
Kolmogorov–Arnold theorem considers scalar node states,
we use it as a heuristic to motivate the functional form of the
effective interaction graph in GDP for both scalar and vector
states. We will experimentally show that this surrogate ben-
efits RI in both linear and nonlinear cases in Section 5. In
the following, we discuss (i) when the effective interaction
graph can confuse direct and indirect interactions, and (ii)
when and how a polynomial neural surrogate can help to set
things straight.

3.2 Effect of Observation Intervals
To what extent the effective interaction graph reflects the di-
rect interactions is determined by the intrinsic properties of
dynamics and by the sampling interval δt. In this section,
we empirically study the effect of the sampling rate in two
cases where the effective graph can be determined exactly:
continuous-time linear dynamics ẋt = βÃxt where the ef-
fective interaction graph is J = exp(βÃδt), and a discrete-
time linear system with synchronized updates xt+1 = Ãxt

where the effective graph is Ãδt. We compare the true graph
defined by A with the effective graph J by plotting the AUC
as a function of δt in Figure 2.

There is a qualitative distinction between the continuous
and discrete systems, but in both performance deteriorates as
δt grows. For continuous dynamics, the AUC remains close
to 100% for small βδt, meaning that the effective graph is
dominated by direct interactions. When βδt becomes larger,
direct–indirect confusion deteriorates performance. In fact,
even for small βδt the average scores for positive and neg-
ative classes become closer. This signifies a loss of stability
which makes it more likely to misclassify edges.

For discrete dynamics, odd hops result in a larger AUC,
which leads to the perhaps counter-intuitive conclusion that
larger observation intervals do not always yield worse RI.
Intuitively, there is always a length-3 walk between two di-
rectly connected nodes i, j as i → j → i → j , but we
can find a length-2 walk between only when they share a
common neighbour. The general trend is still that large ob-
servation intervals result in a direct–indirect confusion.

From the examples, we can classify sampled dynamics
into (i) those with effective interaction graphs closely mir-



Figure 3: The noise amplifier effect of graph polynomials
for RI. The results are obtained on an Erdös–Rényi graph
with n = 50 and p = 0.1. Other parameters are chosen to be
θ = 1 and t = 1e−5.

roring direct interactions and (ii) those where coarse sam-
pling weakens this correlation. We use the terms “strong”
and “weak” correlations informally, without a strict bound-
ary between the two. In Section 5, we demonstrate that many
known dynamical models fit the first category. Finally, we
emphasize that unlike our proposed two-scale polynomial
architecture, simply stacking multiple message-passing lay-
ers does not resolve undersampling and might even worsen
performance; we show this in Appendix C.1.

3.3 Interaction Graph Retrieval and Noise
Amplifier Effect of Graph Polynomials

Even if we can find the effective interaction graph (which
is the best we can hope for without additional assumptions)
and this graph is correlated with the true adjacency, the ques-
tion is how to recover direct interactions. We discuss this is-
sue in cases where the effective graph is either strongly or
weakly correlated with the direct interactions.

First, we consider a weakly correlated example. Consider
a linear system in which the effective graph is a polyno-
mial of M with coefficients θ⋆, J = gθ⋆(M). Suppose
we find J and now want to find M; we thus need to solve
gθ′(M′) ≈ J for M′ and θ′ (note that M′ does not necessar-
ily equal M). But the solution of gθ′(M′) ≈ J is in general
not unique even when we know the polynomial coefficients
θ. For example, if J = M2, the matrix square root equa-
tion (M′)2 = J is solved by Udiag(µ1, · · · , µn)U

⊺, where
µi = ±

√
λi. In order to identify the correct sign pattern

we need to use additional prior knowledge about the graph,
such as sparsity. In Lemma A.1 of Appendix A.1, we show
that for a general polynomial with known θ the solution is
unique only when the convolution kernel gθ(λ) is injective
(for example, the (matrix) exponential) and the graph matrix
has no repeated eigenvalues. When θ is not known, the num-
ber of solutions becomes much larger (we always have the
trivial solution θ′i = δi,1 and M′ = J.)

In the strongly correlated case, the interaction graph is

close to the direct interaction graph in the sense that positive
and negative edges can be classified with non-trivial accu-
racy. While the equation gθ′(M′) ≈ J may still have many
solutions we only want to build a binary classifier which is
possible directly from the effective graph. This means that
single-step message passing may suffice. However, as we
show experimentally in Section 5, even weak indirect inter-
actions trap this architecture in poor local minima. We now
discuss how error amplification in polynomial filters solves
the problem.

For xt+δt
i = xt

i + ρ(xi,
∑

j∈Ni
Mi,jϕ(x

t
i, x

t
j)), chang-

ing the value of Mi,j only affects the next state of node
i, xt+δt

i . It means that errors in the learned interactions
only generate gradients locally on the graph. But if we ap-
proximate the effective interaction graph by a polynomial,
gθ(M) =

∑K
k=0 θkM

k ≈ J, then a perturbation in Mi,j

propagates through several hops, generating large loss for
multiple nodes and thus removing local minima. The issue
is that, while the above polynomial equation can always be
solved (consider again the trivial assignment θk = δk,1,
M = J), the solution does not necessarily correspond to
the direct interaction graph.

Before we show how to address this issue in Section 4,
let us demonstrate experimentally how including higher-
order terms can make the model more sensitive to errors in
the graph and produce better gradients. Let Mϵ = M +
ϵΞ, where Ξ is a perturbation to the graph matrix M.
Consider the graph filter Mϵ + tgθ(Mϵ), and let yt,ϵ =
(Mϵ + tgθ(Mϵ))x be the filtered signal; y0,0 = Mx cor-
responds to the unperturbed case. We use cosine similarity
cos(y0,0,yt,ϵ) to quantify the effects of graph perturbations.
In Appendix A.2, we show that in the case ϵ = 0, the cosine
similarity is bounded from below as

cos(y0,0,yt,0) ≥ 1− t2|ON (1)|+Ot(t
3),

which indicates that the cosine similarity is close to one with
t being sufficiently small. Then, we show numerically that
when ϵ deviates from zero, the cosine similarity becomes
significantly smaller. We consider uniform random noise Ξ
and plot the cosine similarity cos(y0,0,yt,ϵ) versus ϵ in Fig-
ure 3: the similarity decays rapidly when increasing K. The
above results show that a polynomial graph filter can amplify
the noise in the graph when measured through the filtered
signals.

4 GDP for Relational Inference
Graph Generator We now introduce the full architecture
of GDP. We consider the non-amortized setting without an
encoder (Löwe et al. 2022; Zhang et al. 2022). We use a
simple generator where the probability of an edge (i, j) is

Aa
i,j =

(
Softmax(β[Ψ0

i,j ,Ψ
1
i,j ])

)
a

for a ∈ {0, 1}, (1)

Ψ0
i,j ,Ψ

1
i,j ∈ R are trainable latent variables, and β is the in-

verse temperature. Note that A1 = 11⊺−A0. Including both
in the model (as below) significantly speeds up convergence.
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Neural Dynamics Surrogate We generate two probabil-
ity matrices, A(a) for a ∈ {0, 1} and the corresponding
(probabilistic) graph filters F(a) = gθ(Ã

(a)), where as be-
fore Ã(a) is the symmetric normalized version of Aa, and
the filter coefficients θ are trainable. We use in-degree (for
the direction of message-passing) to normalize the adja-
cency matrix in the directed graph case. The dynamics sur-
rogate predicts the next state as

h̃
t

(i,j) =
∑

a∈{0,1}

F a
i,j f̃

a
e

(
xt
i,x

t
j

)
,

xt+1
j = xt

j + f̃v

∑
i ̸=j

h̃
t

i,j

 .

(2)

In the above architecture, f̃a
e are edge-wise MLPs, and f̃v

is a vertex-wise MLP. As explained in the previous section,
a polynomial filter removes the local minima generated by
indirect interactions, but it cannot guarantee that the learned
A is close to direct interactions since the roots of the matrix
polynomial are not unique. Therefore, we simultaneously
train another parallel dynamics neural surrogate using only
the adjacency matrix, i.e., replacing F a

i,j by Aa
i,j in Equa-

tion (2). The loss is simply the sum of MSEs of each neu-
ral surrogate. This strategy encourages the solution to stay
close to the ground truth interactions while also leveraging
the error amplification from graph polynomials. The overall
architecture of the proposed model is shown in Figure 1(b).
We call the model in Equation 2 using the adjacency matrix
as A model, and the model using a polynomial graph filter
as gθ model. The two models work in parallel with shared
A.

4.1 Application to Stochastic Dynamics (fMRI)
We further show that with appropriate modifications GDP
can be adapted to work with stochastic systems such as func-

tional brain region dynamics in fMRI. Indeed, with an addi-
tion of temporal smoothing it performs considerably better
than a single-step model and as well as the state-of-the-art
method based on mutual information, but unlike that method
we learn a model for the dynamics. Using multiple A- or
gθ-models and deeper GNNs further improves performance.
We leave a more detailed analysis of stochastic dynamics for
future work.

5 Experiments
We consider several representative graph dynamical sys-
tems, both continuous and discrete, to validate the proposed
algorithm. The continuous-time systems include (i) the
Michaelis–Menten kinetics (Karlebach and Shamir 2008),
a model for gene regulation circuits; (ii) Rössler oscilla-
tors (Rössler 1976) on graphs, which can generate chaotic
dynamics; (iii) diffusion, which is a simple a continuous-
time linear dynamics; (iv) a network-of-springs model
which describes particles interacting via Hooke’s law; and
(v) the Kuramoto model (Kuramoto 1975) which is a net-
work of phase-coupled oscillators. The discrete-time sys-
tems include (vi) Friedkin-Johnsen dynamics (Friedkin and
Johnsen 1990), a classical model for describing opinion for-
mation (Abebe et al. 2018; Okawa and Iwata 2022), polar-
ization and filter bubble (Chitra and Musco 2020) in social
networks; and (vii) the coupled map network (CMN) (Gar-
cia et al. 2002), a discrete-time model with chaotic behavior.
Moreover, we considered a publicly available fMRI dataset
(viii) Netsim (Smith et al. 2011), comprising realistic simu-
lated data. A more detailed description of the dynamics and
and data generation details can be found in Appendix B.1.
The graphs in all datasets but Netsim are undirected. We in-
clude further experiments on directed graphs in Appendix
C.5. Importantly, we also carry out experiments on real-
world data in Appendix C.6 (a dataset of traffic information
and a gene regulatory network of S. cerevisiae yeast), and
analyze the impacts of graph topology on inference accu-
racy in Appendix C.7.

5.1 Results on Relational Inference
We compare GDP to several baselines. The first one is NRI.
The original NRI is designed for the amortized setting where
the trajectories do not share the underlying graph. As we
primarily consider the classical non-amortized case, we use
the version of NRI without a graph encoder (Löwe et al.
2022). We further consider two statistical approaches based
on mutual information (MI) and transfer entropy (TE). Im-
plementation details for the baselines can be found in Ap-
pendix B.2. The hyperparameters for GDP are summarized
in Appendix B.3. As Equation 2 is invariant to swaps of edge
types a ∈ {0, 1}, it is possible that the learned graph corre-
sponds to the complement graph of direct interactions. This
ambiguity is discussed in Appendix B.4.

We apply GDP to the simulated systems and compare it
to the baselines. We conduct experiments on Erdős–Rényi
(ER) and Barabási–Albert (BA) graphs of different sizes and
measure the interaction recovery accuracy by AUC. Table 1
summarizes the average AUC with standard deviations. The
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Figure 5: AUC versus (a) data volume and (b) sampling rate
δt . The experiments are performed on an ER-20 graph. In
(a), the trajectory length and sampling interval are fixed as
10 and 5. We increase the data volume by including more
trajectories. In (b), the data volume is fixed as of 50× 10.

first four columns describe the dynamical model, graph type,
sampling rate and data volume, respectively. As both NRI
and GDP can reach higher accuracy with increasing data
volume, the volume of data in Table 1 is determined by the
rough criterion that GDP reaches above 90 AUC in the short
sampling interval case. The data volumes are kept the same
when increasing the sampling interval.

From the experiments, GDP significantly improves the
baseline methods. For example, in the Michaelis–Menten
model, GDP reaches good accuracy when the other base-
lines cannot recover helpful information (with an AUC of
about 50.00). GDP shows remarkable robustness to under-
sampling. For example, for the Spring model in BA-50,
while NRI and GDP generate accurate predictions with
small sampling intervals, GDP degrades much less when in-
creasing the sampling interval. The improvement is not lim-
ited to the large sampling rate case, as the error amplifier
mechanism of the polynomial filter still works in this case.
A phenomenon worth noticing is that the results generally
display large fluctuations, which suggests that the loss land-
scape has many poor local minima. Using a polynomial filter
helps escape these poor minima and improves the inference
accuracy. In Appendix C.2, we further study the dependence
of model performance on the polynomial order K. In Ap-
pendix C.3, we perform ablation studies to show that using
only the polynomial filter is insufficient to generate stable
predictions, as, in general, multiple graph matrices can result
in the same polynomial filters. An interesting phenomenon
is that a “good” graph for predicting the dynamics turns out
to be close to the true graph. We further verify the that the
true graph is a local attractor for our model in Appendix C.4.

5.2 Robustness to Sampling Rate and Data
Volume

We analyze the dependence of GDP’s performance on sam-
pling rates and data volume. For discrete-time linear dynam-
ics xt+1 = Ãxt, there is little correlation between the ef-
fective and direct interaction graph Ã for even sampling in-
tervals. This is confirmed using RI algorithms, depicted in
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Figure 6: Polynomial graph filters help to escape from lo-
cal minima. The experiments are performed with Kuramoto
model on an ER-50 graph.

Figure 4. The gray dashed line displays results from Ãδt.
Predictably, even-interval sampling confuses GDP and the
three baselines, preventing recovery of direct interactions;
imposing constraints such as sparsity seems essential.

The results from Ãδt provide a rough upper bound for in-
ference accuracy if we only use the effective interactions as
the prediction. Both GDP and the other three baselines are
below this line, which suggests that even when some posi-
tive edges are, in principle, distinguishable, these algorithms
can still not find them. The discrepancy between the upper
bound and algorithmic results is more pronounced when δt
is increased (for odd δt). When δt = 3, the bound is ≈ 100,
close to the δt = 1 case, but both NRI and GDP are further
away in the former case. GDP nonetheless performs the best
at all sampling rates.

We consider the Michaelis–Menten model for
continuous-time dynamics. We increase δt while keep-
ing the volume of data fixed. The results are in Figure 5 (b).
For all algorithms the AUC decreases with δt, suggesting
that direct and indirect interactions are more easily confused
at larger sampling intervals. Still, GDP shows better robust-
ness to the sampling rates. We next increase the number of
training trajectories; Figure 5 (a) shows the results. GDP
performs best in all cases. It is the least sensitive to data
volume and accurate even with small data sets. This may
be essential in real applications where samples are hard or
expensive to get.

5.3 Polynomial Filters Help Escape Bad Local
Minima

We design experiments to provide empirical evidence that
polynomial filters can help escape bad local minima. We
begin by training a model with only the one-step message
passing part; once the AUC reaches a plateau we switch on
the polynomial part. Figure 6 plots the evolution of the AUC
over training epochs. The blue curve corresponds to when
we insist on the one-step-only model: it stays approximately
constant after 1000 epochs. After activating the polynomial
part, the AUC increases sharply in a single epoch, signaling
that we immediately obtained a much more accurate graph.
This phenomenon suggests that the polynomial filter indeed



produces gradients that help escape the poor local minimum
to which a one-step model converged.

6 Discussion
The experiments show that in a broad range of qualitatively
diverse dynamical systems and for a broad range of sam-
pling rates, the non-local neural surrogate in GDP indeed
induces a favorable inductive bias and removes poor lo-
cal minima that cause problems for the earlier local mod-
els. As a result, GDP achieves state-of-the-art performance
across the board, often by a large margin and at much lower
data volumes. We considered a setting where all trajectories
share the same graph but our model can be extended to the
amortized setting by using a graph encoder which preserves
permutation invariance. The proposed model could also be
adapted to make causal claims by using only the adjacency
part at test time, as was done in (Löwe et al. 2022).

GDP, and other NRI-type methods in general still have
several limitations. Firstly, although we have incorporated
polynomial filters to address the non-local interactions in-
duced by coarse temporal sampling, GDP works when the
effective interaction graph is strongly correlated with the di-
rect interaction graph. This seems to be the case for all com-
binations of dynamics and sampling rates we tested, but a
more challenging task is to look at the strongly mixed case
where there is only a weak correlation between the effec-
tive and the true graph. Secondly, we currently consider all
nodes in the network to be observed; in practice, we only get
partial observation whose topology may change with time.
Thirdly, GDP may not be suitable in situations where the
nodes are highly heterogeneous as in, for example, some
metabolic networks. Finally, our claims and understanding
of the method are currently based on heuristics and experi-
ment; a precise theory is yet to be worked out.
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Technical Appendix

A Some Proofs
A.1 Graph Retrieval
Lemma A.1. Let gθ : R → R be a polynomial convolution
kernel, si the number of real roots of gθ(x) − gθ(λi) = 0,
and M a symmetric graph matrix. If (i) M has distinct
nonzero eigenvalues {λ1, λ2 · · · , λn} and (ii) the convolu-
tion kernel gθ is injective, i.e., si = 1 for all λi, and gθ(x) ̸=
0 for x ̸= 0, then the matrix equation gθ(M

′) = gθ(M)
has a unique solution M′ = M. Otherwise, it has at least∏n

i=1 si solutions.

Proof. Since gθ(M
′) is polynomial, M′ and gθ(M

′) com-
mute; therefore M′ and gθ(M) commute since gθ(M

′) =
gθ(M). Thus M′ and gθ(M) are simultaneously diagonaliz-
able. When M has distinct nonzero eigenvalues and gθ is in-
jective and gθ(x) ̸= 0 for x ̸= 0, then also g(M) has distinct
nonzero eigenvalues. Then the basis in which M′ and g(M)
are simultaneously diagonal is unique (up to permutations)
and equal to the eigenbasis U of M. Denote the correspond-
ingly diagonalized versions of M and M′ by Λ and Λ′, re-
spectively. Then we have that Ugθ(Λ)U⊺ = Ugθ(Λ

′)U⊺.
Equating the diagonal entries gives gθ(λi) − gθ(λ

′
i) = 0.

If gθ is injective, this implies λi = λ′
i, and the solution is

unique with A = A′.
If gθ is not injective, or the graph matrix M itself has

repeated eigenvalues, then gθ(M) may have repeated eigen-
values and there may be multiple diagonalizing bases (with
the eigenbasis U being one of them). For the eigenbasis, the
equation g(λi) − g(λ′

i) = 0 has si solutions. Picking any
of the si solutions for each i gives a solution to the matrix
equation g(M′) = g(M), so there are

∏n
i=1 si solutions.

Therefore, there are at least
∏n

i=1 si solutions.

A.2 Stability to Graph Perturbations
Let Mϵ = M + ϵΞ, where Ξ is a perturbation to the graph
matrix M. We use the perturbed matrix to define the graph
filter Mϵ + tgθ(Mϵ). Let yt,ϵ = (Mϵ + tgθ(Mϵ))x be the
filtered signal. Note that y0,0 = Mx correspond to the un-
perturbed case. We can write yt,ϵ = y0,0 + ∆yt,ϵ, where
∆yt,ϵ = ϵΞx+ tgθ(Mϵ)x. Therefore, the cosine similarity
cos(yt,ϵ,y0,0) depends on the competition between y0,0 and
∆yt,ϵ. The noise amplifier effect corresponds to the follow-
ing scenario: with t being sufficiently small, when ϵ = 0 the
cosine similarity is close to one; while when ϵ deviates from
zero, the cosine similarity becomes significantly smaller. We
show that the polynomial graph filter does help to achieve
this effect. We prove the following result:

Lemma A.2. When ϵ = 0, the cosine similarity between
y0,0 and yt,0 is bounded from below as

cos(y0,0,yt,0) ≥ 1− t2|ON (1)|+Ot(t
3).

Proof. By definition

cos(y0,0,yt,ϵ) =
x⊺M(Mϵ + tgθ(Mϵ)x

∥Mx∥∥(Mϵ + tgθ(Mϵ))x∥
.

The second norm in the denominator can be written as

∥(Mϵ + tgθ(Mϵ))x∥2

= ∥Mϵx∥2 + 2tx⊺Mϵgθ(Mϵ)x+ t2∥gθ(Mϵ)x∥2.
To lighten the notation, we denote

E =
x⊺Mϵgθ(Mϵ)x

∥Mϵx∥2
, F =

∥gθ(Mϵ)x∥2
∥Mϵx∥2

and Cϵ = cos(y0,0,y0,ϵ). We expand the cosine similarity
when t is sufficiently small, yielding:

cos(y0,0,yt,ϵ) =

(Cϵ + tE)(1− tE − t2

2
F +

3t2

2
E2 +Ot(t

3)) =

Cϵ + t(1− Cϵ)E − t2

2
(CϵF − 3CϵE

2 + 2E2) +Ot(t
3).

When ϵ = 0, we have Cϵ = 1, then

cos(y0,0,yt,0) = 1− t2

2
(F − E2) +O(t3).

Then The term F − E2 can be further written as

F − E2 = F sin2 (Mx, gθ(M)x) .

When M is invertible, the amplitude F is a generalized
Rayleigh quotient

F =
x⊺gθ(M)2x

x⊺M2x
,

whose maximum is the generalized eigenvalue λmax given
by

gθ(M)2x = λmaxM
2x,

or M−2gθ(M)2x = λmaxx. When ϵ = 0, Mϵ reduces to
the noise-free graph filter M. For typical graph filters such
as Ã and L̃, λmax is bounded from above by |ON (1)|. Using
sin2(Mx, gθ(M)) ≤ 1, we have

cos(y0,0,yt,0) ≥ 1− t2|ON (1)|+Ot(t
3).

and the claim follows.

B Experiment Details
B.1 Dynamical Models and Data Generation
Here we summarize the details of dataset generation. For
all experiments, we set the number of validation trajectories
to 10. The sampling interval and the number of sampled
trajectories are identical to the training set. The number of
sampled trajectories and time steps are shown in Table 1
in the main text. All trajectories are normalized to [−1, 1]
before feed into training for NRI and GDP. In Table 1, for
ER graphs the link probability is set to 0.1; for BA graphs,
each new node is connected to m = 2 existing nodes.

Michaelis-Menten Kinetics Michaelis–Menten kinet-
ics (Karlebach and Shamir 2008) describes enzymatic
reaction kinetics. The node state xi is one-dimensional



Table A1: Relational inference accuracy measured by AUC. The last column shows results by stacking two message-passing
layers.

Model Graph δt Volume MI TE NRI NRI-2

Spring ER-50 20 15× 10 72.24 76.05 99.84±0.47 51.01±0.64
FJ ER-50 1 20× 10 53.66 83.64 97.67±1.06 53.81±1.64
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Figure A1: The dependency of model performance on poly-
nomial order K. The results are averaged over 10 indepen-
dent runs.

Model Graph To Seed A Ã gθ(Ã)

Diffusion ER-50 1 0 85.90 92.04 90.47
1 1 80.74 87.92 91.23
1 2 93.86 84.49 80.77
1 3 87.79 93.04 90.86

ER-50 4 0 91.51 86.89 80.21
4 1 86.71 87.07 82.27
4 2 78.35 70.96 66.95
4 3 85.50 76.51 76.80

Table A2: Interaction graph AUC when using only the poly-
nomial model. The data volume is set to be 20 × 10. Each
row corresponds to an independent run with a different ran-
dom seed. Boldface marks highest accuracy.

and corresponds to concentrations of molecular species. Its
evolution reads

ẋi = −xi +
1

|Ni|
∑
j∈Ni

xj

1 + xj
,

The equation is integrated with an ODE solver with the step
size to δt = 1.

Rössler Oscillators A Rössler oscillator (Rössler 1976) is a
three-dimensional dynamical system composed of one non-
linear and two linear equations. The model has been ex-
tended to graphs, where node-wise Rössler oscillatosr are
coupled through the edges. The model has been used to

study synchronization in power grids and neuron oscilla-
tions. The state xi of each node is three-dimensional, where
the evolution (Casadiego et al. 2017) reads:

ẋi,1 = −xi,2 − xi,3 +
1

|Ni|
∑
j∈Ni

sin (xj,1) ,

ẋi,2 = xi,1 + 0.1xi,2,

ẋi,3 = 0.1 + xi,3 (xi,3 − 18) .

When integrating the model, we set δt = 1.

Diffusion. The graph diffusion equation is ẋ = L̃x. We use
the scale Laplacian I− L̃ and set δt = 0.1.

Springs. The springs model describes particles connected
by springs and interact via Hooke’s law. The model was con-
sidered in NRI for testing the algorithm. We use the same
setup as NRI, where particles are confined in a 2D box with
elastic boundaries, and each particle is described by the lo-
cation ri ∈ R2 and velocity vi ∈ R2. The system’s ODE
reads

dri
dt

= vi,
dvi

dt
= −k

∑
j∈Ni

(ri − rj) . (3)

We use the trajectories of ri and vi as observed data.
The size of the box is set to be 5. We use the code for
simulating the springs model provided by NRI3. The initial
locations are sampled as i.i.d. Gaussians N (0, 0.5), and the
initial velocities is a random vector of norm 0.5. Newton’s
equation of motion is integrated with a step size of 0.001
and then subsamples each 100 step to get the training and
testing trajectories. Each sampled trajectory contains 49
snapshots of the system states.

Kuramoto model. Kuramoto model (Kuramoto 1975) de-
scribes phase-coupled oscillators placed on a graph. The
evoluation of the phase ϕi of vertex i is described by the
following ODE:

dϕi

dt
= ωi + k

∑
j∈Ni

sin(ϕj − ϕi), (4)

where ωi are the intrinsic frequencies and k is the coupling
strength. We use the implementation and default parameters
provided by Löwe et al.4. The observables contains dϕi/dt,

3https://github.com/ethanfetaya/NRI
4https://github.com/loeweX/AmortizedCausalDiscovery



sinϕi, ϕi and ωi. The sampling rate is δt = 0.01.

Friedkin–Johnsen Dynamics. The Friedkin–Johnsen (FJ)
dynamics (Friedkin and Johnsen 1990) is a classical model
for describing opinion formation (Abebe et al. 2018; Okawa
and Iwata 2022), polarization and filter bubble (Chitra and
Musco 2020) in social networks. In FJ model, each vertex
at time t holds an “expressed” opinion xt

i ∈ [−1, 1] and an
internal opinion si ∈ [−1, 1]. While si does not change over
time, xi evolves according to the rule

xt+1
i =

si +
∑

j∈Ni
xt
j

1 + |Ni|
, (5)

where |Ni| is the degree of vertex i. The model reaches an
equilibrium state in the long-time limit where all vertices
hold a constant opinion. We study relational inference
for the model in its transient state. We sample the initial
expressed and internal opinions from a uniform distribution
in [−1, 1] and update vertex states for some steps to generate
the dataset. We take both si and xt

i as observed quantities.

Coupled Map Networks. Coupled Map Networks (Gar-
cia et al. 2002) is a discrete-time system that can generate
chaotic dynamics,

xt+1
i = (1−ϵ)f(xt

i)+
ϵ

|Ni|
∑
j∈Ni

f(xt
j), f(x

t
i) = ηxt

i(1−xt
i).

We set ϵ = 0.2 and η = 3.5. We use the implementation
provided by Zhang et al.5.

Netsim Netsim (Smith et al. 2011) simulates blood-oxygen-
level-dependent imaging data across different regions within
the human brain. The interaction graph describes the di-
rected connectivity between brain regions. The dataset vol-
ume is 50 × 200, and the graph has n = 15 nodes. As in
Löwe et al., we do not split the data into training/validation
sets but use all the data in each phase.

B.2 Baseline Methods and Implementation
Details

NRI. NRI was originally designed in the amortized setting
when each trajectory has a distinct interaction graph. It was
extended to the non-amortized case for relational (Zhang
et al. 2022) and causal (Löwe et al. 2022) inference. In the
non-amortized setting, the graph encoder is not necessary.
As we do not require make causal claims, we do not use
the test-time adaption technique in Löwe et al., but infer
the interaction graph during training time. The predicted
interaction graph is picked through the MSE loss in a
validation set. We re-implement NRI based on Löwe et al.
for the non-armotized case with binary edge types, and use
their default hyperparameters. More details can be found in
our implementation available online.

5https://github.com/kby24/AIDD

0.00 0.200.05 0.10 0.15 
Proportion of Distorted Edges

0.5

1.0

1.5

2.0

2.5

3.0

M
SE

 L
os

s

1e-2 

GDP Train 
GDP Test 
NRI Train 
NRI Test

Figure A2: The training and test loss of neural surrogate
with fixed graph. The graph is an ER graph with n = 20
and p = 0.5, and the sampling interval is set to be δt = 1.
The volume of training data is 50 × 10. We randomly flip a
fraction of edges, and train the model on the fixed distorted
graph.

Mutual Information (MI). Mutual information of two ran-
dom variables is defined as

MIi,j =
∑
xi,xj

P (xi, xj) log
P (xi, xj)

P (xi)P (xj)
, (6)

where P (xi, xj) is the joint distributions of xi and xj

sampled from the system trajectories, and P (xi) (P (xj))
are their marginals. The random variables are defined
on each vertex for the relational inference problem. We
compute the mutual information for all pairs of nodes,
which is further taken as the score for the presence of an
edge. The node state distributions are approximated from
the sampled trajectories.

Transfer Entropy (TE) The transfer entropy is defined as

TEi,j = H(xt
j |xt−1

j )−H(xt
j |xt−1

j , xt−1
i ),

where H(·|·) is the conditional entropy. In order to estimate
the conditional entropy numerically, the observed trajecto-
ries are discretized by data binning. The number of bins is
picked from {2, 200}, and we report the higher accuracy.

Unlike NRI and GDP, MI and TE do not require a vali-
dation set. For a fair comparison, we compute MI and TE
on the training and validation set combined. When there are
multiple variables, we compute MI or TE for each variable
and take the average as the prediction. We use the imple-
mentations from netrd package6 for MI and TE.

B.3 Hyperparameters for GDP
All the results of GDP reported in the main text (except the
Netsim dataset) are obtained under identical neural network
architecture and hyperparameters. We use Adam optimizer
to train the model. The learning rate is set to be 0.1 for the

6https://netrd.readthedocs.io/en/latest/



Table A3: Relational inference accuracy measured by AUC on directed graphs for different methods.

Model Graph δt Volume MI TE NRI GDP

Diffusion ER(D)-50 1 20× 10 53.89 52.73 68.67±12.75 90.23±2.98
Kuramoto ER(D)-50 1 20× 30 51.32 52.72 65.92±9.04 72.60±8.49

Table A4: Relational inference accuracy measured by AUC on real-world data.

Model Graph δt Volume MI TE NRI GDP

Traffic METR-LA-207 1 23974× 12 58.21 73.31 70.54 76.79
MM Gene-100 1 250× 10 75.23 53.82 63.13 78.57
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Figure A3: Influence of graph properties on inference accu-
racy for the diffusion model. The experiment is performed
on Watts-Storgatz graphs with n = 30, k = 2, and we vary
the rewiring probability p. The shaded region denotes the
standard deviation.

graph generator and 0.0005 for the dynamics surrogate. The
inverse temperature parameter β of the graph generator in
Equation 2 of the main text is set to be 0.5. For all other
datasets except Netsim, the polynomial filter is truncated at
K = 4, and the number of GNN layers is set to 1.

The Netsim dataset is stochastic, and we introduce some
addition techniques of temporal smoothing. In particular, we
set k = 6 with 4 GNN layers. In order to make the outputs in
the first three hidden layers stable, we perform linear inter-
polation on consecutive data points and fit the hidden layers
outputs to the interpolated data. In addition, we replace the
data at each time step with the average on its neighbouring
time steps. More details can be found in our implementa-
tion available online. We leave a more detailed analysis of
stochastic dynamics for future work.

B.4 Graph / Complement Graph Ambiguity
The neural surrogate essentially classify the edges into two
types, but cannot determine which type correspond to the
positive edges and which to the negative. In fact Equa-

tion 3 in the main text is permutation invariant to the edge-
types a ∈ {0, 1}. Therefore, there is the graph/complement
graph ambiguity problem. Moreover, the effective interac-
tion graph itself can be negatively correlated to the adja-
cency matrix. For example, for the linear ODE ẋ = βÃx,
a negative β makes the effective interaction negatively cor-
related with the interaction graph, as shown in Figure 2 in
the main text. In practical applications, we can use spar-
sity prior, or compare with the statistical methods to decide
which one as the prediction. In Table 1 in the main text, we
simply report max{AUC, 1-AUC}.

C More Results
C.1 Insufficiency of stacking multiple

message-passing layers
We consider the approach by naively stacking two message-
passing layers for the undersampling case. The results are
shown in Table A1 for Spring and FJ dynamics. By stack-
ing two message-passing layers, the AUC is close to 50%,
indicating that the approach degrades completely.

C.2 Dependency on Polynomial Orders
We take the Michaelis-Menten Kinetics as an example to test
the dependency on the polynomial order K. We consider an
ER graph with n = 20 nodes and generate the trajectories
at sampling interval δt = 4. The volume of training/vali-
dation/test data are 50 × 10/10 × 10/10 × 10, respectively.
The training and test errors and graph inference AUC ver-
sus K are shown in Figure A1. The model performance is
optimized at an intermediate value of K, which shows that
including higher-order terms can help in recovering the in-
teractions.

C.3 Ablation Study of Using Only Polynomial
filters

Our proposed model reduces to NRI if the polynomial fil-
ter part is removed. Therefore, the ablation study mainly fo-
cuses on the case when we only use a polynomial filter. As
we have discussed in the main text, there are, in general,
multiple graph matrices that can result in the same polyno-
mial filters, so it is hard to control which one will converge.



We use only the gθ model to verify the phenomenon and
conduct experiments with different random seeds in Pytorch.
We use the diffusion model as an example and record the
predictions generated by A, Ã and gθ(Ã) in Table A2. Any
of these three matrices has predicted the interaction graph
best under one random seed, suggesting that the convergence
is hard to control if we only use the polynomial filter. As we
only list three related graph matrices, other better matrices
might not be included. Therefore, an A model is necessary
to stabilize the solutions.

C.4 Local Attractiveness of Ground Truth Graph
The experimental results show that the “good” graph for dy-
namics prediction is also correct. In other words, the true
graph is an attractor (at least locally) when we make the
graph trainable. We test the local attractiveness of the ground
truth graph via the following experiment. In particular, we
train the neural surrogate by keeping the graph fixed on each
set of graphs. The set contains a ground truth graph as well
as many distorted graphs. We randomly select a fraction of
the edges for distortion and flip its edge type. We consider
the Diffusion model and generate the training trajectories by
simulating with the ground truth graph and train the neu-
ral surrogate on each graph for 10 times independently. The
average train and test MSE error versus the proportion of
distorted edges is shown in Figure A2. From Figure A2, for
both NRI and GDP, the train and test error in general in-
crease with the proportion of distorted edges, which reflects
that with the ground truth graph, we can better predict the
dynamics.

C.5 Results on directed graphs
In the main text, only the Netsim dataset is directed. We per-
form additional experiments to verify the performance of
GDP in this case. In particular we take Diffusion and Ku-
ramoto dynamics on directed ER graphs as examples. The
results are shown in Table A3. GDP outperforms other base-
lines on the considered examples.

C.6 Results on real-world data
We carry out additional experiments on real-world data.
We consider two new datasets: (i) A dataset of traffic in-
formation collected from loop detectors on the Los Ange-
les County (Li et al. 2018). We selected 207 sensors and
4 months of data from Mar 1st 2012 to Jun 30th 2012 for
the experiment. (ii) A gene regulatory network of S. cere-
visiae yeast and Michaelis-Menten model on the regulation
data (Schaffter, Marbach, and Floreano 2011).

Both new sets of results are shown in Table A4. From the
results, GDP also performs well on these new datasets, out-
performing all baselines. More experiments on real data re-
quires considerable domain-specific knowledge (and maybe
according model tweaks), and we leave it to future works.

C.7 Impacts of Graph Structure on Inference
Accuracy

Previous works on graph dynamical systems show that the
dynamical behaviour relies strongly on the graph struc-

ture. For example, the Kuramoto model has an incoherent-
coherent phase transition, where the transition threshold de-
pends on the graph structure intricately. In the coherent
phase, we expect the inference to be more challenging as
all nodes are synchronized and have identical states. There-
fore, the influence of graph properties should be dynamics-
dependent. One way to test this influence experimentally is
by using graphs with tunable graph properties. We conduct
experiments with the Diffusion model on the Watts-Strogatz
graph. The graph starts with a k-nearest neighbour ring, and
each edge is randomly rewired with probability p. When p
grows, the graph becomes more random. The inference ac-
curacy versus p is shown in Figure A3. We can observe that
the inference accuracy decreases as the graph becomes in-
creasingly random.


