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Abstract. In this paper, we give a simple algorithm to generate all or-
dered trees with exactly n vertices including exactly k leaves. The best
known algorithm generates such trees in O(n − k) time for each, while
our algorithm generates such trees in O(1) time for each in worst case.
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1 Introduction

It is useful to have the complete list of objects for a particular class. One can
use such a list to search for a counter-example to some conjecture, to find the
best object among all candidates, or to experimentally measure an average per-
formance of an algorithm over all possible inputs.

Many algorithms to generate all objects in a particular class, without repe-
tition, are already known [1,2,11,13,12,15,16,17,20,26,28]. Many excellent text-
books have been published on the subject [4,6,10,25].

Trees are the most fundamental models frequently used in many areas, includ-
ing searching for keys, modeling computation, parsing a program, etc. From the
point of view, a lot of enumeration algorithms for trees are proposed
[2,11,15,17,18,23,26], and a great textbook has been published by Knuth [7].
Also, enumeration algorithms for some subclasses of trees are known [5].

A rooted tree means a tree with one designated “root” vertex. Note that there
is no ordering among the children of each vertex. Beyer and Hedetniemi [2] gave
an algorithm to generate all rooted trees with n vertices. Their algorithm is the
first one to generate all rooted trees in O(1) time per tree on average, and based
on the level sequence representation. Li and Ruskey [11] also gave an algorithm
to generate all such trees, and showed that it was easily modified to generate
restricted classes of rooted trees. The possible restrictions are (1) upper bound
on the number of children, and (2) lower and upper bounds on the height of a
rooted tree.
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Fig. 1. All rooted ordered trees with 5 vertices including 3 leaves

A tree without the root vertex is called a free tree. Due to the absence of the
root vertex, the generation of nonisomorphic free trees is a more difficult problem.
Wright et al. [26], and Li and Ruskey [11] gave algorithms to generate all free
trees in O(1) time per tree on average, then Nakano and Uno [17] improved the
running time to O(1) time in worst case. Also they generalized the algorithm
to generate all “colored” trees [18], where a colored tree is a tree in which each
vertex has a color.

An ordered tree means a rooted tree with a left-to-right ordering specified for
the children of each vertex. An algorithm to generate all ordered trees has been
proposed by Nakano [15]. He also gave a method to generate non-rooted ordered
trees in [15]. Sawada [23] handled enumeration problem for similar but different
class of trees, called circular-ordered trees. A circular-ordered tree is a rooted
tree with a circular ordering specified for the children of each vertex. Sawada
[23] gave algorithms to generate circular-ordered trees and non-rooted ones in
O(1) time per tree on average.

In this paper, we wish to generate all ordered trees with exactly n vertices
including exactly k leaves. See Fig. 1 for examples.

Let Sn,k be the set of ordered trees with exactly n vertices including exactly k
leaves. For instance there are six ordered trees with exactly 5 vertices including 3
leaves, as shown in Fig. 1 in which the root vertices are depicted by white circles,
and |S5,3| = 6. Such trees are one of the most natural subclasses of trees and are
researched extensively, including enumeration [15,19], counting [24, p.237] and
random generation [14].

The number of trees in Sn,k is known as the Narayana number [24, p.237] as
follows:

|Sn,k| =

(
n−2
k−1

)(
n−1
k−1

)

k
.

Two algorithms to generate all trees in Sn,k are already known. Pallo [19]
gave an algorithm to generate each tree in Sn,k in O(n − k) time on average.
Also, Nakano’s algorithm in [15] generates each tree in Sn,k in O(n − k) time on
average.

By combining an algorithm to generate all ordered trees with specified degree
sequence [8,9,22,29, etc], and a slightly modified version of an algorithm to gen-
erate all integer partitions into (n − k) parts [3,21,27,30, etc], one can design an
algorithm to generate all trees in Sn,k. Although such algorithm may generate
each tree in O(1) time in worst case, the algorithm is very complicated.

In this paper, we give a simple and efficient algorithm to generate all trees in
Sn,k. Our algorithm generates each tree in Sn,k in O(1) time in worst case. The
main idea of our algorithms is as follows. For some graph enumeration problems
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(biconnected triangulation [12], triconnected triangulations [16], plane graphs
[28] and ordered trees [15]) we can define a simple tree structure among the
graphs, called the family tree, in which each vertex corresponds to each graph
to be enumerated. In this paper, we design a cleverer family tree than the one
in [15].

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 defines the family tree among trees in Sn,k. Section 4 gives a simple
algorithm to generate all trees in Sn,k.

2 Definitions

In this section, we give some definitions.
Let G be a connected graph with n vertices. In this paper, all graphs are

unlabeled. The degree of a vertex v, denoted by d(v), is the number of neighbors
of v in G. A tree is a connected graph with no cycle. A rooted tree is a tree with
one vertex r chosen as its root. For each vertex v in a rooted tree, let UP(v) be
the unique path from v to r. If UP(v) has exactly k edges then we say the depth
of v is k. The parent of v �= r is its neighbor on UP(v), and the ancestors of
v �= r are the vertices on UP(v) except v. The parent of r and the ancestors of
r are not defined. We say if v is the parent of u then u is a child of v, and if v is
an ancestor of u then u is a descendant of v. A leaf is a vertex having no child.
If a vertex is not a leaf, then it is called an inner vertex.

An ordered tree is a rooted tree with a left-to-right ordering specified for the
children of each vertex. For an ordered tree T with the root r, let LP (T ) =
(l0(= r), l1, l2, . . . , lp) be the path such that li is the leftmost child of li−1 for
each i, 1 ≤ i ≤ p, and lp is a leaf of T . We call LP (T ) the leftmost path of T ,
and lp the leftmost leaf of T . Similarly, let RP (T ) = (r0(= r), r1, r2, . . . , rq) be
the path such that ri is the rightmost child of ri−1 for each i, 1 ≤ i ≤ q, and rq

is a leaf of T . We call RP (T ) the rightmost path of T , and rq the rightmost leaf
of T .

3 The Family Tree

Let Sn,k be the set of all ordered trees with exactly n vertices including exactly
k leaves. In this section, we define a tree structure among the trees in Sn,k in
which each vertex corresponds to a tree in Sn,k.

We need some definitions.
The root tree, denoted by Rn,k, of Sn,k is the tree consisting of the leftmost

path (l0(= r), l1, . . . , ln−k) and k − 1 leaves attaching at vertex ln−k−1. See
Fig. 2 for an example.

Then we define the parent tree, denoted by P (T ), of each tree T in Sn,k\{Rn,k}
as follows. Let lp and rq be the leftmost leaf and rightmost leaf in T . We have
two cases.



144 K. Yamanaka, Y. Otachi, and S.-i. Nakano

Fig. 2. The root tree R7,4

(a) (b)

T P(T) T P(T)

lp-1

lp
rq

lp-1

lp
rq

Fig. 3. Examples of the parents in (a) Case 1 and (b) Case 2

Case 1: rq−1 has two or more children.
P (T ) is the tree obtained from T by (1) removing rq, then (2) attaching a

new leaf to lp−1 as the leftmost child of lp−1. See Fig. 3(a) for an example. The
removed and attached vertices are depicted by boxes.

Case 2: rq−1 has only one child rq.
P (T ) is the tree obtained from T by (1) removing rq, then (2) attaching a

new leaf to lp. See Fig. 3(b) for an example.

Note that P (T ) is also in Sn,k.
T is called a child tree of P (T ). If T is a child tree in Case 1, then T is called

Type 1 child, otherwise, T is Type 2 child.

Lemma 1. For any T ∈ Sn,k \ {Rn,k}, P (T ) ∈ Sn,k holds.

Given a tree T in Sn,k \ {Rn,k}, by repeatedly finding the parent tree of the
derived tree, we can have the unique sequence T, P (T ), P (P (T )), . . . of trees in
Sn,k which is called the removing sequence of T . See Fig. 4 for an example. in
which each solid line corresponds to the relation with Case 1, and each dashed
line corresponds to the relation with Case 2.

T R7,4P(T) P(P(T)) P(P(P(T))) P(P(P(P(T))))

Fig. 4. The sequence of trees
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Lemma 2. The removing sequence ends up with the root tree Rn,k.

Proof. Let T be a tree in Sn,k \ {Rn,k}. Let LP (T ) = (l0, l1, . . . , lp) be the
leftmost path of T . We define two functions f(T ) and g(T ) as follows. We define
that f(T ) = |LP (T )|. Let c1, c2, . . . , ca be the children of lp−1 from left to right.
We choose the minimum i such that ci is an inner vertex. Then we define that
g(T ) = i − 1. For convenience, if there is no such vertex, then we define that
g(T ) = a. Note that 1 ≤ f(T ) ≤ n − k + 1 and 1 ≤ g(T ) ≤ k for any T in Sn,k.

Now we define a potential function p(T ) = (f(T ), g(T )). It is not difficult to
see that p(T ) = (n − k + 1, k) if and only if T = Rn,k. Suppose that T1 and
T2 are two trees in Sn,k such that T1 �= T2. We denote p(T1) < p(T2) if (1)
f(T1) < f(T2) or (2) f(T1) = f(T2) and g(T1) < g(T2).

Fig. 5. The family tree T7,4
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Next we show that p(T ) < p(P (T )). Suppose T is a Type 1 child of P (T )
(see Fig. 3(a)). In this case, we have f(T ) = f(P (T )) and g(T ) + 1 = g(P (T )).
Thus p(T ) < p(P (T )) holds. If T is a Type 2 child of P (T ), we always have
f(T ) + 1 = f(P (T )). Thus p(T ) < p(P (T )) holds.

Therefore, by repeatedly finding the parent of the derived tree, we eventually
obtain Rn,k on which the potential is maximized. This completes the proof. ��

By merging removing sequences we can have the family tree Tn,k of Sn,k such
that the vertices of Tn,k correspond to the trees in Sn,k and each edge correspond
to the relation between some T and P (T ). See Fig. 5 for an example.

4 Algorithm

Let Sn,k be the set of ordered trees with exactly n vertices including exactly k
leaves. This section gives our algorithm to generate all trees in Sn,k by traversing
Tn,k.

Given Sn,k we can construct Tn,k by the definition, possibly with huge space
and much running time. However, how can we construct Tn,k efficiently only
given two integers n, k? Our idea [12,15,16,28] is by reversing the procedure
finding the parent tree as follows.

If k = 1, Sn,k includes only one element which is the path with n − 1 edges,
then generation is trivial. Also if k = n − 1, Sn,k includes only the star of n
vertices. Therefore, from now on we assume 1 < k < n − 1.

Let T ∈ Sn,k. Let LP (T ) = (l0(= r), l1, . . . , lp) be the leftmost path of T ,
and lp the leftmost leaf of T . Let RP (T ) = (r0(= r), r1, . . . , rq) be the rightmost
path of T , and rq the rightmost leaf of T . We denoted by T [ri], 0 ≤ i ≤ q, the
tree obtained from T by (1) removing the leftmost leaf and (2) attaching a new
leaf to ri as the rightmost child of ri.

Now we explain an algorithm to generate all child trees of the given tree T in
Sn,k. We have the following two cases.

Case 1: T is the root tree Rn,k.
Each T [ri], 0 ≤ i ≤ q − 2, is a child of T , since P (T [ri]) = T . Since T [rq−1] is

isomorphic to the root tree Rn,k in Sn,k, T [rq−1] is not a child tree of T . Since
P (T [rq]) �= T , T [rq] is not a child of T .

Thus T has q − 1 of Type 1 children and no Type 2 child.

Case 2: T is not the root tree.
If lp−1 has two or more children, and the second child of lp−1 from left is not

a leaf, then T has no child tree, since if T is the parent of some tree then the
second child of lp−1 from left is a leaf (Case 1), or lp−1 has only one child and it
is a leaf (Case 2). See Fig. 3. Now we assume otherwise. We have the following
two subcases.

Case 2(a): lp−1 has two or more children.
Let T

′
be the tree obtained from T by removing lp. Then T

′
has k − 1 leaves.

Thus we should add a new vertex to T
′
so that in the resulting graph the number

of leaves increases by one. The detail is as follows.
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Each T [ri], 0 ≤ i ≤ q − 1, is a child tree of T , since P (T [ri]) = T . On the
other hand, T [rq] is not a child tree of T , since P (T [rq]) �= T .

Thus T has q of Type 1 children and no Type 2 child.

Case 2(b): lp−1 has only one child, which is lp.
Any T [ri], 0 ≤ i ≤ q − 1, is not a child tree of T . T [rq] is the child tree of T .

Thus T has exactly one Type 2 child.

The above case analysis gives the following algorithm.

Procedure find-all-child-trees(T )
begin

01 Output T
{Output the difference from the previous tree.}

02 Let lp and rq be the leftmost leaf and the rightmost leaf of T .
03 Let RP (T ) = (r0(= r), r1, r2, . . . , rq) be the rightmost path of T .
04 if lp−1 has two or more children and the second child of lp−1 from left

is not a leaf then
05 return
06 if lp−1 has two or more children then
07 for i = 0 to q − 1
08 find-all-child-trees(T [ri]) {Case 2(a)}
09 else
10 find-all-child-trees(T [rq]) {Case 2(b)}

end

Algorithm find-all-trees(n, k)
begin

01 Output Rn,k

02 T = Rn,k

03 Let RP (T ) = (r0(= r), r1, r2, . . . , rq) be the rightmost path.
04 for i = 0 to q − 2
05 find-all-child-trees(T [ri]) {Case 1}

end

We have the following theorem.

Theorem 1. The algorithm uses O(n) space and runs in O(|Sn,k|) time, where
|Sn,k| is the number of ordered trees with exactly n vertices including exactly k
leaves.

Proof. To construct T [ri] from T , our algorithm needs the references to the
leftmost leaf lp and the rightmost path of T . Each can be updated as follows. In
Case 2(a) the second child of lp−1 from left becomes the leftmost leaf of T [ri].
In Case 2(b) the parent lp−1 of lp becomes the leftmost leaf of T [ri]. In both
cases the rightmost path is updated to the path from the newly added vertex to
its root. Thus we can maintain in O(1) time the leftmost leaf and the rightmost
path. ��
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The algorithm generates all trees in Sn,k in O(|Sn,k|) time. Thus the algorithm
generates each tree in O(1) time “on average.” However, after generating a tree
corresponding to the last vertex in a large subtree of Tn,k, we have to merely
return from the deep recursive call without outputting any tree. This may take
much time. Therefore, the next tree cannot be generated in O(1) time in worst
case.

However, a simple modification [17] improves the algorithm to generate each
tree in O(1) time in worst case. The algorithm is as follows.

Procedure find-all-children2(T , depth)
{ T is the current tree, and depth is the depth of the recursive call.}
begin

01 if depth is even then
02 Output T {before outputting its child trees.}
03 Generate child trees by the method in the first algorithm, and recursively

call find-all-children2 for each child tree.
04 if depth is odd then
05 Output T {after outputting its child trees.}

end

One can observe that the algorithm generates all trees so that each tree can
be obtained from the preceding one by tracing at most three edges of Tn,k. Note
that if tree T corresponds to a vertex v in Tn,k with odd depth, then we may
need to trace three edges to generate the next tree. Otherwise we need to trace
at most two edges to generate the next tree. Note that each tree is similar to the
preceding one, since it can be obtained with at most three operations. Therefore
we have the following theorem.

Theorem 2. One can generate ordered trees with exactly n vertices including
exactly k leaves in O(1) time for each in worst case.

5 Conclusion

In this paper, we have given an efficient algorithm to generate all ordered trees
with exactly n vertices including exactly k leaves.

We defined a cleverer family tree than the one in [15]. By traversing the family
tree, our algorithm generates all trees in Sn,k in O(1) time for each in worst case.
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