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The sparse macroecology of microbiology
Christopher P. Kempesa,1

Ecology is often defined in terms of the interactions among
species. Macroecology aims to take a global view of the
general patterns of all ecological processes including the in-
teractions among organisms. This high-level perspective has
created many challenges for ecology ranging from how to
identify all of the interactions in the first place to surprising
results by Robert May in the 1970s that most large complex
systems defined by interaction matrices are unstable (1).

It becomes even more challenging to understand eco-
logical systems if one considers higher-order interactions,
where, for example, the interaction of any two species
depends on the presence or absence of a third species. In
such contexts, there are even more types of interactions
to count and the dynamics would seemingly be even more
unwieldy. Understanding all of the interactions among mi-
croorganisms is a daunting task for two reasons: First is the
curse of combinatorics. Imagine that you have S species; this
allows for 2S presence–absence community compositions.
If S is just 10, a modest microbial community, then 26 = 1,024
(2). Do we need to observe all of these to infer the full
set of species interactions? Another challenge is the sheer
number of species that can exist in microbial ecosystems.
That is, S can be quite large. These problems clearly indicate
the need for new tools. Furthermore, how should we
approach this problem when we often only have limited
observations of a system? These are all of the challenges
and questions addressed in the new paper by Arya et al. (2).

The authors use compressive sensing, which is a tool
from signal processing aimed at reconstructing a signal
from a few measurements. The challenge for both signal
processing and ecology is that one is often trying to find
solutions to a small number of equations for contexts
with a large number of free variables. However, this is
possible under the condition of sparsity, that is, if most of
the coefficients of the equations are close to zero. In an
ecological context, this would imply that most of the values
in an interaction matrix are zero. The authors take this
starting place for compressive sensing and assume sparsity
and then they fit the best sparse representation.

The authors produce a tool that creates a map from initial
to final species compositions. This map works for any initial
composition even if produced on a small amount of data.
Said another way, once the model is fit, it is possible to
predict the steady-state ecology given any starting com-
munity. To validate the method, the authors first test the
approach on synthetic ecological data, where they know the
true answer. They find that sampling only 10% of the full
data provides reasonable predictions. They then show that
the method works well for diverse microbial ecosystems
ranging from soil to the fly and human gut.

The big surprise in their paper is that this method works
so well for predicting microbial ecology. The fact that the
best-fit sparsity representation has predictive power in
observed systems tells us that the interaction matrix is

sparse. In fact, the authors find that both pairwise and
higher-order interactions are sparse.

It is important to note that prediction is not perfect for
observed data. The R2 between prediction and observation
can be around 0.80, but the model does provide an impres-
sive starting point given very limited data. This starting point
is useful for employing limited data to make predictions,
design future experimentation or data collection, and to
build and test theories in a specific context.

Another key feature of the compressive sensing app-
roach is that it outperforms much more complicated and
opaque machine learning perspectives. Many people are
happy to call even the simplest linear regression for predic-
tion “machine learning (ML),” and so the key consideration
for ML really becomes about how complicated the fitting
algorithm is and how much it predicts. Compressive sensing
is a straightforward regression procedure because of the
simplifying assumptions of sparsity, and the authors show
that it outperforms two other ML procedures that are
commonly used and are slightly more complicated.

Stepping back, this work is part of a growing body of
theoretical and empirical work uncovering the structure
and implications of higher-order interactions in ecology. For
example, recent work has shown that higher-order interac-
tions stabilize dynamics (3) and lead to a greater number of
feasible coexistences (4). More broadly, this work is also part
of the exciting emergence of a macroecology of microbial
systems. There are several theories of macroecology that
have been developed over the last century which show
law-like regularities across diverse ecological systems (5).
These include, to name a few, scaling relationships between
various organism traits, species abundance distributions,
and the demographics of body size in an ecosystem. In
recent years, each of these regularities and/or theories has
been mapped onto the microbial world (e.g., refs. 6–10).
In addition, recently there has been a push to begin to
understand the synthesis between these theories (5). The
paper by Arya et al. adds an exciting new tool for uncovering
the effective interactions of species and showing that these
are sparse which will allow certain theories to be compared
with data and refined. Looking forward, an open challenge is
to connect automatic or machine learning models to analytic
theory. This is a general challenge for the emerging ecology
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of big data and is meant as an open call to the community
rather than a critique. Importantly, compressive sensing
offers a much simpler and transparent ML approach than
most others, and sparsity gives us hope for simple theories.

The roadmap is then to use this method as a way to
reveal the interactions within a system and then to build,

compare, validate, and update theories based on those
results. In combination, these perspectives and theories
provide many avenues for a better understanding and
prediction of microbial ecosystems ranging from those in

“The technique developed by Arya et al. provides an
exciting new tool for uncovering interactions in
ecological systems.”

the human gut, to industrial scenarios like
food production and waste treatment, to
forecasting the future ecology of soils,
lakes, and oceans. Such theories will allow
us to better understand the climate system
as well as our own health. The technique
developed by Arya et al. provides an ex-

citing new tool for uncovering interactions in ecological
systems.
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