Learn about our response to COVID-19, including freely available research and expanded remote access support.

Micro-, meso-, macroscales: The effect of triangles on communities in networks

Sophie Wharrie, Lamiae Azizi, and Eduardo G. Altmann
Phys. Rev. E 100, 022315 – Published 21 August 2019

Abstract

Mesoscale structures (communities) are used to understand the macroscale properties of complex networks, such as their functionality and formation mechanisms. Microscale structures are known to exist in most complex networks (e.g., large number of triangles or motifs), but they are absent in the simple random-graph models considered (e.g., as null models) in community-detection algorithms. In this paper we investigate the effect of microstructures on the appearance of communities in networks. We find that alone the presence of triangles leads to the appearance of communities even in methods designed to avoid the detection of communities in random networks. This shows that communities can emerge spontaneously from simple processes of motiff generation happening at a microlevel. Our results are based on four widely used community-detection approaches (stochastic block model, spectral method, modularity maximization, and the Infomap algorithm) and three different generative network models (triadic closure, generalized configuration model, and random graphs with triangles).

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 22 April 2019

DOI:https://doi.org/10.1103/PhysRevE.100.022315

©2019 American Physical Society

Physics Subject Headings (PhySH)

NetworksInterdisciplinary PhysicsStatistical Physics

Authors & Affiliations

Sophie Wharrie, Lamiae Azizi, and Eduardo G. Altmann

  • School of Mathematics and Statistics, University of Sydney, 2006 NSW, Australia

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 100, Iss. 2 — August 2019

Reuse & Permissions
Physical Review A•B•C•D - 50 Years

To celebrate 50 years of enduring discoveries, APS is offering 50% off APCs for any manuscript submitted in 2020, published in any of its hybrid journals: PRL, PRA, PRB, PRC, PRD, PRE, PRApplied, PRFluids, and PRMaterials. Learn More »

Access Options
APS and the Physical Review Editorial Office Continue to Support Researchers

COVID-19 has impacted many institutions and organizations around the world, disrupting the progress of research. Through this difficult time APS and the Physical Review editorial office are fully equipped and actively working to support researchers by continuing to carry out all editorial and peer-review functions and publish research in the journals as well as minimizing disruption to journal access.

We appreciate your continued effort and commitment to helping advance science, and allowing us to publish the best physics journals in the world. And we hope you, and your loved ones, are staying safe and healthy.

Ways to Access APS Journal Articles Off-Campus

Many researchers now find themselves working away from their institutions and, thus, may have trouble accessing the Physical Review journals. To address this, we have been improving access via several different mechanisms. See Off-Campus Access to Physical Review for further instructions.

Sign up to receive regular email alerts from Physical Review E