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1. THE idea of the ordinary'partition of an integer has been con-
sidered by many writers, with or without restrictions on the size of
the parts or on the number of parts. Let us confine our attention
for the moment to unrestricted partitions, and regard a partition as
involving a definite arrangement of the parts in descending* order
of magnitude along a line; thus, a partition of 8 is

431. (1.01)
Then we may regard this as a one-dimensional or line partition.

This point of view leads us to an obvious generalization to two-
dimensional or plane partitions, which may be defined as follows.

Take any line partition of the integer n and arrange the parts in
rows and columns,.so that a descending* order of magnitude is in
evidence in each row from left to right, and in each column from top
to bottom; Each row starts from the first column and each column
from the first row. Such an arrangement is termed a plane partition
of n.

Thus, the particular plane partitions of 8 which are derived from
the line partition (1.01) are

431 43 41 4 \
1 3 3 1 (1.02)

i J
The idea of a plane partition was introduced by MacMahon, He

deals with the general problem of such partitions, with or without
restrictions on one or more of the following:

(i) the size of each part,
(ii) the number of rows,

(iii) the number of columns.
He obtains the generating functionf for each of the various cases by
means of intricate and beautiful analysis based on his theory of
Lattice Functions.

* 'Descending order of magnitude' is used1 in the wide sense.
•f Combinatory Analysis (Camb., 1916), vol. ii, pp. 173-243.
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178 E. MAITLAND WRIGHT
The case 'each part not greater than unity' is equivalent to that

of unrestricted line partitions. Here the generating function is

I T U Z p x n . (1.03)
1=1 ' n=l

Hardy and Ramanujan* obtained an asymptotic formula for p(n)
with an error only O(n~l).

Of the other cases the unrestricted case is the most difficult and
interesting from the asymptotic point of view. For this case the
generating function is

f(x) = f[(l-af)-'= 1+ f q(n)zn, (1.04)
1=1 n=l

where q(n) is the number of plane partitions of n defined as above.
In this paper I shall obtain an asymptotic formula for q(n) for large n.

At first sight, the analogy between (1.03) and (1.04) suggests the
possibility of some simple proof of (1.04) on the lines of Euler's
'intuitive' proof of (1.03). I have been unable to find any such proof;
and as from one of MacMahon's memoirsf it is clear that he devoted
much attention to the problem of proving (1.04), it seems unlikely
that a simple proof exists.

.2.1. I use the following scheme of notation:
£(s) is the zeta-function of Riemann, and Bs is the sth Bernoullian

number; that is,

m=l
00

and Ba = A

2r(2j+2)g(2>)£(2«+2).
«(2JT)

(a ^ r+1) is the coefficient of y3 in the expansion of
r+l

22t=\

• Proc. London Math. Soc. (2) 17 (1918), 75-115. The small order of the
error in this case is due to special properties of the generating function. The
results of the present paper indicate the improbability of anything similar
being true in the case of q(n). f Phil. Trans. Royal Society, 211A, 77.
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in ascending powers of y. I t is obvious that, so long as 8 ̂  r + 1 ,
Pa is independent of r. Also, if \y\ be small,

r+l
ZZ
=1

r+l
= 2 &

8=0
6g#m is the coefficient of y2"1 in the expansion of

(2.14)

•-* (2.15)
in ascending powers of y.

H and K are positive numbers whose values vary from one occur-
rence to another. H is an absolute constant (such as 3), while K
depends on r only. By \u(n) | = (0v(»)), I mean that, for any fixed r,

. \u(n)\ <Kv(n)
for all n; and by \u(n)\ = o(v(n)), I mean that, for any e > 0 and any
fixed r, \u(n)\

for all n greater than some fixed n0 = no(e, r).
N is a large positive number, to be assigned later, and CN is the

circle , • _ . j y ^ r

in the complex a;-plane.
8 is the principal value of arg x,

z = log- = log

\ 2 ^

where C'N is that part of CN on which |tf | < 1/N.
2.2. The object of this paper is to prove the following
THEOREM. The asymptotic expansion* of q(n) is

i
( 2 - 2 2 )

8 = 0

From the product form of f{x) in (1.04), we see that f(x) is an
analytic function regular within the unit circle, every point of the

* The numerical values of the constants involved-in the first term of the
expansion are given at the end of the paper.
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180 E. MAITLAND WRIGHT
circumference being an essential singularity. Then, by Cauchy's
theorem, q(n) may be expressed in the form

J_ f J
2m% J -

since C^ encloses the origin and lies entirely within the unit circle.
It will appear that, to put it roughly, x = 1 is much the 'heaviest'

singularity of f(x); and I shall show that, when N is large, the
dominant terms in q(n) are supplied by the portion of the integral
(2.23) on C'N. For this purpose, we need two lemmas with regard
to the value oif(z) on C'N, C# respectively.

3. LEMMA I. When x is on C'N, we have

2& 2 2 ") | <KN~»-*-WHANt. (3.01)

This is proved by using Cauchy's theorem in a manner which may
be adapted to obtain the asymptotic or exact transformation of many
similar functions.

We note that for x on C'N, we have

p<V2/2V and \<f>\<\n.

We understand by E a number whose absolute value is less than

Ke-B><>.

I t is obvious that, since cos <f>> 1/V2, '

e-Hlp = E,

for x on C'N. Also p«{logp)h-n,P = E,

if a and j3 are numbers (positive or negative) depending only on r.

3.1. Suppose that p is a positive integer and S a small positive
number. Let Yp be a contour in the <-plane running from t = 8 to
t=p-\-\, coincident with the real axis except near t=l,2,...,p,
where we pass round small semicircles above these points. Let A be
the quarter-circle with centre at the origin running from i8 to 8.
Finally, let Vp, A' be the reflections of Pp, A in the real axis.

We take that value of log(l—e-42) which tends to zero as t-> -f oo
along the real axis, and note that the only singularities of

&• <••»>
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apart from the origin, are simple poles at t = ±Z, and logarithmic
singularities at t = ±2^77t/z, where I runs through all positive integral.
values.

We draw two straight lines, one through t = iw, parallel to the
real axis, and the other through t = j>-\-\, parallel to the imaginary
axis. These two straight lines form an indented rectangle with A, Vp,
and the imaginary axis from *8 to iw. By Cauchy's theorem, since
the integrand has no singularities within the rectangle,

t8 . P+i+iw p+i
j jt(t)dt = - j+ j + j W)dt = I1+It+Ir (3.12)
Tr iw b iw p+t+iu>

The reader will readily find that, for \<f>\ < \n,

and l/

Now let 8 tend to zero and p to infinity. The limits of integration
in I2 are now iw and iw-\- oo; and Fp becomes Tx = T (say). The
equation (3.12) becomes

o
J tf,(t) dt+ j j(t) dt = J2. (3.13)
r iw

Let us now consider 72. Making the transformation v = tz, we
find that m+ilB

\I2\<He^tIP'>CO8'l> j \tlog(l-e-")\\dt\ = EI^), (3.14)
iw

where I(<f>) = J \v\ | log( l -e^) | \dv\,
L

and L is the half straight line in the v-plane from

incUned at an angle <j> to the positive direction of the real axis.
Divide L into Lx and L2 so that, on L, SR(v) <C \n. Then Lx is of
bounded length, and the integrand on L± is uniformly bounded for
|^| < \n. Also, on L2, 9?(w) > H\v\, and so we have

e-")| \dv\ <H j |i*-«| \dv\ <H j \v\e~HM \dv\

Hence I{<j>) < H, and we have 72 = E.
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(3.13) now becomes

iw

r o
By similar reasoning, we have also

I" 0

By Cauchy's theorem we know that
«log(l-e-*)plog(l-e-fe) f <log(l-

J e 2 * « - l J 1 - e -2iril

)— f tlog(l—e"^) dt
o

Finally, from (3.15), (3.16), and (3.17J, we have
iw —iw

o o
which reduces to ,„

o
3.2. We now proceed to calculate the value of

to

0
From the well-known formula

I imi—l ty~

(3.17)

(3.18)

2 y~ai—«y-'rfy. (3.21)

we have at once, for \r\ <TT,

S ; ^ 2 ^ P - (3.22)
s=l m=l a=\

If we now write T = \yz, we have, on the range of integration in (3.21),
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The series (3.22) is uniformly convergent for such values of T, and
so we may write

2 \ylOff,^yz) dy
o

w _, , w_o Cy\og(yz)dy J y ^ U ^ 2 3 f^1^

o *~1 «-'+•= o
(3.23)

Now we have

smce
o

Also, by (2.11) and (2.13),
r+l

= 2 fll2i^#+2logZ fj^-
J e 2 " l / _ l * ' & J e2ny_
0 0

(3.24)

C j_dy__iB _ ,

8=1
r+l

= 2, a«2a-\-Hi. (3.25)

Finally,

1-
: Kp^

J J ^ < Zp̂ + .̂ (3.26)
o

Combining (3.18), (3.24), (3.25), and (3.26), we see that the error
terms may all be included in one term, since
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g=0

and from this we have

Now, on G ,̂ p < 42/N, and

so we have

J\%)~~€rZ

®X*VJ

1/12 /̂* ft

^ . exp

"o '

A
z2

<

the result of Lemma I.

4. LEMMA II . Given any e > 0, we can find an No = N0(t), such
that, for all N > No and all x on C^, we have

The proof of this is very simple. We have

and so

[a.r , la;l
- |*»|)« 1.(1-|x|)2 l I— rrl«

But
m=l

by Lemma I. Also

(1-|*|)» \l-x\* (1-

1 — la;
snice -

|1—x

So we have finally

|1
iiN>N0(e).
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5.1. I now put N = (nfeA)*, SO that n — 2ANZ. It is convenient
to work mainly in terms of N, rather than n. We have

•f(x)dx
xn+1

By Lemma I,

7
8 = 0

A728+1+1/12
dz

I
A728+1+1/12 /• IA \

where Pg = =—-—— z^+V12 exp ( ^ + 2 îV^3z)
"m J \z* )

( i ) / i V

1+

= J^ I*
l-i

if we put v = iVz.
5.2. Our next step is to obtain an asymptotic expansion of Pa in

descending powers of N2 by the method of 'steepest descents'.*
The curve of steepest descent through v= 1 is found by putting

3(2t>+y-2) = 0.
If we write v = X-\-iY, and reject the factor Y, we find the equation
of the curve G, namely,

(X2+Y*)2 = X, (5.21)
This is the equation of a closed curve touching X= 1 at (1,0),
and X = 0 at (0,0), and cutting X = — Y, X=Y at the points
D (2-1,—2-J), J£ (2-|,2-») respectively. £ lies entirely in the strip
0 ^ X ^ 1. The figure shows the general shape of the curve.

* Watson, Proc. London Math. Soc. (2) 17 (1918), 117, gives references to
memoirs discussing this method.
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We consider the v-plane as cut from 0 to — oo along the real axis,
and we take that value of u^12 which is real and positive at v= 1.
We regard the contour (£ as starting from 0 and being described in
the counter-clockwise sense.

Let us write

and

{
P8 = f t;8(v) dv.

G

If F, O are the points 1—i, 1+i, we have

on the straight lines DF, EG and the parts OD, EO of C Hence, on
these contours, since X < 1, |t>| is bounded, and a < r-f 1, we have

|v|2s+l/12

2TT

I t follows that

\P.-P.\<\\t.(v)dv
x»

In Pa, we now put

(5.22)

(5.23)

that value of the square root being taken which is positive at v = 1.
Then «2 = 3—2v—v~2 ,
and £ transforms into the real axis in the <-plane. So we have

_ +

ps = e3^-v J dt,
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5.3.* Near v = 1, we can expand (5.23) in a power series

where d1 = —iV3. Since dy =£ 0, by reversion of the series we have

and

f

each with a positive radius of convergence. Hence we have

1
m=0

(5-31)

the series having a radius of convergence greater than some K.
Since <2 = 3—2i>—v~2,

we see that

and so

Then, on (£,

Jt l—i
t— =
dt— = ;
dv xr

dv vH ^ 2 ( 2

dt l—v* 1+v+v2 '
V2s+U12 fo

and |x»(0-l i8 therefore bounded on the whole of the real axis in the
tf-plane.

Since (5.31) holds on an interval of the real axis near t = 0, we
have, on the whole of the real axis,

2r+3

22
m=0

Hence
+ 00

*

+ 00

m=0

where t*r+'e-ANVdt<

• I am indebted to Watson's paper (loc. cit., pp. 133, 137) for the method
I use in this paragraph. .
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00

Now J tme-ANV dt = 0.
—«

if m is odd; while if m is even,

re dt -
So finally we have the asymptotic expansion

r+1

m=0

5.4. To calculate o2m we proceed as follows. Near t = 0,

m=0

and so a,m = —-

the integral being taken along a small loop around t = 0.

1 f<1+)

•2lB 47T2J

1 Putt ing v = 1+y, we have

a-m, by (2.15).

5.5. By Lemma II,

|J2\ <

if we take e < \. Combining this with (5.32), we have

8 = 0

r+1 r+1 . i \ m o i T-I/ I i \

8=0 m=0
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Let us now put h = m+«, and sum with respect to h and «. Then
8 runs from 0 to H; and we may collect all terms for which h > r
in one error term. We have

Z\4:) AhN»j*
If we now write N = (n/2.4)*, we have the result of the theorem.

6. I t is clear that the method I have used could be extended to
determine the asymptotic expansion of the nth coefficient of other
functions of a similar type. The essential step in each case is the
proof of two lemmas corresponding to those proved here.

The next paper of this series will be concerned with the different
idea of 'weighted' partitions, and, in particular with the coefficients
of the function „

n
The case a > 1 seems of the greater interest, but the appropriate
method is entirely distinct from the one used here. The case a < 1,
however, which is of less interest in itself, provides a simple example
of an application of the method of this paper.

Note. The numerical evaluation of the number c involves that of
the series <»

Vl£g™ 0-9375482....
7^2 m

We know* that A = ^ = 1.20205690...,

and so we have /92s j7\i/36«
i f A > 1 = 0-4009989....

2TT*

We have also, for the coefficient of n* in the index of the exponent,
the value = 20094....

The values of q(n) for n = 1,2,..., 16 have been calculated by Mac-
mahon, and appear in the right-hand column of the table on p. 332,
vol. ii, of his Combinatory Analysis. In this table, q(n) appears as
the number of 'solid graphs' of n nodes, but the two definitions are
equivalent.

* Knopp, Infinite Series, p. 561.


