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Networks are used to represent relationships between entities in many complex systems, spanning from online
social networks to biological cell development and brain connectivity. These networks model relationships which
present various challenges. In many cases, relationships between entities are unambiguously known: are two users
friends in a social network? Do two researchers collaborate on a published paper? Do two road segments in a trans-
portation system intersect? These are unambiguous and directly observable in the system in question. In most cases,
relationship between nodes are not directly observable and must be inferred: does one gene regulate the expression
of another? Do two animals who physically co-locate have a social bond? Who infected whom in a disease outbreak?

Existing approaches use specialized knowledge in different home domains to infer and measure the goodness
of inferred network for a specific task. However, current research lacks a rigorous methodology which employs
standard statistical validation. In this survey, we examine how network representations are learned from
non-network data, the variety of questions and tasks on these data over several domains, and validation strategies
for measuring the inferred network’s capability of answering questions on the original system of interest.

1. INTRODUCTION

Networks are used to represent relationships between entities in many complex systems,
spanning from online social networks to biological cell development and brain connectivity.
These networks model relationships which present various challenges. In many cases, rela-
tionships between entities are unambiguously known: are two users friends in a social net-
work? Do two researchers collaborate on a published paper? Do two road segments in a trans-
portation system intersect? These are unambiguous and directly observable in the system in
question [Kramer et al.|2009]. In most cases, relationship between nodes are not directly ob-
servable and must be inferred: does one gene regulate the expression of another? Do two ani-
mals who physically co-locate have a social bond? Who infected whom in a disease outbreak?

Networks are mathematical representations (i.e. models) used to answer these types
of questions about data collected on individual entities. There are a broad range of the
questions asked, and a variety of ways in which networks are used to answer these
questions. However, how do we know if a particular network representation of the data is
the most useful in answering a given question? What is the “right” network representation,
and how do we compare the utility of many possible representations for our particular
question? Finally, how can we measure whether a network is the appropriate model to
answer a question of interest on the original system or data?

Existing approaches use specialized knowledge in different home domains to infer
and measure the quality (i.e. performance) of inferred network for a specific task or
hypothesis. The rigor of these methodologies vary across domains and currently there
is not a common best-practices for evaluating the quality of networks inferred from
data. Such practices may measure some combination of statistical properties including
significance-testing/uniqueness, sensitivity (i.e. the change in quality relative to underlying
data measurements and model parameters), and robustness/generalizability (i.e. network
quality measured over varying hypotheses or tasks).

In this survey, we examine how network representations are learned from non-network
data, the variety of questions and tasks on these representations over several domains, and
validation strategies for measuring the inferred network’s capability of answering questions
on the original system of interest.

1.1. Motivation: Networks Model Complex Relationships

Networks are a natural choice of data representation across many domains. Networks
naturally represent higher-order structure which emerge from dyadic relationships, and
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serve as units of further analysis. These structures include neighborhoods, ego-nets,
communities/modules, and connected components. For example, in the computational
biology domain, clusters and motifs often represent shared biological roles of proteins.
The collective connectivity over these proteins provides stronger evidence for roles than
individual pairwise relationships. Depending on the question of interest, individual, dyadic,
neighborhood, or aggregate population analysis may be the most appropriate and effective.

Second, networks naturally represent heterogeneity among entities in the local network
topology. Rather than analysis on population aggregates (e.g. histograms), networks enable
local querying of complex, non-metric attribute spaces (i.e. node feature spaces). Homophily
yields autocorrelation in node attributes among entities close in the network. However, these
correlations also tend to be non-monotonic: the most similar node to a query entity may
be arbitrarily distant in the network. Due to this autocorrelation, network topology often
represents local subspace clusters as overlapping, heterogeneous relationships. For example,
a user’s friends’ in an online social network often clusters into functional units: friends from
work, school, from the user’s hometown etc., where each cluster are correlated in some—
often unknown-attribute. The effectiveness of simple heuristics such as counting common
neighbors in the link prediction problem [Liben-Nowell and Kleinberg||2007] demonstrates
the latent local information within social networks. Third, networks are interpretable models
for further analysis and hypothesis generation. Researchers can visually explore small
networks and examine relationships between nodes to compare against their knowledge and
intuition in the domain. Furthermore, a shared vocabulary of descriptive network measures
enable researchers to compare networks according to density, degree distribution, clustering
coefficient, centralities, diameter, average path length, triangle counts [Itai and Rodeh
1978; Tsourakakis et al.|2009] and graphlet distributions [Przulj et al.|2004], etc. Many
higher-level network measures have also been developed including robustness [Chan, Tong;
and Akoglu/Chan et al.; Purohit et al.|2014] local information efficiency [Babaei et al.[2016],
and routing efficiency [Leskovec and Horvitz|2014; Watts and Strogatz|[1998]. Using these
shared measures, researchers can examine meta-relationships of these networks as a whole.

Finally, networks are common models for data, and can be re-used in multiple studies.
The breadth of tools and support for network analysis allows researchers of various
disciplines to apply sophisticated off-the-shelf analysis and visualization techniques, as well
as easier storage, querying and portability in off-the-shelf graph databases. Researchers
also have a common vernacular and skill-set developed in the area of “network science,”
despite originating from various domains such as biology or physics.

1.1.1. A Cautionary Note. When inferring networks from non-network data, researchers
ought consider whether higher-order structures are meaningful, and which descriptive
measures are appropriate on the inferred network. Available tools and convenience can
often motivate researchers to translate their problem into a network formulation, whether
or not a network is the best model for the question of interest. This survey aims to clarify
when network models are appropriate, and how they are inferred.

1.2. Inferring Network Models from Non-Network Data

Inferred networks are a class of network where the node and/or edge definitions are inferred
from non-explicitly relational data. Work in machine learning and network mining typically
focuses on applications of explicit networks: network representations where the meaning
of nodes and edges is unambiguous and categorical. For example, in the (explicit) Facebook
network, two adjacent users are categorically “friends.” In weighted networks such as a road
transportation network, nodes represent road intersections, and edges the road segments
between them. These edges change with low frequency (e.g. repair and construction) and
are unambiguous. Measuring weights (e.g. travel time) is a matter of sensing/measuring
traffic over the network, but these measurements are constrained to adjacent nodes on
the known topology. In general, estimating weights in explicit network applications is a
matter of accurately measuring a known relationship on a known topology, rather than
learning a hypothesized relationship on an unknown topology.
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1.3. Challenges
Inferring networks from non-network data provide several unique challenges:

— Noisy measurements: the underlying relationships of interest within real data-sets
are often noisy, and confounded by overlapping relational structure at varying scales
(e.g. temporal, spatial). Worse, such errors are propagated when measuring higher-order
properties of the inferred network (e.g. path lengths, triangle counts).

— Model selection/validation: determining whether a particular method accurately
encodes the relationship of interest in the network requires: (1) ground truth data,
(2) model assumptions (e.g. Exponential Random Graph Model), or (3) some stability
assumption (e.g. predictability over time). In many instances, no such assumptions or data
are available, and researchers are left to the ad-hoc tuning of network model parameters.

— Parameter choice and sensitivity: many network topology inference methods have
thresholds or other parameters which define a large space of possible networks. Often
this leads to ad-hoc selection or parameter-space sampling (see: Section [2.5.1). Although
sensitivity analysis is routine for method parameters of the subsequent task on the
network (e.g. prediction, classification), most evaluation methodologies do not incorporate
inferred network structure(s) into the sensitivity analysis.

— Interpreting model complexity: descriptive interpretation of edges, paths, and mod-
ules is increasingly challenging with additional model complexity. For example, a social
network defined via thresholding on who-calls-whom call record data is more inter-
pretable than a linear regression on node feature vectors. Determining the validity and in-
terpretability of these higher-order features is crucial to the many analyses that use them.

1.4. Outline of This Survey

This survey organizes recent work focusing on inferring networks from non-network data,
drawing from several domains where these methods are being applied, as well as general
methods in machine learning.

The study of inferring networks from non-network data is largely unstructured. Therefore,
in Section [2| we first organize work under a common problem formulation, taxonomy, and
terminology. In Section [3] we examine various data science domains to highlight challenges
and specializations found in these areas.

1.5. Audience

Our survey is best suited for domain researchers using network inference in applications, as
well as machine learning researchers interested in methods and methodology on networks.
For novices in the networks space, Section [1.6] structures many introductory surveys related
to our work.

Our survey is also relevant to the broader network science community working
on traditional explicit networks. These networks often represent an aggregation of
transient interactions which are not informative to explain the current behavior of the
population. Closer scrutiny of edges in the network ‘as given’ may yield more appropriate
representations and affect all aspects of downstream analysis [Brugere et al.|2017al.

Researchers routinely construct networks from ‘behavior’ (i.e. node features) or other data
to evaluate against their explicit network. Much of the work in scientific domains (including
biology, ecology, chemistry) learn dynamic interaction networks in the absence of ground
truth. This work has developed varied strategies to evaluate the quality of networks for pre-
diction, classification, or the discovery of stable edge relationships unknown in the domain.

1.6. Meta-Review: Comparison to Existing Surveys

In this section, we provide a brief meta-review of existing surveys and work which is related
but distinct from network structure inference. See Section [2.3 for how these areas relate
to our proposed taxonomy of related work within our problem.
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[da Fontoura Costa et al. 2011]
[Havlin et al. 2012]

Link prediction
[Hasan and Zaki 2011]
Epidemiology [Liben-Nowell and Kleinberg 2007]
[Danon et al. 2010]
[Keeling and Eames 2005]
[Welch et al. 2011]

Relational Inference

Relational Learning
[Kimmig et al. 2015]
[Sen et al. 2008]
[Xiang and Neville 2008]

Temporal Networks
[Aggarwal and Subbing 2014]
[Holme and Saramaki 2012]
[Holme 2015]

Ecology

[Krause et al. 2013]

[Farine and Whitehead 2015]
[Pinter-Wollman et al. 2013]

Fig. 1: An overview of related areas in machine learning and network science for this survey,
several surveyed domains, and principle surveys and introductory work for these sub-areas.

Figure [1] provides a map of research in related but distinct network science problems.
The most similar work to our survey is [Kolaczyk||2009]]. The author organizes related
work in three different categories: (1) the link prediction problem, where some edges and
all nodes are known and the task is to infer new edges, (2) interaction networks where
all nodes are known, and the task is to infer edge relationships (e.g. by correlation), and
(3) network tomography, where some edges and nodes are known, and the task is to infer
‘interior’ (unobserved) node and edge topology [Haddadi et al.|2008; Ni et al.|2010; Zhou
et al.|)2011]l. Of these, (2) is primarily within the scope of what we define as the network
structure inference; we focus with greater depth on the network inference procedure where
no edge definition is known a priori and must be learned.

We define network structure inference as distinct from the large body of work in relational
learning. One branch within this area is attribute inference and prediction on (explicit)
networks. Given a network, these methods infer missing attributes using local estimates
[Sen et al.|2008; Xiang and Neville|2008]]. Link prediction is another well-studied problem
to predict edges at a later time-step or by node attribute similarity [Hasan and Zakil[2011;
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Liben-Nowell and Kleinberg|2007; Lii and Zhou|2011]l. These are two fundamental tasks
which serve as evaluation methodologies for several applications.

A second branch in this area focuses on inferring probabilistic relational models from
data [[Getoor et al.[2007; [Kimmig et al.|2014]. While graphical models are one strategy
applied to our problem, generally these models treat attributes or variables as entities
and are suited for semi-structured, often transactional data. Previous work in probabilistic
relational models have learned relationships between an explicit input graph, and a learned
output graph using node attribute inference, entity resolution, and link prediction tasks
in a supervised setting [Namata et al.[[2015].

Our survey draws on several application areas. We focus specifically on comparing mo-
tivations, evaluation methodologies, and challenges in these areas. da Fontoura Costa et al.
[2011]]; Havlin et al. [2012] span a more exhaustive range of application domains and their
study of complex networks. Other recent surveys cover broad statistical network modeling
[Goldenberg et al.[2010] and multi-layer networks [Boccaletti et al.[2014; Kivela et al.|2014].
Our survey draws on parametric network models, which is one class of model inferring
parameters according to a particular distribution (e.g. attribute-edge joint distributions,
[Pfeiffer III et al.|2014]). Research in network fusion on multi-layer networks for a particular
task is one case of network structure inference where our input data is also relational.

Recent surveys also outline work on temporal networks [Aggarwal and Subbian
2014; |Holme |2015; Holme and Saramékil [2012]. Many network structure inference
applications define edges by association measures over time (e.g. correlation in time series),
so dynamics are an important aspect of network models for prediction tasks. Finally,
“network representation learning” is used to describe graph embedding methods: learning
a low-dimensional representation of the network structure of a given network [|Goyal and
Ferraral|2017]. These surveys cover each of these complimentary aspects in greater depth,
but typically focus on explicit networks.

Our survey covers several different application areas. Recent domain-focused meta-
studies [Marbach et al.|2012] and surveys in computational biology [Hecker et al.|2009;
Li et al.||2008; |Sima et al. 2009; [Yu et al.|[2013]], ecology [Farine and Whitehead! 2015
Krause et al.|2013; [Pinter-Wollman et al.[2013;|Proulx et al.[2005], neuroscience [Bielza and
Larranaga|2014;|Bullmore and Sporns|2009; Rubinov and Sporns|2010;|Simpson et al.[2013],
political science [Lazer||2011] and epidemiology [Danon et al.|2011}; Keeling and Eames
2005; Welch et al.|2011] all have significant discussion of network topology inference specific
to the domain. However, few have network structure inference as a methodological focus
and are limited to discussion of the single domain. Our survey focuses on challenges across
each of these areas. We provide value to domain researchers both within and across fields,
as well as researchers in machine learning interested in model development on networks.

2. PROBLEM DESCRIPTION

We give a high-level formulation of network structure inference to clarify the work-flow
patterns often encountered for this problem. This definition is very broad and not meant
to be novel or exhaustive. We simply use the formalization for added precision of defining
the constituent elements (e.g. models) and relationships we will discuss.

2.1. Preliminaries

We define a network G =(V,E,A) as a tuple containing a set V of n nodes, |[V|=n, a set
E of m node pairs ¢;; € E, |E| =m, and set A containing node or edge attribute sets. A
particular attribute, the weight of an edge w;; is a scalar value, |w;;| <1, where w;; =0
denotes the absence of an edge. An unweighted network is a special case of a weigilted
network where w;; € {0,1}. Edge and node features are a particular type of attribute,
derived by a kernel function measuring some local edge or node property (e.g. node
degree). Time-varying network definitions are simply a ¢-length sequence of static network
snapshots: G =(Gyq,...Gyg,...G¢), with time-varying attributes and/or edges.
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Symbol Definition
D

A data-set for input to a network inference method,(temporal, spatial, multi-variate etc.)

G,EV.A | G=(V,E,A), an attributed network with nodes V, edges E, and attribute-set A

n,m n number of nodes and m number of edges on network G.

V3,€i5,Wsj node v; €V, edge ¢;; €E, edge weight w;;

RO, T) A network data model function R(D,e) — G producing graph G from input data D,
a task model 7(G,e) — (p1,p2...) producing a stream of responses from input graph G.

e() An error function ¢() evaluating a task 70).

T Edge similarity threshold for inclusion in the inferred network, T <w;; &e;; €E

Table I: Table of symbol definitions used throughout this survey.

2.2. Data Science Motivations for Network Structure Inference

We organize network structure inference through the perspective of hypothesis-driven data
science. Under this perspective, the value of a network can be stated simply: for a scientific
question of interest, and its relevant (non-network) data, are networks an informative and
useful data model for better answering our question?

Figure |2| gives an overview of a standard data science work-flow, and all the relevant
terms to our taxonomy. As researchers, we start with a broad question of interest, and try
to locate or collect the data relevant to answering our question. There are several possible
data sources and modalities for analysis, coupled with several possible representations
(including networks, tensors, etc.). Our choice of data representation informs and constrains
our hypotheses about the question of interest, and typically domain science (orange, top)
and machine learning (purple, bottom) generate complimentary analyses for hypothesis
generation. Novel computational models are developed to test these hypotheses. These
tested models serve as a solution approaching an answer, closing the gap in understanding
for many questions in novel ways. For example, data-driven science has developed novel,
large-scale methodologies relevant across scientific domains, including experimental design
[Backstrom and Kleinberg |2011; Gui et al.|[2015; Kohavi et al.|2013]] and randomization
techniques [Efron and Tibshiranil[1993; Kleiner et al.[2014].

Figure [2 highlights several levels of modehng which can impact the final performance at
answering our question of interest. Often different teams will be responsible for generating
and collecting the underlying data, inferring or defining the network, or developing the
predictive models. For example, machine learning researchers will rarely control the
underlying sampling rate of very specialized data collection work-flows in bioinformatics,
neuroscience, geophysics and climate. Previous work in bioinformatics uses feedback
from the network model and uses active learning to guide the underlying data collection
and experimentation process, which is often costly and requires laboratory experiments
[Sverchkov and Craven|2017]l.

In the machine learning community, there is a great deal of sensitivity analysis for the
subsequent predictive model parameters, without testing the parameters of the underlying
network representation. This strategy is effective at producing sophisticated models “given
a network,” but is less suited at answering our scientific questions on the original data.

2.3. A Taxonomy for Network Structure Inference

We taxonomize work in the network inference problem according to (1) the varying
‘difficulty’ of defining edges and nodes given the nature of the underlying data of the
network, (2) the type of method (e.g. regression, correlation, novel interaction measures)
used for inference, and (3) the types of questions and hypotheses which are studied using
the network representation.

2.3.1. Explicit, Discrete, and Inferred Edge Definitions. Networks model three broad types of
relationships (i.e. edges), typically based on a measure of interaction between entities.
Categorical, explicit relationships are unambiguously known in the system—such as the
‘friend’ relation in Facebook. Discrete interactions denote unambiguous transactions
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Question > Answer

Problem
_______________________________________________________ Gap I

Computational Science

Process N .
" Plausible Explanations
Available Tools, Supported Hypotheses
Data, Expertise —_—

Model/Hypothesis Testing
Visualization
Data Modeling Domain Science 1
Experiments,
Domain Knowledge, Model Development
Observation, —_—
GPS, /; Statistical Analysis
¢ Data T Hypothesis Generation

Proximity /

Genomics

Statistically Testable,
Parsimonious,
Predictive or Descriptive

Data Model Patterns, Clusters,
———Z Models, Optimization
Social, > X
Photos, Machine Learning
Video
Networks
Explicit, Discrete, Inferred Relationships Time Series,
™ Tensors
Known or Inferred Entities Sequences
Method of Inference (e.g. Correlation)

Fig. 2: A general work-flow for data science, with a focus on networks as data models
for non-network data. A researcher typically (1) uses relevant data and appropriate data
models to formalize a particular question. Traditional domain science (top, orange) typically
combines direct observation and simple statistical models. Data-driven science with
machine learning (bottom, purple) augments this intuition, hypotheses and statistical
models with sophisticated features and patterns, yielding additional challenges for
visualization, hypothesis testing and generation. The output of this analysis is a plausible
explanation or some supported hypothesis. The result of data-driven science are considered
to be shrinking this ‘gap’ in understanding, toward robust and verifiable answers to the
original question, in novel ways (see: [Hey et al.|[2009]).

occurring between two entities—such as phone calls or text messages in mobile device data.
The primary task of defining edges on these interactions is to select an appropriate threshold
to measure the strength of the relationship. Inferred interactions denote some statistical
measure of similarity, beyond simple transaction counts. For example, the definition of
a spatiotemporal co-location interaction between two entities can be simply inferred by
specifying “how close” for “what duration,” both of which are continuous variables. This
is generally a more challenging measure of relationships relative to discrete interactions.

2.3.2. Explicit and Inferred Node Definitions. Similarly, inferring nodes is of varying difficulty
in different domains. In most applications, the nodes are explicit in two ways: (1) the node
definition is unambiguous (e.g. a ‘user’, ‘animal’ or ‘gene’ is a node), and (2) there is a node
correspondence between time-steps in the data (e.g. this particular node corresponds to user
‘ivan’ at each time step). Functional brain networks, and climate networks are two examples
of domains where the node definition is not explicitly given. Here, nodes correspond to
groupings of two-dimensional earth surface pixels, or three-dimensional brain voxels. The
scale of node definition can dramatically change the performance of predictive models, or
the stability of descriptive statistics derived from the network [Cammoun et al.|2012].
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2.3.3. Hypotheses and Tasks on Inferred Networks. Figure [2| (right) illustrates the core novelty
in machine learning and data science in hypothesis generation, model development, and
testing. In machine learning, there is typically a bias toward evaluating these hypotheses
using a novel prediction task model. However, typically these models do little to explain
the underlying system, and are more useful for generating new hypotheses. In the statistics
domain, there is a bias toward descriptive modeling, where the ‘task’ is parameter inference
on an assumed parametric (or “non-parametric,” [Wasserman||2006])) statistical model on
the data. These parameters are useful at interpreting the underlying system, such as fitting
the exponent of degree distributions, or reporting other aggregate statistics on a network.

Applications driven by descriptive models aim to reconstruct and describe the underlying
relational structure with the greatest fidelity, relative to the domain knowledge base. A
typical example in this area is gene regulatory networks (GRNs). These networks are in-
ferred on data measuring individual genetic expression over different experimental settings.
In these networks, nodes represent genes or functional gene families, and edges represent
inferred positive or negative gene expression relationships (e.g. “gene ‘A’ reduces the
expression of gene ‘B’ under some context”). Inference of these networks typically identifies
new, high quality candidate regulation relationships given high accuracy of inferring known
edges. These interactions can be experimentally tested to build greater understanding of
cellular processes and to develop potential personalized medical treatments.

In contrast, predictive methods aim to discover network structure which maximizes
predictive performance, and may not reconstruct the underlying process with the highest
fidelity, but with a focus on those aspects or modalities which are most predictive. Modeling
the predictive aspects of the data allows researchers to learn regular relationships between
modalities (e.g. call, text, and location in mobile phone data) or over time (e.g. periodicities)
and aids further hypothesis generation to explain the predictive relationships. However,
often highly predictive relationships are also uninteresting and can drive the structure
of the inferred network. Domains such as climate tend to subtract known periodic dynamics
as preprocessing on the underlying data, prior to inferring the network structure.

2.3.4. Models for Network Structure Inference. We organize related work broadly along the
type of network structure inference model used, including parametric, non-parametric and
various thresholded interaction/correlation measures. Within these groupings, we categorize
the type of task performed on the network, including edge and attribute prediction,
descriptive analysis, or model selection.

Table|lllsummarizes work across several domains, introducing the basic scientific question
driving the analysis, and the network structure inference model used to realize the network.
In Table [[I| (Column ‘Model’), we label these models under two broad categories. First, para-
metric models allow interpretable, descriptive statistics. We identify graphical models (GM)
and other network models fit with maximum likelihood methods (ML), relative to some
assumption on the input data such as information flow between nodes [Gomez-Rodriguez
et al.|[2012]. Causal models (CM) typically generate causal networks—a special case of
graphical models—using Granger causality [Granger|1969] or other causal definitions [Mani
and Cooper|2004; Meek!|1995|. These networks represent strong relationships between
nodes which control for confounding factors caused by other (possible) adjacent nodes.

Second, non-parametric models tend to directly measure interactions between nodes
and use statistical tests to determine appropriate edge weights. Section covers this
category in greater detail. We categorize work related to novel and ‘ad-hoc’ interaction
measures (I) between the data associated with pairs of nodes, correlation networks (IC)
which measure linear, cross, or some other correlation, entropy (IE), frequency domain
measures (IF), and regression (R).

Table [l (Column ‘Task’) categorizes rows within each domain by the type of task
performed, under the caveat that one study may use several evaluation strategies, or that
the actual task could only loosely be described as the canonical task (e.g. edge prediction).

First, we denote predictive tasks, including edge prediction (PE) and attribute prediction
(PA). Attribute prediction can also describe prediction of the original data, i.e. by simulat-
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ing/generating data through the network model [Papalexakis et al.|2014]. Predictive models
are relatively rare across domains because researchers are interested in more expressive
and interpretable models which give insight into the underlying system. We observe
some specialization in both information networks (in the machine learning literature) and
epidemiology, which aims to predict the extent or timing of an epidemic over a population
in varying contact models.

Second, descriptive analysis is broken into node-oriented statistics (DN), this includes
reporting distributions of simple node statistics including degree distribution, clustering
coefficient, correlation distributions, etc. This often constitutes the base-level exploratory
analysis. Role-oriented analysis (DR) aims to characterize nodes using network features,
by the structural roles they play in the system (i.e. bridges in-between social communities).
Other high-order analysis (DH) examines communities or other larger subgraph structures
beyond node and edge-based descriptive statistics.

In both descriptive and predictive cases, we observe a good deal of work in model selection
(MS). These varying models correspond to different hypotheses to how the network might
have been generated.

2.3.5. Evaluating Networks and Tasks. Evaluation strategies over the entire work-flow of
Figure |2l measure the performance of the final task (prediction or statistical inference). In
this context, the network serves as a model of the data, but the fidelity of this model in
terms of fitting error, or reconstruction against partial ground truth network data does not
measure the network’s usefulness at answering questions on the original input data. For any
non-trivial data or domain, it is perhaps more appropriate to think of the space of networks
as possible representations with some utility for answering a specific question. ‘The network’
is typically seen as uncovering the true relational structure of the data with some error
[Wang et al.|2012], rather than one of many representations for a particular purpose.

Most scientific domains agree with an evaluation strategy focused on final task (a
network for location prediction, brain activity response etc.), because there is no evaluation
network for comparing the inferred network structure. For example, we simply cannot
survey baboons [Farine et al.[|2016] as we can humans [Eagle et al.|2009] to discover their
real friendships. Furthermore, uncovering the general, robust network from complex data
may not appropriately model the overlapping modalities of the data. For example, many
complex contexts may mean that functional brain networks are inherently probabilistic.
Discovering the most robust network model will be less informative in any particular
application because it does not account for this complexity.

2.4. Network Structure Inference

The network inference problem represents some input data as a network and validates this
network relative to performance on some task(s) or hypothesis. Often, model selection for
this purpose is done offline and we only see the result of the final network representation
evaluated on our task. Currently, there exists no standardized methodology nor common,
comparable metrics for evaluation of networks inferred from data. This is an initial work
for structuring this problem, particularly in the absence of network validation data.

The network topology inference problem combines two basic models: first, a network
model R(D,e) — G constructs network G on input data D. This model may be parametric
statistical models (e.g. ERGMs) or non-parametric and threshold-based interaction networks.
Second, the problem uses a task model T (G,e)—> p1, po... on input G under some parameters,
emitting task responses (e.g. prediction ‘p;’). These responses approximate the hidden, ideal
function 7*(G) of a particular network task (e.g. classification, prediction) with error e().

This formulation may seem simplistic. However, it succinctly clarifies the relationships
between input data, the network model, and the task model. It explicitly formulates
network G as a model on data D for task 7*, approximated by 7. This formulation
captures simple interaction network work-flows (see: Section which separately infer
the network (often by expertly-tuned thresholds) and validate task performance, as well
as parametric inference methods which learn the network model parameters. To our
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knowledge, all network structure inference methodologies can be broadly formulated in this
pattern, and all network inference models should be formulated relative to a particular task
or hypothesis. In much of the existing work, the network model or task model will not be

formulated explicitly, or the space of possible model combinations may be under-explored.
We can instantiate several tasks within this formulation. In the context of network
prediction tasks, our predictive model can output predictions of (1) edges, (2) attributes,
or (3) the original data. For one instantiation, on a validation edge-set E*, we can evaluate:
argmin e(7(R(D,a),5).E") (1)

G

This learns G, over network model parameters o and task model parameters 3. Prac-
tically, this might be done by a model selection over a sweep of parameter pairs [Brugere
et al.|2017bl, or an iterative re-training [McAuley et al.|2015]. In this context, the suitability
of both the network and task models (and the appropriate error function) will determine
the performance of the inferred network. These network model selection and iterative
methodologies mitigate some of the biases from offline, hand-tuned network construction.

This formulation demonstrates two key challenges in network structure inference. First,
the parameter space of possible G from R(D,e) may be large, and a parameter sweep will
likely be non-convex with respect to the performance of the task of interest, requiring an
exhaustive search. Furthermore, well-performing local solutions in the parameter-space may
yield very different network topologies. Summarizing and reconciling these differences may
be important in interpreting where the network model is most robust. It is unclear how to rec-
oncile differences and summarize this space of plausible networks into a single, interpretable,
effective model. This proliferation of possible task and network model combinations makes
further hypothesis generation and testing daunting for the researcher, who has diminishing
confidence in statements about the underlying system through many possible models.

2.5. Network Models and Inference Work-flows

Our problem description is flexible enough to incorporate the varying types of network
models (e.g. regression, correlation, parametric network models) and tasks (e.g. prediction,
descriptive statistics and hypothesis testing). Below, we describe several formulations for
network structure inference, according to their network model and task model.

2.5.1. Interaction Networks. The most prevalent class of network topology inference is
measuring pairwise interactions (e.g. correlations) between nodes, and choosing a threshold
to define a sufficient degree of interaction. This threshold may be chosen by some statistical
test, by tuning on some desired criteria (e.g. assumed network density), or in an ad-hoc
way with prior domain knowledge.

This has been discussed in the context of discrete interactions as described above:

“Inferring networks from pairwise interactions of cell-phone call or email records
simply reduces down to selecting the right threshold 7 such that an edge (u, v) is
included in the network if u and v interacted more than 7 times in the data-set.
Similarly, inferring networks of interactions between proteins in a cell usually
reduces to determining the right threshold.” [Myers and Leskovec|2010]

Researchers often make several application-specific decisions around these thresholds:

“From this complete correlation graph, only the edges with significant correlation
(> 0.5) were retained. But using the same threshold for positive and negative
correlations is not appropriate as negative correlations are usually weaker and
many nearby locations have high positive correlation” [Kawale et al.|[2013]

“We let § as a user-controlled parameter, where larger § values correspond to
less predicted regulations, and only focus on designing a significance score s(t,g)
that leads to ‘good’ prediction for some values of §” [Haury et al.|2012|

These methods typically produce a fixed network model but do not explore the space of
possible networks under varying interaction thresholds, except through offline trial-and-
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error. Furthermore, subsequent sensitivity analysis on these outputted networks G are often
performed on the task model parameters alone, rather than over parameters of both models.

We can use our formulation to describe this analysis. Assume the interaction threshold
7 is given by hand-tuning or domain knowledge, we have some feature matrix D that has
some notion of similarity between features, and 7() is an edge prediction task evaluated
on E*. This work-flow is expressed as:

R(D,7)— G; argmin e(7T(G,5),E*) (2)
B

When these interaction networks are evaluated in the absence of ground truth, the
network may be measured through autocorrelation. In this case, the same network
inference is applied, R(D*,«) — G* for some hold-out data D* (e.g. at some later time).

2.5.2. Parametric Network Models and Parameter Inference. Maximum-likelihood methods as-
sume some parametric model family to represent relationships between nodes (such as time
between interaction, likelihood of information transmission over time) and infer the best
model parameters. For clarity, we work through one specific application, in epidemiology and
information networks such as blogs, although the pattern is similar in other applications.
Structure inference methods on information networks share the assumption that we are
observing the ‘arrival’ of information or attribute value at nodes (i.e. computers, blog pages,
individuals) over time, but are unable to observe the topology which transmitted the infor-
mation. For an edge e;;, the infection time difference ¢; —¢; can be fit against an infection
model over time, measuring the likelihood that v; infected v; [Myers and Leskovec|2010].

Where input data D are infection times of each node, we can formulate these work-tflows
as:

argmin R(D,a) — G; argmin e(7(G,3),E*) 3)
o 5

In information network applications, E* is typically provided by a known network.
Processes are simulated on this network to generate input data for the maximum-likelihood
relational data model R(). This method is used to ‘reconstruct’ E* only from input data D.

2.5.3. Learning Network Structure and Task Model Parameters. Previous work in statistical
relational learning on explicit networks has focused on learning relationships between
(categorical) attributes and a predictive task, such as link prediction [[Gong et al.[|2014;
Namata et al.[2015], and distinguishing correlated effects between these processes [La Fond
and Neville/2010].

Previous work has also used a work-flow approach to the network structure inference
problem which maximizes performance of particular task(s) on the inferred network [De
Choudhury et al.|[2010; Farine et al.|2016[. Consider interaction networks over varying
thresholds 7. A naive solution for this type of approach is to explore the parameter space
of R(D,7) and evaluate the task performance on each inferred network. However, this is
very costly, especially as R requires more parameters.

Learning network structure paired with task parameters 7() tunes both the network
and task definition according to evaluation criteria. For example, previous work has learned
network models which iteratively discovers features in a supervised LDA model, and the
logistic regression weights which perform well for an edge prediction task [McAuley et al.
2015]. In Equation [1} we have already formulated paired evaluation of network and task
parameters, repeated here:

argmin e(7T(R(D,«),3),E*) 4)
G
Evaluating pairs of network and task model parameters may avoid discovering spurious

network models which are not suitable for the intended task. However, this strategy
adds method complexity where the output of each model can be used to re-train the other.
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Fig. 3: From [Marbach et al.|2012]. A consensus gene regulatory network (GRN) of
Staphylococcus aureus generated from microarray data in the DREAMS5 challenge ensemble
workflow (see: Figure ). Network modules in agreement with Gene Ontology (GO) database
are colored and labeled according to their shared function (grey are not coherent in GO).
The detail (right) shows inferred gene regulation related to pathogenesis.

Because of this added modeling complexity, iterative learning are relatively rare compared
with a serial work-flow.

3. APPLICATIONS OF NETWORK STRUCTURE INFERENCE

Although the applications in ‘network science’ are far too broad to survey with any
meaningful focus, we look closely at a few applications where inferring networks from
non-network data is a particular focus. Alongside these inferred networks, several of these
applications have extensive work on networks from direct observation (e.g. in ecology)ﬂ

3.1. Computational Biology: Discovering New Genetic Regulation

Networks are constructed in computational biology to model many different processes.
Protein-protein interaction (PPI) is the most common type of network in this domain,
constructed experimentally through yeast two-hybrid experiments which physically test for
binding of one protein to another. Metabolic networks are a process network which models
relationships between enzymes, metabolites (nodes) on processes (edges) such as reactions
or pathways (e.g. biologically meaningful paths through the network). We focus only on
gene regulation networks (GRNs) and gene co-expression networks (GCNs) which have
focus on statistical inference of relationships between genes under different experimental
scenarios (for further reading, see: [Sima et al.|2009]).

3.1.1. Underlying Data in Gene Regulatory Networks. Next-generation high-throughput
microarray technologies allow the sequencing of genomes and measuring the expression
of particular genes at a large scale and low cost [Shendure and J12008]. ‘Expression’ is the
measurement of how groups of genes produce different phenotypic specializations through
the production of different proteins. In cellular development, different gene co-expression
can be responsible for RNA translation or nucleotide metabolism, yielding many complex

LAll figures reprinted with permission and attribution.
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Domain Problem Sec. | Model| Task | Citations
Discover I Zhang and Horvath|[2005]
. interactions | |Butte and Kohane [2000];|Faith |
ggr{lputatlonal between genes 1E et al.|[2007]; Meyer et al.|[2007]
1008y in cellular DH. DR | Allen and Liu/[2012]; Lebre et al.
processes GM i [2010]; Man1 and Cooper; [2004];
Mukherjee and Speed! [2008]; Toh
and Horimoto| [2002]
R | Haury et al.[[2012];|Yuan and Lin|
[2006]
Barzel and Barabasi [2013][;[Feiz1 |
CM | PE et al [2013]
Kawale et al./[2012];|Palus et al.
Describe re- IC [2011]; Steinhaeuser et al.|[2011]];
: . . DN. PA Tsonis and Roebber [2004];
Climate lationships in ’ Yamasaki et al] [2008]
environmen- [ Donges et al.|[20096];Hlinka et al|
tal system IE [2013]
dynamics Ebert-Uphoft and Deng|[2012f;
CM Kretschmer et al.[[2016]; Runge
DN et al.|[2013]
GM Zerenner et al.[[2014]
R Zhou et al.[[2015] -
Model IC Bialonski et al.[l2200112111; Zalesky et al.
Neuroscience {)eltatlonshlps Lachaux et al.|[2002]; [Pfurtscheller
be ween IF and Andrew| [[1999]; Ponten et al.
flam. liegl."nls’ DN, MS [2016];Zhan et al.[[2006]
pt ySItO ogica David et al. [2008];[Dhamala et al.
S r:il% uret,_ CM [2008]; [Friston et al.| [2011]; [Ramsey|
and tunction et al.|[2010]; Roebroeck et al.|[2005];
Rosa et al.[[2012]
ML PA Papalexakis et al.[[2014] B
Model hidden I Adar and Ly Haydon
Epidemiology  networks PA, MS Britton and O'Neill [2002];
from gbserved GM Groendyke et al.| [2011]; Stack et al.
infections [2013]
| Du et al.[[2012];|Gomez-Rodriguez
ML et al. [2014] |2012]; Myers and
Leskovec [2010]; Netrapalli and
Sanghavi|[2012]
Describe and I Aphn et al[[2012];|Haddadi et al.|
. . DH, MS [2011]; Psorakis et al.|[2012]
Ecology predict animal IE Barrett et al|[2012]
behavior R | DN Whitehead and James [2015]
predict social De Choudhury et al] [2010]; Eagle
Mobile individual I PE, DN et al. [2009]; Mastrandrea et al.
mob‘i’lli t‘yl [2015]; Sekara and Lehmann![2014]

Interaction, IC: Correlation, IE: Entropy, IF: Frequency, I: Novel measures
CM: Causal model GM: Graphical model, ML: Maximum likelihood, R: Regression

Prediction, PA: Attributes, PE: Edges
Descriptive Analysis, DN: Nodes, DR: Roles, DH: Other high-order, MS: Model Selection

Table II: A summary of related work, across domains
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functions from gene interaction (see: [Barrett et al.|2013]]). Figure [3|illustrates a small
network with annotated functional clusters.

The output of the microarray analysis (with notable simplification) is a 2D data matrix
of numeric values measuring the expression of a gene (row), on a particular experimental
design, subject, or time step (column) [Bar-Joseph et al.|2012]. Defining edges between
genes simplifies to comparing expression profiles across the different columns of the data.

3.1.2. Discovering New Gene Interactions From Data. The high-level ‘task’ for gene regulatory
networks is link prediction on the network learned from data, to discover unknown gene
regulation candidates which can be experimentally tested. The network model inferred
from data should agree with databases of biologically-known interactions and function,
while providing few verified false-positive regulations.

Table|Ll|illustrates that the inference of GRNs is very mature relative to other domains.
gene regulatory network inference is very mature relative to other domains, since the
inferred network has immediate value for future investigation and hypothesis generation,
and it is verifiable according to current domain knowledge. Researchers in this area
apply most categories of prediction task models including regression, correlation, mutual
information, and graphical modeling. One unique challenge in gene regulation is the
issue of confounding factors including indirect and transitive associations which lead to
many spurious edges. Recent work has measured these ‘direct’ (e.g. causal) edges in noisy
expression data-sets [Barzel and Barabasi|2013; Feiz et al.[2013]|.
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— N p
qngglligma‘ors Simulation | 805 arrays True in silico
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5 2
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Fig. 4: From [Marbach et al.[2012]. The general workflow design for the DREAMS5 network
inference challenge. This workflow (1-2) generates one simulation data-set and three
experimental microarray data-sets from three well-studied species. The 29 participating
inference methods all (3) generate inferred network output, (4) a consensus network is
constructed for each data-set, and then (5) validated against known edges in synthetic
networks, and against experimentally known edges in two of the real data-sets.

3.1.3. A Work-flow From Gene Expression Data to Interaction Discovery. Marbach et al.| [2012]
introduces an ensemble approach associated with the DREAMS5 competition. The authors
present 29 different network inference methods across different model types, including
regression, mutual information, correlation (a.k.a. ‘relevance networks’ in this domain),
Bayesian networks, ensembles, and other novel approaches (e.g. random forests, neural
networks, Gaussian mixture models, etc.) This list demonstrates the maturity and variety of
methods applied to this problem. These methods use pairwise (e.g. gene-to-gene correlation)
or group-wise (e.g. many-to-one group LASSO) measures of interaction intensity, which
yield a directed, unweighted network signifying “gene A regulates gene B.”

Figure [ illustrates an ensemble workflow for the DREAMS5 network structure inference
challenge. The authors (1) generate a ground truth network on three species using
experimental trials as well as synthetic network data. In (2), these experiments yield four
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different data-sets of biologically-tested networks of gene regulation, as well as the raw
(non-relational) gene expression. The collection of inference methods produce (3) inferred
networks on each of the four data-sets. The authors (4) integrate these 29 different inferred
networks to produce an ensemble network. This network is (5) validated against the
ground-truth networks generated in step (1). Finally, the authors show that the ensemble
method discovered 59 potential interactions, of which 29 show some support, and 20 show
strong support for being biologically significant.

We examine this process in such detail to demonstrate the ‘complete’ workflow for
network structure inference, from input data, to relational model, to a final output (learning
the regulatory network). Within our formulation, this workflow does not have an explicit
task model, as the network itself is the object of interest. Therefore, this application is
typically descriptive modeling against a known ground truth. Although these models do
‘predict’ new potential gene regulation via previously unknown edges, these interactions
are usually checked manually through experimentation.

3.2. Environmental Science: Discovering New Climate Relationships and Predicting Outcomes

Networks inferred to understand climate dynamics are among the most difficult to model
of any domain, and much of the work to formalize and validate these networks is actively
being developed. Within this domain, researchers are interested in discovering robust,
causal relationships between climatic variables, over different spatial regions of earth. This
modeling can improve prediction of changing hydrological processes, land-cover, ecosystem
productivity, and polar or sea ice cover, which are key aspects for climate change mitigation.
Two unique challenges exist for inferring climate networks: (1) input data is typically noisy,
highly spatially-autocorrelated, multivariate time series of climatic variables collected under
varying regimes and sensor quality. Domain scientists produce “reanalysis” data products
which attempt to mitigate these problems. However, inferring accurate networks from
these data requires significant understanding of the data ingestion work-flows [Levitus
et al.[2013; Saha et al./2014], and its introduced biases and variability. (2) the structure
of climate networks is not well understood aside from a handful of climate indices—coarse
spatial locations on earth where dynamics are well-studied and regulate or correlate with
other environmental processes (e.g. El Nifio and La Nina oscillation cycles). Therefore,
validating correctness of the inferred network is suitable for unsupervised strategies such
as relational or predictive modeling of the original data.

3.2.1. Network inference methods in climate and environmental science. Nearly all studies
constructing climate networks use some time series similarity as an underlying relational
measurement. Previous work has used linear correlation [Donges et al.|2009a; |Steinhaeuser
et al.|2011; T'sonis and Roebber(2004; Yamasaki et al.|2008] or mutual information [Donges
et al.[2009a; Hlinka et al. [2013], and use either a hand-picked [Donges et al./|2009a;
Tsonis and Roebber||2004] or simple statistical test [Yamasaki et al.|2008] to set similarity
threshold —where similarity greater than 7 is considered a binary edge in the network.

There is considerable focus on formulating these simple pairwise comparison methods,
and often the ‘recipe’ of the network according to parameter settings and preprocessing
choices varies greatly from study to study. These networks are typically binary rather
than weighted, because the final output of interest is a binary decision on the similarity
distribution: (e.g.{“significant”, “not significant”}). However, typically these measures will
have no ‘natural’ threshold which gives this binary classification. Instead, these networks
can be gradually densified or sparsified by loosening or tightening the similarity threshold.

Descriptive statistical work has been very popular downstream from these varying
network ‘recipes.’[Donges et al.[[2009a] reports clustering coefficient, betweenness centrality,
closeness centrality. [Tsonis et al.| [2011] reports community structure which tends to
cluster in spatially-contiguous locations, on account of the autocorrelation present in
these networks. Little work focuses on evaluating these networks as predictive models
for the input data. Steinhaeuser et al.[[2011]] use both descriptive statistics and predictive
performance to evaluate the inferred network.
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Fig. 5: From [Donges et al.[2009a]. On the input data of averaged global surface air
temperature (SAT) at different spatial regions, (a) shows the distribution of pairwise linear
correlation measures (P;;) vs. geographic distance between nodes, on a logarithmic color bar
scale. This illustrates a strong spatial autocorrelation between nearby points. (b) shows the
pairwise distribution for mutual information pairwise calculation vs. geographic distance,
showing less spatial autocorrelation. The horizontal bars indicate thresholds on the P;;
and M,; scales which produce the same network density (p =0.005). (c) shows the linear
correlation vs. mutual information. The starred quadrant ((c) top-left) denotes edges defined
by mutual information but not by correlation.

As work utilizing network models grows in this climate and environmental science,
researchers have developed more sophisticated techniques for determining edge significance
[Kawale et al.[2012]], or conditional dependencies using causality [Ebert-Uphoff and Deng
2012; Kretschmer et al.[|2016; Runge et al.[[2013].

3.2.2. A Work-flow from Environmental Sensing Data to Environmental Interaction Network. We will
step through a concrete example of constructing a climate network from spatially-gridded
time series data of global surface air temperature (SAT) [Donges et al.|2009al]. The authors
measure the similar dynamics of pairwise earth locations (corresponding to nodes n;,n;) and
construct edges between locations with ‘significant’ similarity. The authors use two standard
measures, linear correlation and mutual information between time series X; and X;:

[ X _ _
> (X = Xi) (X —X;)
O (5)
| X _ |1 _
> (Xzyt—Xz')Q\/Z (X —X;)?
=1 t=1
M,,_i (X»X»)lo M (6)
i — b:1pb 1942 g gpb(Xi)pb(Xj)

Equation is the sample Pearson correlation between two time series, where X; is the
sample mean of time series X;. The denominator represents the product of the sample
standard deviations of X; and X;. This measures linear relationship of X; and X; over the
length of the time series. Equation [6]is the discrete mutual information estimation between
two time series, where p,(X;,X) is the joint cuamulative distribution of the b-th discretization
window, and p;(X) the marginal cumulative distribution of the b-th discretization window.
This measure compares the shape of the joint and marginal CDFs under the independence
assumption. When the joint distribution is equal to the product of marginal distributions:
log(1) =0 yields no mutual information (e.g. X; and X; are independent).

Varying similarity threshold 7 produces networks of varying edge densities p and other
network measures such as the size of the largest connected component. The authors select
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Fig. 6: From [Donges et al.|2009a] (a) the distribution of betweenness centrality of nodes
vs. degree of nodes. (b) the distribution of betweenness centrality of nodes vs. closeness
centrality of nodes.

thresholds for correlation and mutual information (7.,.- =0.682 and 75,7 =0.398) such that
they produce the same network density (p=0.005).

Figure|5|(a) shows the density of pairwise linear correlation measures (F;;) vs. geographic
distance between nodes, on a logarithmic color bar scale. This illustrates a strong spatial au-
tocorrelation between nearby points. (b) shows the pairwise distribution for mutual informa-
tion pairwise calculation vs. geographic distance, showing less spatial autocorrelation. The
horizontal bars indicate thresholds on the P;; and M;; scales which produce the same net-
work density (p=0.005). (c) shows the linear correlation vs. mutual information. The starred
quadrant ((c) top-left) denotes edges defined by mutual information but not by correlation.

While several methods have been developed to test edge significance, little work has
focused on the validity of higher-order structures such as paths or communities. While
the graph definition of paths or communities are valid on these networks, no known work
measures the interpretation of these relationships with respect to the original time series
data, or domain knowledge.

Figure [6| explores the sub-spaces of different node measures on the inferred network.
Figure [6(a) shows the distribution of betweenness centrality per node, vs. the degree per
node. Similarly, [6(b)| shows betweenness centrality and closeness centrality. The authors
demonstrate that (degree-preserving) edge re-wiring randomization indeed destroys the
rank-order correlation between the marginal distributions of the node measures.

There are two drawbacks of this analysis which re-occur across domains. First, while this
methodology tests some global relational structure of the network, we are unable to interpret
the relationship between any two nodes at a high geodesic distance (>2). This means that
we cannot measure properties we associate with networks, such as flow or routing. Second,
significance analysis is done at a particular threshold setting, without a sensitivity analysis
on the original threshold choice. In the machine learning settings, the parameter sensitivity
will often be on the prediction model parameters at a particular network definition threshold.

3.3. Neuroscience: Describing Functional Brain Structure and Their Connections

Much biological research suggests that the brain activates interconnected, often spatially
distant regions along neuronal pathways [[Sporns|2014]. This interconnected complexity
makes networks a very natural model to study the brain. These studies are broadly in
two areas: structural and functional brain networks. structural networks (also known
as ‘effective connectivity’, tractography, or the brain connectome) map the physical axon
pathways between neurons, which may be relatively long and spatially distant. With
some simplification, these networks are analogous to the physical layer in communication
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networks, where nodes are explicitly connected by cables and routers. Functional networks
are analogous to the logical layer in communication networks. These networks model how
neuronal signals (i.e. ‘traffic’) flows over this physical layer in order to activate other neurons
(i.e. ‘resources’) to perform different types of behavior such as auditory, visual, or motor
behaviors. Unfortunately, researchers do not fully understand the underlying routing and
information-seeking on this physical network, nor the complex contexts which change how
the behavior is realized within the functional layer. Researchers aim to better understand
and predict this routing, and the collective activation dynamics in different areas of the brain.

Much work compared the topology of structural and functional networks using descriptive
network statistics, and higher-order structures such as cluster and communities [Reijneveld
et al.|2007; Rubinov and Sporns|[2010; Sporns and Betzel|2016], especially under different
experimental conditions which may affect these structures such as spinal cord injuries,
epilepsy, or schizophrenia. However, all of these studies infer the network models differently,
therefore it is an open challenge to rigorously synthesize these results.

3.3.1. Underlying Data in Brain Networks. The underlying data for structural or function
networks are primarily derived from two sources. First, bio-medical imaging technologies
including Magnetic Resonance Imaging (MRI), functional MRI (fMRI), Diffusion Tensor
Imaging (DTI) detect structure of varying densities and water content. These procedures
produce a flat, 2-dimensional image of pixels, or a 3-dimensional volume of voxels (often as
a time series of samples). For example, Diffusion Tensor Imaging (DTI) is used to construct
structural networks. These images can accurately trace axon tissue connectivity by
measuring flow vector orientation through the voxel space. Functional MRI (fMRI) similarly
measures blood flow to voxels, a surrogate for ‘activity’ at this location. Inferring a functional
network on fMRI data then amounts to measuring statistical interactions between
activations in different brain areas. Second, non-invasive sensors including electroen-
cephalography (EEG) and magnetoencephalography (MEG) measure and localize electrical
current at a probed location. Typically, these probes yield fewer and spatially coarser nodes
than those defined from fMRI voxel data. These techniques produce time-series estimating
electrical current (another surrogate for ‘activity’) at reference locations.

Figure[7|illustrates defining both structural and functional networks, from (1) the data
collection on individual subjects to (4) the final analysis task. The left path of Figure
illustrates constructing structural networks. (2) Anatomical parcellation techniques use
DTTI or similar imaging to determine physical connectivity in the brain. These techniques
are very accurate in recovering tracts of connectivity, unambiguously. (3) these tracts are
translated into nodes and edges, where previous work shows significant effects of node
definition on descriptive measures such as average path length and clustering coefficient
[Zalesky et al.[2010]]. Finally, (4) researchers use the networks as models to ask questions
about the brain of the original subject or population.

The right path of Figure [7]illustrates inferring functional networks from sensed neuronal
activity. This activity can be for a range of stimulus such as music preferences [Wilkins
et al.|2014], image/language associations [Papalexakis et al.|[2014]] or for experimental
conditions such as an Alzheimer’s patient cohort [Supekar et al.|2008all. (2) fMRI, EEG,
or MEG sensors measure activity at different recording sites (contact locations, pixel or
voxel locations). As in structural network construction, some aggregation or node definition
mapping may be applied for defining this time series data-set. (3) These activity response
signals are compared between recording sites (nodes) with time series similarity measures
such as cross-correlation. ‘Sufficiently’ similar time series dynamics are interpreted as
latent connections between nodes, yielding the final functional network.

Aside from structural and functional networks from fMRI coupled with a particular
experimental user task (e.g. speaking, listening, motor), work has focused on inferring
resting-state networks (RSNs) of the brain [Greicius et al.2003]. These networks are
constructed in much the same way as other functional networks, except this resting
connectivity is informative of very robust functional clusters. Functional networks for
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Fig. 7: From [Sporns|2014]. A data work-flow for constructing brain networks. (1) for a
subject or population of subjects, (2) sensing techniques such as Diffusion Tensor Imaging
(DTI) or functional Magnetic Resonance Imaging (fMRI) are used to sense connectivity or
activity of the brain, respectively. (3) Given sensed data at recording sites (nodes), edges are
inferred by different measures on the underlying data (see: Section [3.3.2). (4) Subsequent
scientific study is conducted, using the network as a data model.

different user tasks can then be characterized at a higher level (e.g. cognitively ‘difficult’
tasks) by comparing to the resting-state network (RSN).

Another network of interest is the ‘rich-club’ structural sub-networks [van den Heuvel|
let al.[2012; [van den Heuvel and Sporns|2011] [2015]|. This network is essentially a k-core de-
composition of the structural network, which indicates the global ‘backbone’ of connectivity
(where k> 10 is set in comparison to degree-preserving randomized networks). Nodes within
the rich-club network are also used to characterize the broader network into ‘rich-club
edges’ connecting two rich-club nodes, ‘feeder edges’ connecting exactly one rich-club node,
and ‘local edges’ which connect two non rich-club nodes (see: Figure [8). Analogous to routing
in communication networks, information can flow locally within one local region for a
particular behavior, or routed through backbones to physically distant regions.

3.3.2. Methods for Inferring Networks. Time series are the dominant underlying data in
neuroscience, therefore methods for constructing functional brain networks are almost
exclusively in the domain of thresholded pairwise similarity measures, with some exceptions
of parametric network modeling [Klimm et al./[2014]. [Sakkalis|[2011]] provides an in-depth
review of these different measures, including cross-correlation [Bialonski et al|
[Zalesky et al.|2012], frequency domain analysis such as discrete Fourier transform (DFT)
and discrete wavelet transform (DWT) and domain-driven ‘coherence’ measures
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Fig. 8: From [Sporns|2014]]. A study work-flow comparing structural and functional brain
networks. (a) a schematic of the rich-club structural network. Blue nodes indicate the k-core
decomposition of the structural network (k> 10), grey nodes indicate non-rich nodes. Red
(‘rich-club’) edges connect two rich-club nodes, orange (‘feeder’) edges connect exactly one rich-
club and one non-rich node, yellow (‘local’) edges connect two non-rich nodes. (b) the network
with colored nodes and edges, visualized in a brain coordinate system. (c) an adjacency matrix
comparing structural topology sensed from Diffusion Tensor Imaging with rich-club edge
coloring (left) to three thresholded values of functional connections for resting brain state
inferred from fMRI for the same node-set (right). These nodes are ordered according to brain
function in different spatial regions of the brain (e.g. default mode network (DMN), motor,
auditory, frontal). (d) the distribution of rich-club nodes within these different labeled regions.

Where these methods have threshold parameters, 7, these methods are often validated by
measuring robustness of network statistics across varying thresholds [Kramer et al.[2008]],
and using these thresholds for distinguishing patient cohorts by label or network statistic
distribution. For example, previous work uses paired t-test or other simple statistical test
[Supekar et al.|2008b]. Kramer et al.|[2009] proposes a bootstrapping [Efron and Tibshirani
1993|] method in the frequency domain which can provide more general p-values without
model assumptions.

3.3.3. Dynamic Functional Brain Networks. Because the data underlying functional brain
networks is often time series over a fixed set of nodes, a time series of networks (dynamic
networks, or time-evolving networks) are a natural extension in this domain [Hutchison et al.
2013]. Network construction using time-series similarity measures (e.g. cross-correlation)
generalize to the dynamic setting, computing on time-series subsequences. The advantage of
introducing the complexity of dynamics is discovering distinct connectivity ‘states’ over the
course of the experiment. Because fMRI response can change very quickly as activity occurs
over the brain, these states are lost under global time series measures [Damaraju et al.
2014; Robinson et al.|2015; Yu et al.|2015]]. Challenges of network validation generalize
to this dynamic setting, with the added challenge of appropriate temporal scale.

3.3.4. A Work-flow for Comparing Functional and Structural Brain Networks. Figure (8| illustrates
a complete case study which summarizes many of the topics discussed above. This work
integrates structural networks across 75 individuals, sensed from Diffusion Tensor Imaging
(DTI) with functional networks sensed from fMRI in resting state using Pearson correlation.
These different views of the network enable researchers to study how function and
connectivity are correlated. (a) illustrates a schematic layout of rich-club nodes, feeder,
and local nodes. (b) shows the layout of these nodes in a brain coordinate system, with
the same node and edge coloring. (c) illustrates an adjacency matrix comparing structural
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connections (left) with three thresholded values of functional connections within the same
node-set (right). Furthermore, nodes in different spatial regions of the brain (e.g. default
mode network (DMN), motor, auditory, frontal) are labeled according to primary function,
showing structural and functional edges between these regions. (d) shows the distribution
of rich-club nodes within these different labeled regions.

3.4. Epidemiology, Blogs, Information Networks: Modeling Virus Spread and Information Flow

(a) (b) (© @

Fig. 9: Examples of networks inferred from data, or modeled in the epidemiology domain,
re-printed from [Danon et al. 2011]. (a) depicts a contact network where squares are
respondents, and edges are sexual or drug contact which might transmit HIV [Bell et al.
1999]|. (b) a sexual network derived from snowball sampling of respondents (squares),
where the edges between non-respondents (circle nodes) are unknown. (c) a network of
households (cliques) and their interconnections for modeling infection in realistic social
contact networks. (d) The ‘small-world’ network property modeled through a lattice with
sparse edges connecting distant nodes.

3.4.1. Networks in Epidemiology. Networks are used in epidemiology to simulate the spread of
disease over a family of parametric network models (e.g. random, small-world, exponential
random graphs) representing contact between entities over time [Keeling and Eames|2005].
Network structure inference in epidemiology and information networks aims to discover
an unobservable network (e.g. physical contact networks, sexual networks, malware
transmission) over which information or infection is spread. We observe the effects of
transmission on the infected node (e.g symptoms), but not the edges over which they spread.
Our focus is therefore on parametric inference for these models from non-network data.

Modeling contact networks allows researchers to simulate different outbreaks on these
networks. Figure [9]illustrates types of network data and models used in the epidemiology
domain [Danon et al.|2011]. Figure [9(a) visualizes a contact network from survey data,
where squares are respondents, and edges identify transmission risk for HIV through con-
tact by drug use or sex [Bell et al[1999]. Figure[9(b) shows a snowball sample of respondents
(as squares) and their partners. In this example, edges between circle nodes are unknown.
Subsequent modeling for edges between circle nodes can test the spread over this population
under different unobserved contact assumptions. Figure [9(c) illustrates a model of house-
holds (cliques), sparsely connected to others. This is intended to model contact networks and
potential spread through family-unit environments. Finally,[9(d) illustrates a lattice network
with sparse edges outside of the local neighborhood. This model was previously used to cap-
ture the ‘small-world’ property of information and disease spread [Boots and Sasaki|1999].

Historically, inferring networks in this area focuses largely on parametric graphical
modeling using MCMC (from the epidemiology domain) and maximum likelihood methods
(from machine learning), incorporating modeling assumptions in transmission rate
decay. Given a transmission model (e.g. the susceptible-infected-recovered SIR model
or susceptible-exposed-infected-recovered SEIR model), these methods measure the
likelihood of possible sequences, or trees of infection, where infection times from a root are
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monotonically increasing. Simply, let ¢; and ¢; denote the infection times of nodes n;, and
n; then the transmission model measures the probability P(“j infected i”|t; —t;).

3.4.2. Contact Network Inference. Early work in the epidemiology domain focused the
inference of either spread parameters (e.g. infection rate) or network model parameters
on random graphs [Britton and O’Neill/2002], Poisson, and power-law networks [Meyers
et al.[[2005], and fitting of real-world data to a contact network model [Bansal et al.|2007].
In these analytical and simulation results, the network model is known and no structural
inference is necessary. These studies generally model the spread of an epidemic under
possible individuals in contact (called ‘contact tracing’) [Patrick et al.[|2002], and discovering
the root individual(s) of the infection (called ‘transmission tracing’). Early work also
formulates association network heuristics based time and distance of potential contacts
[Haydon et al.|2003]. However, this area is largely focused on parametric network modeling.

3.4.3. Infection-Time Cascades. Previous work in machine learning uses network structure
inference to represent the spread of information between nodes, where the edges of
transmission are unobservable. Maximum-likelihood formulations have focused on learning
a network under assumed transmission rate models, using statistical inference for these
parameters Myers and Leskovec [2010].

Figure[10(a) illustrates the intuition of network construction by information propagation
through unobservable edges. To recover the unobservable true network G*, each sequence of
non-decreasing infection times (e.g. “cascades”) supports the possible transmission between
nodes with sufficiently close infection times. The key modeling step of this area of work
is specifying (or learning the parameters of) a transmission model which measures the
likelihood of a cascade according to differences in adjacent infection times.

.ﬁxé Network G*
/ y<‘\(:. o/ Cascadec,
O/ \‘ T F ™ Cascade c,
® e O / Cascade c;
O O

Node s  Nodei
(a) (b)

Fig. 10: From [|Gomez-Rodriguez et al.|2012]. (a) illustrates the intuition of constructing net-
work G* on a collection of cascades c¢;,c;...c;. For a possible source node s, these methods es-
timate the likelihood of infecting i given the observation of information arrival (‘infection’) at
node i. (b) An estimated information network inferred from hyperlink arrival times at nodes.

Myers and Leskovec [2010] (“CONNIE”) uses convex programming to learn a maximum-
likelihood network under a fixed transmission time probability distributions w(t), and
recovery-time distribution (). To learn the transmission weight matrix A, the authors use
an Independent Cascade model [Kempe et al.[2003]] where an uninfected node n; is exposed
to infection by adjacent infected nodes n; at each time step using a Bernoulli process with a
probability A; ;. The authors present a convex optimization formulation of their likelihood
function, with regularization. The CONNIE model, and most of the subsequent work, is
evaluated on synthetic network models where the underlying network is explicitly known.
The ‘task’ is the accurate reconstruction of the network which simulated these infection
times. Similar to gene regulatory networks, the final evaluation of the network is the
network itself, rather than a subsequent task on the inferred network. These methods then
also typically present qualitative results on real-world data-sets.
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CONNIE uses a geometric program and is not scalable. Gomez-Rodriguez et al.
[2012] (“NETINF”) solves a simplified problem in a scalable way by fixing a global edge
transmission probability 3. For many applications, this assumption of a fixed transmission
threshold can be made. The primary insight under this assumption is that we can simply
use the most likely propagation tree over a set of nodes in a cascade c. Given a cascade
set C, the authors marginalize their likelihood function relative to edge selection and prove
this function is monotonic and submodular. Therefore, edges can be greedily selected with
an approximation factor of (1—1/¢) [Nemhauser et al.|1978].
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Fig. 11: From [Du et al.[2012]. Three observed transmission delay histograms, demonstrating
poor fit of exponential and Raleigh models.

The transmission model of [Myers and Leskovec|2010] assumes repeated Bernoulli trials
of fixed probability. (Gomez-Rodriguez et al. [2014] (‘NETRATE”) introduces transmission
likelihood functions which vary over time. Given a set of cascades C, the method infers the
parameters of transmission rate models for each edge. The model uses a hazard function
H (7;|7;;04,;) which measures the instantaneous infection rate on node n; from infected node
n;, given the parametric function on a.. The authors present three different transmission
model functions: Exponential, Power-law, and Rayleigh, and prove that the optimization
for transmission rates matrix A is convex.

In many real online applications, information can propagate in a multitude of ways.
Information might be promoted by an influential node, causing multi-modal spikes in
propagation after some delays. These transmission rates may not decay monotonically, nor
according to any parametric function. Figure [11]illustrates this property on real transmis-
sion data between blog sites in the MemeTracker?’| data-set. The x-axis is the time difference
between post creation on the originating site, and the time it was linked by another site.
The data poorly fits any single exponential or Rayleigh transmission model. Du et al.|[2012]
(“KernelCascade”) extends NETRATE to address this limitation. The key addition of this
work is to kernelize the hazard function H(r.|7;,a;,) over m different kernels. These kernels
serve as a piecewise approximation of the time-lag distribution, which can then be used
to estimate the likelihood of transmission between nodes, given observed ‘infection’ data.

3.5. Ecology: Inferring Animal Social Networks to Explain Individual and Group Behavior

3.5.1. Networks in Ecology. Networks in ecology serve as two distinct models. In systems
ecology, traditional graphical models are used to model an ecosystem at a high level, with
relationships between species, environmental variables, services, and other processes
[Milns et al.|2010]. For example, food webs model who-eats-whom within an ecosystem
[Proulx et al.|2005]]. A second modeling with networks—and the focus of this section—arises
in behavioral ecology for the study of animal populations [Farine and Whitehead|2015;
Wey et al.|2008]. Analogous to sociology and political science, traditional fieldwork data in
ecology are collected from direct observation and ‘surveys,’ measuring interactions or other

2http://www.memetracker.org/
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relationships among individuals in the population [Barrett et al.[|2012; Sueur et al.|2011]],
particularly over time [[de Silva et al.|2011; McDonald|[2007; |[Pinter-Wollman et al.[[2013].

This process of direct observation allows researchers to incorporate their own intuition
and experience into the definition of these networks. In practice, much of the work in
this area uses ad-hoc, intuitive network definitions with some sensitivity analysis. These
networks derived from direct observation are typically categorical (e.g. kinship relations)
or discrete (e.g. thresholding on number of interactions, where interactions are implicitly
decided by observers). Methodological consideration are well established in the field on
these data, including edge strength thresholding [[Croft et al.|2009]], sampling, hypothesis
testing [Croft et al.|2011]], and randomization strategies [Haddadi et al.|2011; James
et al.[|2009]. Each of these provide several different choices for validating the robustness
of these networks. These networks are tightly coupled with a particular hypothesis and
experimental cohorts in the population.

Two networks of interest in animal social networks measure affiliations and associations
between individuals [Whitehead and James||2015||. Affiliations describe intentional social
relationships between individuals [Croft et al.[2011; Whitehead et al.[2005] (e.g. grooming
pairs of primates), while associations describe a broader set of interactions which might
be driven by structural factors rather than social affinity (e.g. environmental resources,
sex, age, and other individual attributes) [Bejder et al.[[1998]. Whitehead and James|[2015]
introduces a generalized affiliation index using a linear regression model. The authors
simplify the model by subtracting sets of predictive structural features to be removed. The
resulting model by subtraction is the affiliative network model.

3.5.2. Underlying Data in Animal Social Networks: Instrumentation and Sensing of Animal Populations.
Recent instrumentation of individuals and the environment allow the observation of
ecosystems and populations at an unprecedented scale using geo-location sensors such as
GPS, proximity sensors, radio-telemetry, and Passive Integrated Transponder (PIT) tags
[Kays et al.[|2015; [Krause et al.|2013; Rutz et al.|2012]. This instrumentation allows the
study of detailed individual behavior and social dynamics which are often outside of the
view of direct observation. This abundance of data requires novel statistical techniques
for inferring networks from implicit interactions. Because these studies are often coupled
with an experimental design, these individual labels (e.g. test and control populations) are
often used in visualization and hypothesis testing.

No known work compares the biases of interaction and/or affiliation sampling via
traditional fieldwork, against the capability of simultaneous sensing for collecting
underlying data in animal social networks. Presently, these sensors are most effective
at recording simple co-location or trajectories. Challenging independent problems such
as activity recognition (e.g. grooming, conflict) are more easily solved by researchers
doing direct observation on the population. Yet, researchers are naturally limited in
their attention and accuracy. Future research will likely integrate the strengths of these
modalities to augment fieldwork data collection.

3.5.3. Studies and Network Inference Methods on Instrumented Data. The key difference between
data from traditional fieldwork and from instrumented technologies is that the former
tend to be discrete counts (e.g. number of co-locations or grooming events), while the
latter are continuous data without these higher-level labels (e.g. relative distances
between individuals). To translate to discrete co-location events—and subsequently a
network-requires defining “how close” for “which duration” constitutes a co-location edge,
or “how correlated” for “which duration” constitutes a “following” edge in the network. In
contrast, researchers easily identify these relationships informally.

The simplest method for setting these closeness and persistence thresholds for co-location
(i.e. measuring ‘association’ networks as described above) is by domain knowledge, or by
sampling the parameter-space in some way. [Haddadi et al.[[2011] use this strategy in GPS
data from sheep, ranging from individuals co-locating for 1 minute at 1 meter, to 5 minutes
at 3.5 meters. The authors have some known ‘affiliations’ (as described above), which are
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used to validate network accuracy at these different thresholds when the individuals are
mixed into a larger population. Aplin et al|[2012] collect data from passive integrated
transponder (PIT) tags of individuals sensed by radio-frequency identification (RFID)
antennae at feeder sites. This work defines associations as two individuals co-occurring
at the site within 30 seconds before or after the other on a sliding 75 second window.
Co-occurrence is categorical due to the physical design of feeders, so only the ‘persistence’
of interaction need be fixed. This threshold generates a stream of pairwise associations
which can then be thresholded (> 0.02) to produce an aggregated association network.
Psorakis et al.| [2012] define edges using Gaussian mixture models (GMM) on co-
occurrence data for a similar feeder system. This approach mitigates the ‘persistence’
threshold by fitting Gaussian distributions to a one-dimensional space of occurrence counts
(and later continuous two-dimensional geographic space, [Farine et al.|2016]). These dis-
tributions capture events of co-occurrence among several individuals. Hamede et al. [2009]]
use a randomization approach to define non-random associations on proximity sensors on a
population of wild Tasmanian devils (Sarcophilus harrisii). Internal thresholds on these
sensors detect co-location within 30 centimeters of each other. This work studies disease
transmission through physical contact of the animals, so this thresholding is appropriate.

(a) () (©

Fig. 12: From [Aplin et al|2015], Networks inferred from co-location at feeding stations
sensed using RFID over three different populations. These edges are colored showing
learned behavior (red edges) of obtaining food through an instrumented puzzle mechanism,
the trained individuals (yellow nodes), and affiliated individuals using the default strategy
(black edges).

3.5.4. A Work-flow from Co-Location Data to Innovation Spread in Networks. |Aplin et al.[[2015]
proposes a network inference task to measure the learning of a feeding behavior in great
tits (Parus major). In this experiment, feeders instrumented with RFID antennae record
the visitation of each unique bird using PIT tags. The feeders use a sliding door to the
left or right to access the food, and this feeder records the bird’s puzzle solution. The
authors investigate whether birds learn by example at the feeding sites. Figure [12|shows a
thresholded, aggregated network over individuals, weighted by the frequency of co-location
events at any feeder, using the Gaussian mixture model (GMM) method described above
for interaction ‘events.” Yellow nodes represent trained individuals, red nodes represent
individuals learning the correct behavior to solve the feeder by the end of the study.

These networks visually show strong network modules between red and black individuals.
Figure [12{b) shows a strong network separation between the two behaviors, where trained
individuals are within the red cluster. Figure[12[c) shows two strong red clusters around
both trained individuals, but also that the correct behavior is spread across a component
of untrained individuals.
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3.6. Mobile Social Networks: Studying Human Mobility Through Social Relationships

3.6.1. Underlying Data in Mobile Networks. Phones and other mobile devices are among the
versatile and informative sensors of personal and social activity [Lane et al.|2010]. The
modeling of mobile phone data as networks is motivated by the complex, overlapping,
and dynamic modalities which are sensed by these devices. Mobile devices collect physical
proximity (bluetooth, WiFi), physical location (GPS), direct communication (SMS, voice),
and often interactions through other online social networks (e.g. Facebook)E] Integrating
these modalities promises to give a rich picture of large scale human mobility, dynamics
and scale [Saramaki and Moro|[2015]l, geography and communication [Blondel et al.[2010;
Ratti et al.[2010], and offline social networks.

While many of these underlying data are very similar to those collected for animal social
networks (proximity, location, discrete interactions), there are notable trade-offs between
privacy and experimental design in these domains. While animals are not due rights to data
privacy, they are also unable to comply with instructions or be surveyed for ground truth
network edges; in human experiments, contact diaries [Mastrandrea et al.|2015|] or Facebook
friends [Sekara and L.ehmann|2014] have been collected to validate networks inferred from
proximity sensors. Experiments on mobile users are necessarily less invasive, while topics
such as disease spread and sexual contact networks are often sensed in animal populations.
Data privacy requires careful, informed consent and secure storage [Stopczynski et al.
2014all; location privacy has been shown as extremely identifiable, with two to eleven data
points being sufficient to uniquely identify individuals [[de Montjoye et al.[2013].

Several mobile data-sets have been collected for the purposes of social research [Blondel
et al.|2015]]. The first large collection was the “Reality Mining” data-set, collected on 100 par-
ticipants (faculty and students) in the MIT Media Laboratory [Eagle and (Sandy) Pentland
2006]. This anonymized data-set contains call logs, Bluetooth device proximity, cell tower
ID (a proxy for location) and other fields. Similar mobile data collection projects followed,
including the Lausanne Data Collection Campaign on 170 student participants [Laurila
et al.|2013]l, the Social fMRI study on 130 participants [Aharony et al.|2011] (notably, not
university students), and the SensibleDTU project of 1,000 participants [Stopczynski et al.
2014b]. These subsequent studies collected more detailed user activity, surveys, Facebook,
and detailed user demographics, addressing the limitations of previous efforts.

Finally, the SocioPatterns platform [Barrat et al. [2008; (Cattuto et al. 2010] uses a
specialized proximity sensor design to record face-to-face interactions. These sensors have
been deployed in an academic conference setting [Smieszek et al.|[2016], elementary schools
[Stehl et al[2013], high schools [Mastrandrea et al.[2015] and several other environments ]
The specificity of these sensors for detecting individual interactions between users addresses
the challenges of using general proximity sensors (e.g. Bluetooth) for population studies.

3.6.2. Studies and Methods on Mobile Data. The most common primary task in inferring
networks from mobile data is related to integration across modalities, for edge or attribute
prediction tasks. For example, predicting Facebook friends from Bluetooth co-location
[Sekara and Lehmann|2014], or predicting survey-reported friends from proximity and
call record data [Eagle et al.|2009].

Figure examines this latter task. The network in Figure [13a) is inferred using
principle components analysis of Bluetooth proximity counts across different times
and locations (e.g. work, off-campus, weekday, weekend), and assigning edge weight
by the coefficient of the factor corresponding to non-work hours (e.g. “close friends are
those co-located outside of work”). Figure [13(b) reports the ground-truth social network,
self-reported from a user survey, accurately reconstructed by the inferred network. While
the discovery that friends meet or call after work is not particularly surprising, this
demonstrates integrating these modalities for the simple edge prediction task. The principle

3In this section, we also group email datasets such as Enron [Klimt and Yang|Klimt and Yang] because the
discrete interaction data is most similar to this domain.

4http://www.sociopatterns.org/datasets/
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(a) Network inferred from user co-location and (b) The social network self-reported from a
call data. user survey.

Fig. 13: From [Eagle et al|[2009]. (a) a weighted latent network inferred by Bluetooth
proximity and call records on the population of Reality Mining users. (b) the self-reported
ground-truth friendship network.

(a) A network inferred from a university email corpus

(b) A network inferred from the Enron email corpus

Fig. 14: From [De Choudhury et al.|2010]. Two networks inferred over varying network
thresholds 7, creating sparser networks from left to right as the threshold criteria becomes
more strict (e.g. more than 7 email interactions for an edge between individuals v; and v;).

components measure to infer the network edges also incorporates domain knowledge of
work schedules. Previous work shows that human mobility in urban environments is highly
periodic between a small set of locations (e.g. home and work) [Eagle et al.|2009]. Therefore,
incorporating these periodicities explicitly is a key aspect of this domain.

De Choudhury et al.| [2010] revisits the discussion of setting similarity threshold 7 for
an interaction measure calculated on data. Whether the underlying data is of discrete
or continuous, varying 7 realizes a range of possible networks. In Figure from left to
right the number of required emails exchanged increases in order to define an edge, thus
reducing the density. Any predictive task on this network balances novelty against the task
difficulty: at a low threshold, a dense graph is realized and edge prediction may not perform
better than random because the definition of the edge is simply noise. However, a very high
threshold may infer a very sparse network, where edges are trivially easy to predict (but
uninteresting).

The authors generate two and four one-year aggregated networks according to the length
of data available in a university email data-set, and the Enron email data-set. They then
tune the global threshold = according to performance across several different classification
tasks on sets of node-level features from each inferred network. These tasks include classifi-
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cation of node class (e.g. undergraduate, graduate, faculty, staff), gender, “community” (with
class labels provided by stochastic block modeling, [Hofman and Wiggins|2008]l), where each
of these tasks may be independently of interest. Assuming these node demographics and
communities were separable as a set of behaviors at some “natural” threshold, this analysis
will discover the threshold yielding the maximal classification accuracy. The authors also
predict future communication activity using simple linear regression, reporting the accuracy
at these same 7. Each of these tasks yield a similar range of high performing 7 thresholds,
suggesting that classification and prediction agree across multiple views of the network.

4. CONCLUSION

This survey aims to provide a vocabulary and structure to the problem of inferring
networks from non-network data. Typically, this problem is addressed in data preprocessing,
often with several artful steps of parameter tuning or feature selection. We anticipate
investigation of this problem in a more general and rigorous framework as network models
from underlying non-network data are more numerous in data science applications.

We survey several domains in order to illustrate the different foci in questions and how the
nature of data drive the methodological specializations in the areas. For example-with some
simplification—we observe that gene regulatory networks are methodologically very mature,
with a breadth of interaction measures appropriate for multivariate, matrix data (e.g. mi-
croarray) including regression and graphical models. Climate networks and brain networks
are mature in ¢time series interaction measures, including causal and frequency-based anal-
ysis, respectively. The problems in each of these areas are still exploratory, focusing on inte-
grating and validating networks from different data (e.g. structural and functional brain net-
works) to develop data science tools downstream from these robust network models. Animal
social networks inherit direct observation data in relatively simple formats (e.g. counts). This
yields relatively simple network models over straightforward parameters (e.g. closeness and
persistence), with a focus on experimental design. Epidemiology historically studies observed
infection data spreading across a hidden contact network. Therefore, modeling these trans-
mission functions is a key to this area. We hope that this data-driven summary might help
locate models and expertise on networks derived from different underlying data modalities.

Previous work often assumes that the objective of network inference is uncovering “the
network” representation which is obscured by noise. Often in this context, the network
inference method tries to reconstruct known ground-truth networks from non-network data.
In contrast, our work treats a network as a model to perform a particular task, where we
often cannot access the ground truth network, or assume its parametric form. Analogous
to clustering for a classification task, there are many possible clusterings which are only as
valuable as they improve classification accuracy. Conceptualizing network inference within
the complete data science workflow—from data (to network) to task models for particular
questions—focuses on a tighter coupling of data models and task models.

There are several frameworks across domains which use randomization, causality, and
significance testing strategies to rigorously learn the network model under some assump-
tions. While these networks are appropriate according to their structural assumptions, they
may not be the most informative for the question/task(s) of interest. Currently, no general,
statistically rigorous methodology exists to learn and evaluate networks over particular
task(s). Furthermore, there is little understanding of the criteria for network models and
predictive models which would make them appropriate for this paired evaluation. We
anticipate this will be an exciting area of future research.
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