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Information-Theoretic Limits of Selecting Binary
Graphical Models in High Dimensions
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Abstract—The problem of graphical model selection is to esti-
mate the graph structure of a Markov random field given sam-
ples from it. We analyze the information-theoretic limitations of
the problem of graph selection for binary Markov random fields
under high-dimensional scaling, in which the graph size and the
number of edges , and/or the maximal node degree , are allowed
to increase to infinity as a function of the sample size . For pair-
wise binary Markov random fields, we derive both necessary and
sufficient conditions for correct graph selection over the class
of graphs on vertices with atmost edges, and over the class
of graphs on vertices with maximum degree at most . For the
class , we establish the existence of constants and such that
if , any method has error probability at least
uniformly over the family, and we demonstrate a graph decoder
that succeeds with high probability uniformly over the family for
sample sizes . Similarly, for the class , we ex-
hibit constants and such that for , any method
fails with probability at least , and we demonstrate a graph de-
coder that succeeds with high probability for .

Index Terms—High dimensional inference, KL divergence
between Ising models, Markov random fields, sample complexity,
structure of Ising models.

I. INTRODUCTION

M ARKOV random fields, also known as undirected
graphical models, provide a structured representation

of the joint distributions of families of random variables. They
are used in various application domains, among them image
processing [5], [14], social network analysis [27], [30], and
computational biology [1], [12], [20]. Any Markov random
field is associated with an underlying graph that describes
conditional independence properties associated with the joint
distribution of the random variables. The problem of graphical
model selection is to recover this unknown graph using samples
from the distribution.
Given its relevance in many domains, the graph selection

problem has attracted a great deal of attention. The naive ap-
proach of searching exhaustively over the space of all graphs is
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computationally intractable, since there are distinct graphs
over vertices. If the underlying graph is known to be tree-
structured, then the graph selection problem can be reduced to
a maximum-weight spanning tree problem and solved in poly-
nomial time [9]. On the other hand, for general graphs with cy-
cles, the problem is known to be difficult in a complexity-theo-
retic sense [8]. Nonetheless, a variety of methods have been pro-
posed, including constraint-based approaches [20], [26], thresh-
olding methods [6], and -based relaxations [13], [21], [22],
[24], [33]. Other researchers [11], [19] have analyzed graph se-
lection methods based on penalized forms of pseudolikelihood.
Given a particular procedure for graph selection, classical

analysis studies the algorithm’s behavior for a fixed graph as
the sample size is increased. In this paper, as with an evolving
line of contemporary statistical research, we address the graph
selection problem in the high-dimensional setting, meaning that
we allow the graph size as well as other structural parameters,
such as the number of edges or the maximum vertex degree ,
to scale with the sample size . We note that a line of recent
work has established some high-dimensional consistency re-
sults for various graph selection procedures, including methods
based on -regularization for Gaussian models [21], [23], [24],
-regularization for binary discrete Markov random fields [22],

thresholding methods for discrete models [6], and variants of
the PC algorithm for directed graphical models [20]. All of
these methods are practically appealing given their low-com-
putational cost.
Of complementary interest—and the focus of the paper—are

the information-theoretic limitations of graphical model selec-
tion. More concretely, consider a graph , consisting
of a vertex set with cardinality , and an edge set . In
this paper, we consider both the class of all graphs with

edges, as well as the class of all graphs with max-
imum vertex degree . Suppose that we are allowed to collect
independent and identically distributed (i.i.d.) samples from

a Markov random field defined by some graph (or
). Remembering that the graph size and structural param-

eters are allowed to scale with the sample size, we thereby
obtain sequences of statistical inference problems, indexed by
the triplet for the class , and by the triplet
for the class . The goal of this paper is to address questions
of the following type. First, under what scalings of the triplet

(or correspondingly, the triplet ) is it possible
to recover the correct graph with high probability? Conversely,
under what scalings of these triplets, does any method fail most
of the time?
Although our methods are somewhat more generally appli-

cable, so as to bring sharp focus to these issues, we limit the
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analysis of this paper to the case of pairwise binary Markov
random fields, also known as the Ising model. The Ising model
is a classical model from statistical physics [4], [18], where it is
used to model physical phenomena such as crystal structure and
magnetism; more recently, it has been used in image analysis
[5], [14], social network modeling [3], [27], and gene network
analysis [1], [25].
At a high level, then, the goal of this paper is to understand the

information-theoretic capacity of Ising model selection.1 Our
perspective is not unrelated to a line of statistical work in non-
parametric estimation [15], [17], [31], [32], in that we view the
observation process as a channel communicating information
about graphs to the statistician. In contrast to nonparametric
estimation, the spaces of possible “codewords” are not func-
tion spaces but rather classes of graphs. Accordingly, part of
the analysis in this paper involves developing ways in which to
measure distances between graphs, and to relate these distances
to the Kullback–Leibler (KL) divergence known to control error
rates in statistical testing.
We note that understanding of the graph selection capacity

can be practically useful in two different ways. On one hand, it
can clarify when computationally efficient algorithms achieve
information-theoretic limits and, hence, are optimal up to con-
stant factors. On the other hand, it can reveal regimes in which
the best known methods to date are suboptimal, thereby moti-
vating the search for new and possibly better methods. Indeed,
the analysis of this paper has consequences of both types.
Our main contributions are to establish necessary and suffi-

cient conditions for two classes of graphical models: the class
of bounded edge cardinality models, and the class of

bounded vertex degree models. Proofs of the necessary condi-
tions (see Theorems 1 and 2) use indirect methods, based on a
version of Fano’s lemma applied to carefully constructed sub-
families of graphs. On the other hand, our proof of the sufficient
conditions (see Theorems 3 and 4) is based on direct analysis of
explicit “graph decoders.”
The remainder of this paper is organized as follows. We

begin in Section II with background on Markov random
fields, the classes of graphs considered in this paper, and a
precise statement of the graphical model selection problem. In
Section III, we state our main results and explore some of their
consequences. Section IV is devoted to proofs of the necessary
conditions on the sample size (see Theorems 1 and 2), whereas
Section V is devoted to proofs of the sufficient conditions. We
conclude with a discussion in Section VI.
Notation: For the convenience of the reader, we summarize

here notation to be used throughout the paper. We use the fol-
lowing standard notation for asymptotics: we write

if for some constant , and
if for some constant .

The notation means that and
.

1In this paper, we assume that the data is drawn from some Ising model in the
class and , thus we study the probability of recovering the exactmodel.
However, similar analysis can be applied to the problem of best approximating
an arbitrary distribution using an Ising model from class or .

II. BACKGROUND AND PROBLEM FORMULATION

We begin with some background on Markov random fields,
and then provide a precise formulation of the problem.

A. Markov Random Fields and Ising Models

An undirected graph consists a collection
of vertices joined by a collection of undirected

edges.2 The neighborhood of any node is the subset

(1)

and the degree of vertex is given by , corre-
sponding to the cardinality of this neighbor set. We use

to denote the maximum vertex degree, and
to denote the total number of edges.
A Markov random field is obtained by associating a random

variable to each vertex , and then specifying a joint
distribution over the random vector that re-
spects the graph structure in a specific way. In the special case
of the Ising models, we consider each random variable takes
values and the probability mass function has the form

(2)

Here the normalization constant , also known as the parti-
tion function, is given by

(3)

To be clear, we view the parameter vector as an element of
with the understanding that for all pairs .

So as to emphasize the graph-structured nature of the parameter
, we often use the notation .
The edge weight captures the conditional dependence be-

tween and , given fixed values for all vertices ,
. In particular, a little calculation shows that the conditional

distribution takes the form

Asmentioned earlier, the Isingmodel (2) has its origins in sta-
tistical physics [4], [18], and it has also been used as a simple
model in image processing [5], [14], gene network analysis [1],
[25], and in modeling social networks [3], [27]. For instance,
Banerjee et al. [3] use this model to describe the voting behav-
iors of politicians, where represents whether politician
voted for or against a particular bill. In
this case, a positive edge weight would mean that con-
ditioned on the other politicians’ votes, politician and are

2In this paper, we forbid self-loops in the graph, meaning that for
all .
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Fig. 1. Illustration of the family for and ; note that there are
three distinct graphs with vertices and edges. Setting the edge
parameter induces a family of three Markov random fields.
As the edge weight parameter increases, the associated distributions
become arbitrarily difficult to separate.

more likely to agree in their voting (i.e., ) than to dis-
agree , whereas a negative edge weight means that
they are more likely to disagree.

B. Classes of Graphical Models

In this paper, we consider two different classes of Ising
models (2), depending on the condition that we impose on the
edge set . In particular, we consider the two classes of graphs:
1) the collection of graphs such that each vertex has de-
gree at most for some , and

2) the collection of graphs with edges for
some .

In addition to the structural properties of the graphs, the diffi-
culty of graph selection also depends on properties of the vector
of edge weights . Naturally, one important prop-
erty is the minimum value over the edges, captured by

(4)

The interpretation of the parameter is clear: as in any signal
detection problem, it is obviously difficult to detect an interac-
tion if it is extremely close to zero.
Estimation of the graphical structure also turns out to be hard

if the edge parameters are large, since large values of edge
parameters can mask interactions on other edges. The following
example illustrates this point.

Example 1: Consider the family of graphs with
vertices and edges; note that there are a total of 3 such
graphs. For each of these three graphs, consider the parameter
vector

where the single zero corresponds to the single distinct pair
not in the graph’s edge set, as illustrated in Fig. 1.
In the limiting case , for any choice of graph with

two edges, the Ising model distribution enforces the “hard-core”
constraint that must all be equal; that is, for any
graph , the distribution places mass on the con-
figuration and mass on the configuration

. Of course, this hard-core limit is an extreme
case, in which the models are not actually identifiable. Nonethe-
less, it shows that if the edge weight is finite but very large, the
models will not be identical, but will be very hard to distinguish.

Motivated by this example, we define the maximum neigh-
borhood weight

(5)

Our analysis shows that the number of samples required to
distinguish graphs typically grows exponentially in .
In this paper, we study classes of Markov random fields that

are parameterized by a lower bound on the minimum edge
weight, and an upper bound on the maximum neighborhood
weight.
Definition 1 (Classes of Graphical Models):
a) Given a pair of positive numbers, the set
consists of all distributions of the form (2) such
that 1) the underlying graph is a member of
the family of graphs on vertices with vertex de-
gree at most ; 2) the parameter vector re-
spects the structure of , meaning that only when

; and 3) the minimum edge weight and max-
imum neighborhood satisfy the bounds

(6)

b) The set is defined in an analogousmanner, with
the graph belonging to the class of graphs with
vertices and at most edges.

We note that for any parameter vector , we always have
the inequality

(7)

so that the families and are only well de-
fined for suitable pairs .

C. Graph Decoders and Error Criterion

For a given graph class (either or ) and posi-
tive weights , suppose that nature chooses some member

from the associated family of Markov random
fields. Assume that the statistician observes samples

drawn in an i.i.d. manner from the distribu-
tion . Note that by definition of the Markov random field,
each sample belongs to the discrete set ,
so that the overall dataset belongs to the Cartesian product
space .
We assume that the goal of the statistician is to use the data
to infer the underlying graph , which we refer to as

the problem of graphical model selection. More precisely, we
consider functions , which we refer to as graph
decoders. We measure the quality of a given graph decoder
using the 0–1 loss function , which takes value
1 when and takes the value 0 otherwise, and we
define associated 0–1 risk

corresponding to the probability of incorrect graph selection.
Here, the probability (and expectation) are taken with the re-
spect the product distribution of over the i.i.d. samples.
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The main purpose of this paper is to study the scaling of the
sample sizes —more specifically, as a function of the graph
size , number of edges , maximum degree , minimum edge
weight , and maximum neighborhood weight —that are ei-
ther sufficient for some graph decoder to output the correct
graph with high probability, or conversely, are necessary for any
graph decoder to output the correct graph with a prespecified
probability.
We study two variants of the graph selection problem, de-

pending on whether the values of the edge weights are known
or unknown. In the known edge weight variant, the task of the
decoder is to distinguish between graphs, where for any candi-
date graph , the decoder knows the numerical values
of the parameters . (Recall that by definition,
for all , so that the additional information being pro-
vided are the values for all .) In the unknown
edge weight variant, both the graph structure and the numerical
values of the edge weights are unknown. Clearly, the unknown
edge variant is more difficult than the known edge variant. We
prove necessary conditions (lower bounds on sample size) for
the known edge variant, which are then also valid for the un-
known variant. In terms of sufficiency, we provide separate sets
of conditions for the known and unknown variants.

III. MAIN RESULTS AND SOME CONSEQUENCES

In this section, we state our main results and then discuss
some of their consequences. We begin with statement and dis-
cussion of necessary conditions in Section III-A, followed by
sufficient conditions in Section III-B.

A. Necessary Conditions

We begin with stating some necessary conditions on the
sample size that any decoder must satisfy for recovery over
the families and . Recall (6) for the definitions of
and used in the theorems to follow.

Theorem 1 (Necessary Conditions for ): Consider the
family of Markov random fields for some .
If the sample size is upper bounded as

(8)

then for any graph decoder , whether the edge
weights are known or not,

(9)

Remarks: Let us make some comments regarding the inter-
pretation and consequences of Theorem 1. First, suppose that
both the maximum degree and the minimum edge weight
remain bounded (i.e., do not increase with the problem se-

quences). In this case, the necessary conditions (8) can be sum-
marized more compactly as requiring that for some constant ,
a sample size is required for bounded degree

graphs. The observation of scaling has also been made
in independent work [6], although the dependence on the min-
imum value given here is more refined. Indeed, note that if the
minimum edge weight decreases to zero as the sample size in-
creases, then since as , we conclude
that a sample size is required, for some constant .
Some interesting phenomena arise in the case of growing

maximum degree . Observe that in the family , we neces-
sarily have . Therefore, in the case of growingmaximum
degree , if bound (8) is not to grow exponentially in
, it is necessary to constrain . But as observed pre-
viously, since as , we obtain the
following corollary of Theorem 1.
Corollary 1: For the family with increasing max-

imum degree , there is a constant such that in a worst case
sense, any method requires at least
samples to recover the correct graph with probability at least
.
We note that Ravikumar et al. [22] have shown that under

certain incoherence assumptions (roughly speaking, control on
the Fisher information matrix of the distributions ) and as-
suming that , a computationally tractable method
using -regularization can recover graphs over the family
using samples, for some constant ; conse-
quently, Corollary 1 shows concretely that this scaling is within
a factor of the information-theoretic limit.
We now turn to some analogous necessary conditions over

the family of graphs on vertices with at most edges.
In doing so, we assume that there is some constant
such that . This is a mild condition, excluding only
graphs in which all except a logarithmic number of the vertices
are completely isolated.

Theorem 2 (Necessary Conditions for ): Consider the
family of Markov random fields for some .
If for any and universal constant , the sample size
is upper bounded as

(10)

then for any graph decoder , whether edge
weights are known or not,

(11)

Remarks: Again, we make some comments about the conse-
quences of Theorem 2. First, suppose that both the number of
edges and the minimum edge weight remain bounded (i.e.,
do not increase with or ). In this case, the necessary con-
ditions (10) can be summarized more compactly as requiring
that for some constant , a sample size is re-
quired for graphs with a constant number of edges. Again, note
that if the minimum edge weight decreases to zero as the sample
size increases, then since for , we
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conclude that a sample size is required, for some
constant .
The behavior is more subtle in the case of graph sequences

in which the number of edges increases with the sample size.
As shown in the proof of Theorem 2, it is possible to construct
a parameter vector over a graph with edges such
that . (More specifically, the construction
is based on forming a completely connected subgraph on
vertices, which has a total of edges, and then placing
a uniform edge weight on each edge.) Therefore, if we wish to
avoid the exponential growth from the term , we require
that as the graph size increases. Therefore, we
obtain the following corollary of Theorem 2.

Corollary 2: For the family with increasing
number of edges , there is a constant such
that in a worst case sense, any method requires at least

samples to recover the correct graph
with probability at least .
To clarify a nuance about comparing Theorems 1 and 2, con-

sider a graph , with homogeneous degree at each
node. Note that such a graph has a total of edges.
Consequently, one might be misled into thinking Corollary 2
implies that samples would be required in this
case. However, as shown in our development of sufficient con-
ditions for the class (see Theorem 3), this is not true for
sufficiently small degrees .
To understand the difference, it should be remembered that

our necessary conditions are for identifying a graph among all
possible choices from the specified graph families. As men-
tioned, the necessary conditions of Theorem 2 and hence of
Corollary 2 are obtained by constructing a graph that con-
tains a completely connected graph, , with uniform degree
. But is not a member of unless . On the

other hand, for the case when , the necessary conditions
of Corollary 1 amount to samples being required,
which matches the scaling given in Corollary 2.

B. Sufficient Conditions

We now turn to stating and discussing sufficient conditions
(lower bounds on the sample size) for graph recovery over the
families and . These conditions provide complemen-
tary insight to the necessary conditions discussed so far.

Theorem 3 (Sufficient Conditions for ):
a) Suppose that for some , the sample size
satisfies

(12)

Then, if the edge weights are known a priori, there exists
a graph decoder whose worst case error
probability satisfies

(13)

b) In the case of unknown edge weights, suppose that the
sample size satisfies

(14)

Then, there exists a graph decoder that
that has worst case error probability at most .

Remarks: It is worthwhile comparing the sufficient condi-
tions provided by Theorem 3 to the necessary conditions from
Theorem 1. First, consider the case of finite degree graphs. In
this case, condition (12) reduces to the statement that for some
constant , it suffices to have samples in
order to obtain the correct graph with probability at least .
Comparing with the necessary conditions (see the discussion
following Theorem 1), we see that for known edge weights and
bounded degrees, the information-theoretic capacity scales as

. For unknown edge weights, conditions (14) provide
a weaker guarantee, namely that samples are
required, but we suspect that this guarantee could be improved
by a more careful analysis.
Like the necessary conditions in Theorem 1, the sample size

specified by the sufficient condition (12) scales exponentially
in the parameter —compare to the middle term in the lower
bound (8). Recalling that is always at least , we conclude
that if we wish not to incur such exponential growth, we nec-
essarily must have that . Consequently, it becomes
interesting to compare the dependence on the minimum edge
weight , especially under the scaling . The bound (12)
depends on via the term .

For small , we have . Similarly, the nec-
essary condition (8) includes a term involving ,
which exhibits the same scaling as . Thus, in the
case that , we obtain the following consequence of
Theorem 3.

Corollary 3: Suppose that for some universal con-
stant . Then, for the graph family , there exists a
graph decoder that succeeds with probability at least using

samples.
Comparing to Corollary 1 of Theorem 1, we see

that no method has vanishing error probability if
, for some constant . Therefore,

together Theorems 1 and 3 provide upper and lower bounds on
the sample complexity of graph selection that are matching to
within a factor of . We note that under the condition ,
the results of Ravikumar et al. [22] also guarantee correct
recovery with high probability for using -reg-
ularized logistic regression; however, their method requires
additional (somewhat restrictive) incoherence assumptions
that are not imposed here. In terms of the correct scaling, we
conjecture that the scaling provided
by our lower bounds in Theorem 1 is the optimal one, since our
analysis in this case seems relatively sharp.
Finally, we state sufficient conditions for the class in the

case of known edge weights.
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Theorem 4 (Sufficient Conditions for ):
a) Suppose that for some , the sample size
satisfies

(15)

Then, for known edge weights, there exists a graph de-
coder such that

(16)

b) For unknown edge weights, there also exists a graph de-
coder that succeeds with probability at least under
condition (14).

Remarks: It is again interesting to compare Theorem 4 with
the necessary conditions from Theorem 2. To begin, let the
number of edges remain bounded. In this case, for ,
condition (15) states that for some constant , it suffices to have

samples, which matches (up to constant factors)
the lower bound implied by Theorem 2. In the more general
setting of , we begin by noting that like in Theorem
2, the sample size in Theorem 4 grows exponentially unless the
parameter stays controlled. As with the discussion following
Theorem 2, one interesting scaling is to require that ,
a choice which controls the worst case construction that leads to
the factor in the proof of Theorem 2. With this scaling,
we have the following consequence.

Corollary 4: Suppose that the minimum value scales with
the number of edges as . Then, in the case of known
edge weights, there exists a decoder that succeeds with high
probability using samples.
Note that these sufficient conditions are within a factor of

of the necessary conditions from Corollary 2, which show that
unless , then any graph estimator
fails at least half of the time.

IV. PROOFS OF NECESSARY CONDITIONS

In the following two sections, we provide the proofs of our
main theorems. We begin by introducing some background on
distances between distributions, as well as some results on the
cardinalities of our model classes. We then provide proofs of the
necessary conditions (see Theorems 1 and 2) in this section, fol-
lowed by the proofs of the sufficient conditions (see Theorems
3 and 4) in Section V.

A. Preliminaries

We begin with some preliminary definitions and results
concerning “distance” measures between different models, and
some estimates of the cardinalities of different model classes.
1) Distance Measures: In order to quantify the distinguisha-

bility of different models, we begin by defining some useful
“distance” measures. Given two parameters and in ,
we let denote the KL divergence [10] between the two

distributions and . For the special case of the Ising model
distributions (2), this KL divergence takes the form

(17)

Note that the KL divergence is not symmetric in its arguments
(i.e., in general).
Our analysis also makes use of two other closely related di-

vergence measures, both of which are symmetric. First, we de-
fine the symmetrized KL divergence, defined in the natural way
as

(18)

Second, given two parameter vectors and , we consider the
model specified by their average. Using this averaged
model, we define another type of divergence as

(19)

Note that this divergence is also symmetric in its arguments. A
straightforward calculation shows that this divergence measure
can be expressed in terms of the partition function (3) associated
with the Ising family as

(20)

Useful in our analysis are representations of these distance
measures in terms of the vector of mean parameters

, where element is given by

(21)

It is well known from the theory of exponential families [7], [28]
that there is a bijection between the canonical parameters and
the mean parameters .
Using this notation, a straightforward calculation shows that

the symmetrized KL divergence between and is equal to

(22)

where and denote the edge-based mean parameters
under and respectively.
2) Cardinalities of Graph Classes: In addition to these di-

vergence measures, we require some estimates of the cardinal-
ities of the graph classes and , as summarized in the
following.

Lemma 1:
a) For , the cardinality of is bounded as

(23)

and hence .
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b) For , the cardinality of is bounded as

(24)

and hence .

Proof:
a) For the bounds (23) on , we observe that there are

graphs with exactly edges, and that for ,

we have for all .
b) Turning to the bounds (24) on , observe that every
model in has at most edges. Note that
ensures that

Therefore, following the argument in part (a), we con-

clude that , as claimed.

In order to establish the lower bound (24), we first group
the vertices into groups of size , discarding any
remaining vertices. We consider a subset of : graphs with
maximum degree each edge of the graph straddling vertices
in two different groups.
To construct one such graph, we pick a permutation of

and form an bijection between vertices of group 1 and
group 2 representing that permutation. Similarly, we form an
bijection from groups 1 to 3, and so on up until . Note that
use permutations to complete this procedure, and at the end
of this round, every vertex in group 1 has degree , vertices in
all other groups have degree 1.
Similarly, in the next round, we use permutations to

connect group 2 to group 3 through . In general, for
, in round , we use permutations to connect

group with groups . Each choice of these per-
mutations yields a distinct graph in . Note that we use a total
of

permutations over elements, from which the stated claim
(24) follows.

3) Fano’s Lemma and Variants: We provide some back-
ground on Fano’s lemma and its variants needed in our
arguments. Consider a family of models indexed by the
parameter vectors . Suppose we choose
a model index uniformly at random from ;
given , we obtain a dataset of samples drawn
in an i.i.d. manner according to a distribution . In this
setting, Fano’s lemma and related inequalities provide lower
bounds on the probability of error of any classification function

, specified in terms of the mutual
information

(25)

between the data and the random model index . We say
that a decoder is -unreliable over the
family if

(26)

In this paper, we use the following forms of Fano’s inequality.

Lemma 2: Any of the following upper bounds on the sample
size imply that any decoder is -unreliable over the family

.
a) The sample size is upper bounded as

(27)

b) The sample size is upper bounded as

(28)

We note that these variants of Fano’s inequality are stan-
dard and widely used in the nonparametric statistics liter-
ature (see e.g., [15], [17], [31], and [32]).

B. Key Separation Result

In order to exploit (28), one needs to construct families of
models with relatively large cardinality ( large) such that the
models are all relatively close in symmetrized KL divergence.
Recalling definition (21) of the mean parameters and the form of
the symmetrized KL divergence (22), we see that control of the
divergence between and can be achieved by ensuring that
their respective mean parameters stay relatively close
for all edges where the models differ.
In this section, we state and prove a key technical lemma that

allows us to construct such a class of models. As shown in the
proofs of Theorems 1 and 2 to follow, this lemma allows us to
gain good control on the symmetrized KL divergences between
pairs of models. Our construction of the model class, which ap-
plies to any integer , is based on the following procedure.
We begin with the complete graph on vertices, denoted
by . We then form a set of graphs, each of which
is a subgraph of , by removing a particular edge. Now de-
noting by the subgraph with edge removed, we define
the Ising model distribution by setting
for all edges , and . Thus, we are
considering a graph ensemble with uniform edge weights.
The following lemma shows that the mean parameter

approaches its maximum value 1 exponentially
quickly in the parameter .

Lemma 1: For some integer , consider
the ensemble of graphs with uniform edge weights pre-
viously defined. Suppose that . Then, the
likelihood ratio on edge is lower bounded as

(29)
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and moreover, the mean parameter over the pair is lower
bounded as

(30)

Proof: Let us introduce the convenient shorthand
. We begin by observing that the bound (29)

implies the bound (30). To see this, suppose that (29) holds, or
equivalently that where . Observing
that , we see that

from which (30) follows.
The remainder of our proof is devoted to proving the lower

bound (29). Our first step is to establish the relation

(31)
In order to prove (31), let us consider a fixed configuration

such that . Define the subsets

If the set has elements in total, then the contribution to
the exponential weight from variables in alone is , from
variables in alone is , and the cross terms between
and is . Depending onwhether and

are both or , the contribution from terms involving either
or is or . Overall,

the probability of configurations for which and
, denoted by , is given

by

where is the partition function. Noting that

and that there are ways of choosing variables other than
and to be , we find that

Similarly, we obtain

and combining the pieces yields the bound (31).
It remains to use the representation (31) to prove the stated

lower bound. We lower bound the ratio in (31) by identifying
the largest terms in the denominator. To do so, note that the ratio
between adjacent terms in the denominator is

Consequently, if we write , then
we have . Hence, if ,
the ratio between and terms is

Note that if , then . If and

Consequently, the maximum term in the summation
cannot occur when nor when

. By inspection,
the term is smaller than the term whenever
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. Furthermore, by symmetry, we also have a
maximum when .
Picking a maximum , using the representa-

tion (31), and noting that all terms in the numerator are nonneg-
ative, we find that

which completes the proof.

C. Proof of Theorem 1

We begin with necessary conditions for the bounded degree
family . The proof is based on applying Fano’s inequality to
three ensembles of graphical models, each contained within the
family . Since the worst case performance is no better
than the performance over any subfamily, any such ensemble
provides a lower bound on the performance.
Ensemble A: In this ensemble, we consider the set of

graphs, each of which contains a single edge. For each such
graph—say the one containing edge , which we denote by

—we set , and all other entries equal to zero.
Clearly, the resulting Markov random fields all belong to
the family . (Note that by definition, we must have

for the family to be nonempty.) Let us compute the sym-
metrized KL divergence between the MRFs indexed by
and . Using the representation (22), we have

since for all , and
. Finally, by definition of the

distribution , we have

so that we conclude that the symmetrized KL divergence is
equal to for each pair.
Using the bound (28) from Lemma 2 with , we

conclude that the graph recovery error is at least if

the sample size is upper bounded as

(32)

Ensemble B: In order to form this graph ensemble, we begin
with a grouping of the vertices into groups, each with

vertices. We then consider the graph obtained by fully
connecting each subset of vertices, namely is a graph
that contains cliques of size . Using this base graph,
we form a collection of graphs by beginning with , and then
removing a single edge . We denote the resulting graph by

. Note that if , then we can form

such graphs. For each graph , we form an associated
Markov random field by setting
for all in the edge set of , and setting the parameter
to zero otherwise.
A central component of the argument is the following bound

on the symmetrized KL divergence between these distributions

Lemma 2: For all distinct pairs of models
in ensemble B and for all , the symmetrized KL diver-
gence is upper bounded as

Proof: Note that any pair of distinct parameter vectors
differ in exactly two edges. Consequently,

by the representation (22), and the definition of the parameter
vectors,

where the inequality uses the fact that , and the edge-based
mean parameters are upper bounded by 1.
Since the model factors as a product of separate dis-

tributions over the cliques, we can now apply the sepa-
ration result (30) from Lemma 1 with to conclude that

as claimed.

Using Lemma 2 and applying the bound (28) from Lemma 2
with yields that for probability of error below and

, we require at least

samples. Since in this construction, we conclude that
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samples are required, in order to obtain error below ,
as claimed in Theorem 1.
Ensemble C: Finally, we prove the third component in the

bound (8). In this case, we consider the ensemble consisting of
all graphs in . From Lemma 1(b), we have

For this ensemble, it suffices to use a trivial upper bound on the
mutual information (25), namely

where the second bound follows since is a collection of
binary variables, each with entropy at most 1. Therefore, from
the Fano bound (27), we conclude that the error probability stays
above if the sample size is upper bounded as

, as claimed.

D. Proof of Theorem 2

Wenow turn to the proof of necessary conditions for the graph
family with at most edges. As with the proof of Theorem
2, it is based on applying Fano’s inequality to three ensembles
of Markov random fields contained in .
Ensemble A: Note that the ensemble (A) previously con-

structed in the proof of Theorem 1 is also valid for the family
, and hence the bound (32) is also valid for this

family.
Ensemble B: For this ensemble, we choose the largest integer
such that . Note that we have

We then form a family of graphs as follows: 1) first form
the complete graph on a subset of vertices, and 2) for
each , form the graph by removing edge
from . We form Markov random fields on these graphs by
setting on every edge of .

Lemma 3: For all distinct model pairs and ,
we have

(33)

Proof: We begin by claiming for any pair ,
the distribution (i.e., corresponding to the subgraph that
does not contain edge ) satisfies

(34)

where we have reintroduced the convenient shorthand
from Lemma 1.

To prove this claim, let be the distribution that contains
all edges in the complete subgraph , each with weight .
Let and be the normalization constants asso-
ciated with and , respectively. Now since by
assumption, by the FKG inequality [2], we have

We now apply the definition of and expand the right-hand
side of this expression, recalling the fact that the model
does not contain the edge . Thus, we obtain

which establishes the claim (34).
Finally, from the representation (22) for the symmetrized KL

divergence and the definition of the models

where we have used the symmetry of the two terms. Contin-
uing on, we observe the decomposition

, and using the analogous decomposition
for the other expectation, we obtain

where in obtaining the inequality (a), we have applied the bound
(34) and recalled our shorthand notation

. Since and , both terms in the de-
nominator of the second term are at least one, so that we con-
clude that .
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Finally, applying the lower bound (29) from Lemma 1 on the
ratio , we obtain that

where we have used the fact that .

By combining Lemma 3 with Lemma 2(b), we conclude that
for correctness with probability at least , the sample size
must be at least

as claimed in Theorem 2.
Ensemble C: We now establish the third term in the bound

(10). As shown in the construction of Ensemble B, there is an
ensemble with graphs such that each edge has weight
, and . Combining the bounds from Ensembles and B
and using the bound , we conclude that the decoding
will be -unreliable if

In fact, since we must necessarily have , it suffices to
impose the (slightly) stronger condition

Since for , it can be verified that
for all , and hence

On the other hand, we have , and hence

where inequality (i) follows as long as . Combining
the pieces, we see that

Note that is a strictly convex function on the positive real
line, and since as and ,
it must achieve its minimum somewhere in the open interval

. Taking derivatives to find the optimum , we see that
it must satisfy the equation

(35)

Substituting back, we find that .
which decreases as increases. But from (35), for any

, we have , which implies that there is a
universal constant such that , as claimed.

V. PROOFS OF SUFFICIENT CONDITIONS

We now turn to the proofs of the sufficient conditions given in
Theorems 3 and 4, respectively, for the classes and . In
both cases, our method involves a direct analysis of a maximum
likelihood (ML) decoder, which searches exhaustively over all
graphs in the given class, and computes the model with highest
likelihood. We begin by describing this ML decoder and pro-
viding a standard large deviations bound that governs its per-
formance. The remainder of the proof involves more delicate
analysis to lower bound the error exponent in the large devia-
tions bound in terms of the minimum edge weight and other
structural properties of the distributions.

A. ML Decoding and Large Deviations Bound

Given a collection of i.i.d. sam-
ples, its (rescaled) likelihood with respect to model is given
by

(36)

For a given graph class and an associated set of graphical
models , the ML decoder is the mapping

defined by

(37)

If themaximum is not uniquely achieved, we choose some graph
from the set of models that attains the maximum.
Suppose that the data are drawn from model for some

. Then, the ML decoder fails only if there exists
some other such that .
Note that we are being conservative by declaring failure when
equality holds. Consequently, by union bound, we have

Therefore, in order to provide sufficient conditions for the error
probability of the ML decoder to vanish, we need to provide an
appropriate large deviations bound.
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Lemma 3: Collection a collection of i.i.d. samples
from the distribution . Then, for any

, we have

(38)

where the distance was defined previously (19).
Proof: So as to lighten notation, let us write

and . We apply the Chernoff bound to the random
variable , thereby obtaining that

where denotes the normalization constant associated with
the Markov random field , as defined in (3). The claim then
follows by applying the representation(20) of .

B. Lower Bounds Based on Matching

In order to exploit the large deviations claim in Lemma 3, we
need to derive lower bounds on the divergence
between different models. Intuitively, it is clear that this diver-
gence is related to the discrepancy of the edge sets of the two
graph. The following lemma makes this intuition precise. We
first recall that a matching of a graph is a subgraph
such that each vertex in has degree one. The matching

number of is the maximum number of edges in any matching
of .

Lemma 4: Given two distinct graphs and
, let be the matching number of the graph with

edge set

Then, for any pair of parameter vectors and in
, we have

(39)

Proof: Some comments on notation before proceeding: we
again adopt the shorthand notation and .
In this proof, we use to denote either a particular edge, or
the set of two vertices that specify the edge, depending on the
context. Given any subset , we use to
denote the collection of variables indexed by . Given any edge

with and , we define the conditional
distribution

(40)

over the random variables indexed by the edge.
Finally, we use

(41)

to denote the divergence (19) applied to the conditional distri-
butions of .
With this notation, let be the subset of edges in

some maximal matching of the graph with edge set . Let
, and denote by the subset of vertices

that are not involved in the matching. Note that since is a
combination of KL divergences, the usual chain rule for KL
divergences [10] also applies to it. Consequently, we have the
lower bound

where for each , we are conditioning on the set of variables
. Finally, from Lemma 7 in

Appendix A, for all and all values of , we
have

from which the claim follows.

C. Proof of Theorem 3(a)

We first consider distributions belonging to the class
, where is the minimum absolute value of any

nonzero edge weight, and is the maximum neighborhood
weight (5). Consider a pair of graphs and in the class

that differ in edges. Since both graphs have
maximum degree at most , we necessarily have a matching
number

Note that the parameter can range from 1 all the
way up to , since a graph with maximum degree has at most
edges.
Now consider some fixed graph and associated

distribution ; we upper bound the error probability
. For each , there are at

most models in with mismatch from . Therefore,
applying the union bound, the large deviations bound in Lemma
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3, and the lower bound in terms of matching from Lemma 4, we
obtain

This probability is at most under the given conditions on in
the statement of Theorem 3(a).

D. Proof of Theorem 4

Next, we consider the class of graphs with at most
edges. Given some fixed graph , consider some other
graph such that the set has cardinality .
We claim that for each , the number of such
graphs is at most .
To see this claim, recall the notion of a vertex cover of a set

of edges, namely a subset of vertices such that each edge in the
set is incident to at least one vertex of the set. Note also that the
set of vertices involved in any maximal matching form a vertex
cover. Consequently, any graph such that has car-
dinality be described in the following (suboptimal) fashion:
1) first specify which of the edges in are missing in ; 2)
describe which of the at most vertices belong to the vertex
cover corresponding to the maximal matching of ; and
3) describe the subset of at most vertices that are connected
to the vertices of the cover in Step 2). This procedure yields at
most possibilities, as claimed.
Consequently, applying the union bound, the large deviations

bound in Lemma 3, and the lower bound in terms of matching
from Lemma 4, we obtain

This probability is less than under the conditions of Theorem
4, which completes the proof.

E. Proof of Theorems 3(b) and 4(b)

Finally, we prove the sufficient conditions given in Theorems
3(b) and 4(b), which do not assume that the decoder knows
the parameter vector for each graph . In this
case, the simple ML decoder (37) cannot be applied, since it as-
sumes knowledge of the model parameters for each graph

. A natural alternative would be the generalized likeli-
hood ratio approach, which would maximize the likelihood over
each model class, and then compare the maximized likelihoods.
Our proof of Theorem 3(b) is based on minimizing the distance
between the empirical and model mean parameters in the
norm, which is easier to analyze.
1) Decoding From Mean Parameters: We begin by de-

scribing the graph decoder used to establish the sufficient con-
ditions of Theorem 3(b). For any parameter vector , let

represent the associated set of mean parameters,
with element given by . Given a
set of samples, the empirical mean
parameters are given by

(42)

For a given graph , let be a
subset of exponential parameters that respect the graph struc-
ture—viz.
a) we have for all ;
b) for all edges , we have ;
c) for all vertices , we have .

For any graph and set of mean parameters ,
we define a projection-type distance via

.
We now have the necessary ingredients to define a graph de-

coder ; in particular, it is given by

(43)

where are the empirical mean parameters previously defined
(42). (If the minimum(43) is not uniquely achieved, then we
choose some graph that achieves the minimum.)
2) Analysis of Decoder: Suppose that the data are sampled

from for some fixed but known graph , and
parameter vector . Note that the graph decoder
can fail only if there exists some other graph such that

the difference is not positive.
Again, we are conservative in declaring failure if there are ties.
Let denote some element of that achieves the

minimum defining , so that .
Note that by the definition of , we have

, where are the parameters of the true model.
Therefore, by the definition of , we have

(44)

where the second inequality above uses the triangle inequality.
Therefore, in order to prove that is positive, it

suffices to obtain an upper bound on , and
a lower bound on , where ranges over

. With this perspective, let us state two key lemmas.
We begin with the deviation between the sample and population
mean parameters:
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Lemma 5 (Elementwise Deviation): Given i.i.d. samples
drawn from , the sample mean parameters and popula-
tion mean parameters satisfy the tail bound

This probability is less than for .
Our second lemma concerns the separation of the mean pa-

rameters of models with different graph structure:

Lemma 6 (Pairwise Separations): Consider any two graphs
and , and an associated set of model

parameters and . Then, for
all edges

We provide the proofs of these two lemmas in Sections V-E3
and V-E4.
Given these two lemmas, we can complete the proofs of The-

orems 3(b) and 4(b). Using the lower bound (44), with proba-
bility greater than , we have

This quantity is positive as long as

which completes the proof.
It remains to prove the auxiliary lemmas used in the proof.
3) Proof of Lemma 5: This claim is an elementary conse-

quence of the Hoeffding bound. By definition, for each pair
of distinct vertices, we have

which is the deviation of a sample mean from its expectation.
Since the random variables are i.i.d. and lie in
the interval , an application of Hoeffding’s inequality
[16] yields that

The lemma follows by applying union bound over all edges
of the graph, and the fact that .
4) Proof of Lemma 6: The proof of this claim is more

involved. Let be an edge in , and let be the
set of all other vertices that are adjacent to or in either
graphs—namely, the set

Our approach is to first condition on the variables
, and then to consider the two conditional dis-

tributions over the pair , defined by and ,

respectively. In particular, for any subset , let us define
the unnormalized distribution

(45)

obtained by summing out all variables for . With this
notation, we can write the conditional distribution of
given as

(46)

As reflected in our choice of notation, for each fixed , the
distribution (40) can be viewed as a Ising model over the pair

with exponential parameter . We define the un-
normalized distributions and the conditional distribu-
tions in an analogous manner.
Our approach now is to study the divergence

between the conditional distributions
induced by and . Using Lemma 7 from Appendix A, for

each choice of , we have ,
and hence

(47)
where the expectation is taken under the model . Some
calculation shows that

Applying Jensen’s inequality yields

with an analogous inequality for the term involving . Con-
sequently, the average is upper
bounded by

(48)

In order to exploit (48), we upper bound the quantity

(49)
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By the definition of the KL divergence, we can decompose
as the sum , where

(50a)

(50b)

(50c)

In the expressions for and , the quantities and de-
note mean parameters computed under the distributions and
, respectively. But by Jensen’s inequality, we have the upper

bound

(51)

with an analogous upper bound for the term involving .
Combining the initial bound (48), the decomposition (50) and

the last bound (51), we obtain

Finally, since by the definition (5) (and
similarly for the neighborhood of ), we conclude that

Combining this upper bound with the lower bound (47) yields
the claim.

VI. DISCUSSION

In this paper, we have analyzed the information-theoretic
limits of binary graphical model selection in a high-dimen-
sional framework, in which the sample size , number of
graph vertices , number of edges , and/or the maximum
vertex degree are allowed to grow to infinity. We proved four
main results, corresponding to both necessary and sufficient
conditions for inference in the class of graphs on vertices
with maximum vertex degree , as well as for the class of
graphs on vertices with at most edges. More specifically, for
the class , we showed that any algorithm requires at least

samples, and we demonstrated an algorithm
that succeeds using samples. Our two main
results for the class have a similar flavor: we show that
any algorithm requires at least samples, and we
demonstrated an algorithm that succeeds using
samples. Thus, for graphs with constant degree or a constant
number of edges , our bounds provide a characterization of the
information-theoretic complexity of binary graphical selection

that is tight up to constant factors. For growing degrees or edge
numbers, there remains a minor gap in our conditions.
In terms of open questions, one immediate issue is to close

the current gap between our necessary and sufficient conditions;
as summarized previously, these gaps are of order and for

and , respectively. We note that previous work [22] has
shown that a computationally tractablemethod, based on -reg-
ularization and logistic regression, can recover binary graphical
models using samples, a result that is con-
sistent with but not quite matching the lower
bound given here. Moreover, in this paper, although we have fo-
cused exclusively on binary graphical models with pairwise in-
teractions, many of the techniques and results (e.g., constructing
“packings” of graph classes, Fano’s lemma and variants, large
deviations analysis) apply to more general classes of graphical
models. Some other follow-up work [29] has used related tech-
niques for studying the information-theoretic limits of Gaussian
graphical model selection. It would be interesting to explore
other extensions in this direction, including the case of discrete
models with larger alphabets.

APPENDIX

A) Separation Lemma: In this appendix, we prove the fol-
lowing lemma, which plays a key role in the proofs of both
Lemmas 4 and 6. Given an edge and some subset

, recall that denotes the divergence
(19) applied to the conditional distributions of

, as defined explicitly in (41).

Lemma 7: Consider two distinct graphs and
, with associated parameter vectors and . Given

an edge and any subset , we have

(52)

Proof: To lighten notation, let us define

Note that from the definition (5), we have , which
implies that . For future reference, we also note the relation

(53)

With this setup, our argument proceeds via proof by contra-
diction. In particular, we assume that

(54)

and then derive a contradiction. Recall from (45), our notation
for the unnormalized distribution applied to the subset

of variables . With a little bit of algebra, we
find that
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Let us introduce some additional shorthand so as to lighten
notation in the remainder of the proof. First we define

and . We make note of the
equivalence , where

Observe that Lemma 8 in Appendix B characterizes the be-
havior of under changes to . Finally, we define the set

corresponding to the subset of configurations
that agree with over the subset .
From the definitions of and , we observe that

(55)

where the inequality follows from the fact , our original
assumption (54), and the elementary relations for all

Now consider the set of quadratics in , one for each
, given by

Summing these quadratic equations over yields a
new quadratic given by

which by which by (55) must have two real roots.
Let denote the value of at which the quadratic achieves

its minimum. By the quadratic formula, we have

Since , we obtain

(56)

If we define the set as

then we can rewrite (56) as

(57)

where inequality (a) follows from the definition of , the
monotonically increasing nature of the function
for , and the relation (53).
From Lemma 8, for each , we obtain a configu-

ration by flipping either , or both. Note that at
most three configurations can yield the same con-
figuration . Since these flips do not decrease
by more than a factor of , we conclude that

which is a contradiction of (57). Hence, the quadratic cannot
have two real roots, which contradicts our initial assumption
(54).

B) Proof of a Flipping Lemma: It remains to state and
prove a lemma that we exploited in the proof of Lemma 7 from
Appendix A.

Lemma 8: Consider distinct models and , and for each
, define

(58)

Then, for any edge and for any configuration
, flipping either or (or both) changes

by at least .
Proof: We use and to denote the neighbor-

hood sets of in the graphs and re-
spectively, with analogous notation for the sets and .
We then define
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with analogous definitions for the quantities and .
Similarly, we define

Finally, we define the pair

With this notation, we first proceed via proof by contradic-
tion to show that must change when are flipped:
to the contrary, suppose that for stays fixed for all four
choices . We then show that this assump-
tion implies that . Note that both of the terms
and include a contribution from the edge . When

, we have

whereas when , we have

Adding these two equations together yields

(59)

On the other hand, for , we have

and for , we have

Adding together these two equations yields

(60)

Note that (59) and (60) cannot hold simultaneously unless
, which implies that our initial assumption—namely, that
does not change as we vary —was false.

Finally, we show that the change in must be at least
. For each pair , let

be the value of when and .
Suppose that for some constant and , we have

for all . By following the same reasoning as
previously, we obtain the inequalities
and , which together imply that .
In a similar manner, we obtain the inequalities

and , which imply that
, thereby completing the proof.
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