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APPLIED MATHEMATICS. For the article ‘‘Multiscale, resurgent
epidemics in a hierarchical metapopulation model,’’ by Duncan
J. Watts, Roby Muhamad, Daniel C. Medina, and Peter S.
Dodds, which appeared in issue 32, August 9, 2005, of Proc. Natl.
Acad. Sci. USA (102, 11157–11162; first published July 29, 2005;
10.1073�pnas.0501226102), on page 11159, the first sentence of
the right column, ‘‘In contrast with the usual prediction of
bimodal size distributions, recent work (35) has suggested that
the sizes of epidemics in isolated communities, including Iceland,
are ‘‘power law’’ distributed (P[� � �]����), and that such
epidemics might therefore be the result of self-organized criti-
cality (36)’’ should read: ‘‘In contrast with the usual prediction
of bimodal size distributions, recent work (35) has suggested that
the sizes of epidemics in isolated communities are ‘‘power law’’
distributed (P[� � �]����), and that such epidemics might
therefore be the result of self-organized criticality (36).’’ Ref. 35
considered epidemic size distributions for the Faroe Islands,
near Iceland, and for Reykjavik, the capital of Iceland, but not
for Iceland itself.

In addition, the authors note that the following acknowledg-
ment was omitted from the article: ‘‘We are grateful to P.
Haggett and A. D. Cliff for providing the Iceland data and to M.
Lipsitch for providing Fig. 2C. This research is supported in part
by the National Science Foundation (Grants SES-0094162 and
SES-0339023), Office of Naval Research, McDonnell Founda-
tion, and Legg Mason Funds.’’
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BIOPHYSICS. For the article ‘‘Force mapping in epithelial cell
migration,’’ by Olivia du Roure, Alexandre Saez, Axel Buguin,
Robert H. Austin, Philippe Chavrier, Pascal Siberzan, and
Benoit Ladoux, which appeared in issue 7, February 15, 2005, of
Proc. Natl. Acad. Sci. USA (102, 2390–2395; first published
February 4, 2005; 10.1073�pnas.0408482102), the author name
Pascal Siberzan should have appeared as Pascal Silberzan. The
online version has been corrected. The corrected author line
appears below.

Olivia du Roure, Alexandre Saez, Axel Buguin,
Robert H. Austin, Philippe Chavrier, Pascal Silberzan,
and Benoit Ladoux
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NEUROSCIENCE. For the article ‘‘T cell deficiency leads to cognitive
dysfunction: Implications for therapeutic vaccination for schizo-
phrenia and other psychiatric conditions,’’ by Jonathan Kipnis,
Hagit Cohen, Michal Cardon, Yaniv Ziv, and Michal Schwartz,
which appeared in issue 21, May 25, 2004, of Proc. Natl. Acad. Sci.
USA (101, 8180–8185; first published May 12, 2004; 10.1073�
pnas.0402268101), the authors note the following: ‘‘The SCID
mice used in the reported results were not RAG1 and RAG2
knockout mice; they were mice of the BALB�cByJSmn-
Prkdcscid�J SCID strain.’’ This error does not affect the con-
clusions of the article.
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Although population structure has long been recognized as rele-
vant to the spread of infectious disease, traditional mathematical
models have understated the role of nonhomogenous mixing in
populations with geographical and social structure. Recently, a
wide variety of spatial and network models have been proposed
that incorporate various aspects of interaction structure among
individuals. However, these more complex models necessarily
suffer from limited tractability, rendering general conclusions
difficult to draw. In seeking a compromise between parsimony and
realism, we introduce a class of metapopulation models in which
we assume homogeneous mixing holds within local contexts, and
that these contexts are embedded in a nested hierarchy of succes-
sively larger domains. We model the movement of individuals
between contexts via simple transport parameters and allow
diseases to spread stochastically. Our model exhibits some impor-
tant stylized features of real epidemics, including extreme size
variation and temporal heterogeneity, that are difficult to charac-
terize with traditional measures. In particular, our results suggest
that when epidemics do occur the basic reproduction number R0

may bear little relation to their final size. Informed by our model’s
behavior, we suggest measures for characterizing epidemic thresh-
olds and discuss implications for the control of epidemics.

math model � population structure

The role and importance of interaction structure is a central
yet unresolved issue in mathematical epidemiology (1). At

the broadest level, the issue is straightforward: clearly not all
people interact equally with all others; hence diseases of humans
cannot spread in real populations precisely as they would if all
individuals were to mix uniformly at random. Moving beyond
this simple insight, however, poses considerable empirical and
theoretical obstacles: empirical, because the amount and variety
of structure present in real populations of different sizes defies
existing measurement technologies; and theoretical, because
without such knowledge it is difficult to model and thus assess
the impact of interaction structure on the spread of human-to-
human diseases. In this article, we focus on two key aspects of
large populations that we believe have not received adequate
attention in the existing literature: (i) that large populations
exhibit structure at many scales; and (ii) that the movement of
individuals between these scales is essential to the spread of a
large epidemic. These features can be represented formally with
a straightforward variation of a commonly studied class of
disease-spreading models, metapopulation models (e.g., ref. 2),
yet they nevertheless carry important implications for under-
standing and possibly controlling diseases, such as severe acute
respiratory syndrome (SARS) and influenza, that have the
potential to spread on many scales.

Metapopulation models can in general be characterized as a
theoretical compromise between the simplest and most analyt-
ically tractable disease-spreading models, often called compart-
ment models, and models in the recent network epidemiology
tradition that attempt to capture population structure in a
realistic way, but which necessarily exhibit far greater complex-
ity. Compartment models assume a continuous population that

is divided into a number of compartments (or states), typically
susceptible, infected, and recovered. Disease transmission oc-
curs because of contact between susceptible and infected indi-
viduals, and the mixing within and between compartments is
assumed to be random, where transition rules (for example, the
rate at which an infected person recovers) specify how individ-
uals move from one compartment to another (3).

Population structure can be introduced into these simple
models by specifying additional compartments, corresponding
not only to the different stages of within-host behavior, but also
to various differentiating features of the population, such as age
(4), susceptibility (5), risk behavior (6), and social status (2, 7),
along with a correspondingly complex set of mixing rates.
Individual-level f luctuations can also be included by specifying
fully stochastic versions of these models (8) without overly
compromising their mathematical tractability. Nevertheless,
compartment models rely heavily on the assumption that pop-
ulation structure can be represented solely in terms of individual
attributes (e.g., disease state, age, behavior), an assumption that
clearly cannot be satisfied in cases of diseases spreading over
spatially extended regions, where the physical distribution of the
population matters, or when disease transmission depends on
specific types of interactions (such as for sexually transmitted
diseases), whose structure may cut across physical locations and
social categories in unknown and complicated ways.

Spatial models (4, 9–11) address part of this problem by
modeling transmission as a function of geographical distance and
have been effective in capturing the dynamics of diseases in wild
(12) and domesticated (13) animals, as well as in suggesting
control strategies. However, spatial models are less relevant to
epidemics of modern human societies, in part because of the
importance of modern modes of transportation that shortcut
long geographical distances (14–16), and in part because many
diseases are transmitted by close-contact networks that charac-
terize families, organizational affiliations (e.g., school or work)
(7), or sexual relations (17). In recent years, therefore, models
that attempt to characterize the actual pattern of interactions
associated with a particular population and disease transmission
mechanism have become increasingly popular (17–21). How-
ever, although network models are appealing from a theoretical
perspective, the more elements of interaction structure that any
such model incorporates, the more free parameters and assump-
tions are required, and the harder it becomes to perform robust
and reliable analyses (1). Exacerbating this problem of model
complexity is the difficulty of determining parameters or justi-
fying assumptions empirically.

Metapopulation models (2) therefore offer a potentially use-
ful compromise between compartment models and networks.
Like compartment models, metapopulation models assume ran-
dom mixing within subpopulations (or patches) that are typically
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defined in terms of geographical regions such as cities (14–16),
districts within a city (22), villages (2), or even homes, schools,
and shopping malls (7, 23). However, they also incorporate the
central insight from spatial and network models that interactions
between subgroups depend not just on individual similarities and
differences, but on actual transportation networks (15, 16) and
routine behavioral patterns such as going to work, attending
school, etc. (7, 23). The model that we study here follows in the
tradition of metapopulation models, most closely that of refs. 15,
16, and 24–26. However, where these models are restricted to
mixing on only two scales, which we might call ‘‘local’’ and
‘‘global,’’ our model explicitly incorporates mixing at multiple
scales, a feature that has been identified as important by a
number of authors (9, 27) but not yet examined in formal models.
As we show below, the introduction of mixing on multiple scales
does indeed have important consequences for the properties of
epidemics.

Hierarchical Metapopulation Model
To specify our model precisely, we make the following
assumptions.

(i) We assume that individuals occupy one of three states
(susceptible, infected, and recovered) where the fraction of the
population in each state at time t is S(t), I(t), and R(t), respec-
tively. At each discrete time step t � 0, 1, 2, . . . , each individual
is brought into contact with one other individual (in a manner
specified below), and if any such pair comprises an infective and
a susceptible, then the susceptible becomes infected with prob-
ability �, the infectiousness of the disease. Infectives subse-
quently recover with probability � in each time step, after which
they remain recovered permanently. Thus we have a stochastic
susceptible-infected-recovered (SIR) model, from which we can
immediately compute the basic reproduction number R0 � ���,
defined as the expected number of secondary infections gener-
ated by a single infective in an otherwise wholly susceptible
population (28).

(ii) We assume that in sufficiently localized contexts, such as
hospitals, schools, and workplaces, uniform mixing is approxi-
mately satisfied. Specifically, we partition the total population of
N individuals into subpopulations of equal size n, within which
the standard compartment model can be applied. Furthermore,
we assume that all disease transmission occurs between infec-
tives and susceptibles who occupy the same local context. It
follows trivially that R0 � 1 is a necessary condition for epidemics
to start, although we note that because our model is stochastic,
the condition R0 � 1 does not guarantee that an epidemic will
occur, only that it will do so with nonzero probability. Once
initiated, an epidemic will proceed within its initial subpopula-
tion in a manner analogous to a standard stochastic compart-
ment model. How it may spread beyond any particular subpopu-
lation depends on the large-scale structure of the population as
a whole, as specified next.

(iii) We assume that at any given point in time each individual
can be assigned uniquely to a single local context within which
they experience sufficiently sustained, close interaction for dis-
ease transmission. However, we also want to capture the notion
that these same individuals simultaneously belong to a nested
hierarchy of larger communities, such as neighborhoods, cities,
regions, states, nations, and so on, each of which is successively
larger and more diffuse. These communities, therefore, cannot
be represented as homogenously mixing populations; only when
two individuals are present in the same lowest-level group are
they able to engage in person-to-person disease transmission.
However, their likelihood of being in the same lowest-level group
depends on which level group (in the nested hierarchy) they have
recently shared. Individuals from the same neighborhood, for
example, or even a large city, are much more likely to be in the
same store or school than individuals from different countries.

We model this intuitive idea as follows. At time t � 0, every
individual is assigned uniquely to a single local context, and one
individual is infected. Subsequently, in addition to the infection
dynamics specified above, individuals are permitted to travel
between contexts in the following manner. With probability p, at
each time step, each individual leaves his local context i and
enters a new context j with probability qij �e�xij/�, where xij is the
ultra-metric distance between contexts i and j and � is a tunable
parameter. Local contexts are related to each other via a nested
hierarchy of scales, as represented schematically in Fig. 1, where
b is the branching ratio of the hierarchy, and l is its total depth.
We emphasize that the hierarchy of scales specified here is quite
different from that in recent network models (29–32) in that the
present model permits interactions between individuals (and
hence infections) to occur only within small, locally mixing
contexts. Individuals may travel long distances, and this feature
is also important, but unlike in the network models above, they
cannot simultaneously infect others who are not themselves
nearby.

Although the extension from two to multiple scales is modest
from a technical perspective, it nevertheless enables us to shed
light on some important properties of real epidemics that are
difficult to capture with models that admit mixing at only one or
two scales. For example, as much as they vary in certain respects,
almost all models of disease spreading share the property that
any outbreak of disease can suffer only one of two fates: either
the relevant epidemic threshold condition is not satisfied and the
disease burns itself out before infecting more than a local
population; or the condition is satisfied, in which case, with a
nonzero probability, it spreads globally to a scale proportional to
the population size N (1). The resulting distribution of event sizes
is therefore always bimodal, where one mode corresponds to
local outbreaks, and the other to ‘‘successful’’ epidemics, a result
that holds even for relatively complicated network models in
which individuals may interact along distinct ‘‘social dimensions’’
(30, 32).

Real epidemics, by contrast, occur on many scales. Our
particular interest here is in novel epidemics that have the
potential to spread on a global scale, such as SARS and
influenza. Unfortunately, although the claim that historical size
variations of, say, influenza epidemics, are extremely large is
plausible [the 1918 epidemic is estimated to have infected 20
million to 40 million people (33)] sufficiently comprehensive
data are not available to test it. However, detailed data regarding
epidemics of various childhood diseases have been collected for
more than a century in Iceland (1888–1990). Although these
data are not ideal for our purposes [they are confined to a
relatively small population (�300,000) and childhood diseases
differ in some important respects (discussed below) from the

Fig. 1. Hierarchical metapopulation model of disease spreading. In our
model, individuals (dots) belong to groups (solid circles) that in turn belong to
groups of groups, and so on, giving rise to a hierarchy of scales. Alternatively,
one can imagine the hierarchy as a nested set of subpopulations of increasing
size, as indicated schematically by the dashed boundaries. In this example,
there are n � 8 individuals in each group and the hierarchy has l � 3 levels and
a branching ratio of b � 2. Individuals in the same group are considered to be
a distance x � 0 apart. As an example, the distance between individuals in
groups i and j is xij � 2.
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simple model we present here] they nevertheless serve to illus-
trate the qualitative point that epidemics, when they succeed,
occur at many scales, as shown in Fig. 2 A and B for measles and
pertussis (whooping cough).

An important aspect of childhood diseases like measles and
pertussis is that their propagation depends in part on the
long-term immunity granted to survivors of previous epidemics.
Most models of childhood diseases therefore incorporate the
effects of what is called ‘‘herd immunity’’ by allowing the
susceptible population to vary over time, [sometimes with real-
istic age profiles (34)], as a function of births, deaths, and
recoveries. Successive epidemics arise either as a result of
periodic exogenous introductions (as is usually done in the case
of small populations like Iceland) or because of endemic per-
sistence of the disease (in larger populations) (3). Although our
primary purpose is to understand the size distributions of novel
epidemics like SARS rather than recurring childhood epidemics
like measles, we have checked [using parameters approximating
the population, birth rate, and rate of introduction of measles
into Iceland in the 20th century (9)] that the effects of herd
immunity are unlikely to account for the size distributions in Fig.
2 A and B. Our results (data not shown) indicate that although
fluctuations in the relevant susceptible population over time do
increase the heterogeneity of epidemic sizes around the upper
mode, the size distribution remains essentially bimodal.

In contrast with the usual prediction of bimodal size distri-
butions, recent work (35) has suggested that the sizes of epi-
demics in isolated communities, including Iceland, are ‘‘power
law’’ distributed (P[� � �]����), and that such epidemics might
therefore be the result of self-organized criticality (36). We find,
however, that the size distributions of epidemics in Iceland are
not well described by power laws. As shown in Fig. 2 A and B
Insets, fitting a power law to the complementary cumulative
distributions reveals exponents � close to zero, well outside the
typical range (1 � � � 2) either observed for empirical power-
law distributions or generated by familiar mechanisms (36, 37).
Furthermore, the forest-fire model used in ref. 35 remains poorly
understood (38) especially when generalized beyond a 2D lattice.
Thus although it does appear that epidemics occur on many
scales, this observation neither implies that epidemic sizes
conform to a power-law distribution nor that self-organized
criticality is present.

Another feature of at least some real-world epidemics that has
received relatively little attention in the modeling literature is
their striking temporal heterogeneity, as exemplified by the daily
caseload data of the 2003 SARS epidemic, shown in Fig. 2C.
Although periodic and chaotic time series of epidemics have
been extensively investigated in the context of epidemic models
that incorporate exogenous (i.e., nondisease related) birth and
death processes (3, 39), such ‘‘recurrence’’ takes place on time

Fig. 2. Multiscale, resurgent behavior of real epidemics. (A and B) Frequency of epidemic sizes for measles (A) and pertussis (B) for Iceland, 1888–1990 (9). Each
epidemic is identified as a contiguous sequence of months with nonzero caseloads bounded by months with zero caseloads, and the corresponding epidemic
size � is normalized by the population size of Iceland at the midpoint of the epidemic. Both examples show a single mode for small outbreak sizes along with
a relatively flat distribution of larger epidemic sizes. (Insets) The complementary cumulative frequency distributions (i.e., the number of epidemics of size at least
�) for the same diseases on double logarithmic axes. A linear fit with slope �� corresponds to a power-law distribution P[� � �]���� over some interval �min �

� � �max, usually called the ‘‘scaling region.’’ Here, the largest, and most likely, candidate for a scaling region is 10�4 � � � 10�2, over which the exponent � is
0.13 for measles and 0.16 for pertussis; both values are well outside the usual range of 1 � � � 2. We also identify a second, smaller scaling region, 10�5 � � �

10�4, in which � is 0.40 for measles and 0.39 for pertussis, where the slightly larger exponents can be attributed to the spike near zero. Our conclusion is that
neither distribution is well fit by a power law (see text). (C) Estimated worldwide number of cases of SARS as a function of time, showing resurgent behavior.
Source: Mark Lipsitch, Harvard University, Boston.
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scales longer than that of a single epidemic. In all of the models
surveyed above, whether compartment, spatial, network, or
metapopulation models, single epidemics, when they occur,
invariably exhibit a single peak in the number of infectives,
followed by a ‘‘burnout’’ period. Fig. 2C, by contrast, displays
severe downturns followed by dramatic surges, as the epidemic
‘‘discovers’’ new pools of susceptibles, but without any change in
the underlying population itself, a phenomenon that has been
labeled resurgence (40, 41).

Results and Discussion
Although our model is simplistic, it nevertheless leads to insights
regarding the potential for novel epidemics to display multiscale
and resurgent dynamics. Fig. 3A shows the average epidemic size
� (defined as the cumulative fraction of a population infected
during an epidemic), along with 95% confidence intervals
(vertical bars) as a function of P0, for fixed �. The quantity P0 is
the expected number of infected individuals leaving a single

context over the mean infectious period (see Fig. 3 for details).
For the example of Fig. 3A, � � 0.3 and � � 0.1 have been chosen
such that R0 � 3; thus it is necessarily the case (because R0 � 1)
that with nonzero probability epidemics of some size occur,
regardless of the value of P0. However, it is clear from Fig. 3A
that the final size of an epidemic exhibits a dramatic transition
from local to nonlocal in the vicinity of P0 � 1. The reason is that
when P0 � 1, infected individuals are likely to be confined to
whichever context they are assigned at t � 0; hence the size of
any resulting epidemics is bounded by the local scale n. Because
n �� N and, moreover, n is determined by factors, such as the
transmission mechanism of the disease and population density,
that do not scale with the entire size of the global population,
then for a sufficiently large N, epidemics that occur when P0 � 1
will not reach more than a negligible fraction of the total
population. When P0 � 1, however, epidemics of different scales
can occur, including truly global epidemics in the sense that a
nonzero fraction of the population becomes infected, regardless
of the population size.

When nonlocal epidemics are possible (i.e., when R0 � 1 and
P0 � 1), their size depends sensitively on �, our second transport
parameter, which characterizes the range over which individuals
can travel. Fig. 3B shows � as a function of � for fixed P0 and R0.
In both the limits � 3 0 and � 3 1�ln b, our model reduces to
an approximation of a stochastic, homogenously mixed model,
where the effective susceptible population corresponds to n and
N, respectively, and where the stochastic f luctuations corre-
spondingly occur at the level of individuals or groups. However,
neither of these limits is a plausible representation of modern-
day transport, which is neither entirely local �3 0, nor uniform
at all scales � 3 1�ln b. We thus focus our attention on the
intermediate range of � where changes to its value impact the
expected epidemic size. In this range, although the shape of
the curve looks similar to that for P0 (Fig. 3A), note that P0 is
plotted on semilog scale, whereas � is plotted on a linear scale,
meaning that small changes in � have a much greater impact on
the size of resulting epidemics than equivalent changes in P0.
This result has possibly useful policy implications, as it suggests
that restricting how far, rather than how often, individuals travel
during an epidemic (say, by issuing travel advisories) may be the
most effective way of minimizing the epidemic’s eventual impact.

Nonlocal epidemics in our hierarchical metapopulation model
also display the properties of multimodality and resurgence
discussed above. In Fig. 4, all model parameters are kept fixed
(with one exception, discussed below) and all epidemics are
allowed to run their course without any exogenous interventions.
Fig. 4A displays the bimodal epidemic size distribution for a
homogeneous mixing model (i.e., a single group with N �
102,400), whereas B and C in Fig. 4 show two example epidemic
size distributions generated by our model when structure is
introduced into the same size population (b � 4, l � 5, and n �
100, along with P0 � 5 and � � 0.35). Epidemics of all sizes are
observed with a single mode near � � 0 and an otherwise mostly
f lat distribution. In Fig. 4 E–G show sample trajectories of two
simulated epidemics generated by our model for the same values
of P0 and �; Fig. 4D shows the same information for the
corresponding homogeneously mixed model. Whereas the ho-
mogeneous case (Fig. 4D) shows a simple rise and fall in the
number of new cases with no evidence (or possibility) of
resurgence, E–G in Fig. 4 display two striking features: (i) despite
all three epidemics having succeeded in breaking out from their
initial group, the trajectories display very different shapes and
durations; and (ii) they all display the resurgence property that
is apparent in Fig. 2C (and also noted in refs. 40 and 41); that is,
the epidemic dies down, only to flare back up again.

In addition to reproducing some stylized features of real-world
epidemics, such as multimodal size distributions and temporal
resurgence, our results have implications for the control of

Fig. 3. Average epidemic size � as a function of model parameters. (A) � and
associated 95% confidence interval delimited by the 2.5th and 97.5th percen-
tiles (vertical bars) as a function of P0 as approximated by P0 � p��n��. This
approximation, which becomes exact as p3 0, can be understood as follows.
The quantity �� is the expected normalized epidemic size for a stochastic,
homogenous mixing model of size n and reproduction number R0. Because
infectives typically recover after 1�� time steps, there are roughly ��n��

opportunities for infected individuals to leave the initially infected group.
Multiplying by p then gives the expected number who do. As discussed in the
text, when P0 � 1, an epidemic is expected to leave the initial context and
spread nonlocally (providing R0 � 1). The model parameters for the data
shown here are basic reproduction number R0 � 3, transport parameter � �
0.6, branching ratio b � 3, hierarchy depth l � 4, and group size n � 100. The
results are averaged over 1,000 simulations. (B) The average epidemic size �

(again with 95% confidence intervals) as a function of � (all parameters are the
same but now P0 is fixed at 5). For sufficiently low �, nonlocal epidemics never
arise, regardless of whether or not P0 and R0 exceed unity. When � � 1�ln b,
individuals are equally likely to travel to all distances; the disease typically
spreads globally; and the epidemic size distribution is bimodal. For both plots,
intermediate values of P0 and � yield epidemics of a wide range of sizes (see
Fig. 4).
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epidemics. For example, an important variation between Fig. 4
B and C is that R0 � 3 and R0 � 12, respectively. Otherwise, B
and C in Fig. 4 are remarkably similar: although Fig. 4C (R0 �
12) displays greater mass in the tail, both exhibit a single peak
near zero and are otherwise roughly flat distributions, extended
across all scales. The shape and similarity of Fig. 4 B and C
therefore suggest (i) that the same value of R0 can be consistent
with a very large range of epidemic sizes; and (ii) that very
different values of R0 can result in very similar epidemic size
distributions. We note that this conclusion does not hold for all
model parameters: As � increases, the size distribution becomes
increasingly bimodal; and as � decreases, the distribution tends
toward an exponential with a single mode. Thus as anticipated
above, when transport is either entirely local or entirely global,
our model reduces effectively to one with homogenous mixing,
and R0 can be interpreted in the usual manner. However, when
transport is neither entirely local nor global, B and C in Fig. 4,
together with our condition for a nonlocal epidemic P0 � 1, imply
that although R0 � 1 remains a necessary condition for an
epidemic to occur, the value of R0 may otherwise provide little
insight into the likely outcome of a disease outbreak.

Because much of the mathematical epidemiological literature
has focused on R0 as the principal parameter of interest (42), it is
appropriate to elaborate somewhat on this last claim. For a deter-
ministic metapopulation model, it would be straightforward to
define R0 in a way that accounts for the population structure (22,

43), by estimating the largest eigenvalue of the interpatch mixing
matrix. In this manner, one could presumably obtain a modified
reproduction number R0 such that the condition R0 � 1 would be
equivalent to our dual condition R0 � 1 and P0 � 1 (see, for
example, ref. 18). Simply redefining R0, however, would not im-
prove its relation to epidemic size in a stochastic, multiscale model.
The reason is that the large variations in epidemic size apparent in
Fig. 4 B and C, along with the resurgence behavior in Fig. 4 E–G,
derive not from average statistics like R0, but from rare, stochastic
events, in which the epidemic ‘‘escapes’’ from currently infected
contexts into newly susceptible populations. Thus the final size of
an epidemic is largely determined by the small number of infected
individuals who, by traveling, introduce the disease to previously
unaffected groups. Although stochasticity is well understood to be
important at the outset of a potential epidemic (1, 8), we see here
that it continues to be relevant throughout the entire progress of an
epidemic, even when large numbers of individuals have been
infected.

Aside from highlighting the importance of stochastic, rare
events, the multiscale and resurgent properties of epidemics in
our model suggest that population structure itself can act as a
kind of control. It has recently been shown, for example, that the
same disease (SARS) can display very different trajectories in
different regions, even when the corresponding environmental
conditions are thought to be similar (41). Furthermore it is well
known that different epidemics with similar estimated R0 values

Fig. 4. Evidence of multiscale, resurgent behavior in simulated data. (A–C) Histograms of epidemic size � for three configurations of the model. (A) The bimodal
size distribution generated from 5,000 simulations of a homogeneously mixing population of size N � 102,400 and reproduction number R0 � 3. (B and C) The
same size population as in A is hierarchically structured with branching ratio b � 4, depth l � 5, and group size n � 100, and for both of these examples, P0 �
0.35 and � � 0.35. The models for B and C differ in the reproductive number: R0 � 3 and 12, respectively. Nevertheless, both B and C show similar size distributions
with modes near � � 0 and a relatively flat distribution for � � 0, qualitatively similar in form to that of the Icelandic data. (D–G) Example time series of total
new cases, where in all cases, simulation parameters are R0 � 3 and, again, N � 102,400. For D, the population is homogeneously mixing, and for E–G, the
population is structured according to our model with the same parameters as for B and C. For the random mixing case of D, a typical epidemic trajectory rises
rapidly once and then declines to zero, infecting most of the population in the process (see gray sidebar). In the examples with population structure, by contrast,
epidemic trajectories exhibit dramatic resurgence, endure for markedly different time intervals, and infect very different fractions of the population (see gray
sidebars), depending solely on stochastic fluctuations (i.e., all parameters are held constant).
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can experience dramatically different fates. For example, both
the 2003 SARS epidemic and the 1918 influenza pandemic are
estimated to have values of R0 close to 3 (22, 33, 44), yet the latter
is thought to have infected tens of millions of individuals,
compared with only thousands for the former. Typically these
differences are attributed to variations in the intensity, timing,
and consistency of control measures. Although not disputing the
relevance of active control measures to epidemic size and
duration, our results indicate that population structure alone can
generate purely stochastic f luctuations in epidemic size that are
as large as any historically observed variations. The magnitude
of this effect suggests that transport-oriented control measures
such as issuing travel advisories, by effectively reducing �, could
have a dramatic impact on the resulting epidemic size, possibly
as large as more traditional, and far more interventionist,
strategies like vaccination and quarantine.

Conclusion
Whenever a major outbreak of a novel infectious disease occurs, as
happened most recently in 2003 with SARS, public health officials
are invariably confronted with the question: how big will it be? As
reasonable a question as this would seem, mathematical epidemi-
ology currently provides no answer. To estimate the final size and
duration of an epidemic, even sophisticated models of disease
spreading require, as a parameter, the size (N) of the relevant
susceptible population. After an epidemic has been observed it is,
of course, always possible to estimate N, which is the usual modeling
practice. Once we know, for example, that Hong Kong has suffered
an epidemic of SARS, we may fit the parameters of a standard
model such that approximately the correct (i.e., observed) number
of individuals becomes infected in our simulations. Such an ap-
proach, however, is unable to shed light on the likelihood of very
different scenarios having unfolded; thus its findings are of limited
relevance to other outbreaks, past or future. For example, when a
new respiratory disease with an R0 and latency period comparable

to SARS is identified in southern China, what outcome should we
expect, and why? The population susceptible to a SARS-like virus
is arguably no less than the entire population of the planet. Does it
then make sense to estimate a worst-case scenario of hundreds of
millions of potential victims? Alternatively, should we expect a
similar outcome to the one experienced in 2003, with several
hundred deaths spread across several continents, but concentrated
in a few cities? Or was even that outcome atypically severe? In short,
what is the likely size distribution for a given epidemic?

Although the model we have proposed in this article is too
simplistic to answer these questions for realistic situations, it is at
least formulated to address them. By representing population
structure as a nested hierarchy of subpopulations, it has the
advantage over existing metapopulation models in that it can
accommodate populations of very large, and possibly even global,
scales, without assuming that uniform mixing is satisfied at any scale
above small, localized contexts. Our results can therefore be
regarded as formalizing an early suggestion of Bailey’s (45) that a
global epidemic should properly be considered as many smaller
epidemics occurring in different subpopulations, where (i) most
transmission occurs at this local level, and (ii) broader spreading of
a disease is driven by occasional long-range individual transport.
Notwithstanding our model’s simplicity, our results suggest an
important empirical consequence: that the final size and duration
of an epidemic are highly sensitive to the structure of the population
through which it is spreading, even when the basic reproduction
number R0 is held constant. Conversely, similar distributions of
epidemic size can correspond to very different values of R0. Thus,
in addition to the usual suite of intervention measures, control of
epidemics could be exerted through effective manipulation of the
natural barriers to disease spread that are inherent in the multiscale
structure of large populations. We hope that future work will
investigate increasingly realistic multiscale models of disease
spreading, and explore their consequences for more effective
control of novel epidemics.
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