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NONPARAMETRIC GRAPHON ESTIMATION

By Patrick J. Wolfe and Sofia C. Olhede

University College London

We propose a nonparametric framework for the analysis of net-
works, based on a natural limit object termed a graphon. We prove
consistency of graphon estimation under general conditions, giving
rates which include the important practical setting of sparse net-
works. Our results cover dense and sparse stochastic blockmodels
with a growing number of classes, under model misspecification. We
use profile likelihood methods, and connect our results to approxi-
mation theory, nonparametric function estimation, and the theory of
graph limits.

1. Introduction. Networks are fast becoming part of the modern sta-
tistical landscape (Durrett, 2007; Diaconis and Janson, 2008; Bickel and
Chen, 2009; Choi, Wolfe and Airoldi, 2012; Fienberg, 2012; Zhao, Levina
and Zhu, 2012; Arias-Castro and Grimmett, 2013; Ball, Britton and Sirl,
2013; Choi and Wolfe, 2013). Yet we lack a full understanding of their large-
sample properties in all but the simplest settings, hindering the development
of models and inference tools that admit theoretical performance guarantees.

In this article we introduce a nonparametric framework for the analysis of
networks, which relates to kernel-based random graph models (Janson, 2010;
Sussman, Tang and Priebe, 2013), stochastic blockmodels (Airoldi et al.,
2008; Rohe, Chatterjee and Yu, 2011), and degree-based models (Chatterjee,
Diaconis and Sly, 2011; Bickel, Chen and Levina, 2011). We use this frame-
work to establish consistency of likelihood-based network inference under
general conditions, and to show convergence rates across a range of network
regimes, from dense to sparse. Our framework thus addresses one of the
biggest factors limiting the use of statistical network models in practice: a
lack of flexible and transparent analysis tools that admit coherent statistical
interpretations (Fienberg, 2012).

Our methodology derives from a large-sample theory tailored to net-
work data, in which well-defined limiting objects play a role akin to the
infinite-dimensional functions that underpin classical nonparametric statis-
tics (Bickel and Chen, 2009). An exchangeable stochastic network can be
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viewed as a partial observation of this limiting object under Bernoulli sam-
pling (Diaconis and Janson, 2008). Hence our theory is closely related to
that of generalized linear models (Green and Silverman, 1994) and of con-
tingency tables (Fienberg and Rinaldo, 2012), as well as to nonparametric
function approximation. High-dimensional statistical theory in this setting
is nascent, and so the linkages we develop below provide for a foundational
understanding of nonparametric statistical network analysis.

2. Model elicitation. A network can be represented by an n×n data
matrix A, whose ijth entry describes the relation between node i and node
j of the network. In the most fundamental setting of graph theory, A is a
symmetric, binary-valued contingency table: it is sparse yet structured, with
Aij ∈ {0, 1} denoting the absence or presence of an edge between nodes i
and j, and with fixed, structural zeros along the main diagonal.

We call A an adjacency matrix, and model it as a realization of
(n
2

)

inde-
pendent Bernoulli trials. Independently for 1 ≤ i < j ≤ n, we have

(2.1) Aij | pij ∼ Bernoulli(pij), Aji = Aij , Aii = 0.

Each Bernoulli trial Aij has success probability pij , which in turn we model
using a bivariate function termed a graphon that derives from the theory of
graph limits (Lovász, 2012).

A graphon is a nonnegative symmetric function, measurable and bounded,
that represents a discrete network as an infinite-dimensional analytic object.
It is a basic characterization, allowing us to go from the discrete set of prob-
abilities {pij}i<j to a limit object f (x, y) defined on (0, 1)2, independently
of the network size. Various summaries of the network can be calculated as
functionals of the graphon; for example, a network’s degree distribution is
characterized by its graphon marginal

∫ 1
0 f (·, y) dy.

To model both dense and sparse networks, we allow the success probabili-
ties pij appearing in (2.1) to depend on n. We link these to a scaled graphon
ρnf (x, y) through a random sample {ξi}ni=1 of uniform variates, via a scale
parameter ρn > 0 that specifies the expected probability of a network edge:

(2.2) pij = ρnf (ξi, ξj) ; {ξ1, . . . , ξn} iid∼ Uniform(0, 1),
∫∫

f (x, y) dx dy = 1.

Observe that EAij = Eξ pij = ρn for all 1 ≤ i < j ≤ n, and so ρn specifies
the sparsity of the generated network. We assume the sequence {ρn}n=2,3,...

to be fixed and monotone non-increasing.
This is a canonical model based on exchangeable random networks (Bickel

and Chen, 2009; Bickel, Chen and Levina, 2011), and is also strongly related
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to other statistical modeling paradigms. It relates the infinite-dimensional
graphon f (x, y) to the set of probabilities {pij}i<j sampled via ξ. This mod-
eling strategy is similar to time series analysis, where a sampled autocovari-
ance is related to an infinite-dimensional spectral representation. As with an
independent increments process, we may think of each ξi in (2.2) as a latent
variable. Furthermore, ξi is associated with the ith network node, acting
as a latent random index into the graphon. This reflects the fact that the
observed ordering of the network nodes conveys no information.

Similarly, the ordering of a given graphon f (x, y) along the x and y
axes has no inherent meaning; that is, f (x, y) has a built-in invariance to
“rearrangements” of the x and y axes. This is similar to statistical shape
analysis, where we seek to describe objects in a manner that is invariant to
their orientation in Euclidean space. Thus f (x, y) represents an equivalence
class of all symmetric functions that can be obtained from one another
through measure-preserving transformations of [0, 1].

This notion was formalized by Aldous (1981) and Hoover (1979) in the
context of exchangeable infinite arrays. Their eponymous theorem asserts
that any such array admits a representation in terms of some f(x, y, α).
This representation is unique up to measure-preserving transformation (Di-
aconis and Janson, 2008), and the value of α is not identifiable from a single
network observation (Bickel and Chen, 2009). The Aldous–Hoover repre-
sentation thus relates (2.2) to an exchangeable infinite array {Aij}∞i,j=1 of
binary random variables, such that for all n = 1, 2, . . ., all permutations Π
of {1, . . . , n} and all a ∈ {0, 1}n×n, we have that Pr(Aij = aij , 1 ≤ i < j ≤
n) = Pr(Aij = aΠ(i)Π(j), 1 ≤ i, j ≤ n).

By putting an observed n×n adjacency matrix A in correspondence with
a finite set of rows and columns of {Aij}∞i,j=1, we arrive at a model for ex-
changeable networks, or for sub-networks thereof. Exchangeability implies
that once we condition on the latent variable ξi associated to network node
i, then all linkages Ai· to node i are conditionally independent and identi-
cally distributed. This follows from de Finetti’s representation of a sum of
exchangeable indicator variables (Diaconis, 1977).

3. Main result. Our main result is that whenever a graphon f is
Hölder continuous, and maximum likelihood fitting is used to derive a non-
parametric estimator of f from A, then this estimator will be consistent as
long as ρn = ω

(

n−1 log3 n
)

, and its rate of convergence can be established.
To construct our estimator, we will calculate group averages after forming

k groups from n nodes. Any such grouping can be represented as an integer
partition of n via a vector h ∈ {2, . . . , n}k, such that

∑k
a=1ha = n. Thus
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may view n−1h as the probability mass function of a random variable with
range {1, . . . , k}, indexed via a cumulative distribution function H and its
generalized inverse H−1:

H(u) =
1

n

⌊u⌋
∑

a=1

ha; u ∈ [0, k] , H(u) ∈
{

0, h1
n , h1+h2

n , . . . , 1
}

,(3.1a)

H−1(x) = inf
u∈[0,k]

{H(u) ≥ x} ; x ∈ (0, 1] , H−1(x) ∈ {1, . . . , k} .(3.1b)

The central difficulty in constructing a nonparametric graphon estimator
is that we do not know the ordering of our observed adjacency matrix A,
relative to the ordered sample {ξ(i)}ni=1 indexing the graphon f . We thus
define an estimator f̂ as a composition of two operations: first we re-index
the rows and columns of A according to some permutation Π of {1, . . . , n},
and then we group them in accordance with H:

f̂ (x, y;h) = ρ̂−1
n ĀH−1(x)H−1(y), ρ̂n =

(n
2

)−1
∑

i<j

Aij , (x, y) ∈ (0, 1)2 ;

Āab =
1

ha {hb − I (a = b)}

nH(b)
∑

j=nH(b−1)+1

nH(a)
∑

i=nH(a−1)+1

AΠ(i)Π(j), 1 ≤ a, b ≤ k.

We then define the mean-squared error of f̂ relative to f as

inf
σ∈M

∫∫

(0,1)2

∣

∣f
(

σ(x), σ(y)
)

− f̂ (x, y;h)
∣

∣

2
dx dy,

whereM is the set of all measure-preserving bijections of the form σ : [0, 1] →
[0, 1]. This error criterion is based on the so-called cut distance in the theory
of graph limits (Lovász, 2012), and allows for all possible rearrangements of
the axes of f (Choi and Wolfe, 2013).

Any estimator f̂ can be viewed as a Riemann sum approximation of f ,
and thus we must understand when such sums converge. Lebesgue’s criterion
asserts that a bounded graphon on (0, 1)2 is Riemann integrable if and only
if it is almost everywhere continuous. A sufficient condition is that f is
α-Hölder continuous for some 0 < α ≤ 1, where we write

(3.2) f ∈ Hölderα(M) ⇔ sup
(x,y)6=(x′,y′)∈(0,1)2

|f (x, y)− f (x′, y′)|
|(x, y)− (x′, y′)|α ≤ M < ∞.

This assumption ensures that f is uniformly continuous, so that its approx-
imation error can be controlled through Riemann sums.

Under this model specification, we obtain our main result, which we prove
in Appendix A.
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Theorem 3.1 (Consistency of smooth graphon estimation). Assume a
sequence of graphon estimators f̂ (x, y;h) is fitted under the model of (2.2),
with k = ω(1) and h̄ = n/k the average group size, where

1. The graphon f is symmetric, bounded away from zero and α-Hölder
continuous, 0 < α ≤ 1;

2. The scaling sequence ρn satisfies ρn = ω
(

n−1 log3 n
)

, and maxn ρnf is
bounded away from unity;

3. Every admissible partition H has group sizes bounded uniformly above
and below by h∨ = o(n), h∧ = ω(log1/2 n), and may be composed with
any permutation Π of {1, . . . , n} to yield f̂ (x, y;h).

Suppose furthermore that the minimum effective sample size of every pos-
sible fitted grouping,

(h∧

2

)

ρn, and the average effective sample size across all
groupings, h̄2ρn, both grow sufficiently rapidly in n:

h2∧ρn = ω
(

log n
)

, h̄2ρn = ω
(

max
{

h̄2/n, 1
}

log3 n
)

.

Then if f̂ (x, y;h) is fitted by blockmodel maximum profile likelihood estima-
tion as described in Section 4 below, the mean-squared error of f̂ satisfies

OP





log h̄

h̄2ρn
+

√

log2 (1/ρn) log
(

n/h̄
)

nρn
+

(

h∨
n

)2α

+
log (h∨/ρn)

nα/2



 .

The terms appearing in this expression each stem from a different portion
of the nonparametric inference problem of graphon estimation, and will be
derived and discussed in Section 5–7 below.

4. Nonparametric graphon approximation via blockmodels. To
understand Theorem 3.1, we must first describe how a particular class of sta-
tistical network model—the stochastic blockmodel—lends itself naturally to
nonparametric approximation. Later, in Section 5, we will establish block-
model consistency under model misspecification, in settings ranging from
dense (Chatterjee, 2012; Choi and Wolfe, 2013) to very sparse networks.

4.1. Stochastic blockmodels and nonparametric graphon approximation.
A k-community blockmodel (k, z, θ) is a statistical network model that con-
sists of two main components:

1. A community assignment function z : {1, . . . , n} → {1, . . . , k}. This
mapping assigns each of n network nodes to exactly one of k groupings
or “communities,” each of size ha, 1 ≤ a ≤ k.
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2. A block mean estimator θ : {1, . . . , k}n × [0, 1]n×n → [0, 1]k×k. This
assigns an interaction rate θab to every pair (a, b) of communities,
based on the observations

{

Aij : i ∈ z−1(a), j ∈ z−1(b)
}

.

Any community assignment function z thus has two components: a vec-
tor h(z) = (h1, . . . , hk) of community sizes equivalent to some H as defined
in (3.1a), and a permutation Πz of {1, . . . , n} that re-orders the set of net-
work nodes prior to applying the quantile function H−1(·/n) as defined
in (3.1b). Thus the community to which z assigns node i is determined by
the composition H−1 ◦ Πz:

(4.1) zi = H−1 {Πz(i)/n} , 1 ≤ i ≤ n.

Each z thus represents a re-ordering of the network nodes, followed by a
partitioning of the unit interval. Each θab in turn describes the expected
rate of interaction between the nodes in communities a and b.

If k grows with n, then the nonparametric properties of blockmodels come
to the fore (Rohe, Chatterjee and Yu, 2011; Choi, Wolfe and Airoldi, 2012;
Fishkind et al., 2013; Zhao, Levina and Zhu, 2012). In the theory of graph
limits (Lovász, 2012), such a model is known as the “blowup” of a weighted
graph to the domain (0, 1)2, or as a “stepfunction approximation” of a given
graphon f (x, y).

There are strong theoretical reasons why an arbitrary graphon should
be well approximated by blocks (Lovász, 2012). These reasons stem from a
fundamental result in combinatorics known as Szemerédi’s regularity lemma,
which cuts across graph theory, analysis and number theory. In our context,
this lemma suggests that any sufficiently large graph behaves approximately
like a (k, z, θ)-blockmodel for some k. However, this value of k may poten-
tially be very large, and so regularizing strategies are needed to infer a
blockmodel approximation with good risk properties while requiring rela-
tively few degrees of freedom.

4.2. Fitting blockmodels to inhomogeneous random graphs. Once f (x, y)
has been specified and a uniform random sample {ξi}ni=1 realized, our net-
work reduces to a set of

(n
2

)

Bernoulli(pij) trials that are conditionally inde-
pendent given {ξi}ni=1. We refer to this as an inhomogeneous random graph
model (Bollobás, Janson and Riordan, 2007) for the observed data matrix
A ∈ {0, 1}n×n. From (2.2), the conditional log-probability of observing a
given adjacency matrix A is

log Pr(A | {pij}i<j) =
∑

i<j

{Aij log (pij) + (1−Aij) log (1− pij)} .
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Adopting the notation of Choi, Wolfe and Airoldi (2012), we write the
log-likelihood function of a blockmodel (k, z, θ) with respect to an observed
data matrix A as

L(A; z, θ) =
∑

i<j

{

Aij log θzizj + (1−Aij) log
(

1− θzizj
)}

, 1 ≤ i, j ≤ n

=
∑

a≤b

∑

i∈z−1(a),

j∈z−1(b)

{Aij log θab + (1−Aij) log (1− θab)} , 1 ≤ a, b ≤ k

=
∑

a≤b

log θab
∑

i∈z−1(a),

j∈z−1(b)

Aij +
∑

a≤b

log (1− θab)
∑

i∈z−1(a),

j∈z−1(b)

(1−Aij)

=
∑

a≤b

h2ab
{

Āab log θab +
(

1− Āab

)

log (1− θab)
}

,(4.2)

where Āab is the arithmetic average of the values of A in the (a, b)th block:

(4.3) Āab =
1

h2ab

∑

i∈z−1(a),

j∈z−1(b)

Aij , h2ab =

{

(ha

2

)

if a = b,

hahb if a 6= b.

and ha is the size of the ath community. Note that this aligns with our earlier
definition of f̂ , and that the quantities h2ab, Āab, θab all depend on the com-
munity assignment function z. The structural zeros along the main diagonal
of A imply that hab differs for diagonal blocks (a = b) relative to off-diagonal
blocks. We see from (4.2) that for any fixed assignment z ∈ {1, . . . , k}n, the
log-likelihood L(A; z, θ) of A will be maximized in θ ∈ [0, 1]k×k by tak-
ing θab = Āab. This is because each sample proportion Āab is an extended
maximum likelihood estimator for its expectation; “extended”, because we
include the boundary {0, 1}k×k of the parameter space, allowing for the
possibility that θab = Āab ∈ {0, 1}. Thus the extended maximum likelihood
estimator coincides with the method of moments estimator for θab.

Note that (4.2) is a continuous function in θ, and so (by the extreme value
theorem) L(A; z, θ) attains its supremum over the compact set [0, 1]k×k.
Thus we “profile out” θ from the log-likelihood L(A; z, θ):

L(A; z) = max
θ∈[0,1]k×k

L(A; z, θ)

=
∑

a≤b

h2ab
{

Āab log Āab +
(

1− Āab

)

log
(

1− Āab

)}

=
∑

i<j

{

Aij log Āzizj + (1−Aij) log
(

1− Āzizj

)}

.(4.4)
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Any maximizer of (4.4) over a fixed, non-empty subset Zk ⊆ {1, . . . , k}n
is a maximum profile likelihood estimator (MPLE) of z with respect to Zk.
We may equivalently re-cast the problem of likelihood maximization as one
of Bernoulli Kullback–Leibler divergence minimization, with

D
(

p
∣

∣

∣

∣ p′
)

= p log
( p
p′

)

+ (1− p) log
( 1−p
1−p′

)

denoting the Kullback–Leibler divergence of a Bernoulli(p′) distribution
from a Bernoulli(p) one.

Equipped with this definition, observe that any MPLE ẑ(A,Zk) satisfies

ẑ(A,Zk) = argmax
z∈Zk

∑

i<j

{

Aij log Āzizj + (1−Aij) log
(

1− Āzizj

)}

(4.5)

= argmax
z∈Zk

max
θ∈[0,1]k×k

L(A; z, θ)

= argmin
z∈Zk

min
θ∈[0,1]k×k

∑

i<j

D
(

Aij

∣

∣

∣

∣ θzizj
)

= argmin
z∈Zk

∑

i<j

D
(

Aij

∣

∣

∣

∣ Āzizj

)

.

Maximizing the profile log-likelihood of (4.4) to obtain an MPLE ẑ(A,Zk)
is thus equivalent to minimizing the sum of divergences

∑

i<j D
(

Aij

∣

∣

∣

∣ Āzizj

)

.
This sum serves as a proxy for its “oracle” counterpart based on the matrix
p ∈ [0, 1]n×n of Bernoulli parameters of the underlying generative model.
This corresponds to an idealized “best blockmodel approximation” of p.

With this in mind, we define an “oracle MPLE” z(p,Zk) in direct analogy
to (4.5). Let p̄(z)ab denote the arithmetic average of the h2ab elements of p
in the (a, b)th block induced by z:

(4.6) p̄(z)ab =
1

h2ab

∑

i∈z−1(a),

j∈z−1(b)

pij ,

where we recall that h2ab also depends on the choice of community assignment
function z. We then have

z̄(p,Zk) = argmax
z∈Zk

∑

i<j

{

pij log p̄zizj + (1− pij) log
(

1− p̄zizj
)}

(4.7)

= argmin
z∈Zk

∑

i<j

D
(

pij
∣

∣

∣

∣ p̄zizj
)

.

Observe that neither ẑ(A,Zk) nor z̄(p,Zk) is unique, since permuting the
community labels {1, . . . , k} does not affect the likelihood of community
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assignment in (4.5) or (4.7). Even aside from the issue of label switching,
we are not guaranteed uniqueness; see Chatterjee, Diaconis and Sly (2011)
and Rinaldo, Petrović and Fienberg (2013) for discussion of this issue in the
specific context of network modeling, as well as Fienberg and Rinaldo (2012)
in the general setting of log-linear models for sparse contingency tables.

5. Sparse blockmodel consistency under model misspecification.

We now establish that an observed matrix A ∈ {0, 1}n×n of binary adjacen-
cies yields “oracle” information on its generative p ∈ (0, 1)n×n at a rate that
depends both on the sparsity of the network and on the speed at which the
admissible network community sizes grow with n. We show that for suit-
able sequences of sets Zk(n) ⊆ {1, . . . , k}n of admissible blockmodels, the
maximum profile likelihood assignment method ẑ(A,Zk) implies that the
likelihood risk of a fitted blockmodel, as measured by summing the diver-
gences D

(

pij
∣

∣

∣

∣ Āẑiẑj

)

, approaches the risk
∑

i<j D
(

pij
∣

∣

∣

∣ p̄zizj
)

of the best
possible blockmodel approximation as n grows large.

Theorem 5.1 (proved in Appendix B) makes this statement precise and
provides a set of sufficient conditions, driven primarily by the effective sam-
ple size of each fitted block.

Theorem 5.1 (Controlling excess blockmodel risk). For each n = 2, 3, . . .,
let A ∈ {0, 1}n×n be the adjacency matrix of a simple random graph with
independent Bernoulli(pij) edges, and consider a corresponding sequence of
k-community blockmodel estimators, with k = k(n) a function of n. Assume:

1. The expected edge density
(

n
2

)−1∑

i<j pij(n) of A does not approach 0
or 1 too rapidly in n: there exists a monotone non-increasing, strictly
positive sequence ρ̄(n), such that for all n sufficiently large, ρ̄(n) ≤
(n
2

)−1∑

i<j pij(n) ≤ 1−
√

ρ̄(n).
2. Likewise, no block density {p̄zizj(n)}i<j,z∈Zk(n) approaches 0 or 1 too

rapidly in n: there exists a monotone non-increasing, strictly positive
sequence ρ∧(n), such that ρ∧(n) ≤ ρ̄(n) and ρ∧(n) ≤ p̄zizj (n) ≤ 1 −
√

ρ∧(n) for all z ∈ Zk(n), 1 ≤ i < j ≤ n and n sufficiently large.
3. The sizes {hzi(n)}1≤i≤n,z∈Zk(n) of all possible communities grow suf-

ficiently rapidly in n: there exists a monotone strictly increasing se-
quence h∧(n) taking values in {2, . . . , ⌊n/k(n)⌋ such that for all n suf-
ficiently large, h∧(n) ≤ minz∈Zk(n) {min1≤i≤n hzi(n)}.

Assume that the sequences Zk, ρ̄, ρ∧, h∧ are fixed in advance and inde-
pendent of all other quantities. Let h̄ = n/k ∈ [1, n], and suppose that the
minimum effective sample size of every possible fitted block,

(h∧

2

)

ρ∧, and the
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average effective sample size across all blocks, h̄2ρ̄, both grow sufficiently
rapidly in n:

h2∧ρ∧ = ω
(

log n
)

, h̄2ρ̄ = ω
(

max
{

h̄2/n, 1
}

log3 n
)

.

Then for all sequences of subsets Zk ⊆ {1, . . . , k}n that respect condition 3,
we have as n → ∞ that for any choice of z ∈ Zk, deterministic or random,

(5.1)

∑

i<j:Āzizj /∈{0,1}
D
(

pij
∣

∣

∣

∣ Āzizj

)

∑

i<j:Āzizj /∈{0,1}
pij

=

∑

i<j D
(

pij
∣

∣

∣

∣ p̄zizj
)

∑

i<j pij
+OP

(

max

{

1

h̄2ρ̄
,
log
(

n/h̄
)

nρ̄

})

.

For ẑ(A,Zk) = argmaxz∈Zk

∑

i<j

{

Aij log Āzizj + (1−Aij) log
(

1− Āzizj

)}

,

(5.2)

∑

Āẑiẑj
/∈{0,1}D

(

pij
∣

∣

∣

∣Āẑiẑj

)

∑

i<j:Āẑiẑj
/∈{0,1} pij

=
minz∈Zk

∑

i<jD
(

pij
∣

∣

∣

∣p̄zizj
)

∑

i<j pij
+OP



max







log h̄

h̄2ρ̄
,

√

log2 (1/ρ∧) log
(

n/h̄
)

nρ̄









 .

These results also hold marginally with respect to the model of (2.2).

Theorem 5.1 is significant because it gives conditions under which the ex-
cess risk of a fitted blockmodel converges to zero, implying that blockmodel
parameters can be estimated consistently even when the true generative
model giving rise to A is unknown. It predicts different rates of convergence
for different network sparsity regimes. Depending on the growth of k with
n, either the first or the second of two rate terms in (5.2) will dominate.

We may summarize these regimes as follows:

1. Dense networks: If ρ∧ and ρ̄ remain constant in n, and k grows with
n as k = O(n3/4), then Theorem 5.1 predicts a convergence rate of at
least

√

log(n)/n. If instead k grows like nδ for 3/4 < δ < 1, then this
rate will decrease to log n/n2(1−δ).

2. Sparse networks: If ρ∧ and ρ̄ decrease like n−2γ for 0 < γ < 1/2, and
k = O(n3/4−γ/2), then Theorem 5.1 predicts the rate log(n)3/2/n1/2−γ .
If k grows like nδ for 3/4−γ/2 < δ < 1−γ, then this rate will decrease
to log n/n2(1−δ−γ).
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3. Ultra-sparse networks: If ρ∧ and ρ̄ decrease like log(n)3+β/n for β > 0,
then Theorem 5.1 predicts rate log(n)−β/2 whenever k = O(n1/2),
matching the regime of Choi, Wolfe and Airoldi (2012).

In each of these cases, the given conditions on ρ∧ can be relaxed accordingly.
Theorem 5.1 is the first such result known for sparse or ultra-sparse

networks—those for which ρ̄ = o(1), so that the average number of con-
nections per node can grow sublinearly, here as slowly as logarithmically in
n. This complements the recent result of Choi and Wolfe (2013) for fixed-k
fitting of dense bipartite graphs—those for which ρ∧ and ρ̄ remain constant,
so that the average number of connections per node grows linearly in n.
Theorem 5.1 extends this regime, allowing for the growth of k with n, while
also yielding an improved convergence rate of

√

log(k)/n for dense graphs.
To understand why Theorem 5.1 holds in this setting, we begin by condi-

tioning on a choice of community assignment function z. Blocks of network
edges then comprise independent sets of independent Bernoulli trials. Con-
ditionally upon z, sample proportions Āzizj | z of these blocks are thus in-
dependent Poisson–Binomial variates. Without additional restrictions, how-
ever, a fitted block could be any size—even as small as a single Bernoulli
trial. Thus it is necessary to constrain the set Zk ⊆ {1, . . . , k}n of admissible
blockmodels, and also to constrain the allowable global and local sparsity of
the network, so that the effective sample size of every possible Āzizj | z grows
in n. This ensures that all block-wise sample proportions Āzizj | z behave like
Normal variates in the large-sample limit, when appropriately standardized.

There are then two main technical challenges:

1. Double randomness: While every Āzizj | z is amenable to analysis, choos-
ing ẑ by profile likelihood maximization introduces “double random-
ness,” coupling all blocks and precluding a direct analysis of Āẑiẑj .
Instead, we take the approach of Choi, Wolfe and Airoldi (2012), and
show that results for Āzizj | z hold uniformly for any choice of z — and
therefore that they also hold for Āẑiẑj .

2. Likelihood zeros: The assumption that all pij ∈ (0, 1) ensures that
each D

(

pij
∣

∣

∣

∣ p̄zizj
)

is finite. However, D
(

pij
∣

∣

∣

∣ Āẑiẑj

)

will fail to be fi-
nite if Āẑiẑj ∈ {0, 1}, in which case the (ẑi, ẑj)th block has saturated.
Such blocks add 0 to the likelihood; their parameters are not estimable
(Fienberg and Rinaldo, 2012). The theorem conditions allow us to con-
trol the probability of these likelihood zeros, by requiring the effective
sample size of each block to grow sufficiently rapidly in n.

This latter point is particularly important, since only values in the inte-
rior of the parameter space [0, 1]k×k are estimable (Fienberg and Rinaldo,
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2012, Theorem 7). As in the case of additional structural zeros (Fienberg
and Rinaldo, 2012, Corollary 8), the Fisher information matrix will be rank-
deficient, and the degrees of freedom must be adjusted accordingly in order
to obtain correct inferential conclusions. This explains why the random de-
nominator term is necessary in the left-hand side of (5.2).

We may connect this understanding to the three sparsity regimes de-
scribed above: the case of dense networks, corresponding to the setting of
exchangeable random graphs; that of sparse networks, where the density
of network edges

(n
2

)−1∑

i<j pij decays as some power of n; and that of
ultra-sparse networks, where the edge density decays at a rate approach-
ing log(n)/n. This is the so-called connectivity threshold, above which an
inhomogeneous random graph will be fully connected with probability ap-
proaching 1 as n → ∞ (Alon, 1995). If the edge density were instead to de-
cay at a rate of 1/n—the extremely sparse setting of Bollobás and Riordan
(2009)—then the resulting networks would fail in general to be connected,
and Poisson rather than Normal limiting behavior would hold for each block
(Olhede and Wolfe, 2013).

6. From blockmodels to smooth graphon estimation. We now
present our final result leading to consistent graphon estimation. To go be-
yond conditional estimation of inhomogeneous random graphs via block-
models, we will assume additional structure via graphon smoothness. This
smoothness will in turn allow us to control estimation risk, by sending the
main term in Theorem 5.1 to zero.

A blockmodel first orders the rows and columns of A, and then groups
its entries according to a vector of community sizes h ∈ {2, . . . , n}k. This
specifies a partition H in accordance with (3.1a), which in turn induces a
piecewise-constant approximation of the graphon f (x, y) along blocks. To
see this, define the domain ωab ⊆ [0, 1)2 of the (a, b)th block as

ωab = [H(a− 1),H(a)) × [H(b− 1),H(b)) , 1 ≤ a, b ≤ k,

and define the blockmodel approximation f̄ (x, y;h) of f (x, y) via the local
averages f̄ab, 1 ≤ a, b ≤ k:

f̄ (x, y;h) = f̄H−1(x)H−1(y), f̄ab =
1

|ωab|

∫∫

ωab

f (x, y) dx dy.(6.1)

If f (x, y) is smooth as well as bounded, then results from approximation
theory allow the error ‖f− f̄‖ to be controlled in any Lp norm, as a function
of the maximum over all block diameters (h2a + h2b)

1/2/n for 1 ≤ a, b ≤ k
(DeVore, 1998, see also Lemma C.6).
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Recall from (4.1) that any blockmodel community assignment vector z is
a composition H−1 ◦ Πz for some partition H of [0, 1] and permutation Πz

of {1, . . . , n}, so that zi = H−1 {Πz(i)/n} , 1 ≤ i ≤ n. From (4.6), we may
express p̄(z) for any 1 ≤ a, b ≤ k as

p̄(z)ab =
1

h2ab

∑

i<j

pij I
[

H−1 {Πz(j)/n} = b
]

I
[

H−1 {Πz(i)/n} = a
]

=
1

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

pΠ−1
z (i) Π−1

z (j).(6.2)

Thus p̄(z)ab is an average over h2ab graphon evaluations f
(

ξΠ−1
z (i), ξΠ−1

z (j)

)

,

since the model of (2.2) asserts that pij(n) ∝ f (ξi, ξj). These evaluations
occur at random points determined by {ξ1, . . . ξn} according to the inverse
of the permutation Πz, while H determines the size of each block.

From this simple observation, we will show that it is possible to relate
p̄(z)ab to f (x, y) by choosing an “oracle” permutation Πz(i) whose inverse
yields the ordered sample {ξ(1), . . . ξ(n)}. To see this, first note that whenever
the Hölder condition of (3.2) is satisfied, we have by Lemma C.7 that

f
(

ξ(i), ξ(j)
)

= f
(

i
n+1 ,

j
n+1

)

+OP

(

n−α/2
)

,

because each ξ(i) converges in probability to its expectation i/ (n+ 1) at a

rate no worse than n−1/2, and (3.2) relates this to
∣

∣f
(

ξ(i), ξ(j)
)

−f
(

i
n+1 ,

j
n+1

)∣

∣.

Now take Πz(i) = (i)−1, where (i)−1 denotes the rank of ξi from smallest to
largest, and observe that f

(

ξΠ−1
z (i), ξΠ−1

z (j)

)

evaluates to f
(

ξ(i), ξ(j)
)

.
The key point is that when f is α-Hölder continuous, then convergence

of the ordered sample {ξ(i)}ni=1 governs convergence of the random averages
comprising p̄(z)ab in (6.2). Indeed, if h∨ uniformly upper-bounds the largest
possible community size, then by Lemma C.5, we have that

Πz = (·)−1 ⇒ ρ−1
n p̄z(i)z(j) − f̄

(

ξ(i), ξ(j);h
)

= OP

(

n−α/2 + (n/h∨)
−α
)

,

where we recall from (6.1) that f̄ (x, y;h) is the local block average of f .
As a consequence, we can control the oracle estimation risk featured in

Theorem 5.1 as follows.

Theorem 6.1 (Controlling absolute risk). Assume in the scaled ex-
changeable graph model of (2.2) that:

1. The graphon f is a positive, symmetric function on (0, 1)2, and is
α-Hölder continuous, 0 < α ≤ 1;
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2. Furthermore, f is bounded away from zero and maxn ρnf is bounded
away from unity;

3. Each set Zk(n) ⊆ {1, . . . , k}n of admissible blockmodel assignments
has the following property: If H is generated by some z ∈ Zk, then
H−1 ◦ Π ∈ Zk for every permutation Π of {1, . . . , n}.

Then for h∨(n) the largest community size in each Zk(n), the oracle likeli-
hood risk in Theorem 5.1 satisfies

(6.3)
minz∈Zk

∑

i<j D
(

pij
∣

∣

∣

∣ p̄zizj
)

∑

i<j pij
= OP

(

n−α + (n/h∨)
−2α
)

.

We prove this theorem in Appendix C by using the oracle choice of per-
mutation (·)−1 to upper-bound the risk via a block approximation f̄ (x, y;h)
of f (x, y), based on some z∗ which achieves the minimum in (6.3). Condi-
tions 1 and 2 are then sufficient to guarantee the claimed rate of approxi-
mation. Condition 3 ensures that H−1 ◦ (·)−1 ∈ Zk, since we do not know
z∗ or the requisite ordering (·)−1 in advance.

7. Rates of convergence. We see directly that the rate of convergence
in Theorem 6.1 depends on the Hölder continuity of f in two ways: through
the convergence of the ordered sample {ξ(i)}ni=1 (variance), and through the
rate at which h∨/n goes to zero in n (bias). This rate is also self-scaling
relative to the sparsity of the network, as it does not depend on ρn.

In contrast, Theorem 5.1 depends strongly both on the network sparsity
factor ρn, as well as the minimum and average admissible block sizes, h∧ and
h̄. The conditions of Theorem 5.1 ensure that excess blockmodel risk can be
controlled under model misspecification, enabling groupings of nodes with
good risk properties to be estimated, despite the variability of the data.

Together, the results of Theorems 5.1 and 6.1 enable us to establish mean-
square graphon consistency at the rates indicated in Theorem 3.1, namely

OP





log h̄

h̄2ρn
+

√

log2 (1/ρn) log
(

n/h̄
)

nρn
+

(

h∨
n

)2α

+
log (h∨/ρn)

nα/2



 .

The first two terms come directly from Theorem 5.1, while the third is from
Theorem 6.1. The final term comes from relating the discrete quantities fea-
tured in these theorems to the graphon itself, and is driven in part by the fact
that we do not know the ordering of the data relative to the Uniform(0, 1)
variates {ξi}ni=1 by which the graphon is sampled. The O

(

n−1/2
)

variance
of the ordered sample {ξ(i)}ni=1 subsequently appears, and is modulated by
the regularity of the graphon through its Hölder continuity exponent α.
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8. Conclusion. In this article we have established a number of new
results within a nonparametric framework for network inference, based on
graphons as natural limiting objects. Understanding graphons as analytic
objects, as well as the behavior of dense and sparse networks based on them,
is fundamental to advancing our nonparametric understanding of networks.

To this end, we have established consistency of graphon estimation under
general conditions, giving rates which include the important practical setting
of sparse networks. By treating dense and sparse stochastic blockmodels
with a growing number of classes, under model misspecification, our results
improve substantially upon what is currently known in the literature.

Our results link strongly to approximation theory, nonparametric function
estimation, and the theory of graph limits, and thus provide for a founda-
tional understanding of nonparametric statistical network analysis.

APPENDIX A: PROOF OF THEOREM 3.1 AND ITS LEMMAS

A.1. Proof of Theorem 3.1.

Proof. We note from Lemma A.1 that for (x, y) ∈ (0, 1)2

f̂ (x, y;h) = ρ̂−1
n ĀH−1(x)H−1(y) =

{

1 +OP

(

n−1/2
)}

ρ−1
n ĀH−1(x)H−1(y).

Recalling the definition of Āab, we see that uniformly for all choices of H
and Π, and for all 1 ≤ a, b ≤ k, we have 0 ≤ E Āab ≤ ρn sup(x,y)∈(0,1)2 f (x, y)

and 0 ≤ E Ā2
ab ≤ ρ2n sup(x,y)∈(0,1)2 f

2 (x, y).
Since f is by hypothesis Hölder continuous on a bounded domain, it is

bounded, and thus Āab = OP

(

ρn
)

and Ā2
ab = OP

(

ρ2n
)

by Markov’s in-
equality. We will thus expand the squared error term in the integrand of
the graphon mean-squared error pointwise, using the fact that the error
term should be evaluated at the infimum over measure preserving bijections.
Therefore this error be upper-bounded by its evaluation at some σ∗ ∈ M,
which we will choose in accordance with the proof of Lemma A.3 below:

inf
σ∈M

∫∫

(0,1)2

∣

∣f
(

σ(x), σ(y)
)

−
{

1+OP

(

n−1/2
)}

ρ−1
n ĀH−1(x)H−1(y)

∣

∣

2
dx dy

≤
∫∫

(0,1)2

∣

∣f
(

σ∗(x), σ∗(y)
)

− ρ−1
n ĀH−1(x)H−1(y)

∣

∣

2
dx dy +OP

(

n−1/2
)

≤
∫∫

f̂ /∈{0,1}

∣

∣f
(

σ∗(x), σ∗(y)
)

− ρ−1
n ĀH−1(x)H−1(y)

∣

∣

2
dx dy +OP

(

n−1/2
)

≤ 2 (sup f)

∫∫

f̂ /∈{0,1}
ρ−1
n D

{

ρnf
(

σ∗(x), σ∗(y)
)

∣

∣

∣

∣

∣

∣
ρnf̂ (x, y;h)

}

dx dy +OP

(

n−1/2
)

,
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where the last two lines follow from Lemmas A.2 and C.9, respectively. By
Lemma A.3, we have

2 (sup f)

∫∫

f̂ /∈{0,1}
ρ−1
n D

{

ρnf
(

σ∗(x), σ∗(x)
)

∣

∣

∣

∣

∣

∣ ρnf̂ (x, y;h)
}

dx dy = 2 (sup f)

·
∫∫

f̂ /∈{0,1}
f (x, y) dx dy

∑

i<j:Āzizj /∈{0,1} D(pij || Āzizj)
∑

i<j:Āzizj /∈{0,1} pij

{

1 +OP

(

n−α/2
)}

+OP

(

log (h∨/ρn)

nα/2
+

log h∨
ρnn

)

,

uniformly in z. The conditions of Theorem 3.1 are sufficient for Theorems 5.1
and 6.1 to hold, and so if f̂ is fitted by maximum profile likelihood, then we
may substitute terms from Theorems 5.1 and 6.1 to obtain

2 (sup f)

∫∫

f̂ /∈{0,1}
ρ−1
n D

{

ρnf
(

σ∗(x), σ∗(x)
)

∣

∣

∣

∣

∣

∣ ρnf̂ (x, y;h)
}

dx dy = 2 (sup f)

·
∫∫

f̂ /∈{0,1}
f (x, y) dx dy·

[

OP

(

n−α +
(

n
h∨

)−2α)
+OP

(

max

{

log h̄
h̄2ρn

,

√

log2 1
ρn

log n
h̄

nρn

})]

+OP

(

log (h∨/ρn)

nα/2
+

log h∨
ρnn

)

.

A.2. Auxiliary lemmas needed for Theorem 3.1.

Lemma A.1. Assume the setting of Theorem 3.1. Then E ρ̂n = ρn,
var ρ̂n = O

(

ρ2n/n
)

.

Proof. Since i < j and k < l, we have that EAij | ξ = ρnf (ξi, ξj) and
cov (Aij , Akl | ξ) = ρnf(ξi, ξj) {1− ρnf(ξi, ξj)} I (i = k) I (j = l). We first use
the law of total expectation to deduce

E ρ̂n =
(n
2

)−1∑

i<j Eξ {ρnf (ξi, ξj)} = ρn
∫∫

(0,1)2 f(x, y) dx dy = ρn.

The necessary marginal variances and covariances can then be established
hierarchically:

var(Aij) = Eξ {var (Aij | ξ)}+ varξ {E(Aij | ξ)}
= {E ρnf(ξi, ξj)} {1− E ρnf(ξi, ξj)} = ρn (1− ρn) ,

cov(Aij , Akl) =Eξ{cov(Aij, Akl|ξ)}+covξ{E (Aij |ξ) ,E (Akl | ξ)}, (i, j) 6= (k, l).
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Since E f (ξi, ξj) f (ξk, ξl) =
∫∫

(0,1)2 f
2(x, y) dx dy if i = k and j = l, and

{∫∫

(0,1)2 f(x, y) dx dy
}2

if i 6= k and j 6= l, we obtain when either i 6= k or
j 6= l that

covξ (Aij , Akl) = covξ {E(Aij | ξ),E(Akl | ξ)}
= Eξ {ρnf(ξi, ξj)ρnf(ξk, ξl)} − Eξ {ρnf(ξi, ξj)}Eξ {ρnf(ξk, ξl)}
≤ ρ2nmax{var f(ξi, ξj), var f(ξk, ξl)}

≤ ρ2n

[

∫∫

(0,1)2 {f(x, y)}
2 dx dy −

{∫∫

(0,1)2 f(x, y) dx dy
}2
]

.

Because covξ {Aij, Akl} = 0 when all i, j and k, l are distinct, and since i 6= j
and k 6= l, we obtain

var ρ̂n =
(n
2

)−2
∑

i<j

varAij +
(n
2

)−2
∑

i 6=k∪j 6=l

cov (Aij , Akl)

≤
(n
2

)−2
ρn (1− ρn) +

(n
2

)−2
∑

i 6=k∪j 6=l

cov (Aij , Akl) [I(i = k) + I(i = l)

+ I(j = k) + I(j = l)]

≤
(n
2

)−2
ρn (1− ρn) + 4n

(n
2

)−2
ρ2n

[

∫∫

(0,1)2 {f(x, y)}
2 dx dy − 1

]

.

The order term of O(ρ2n/n) follows, as ρ2n/n ≥ ρn/n
2 ⇔ ρn ≥ 1/n, since

ρn = ω
(

n−1 log3 n
)

.

Lemma A.2. Assume the setting of Theorem 3.1. Then

sup
σ∈M

∫∫

f̂∈{0,1}

∣

∣f
(

σ(x), σ(x)
)

−f̂ (x, y;h)
∣

∣

2
dx dy = OP

(

e−(
h∧
2 )ρn+2 log(1/ρn)

)

.

Proof. We apply Lemma B.2 to control
∑

i<j I
(

Āab ∈ {0, 1}
)

marginally,
after observing that

sup
σ∈M

∫∫

f̂∈{0,1}

∣

∣f
(

σ(x), σ(x)
)

− f̂ (x, y;h)
∣

∣

2
dx dy ≤

∫∫

f̂∈{0,1}
2ρ−2

n dx dy

= 2 (ρnn)
−2

∑

a,b:Āab∈{0,1}

hahb ≤ 2 (ρnn)
−2

∑

a≤b:Āab∈{0,1}

4h2ab

= 8 (ρnn)
−2
∑

i<j

I
(

Āab ∈ {0, 1}
)

.
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Lemma A.3. Assume the setting of Theorem 3.1. Then for any z ∈ Zk,

(A.1)
infσ∈M

∫∫

f̂ /∈{0,1} ρ
−1
n D

{

ρnf
(

σ(x), σ(y)
)

∣

∣

∣

∣

∣

∣
ρnf̂ (x, y;h)

}

dx dy
∫∫

f̂ /∈{0,1} f (x, y) dx dy

=

∑

i<j:Āzizj /∈{0,1} D(pij || Āzizj)
∑

i<j:Āzizj /∈{0,1} pij

{

1 +OP

(

1
nα/2

)}

+OP

(

log(h∨/ρn)

nα/2 + log h∨

ρnn

)

.

Proof. We first treat the numerator of (A.1), whose infimum is over M,
the set of all measure-preserving bijective maps of the form σ : [0, 1] → [0, 1].
We may write

0 ≤ inf
σ∈M

∫∫

f̂ /∈{0,1}
ρ−1
n D

{

ρnf
(

σ(x), σ(y)
)

∣

∣

∣

∣

∣

∣ ρnf̂ (x, y;h)
}

dx dy

= infσ∈M
∑

a,b:Ā(z)ab /∈{0,1}

∫∫

ω(z)ab
ρ−1
n D

{

ρnf
(

σ(x), σ(y)
) ∣

∣

∣

∣ Ā(z)ab
}

dx dy,
(A.2)

since f̂ is constant on blocks. Observe that for each individual summand
in (A.2), we may write

∫∫

ω(z)ab

ρ−1
n D

{

ρnf
(

σ(x), σ(y)
) ∣

∣

∣

∣ Ā(z)ab
}

dx dy

(A.3)

=

∫ H(b)

H(b−1)

∫ H(a)

H(a−1)
ρ−1
n D

{

ρnf(·)
∣

∣

∣

∣ Ā(z)ab
}

dx dy

=

nH(b)
∑

j=nH(b−1)+1

nH(a)
∑

i=nH(a−1)+1

∫
j
n

j−1
n

∫ i
n

i−1
n

ρ−1
n D

{

ρnf
(

σ(x), σ(y)
) ∣

∣

∣

∣ Ā(z)ab
}

dxdy.

We now restrict our choice of σ ∈ M to satisfy the following property:

(A.4)

∫
j
n

j−1
n

∫ i
n

i−1
n

f
(

σ(x), σ(y)
)

dxdy =

∫
Π(j)
n

Π(j)−1
n

∫
Π(i)
n

Π(i)−1
n

f (x, y) dxdy, 1 ≤ i, j ≤ n,

for some permutation Π of {1, . . . , n}. Such a choice of measure-preserving
bijection can always be made, as it simply partitions the unit interval into
n+1 subintervals of the form [(i− 1)/n, i/n) , 1 ≤ i ≤ n, and permutes their
order in accordance with Π. We make this choice in order to preserve the

Hölder continuity of f on each domain (x, y) ∈
(

i−1
n , i

n

)

×
(

j−1
n , j

n

)

, as will

be shown below.
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Thus we may write, combining (A.2)–(A.6),

(A.5) inf
σ∈M

∫∫

f̂ /∈{0,1}
ρ−1
n D

{

ρnf
(

σ(x), σ(y)
)

∣

∣

∣

∣

∣

∣
ρnf̂ (x, y;h)

}

dx dy

≤ min
Π∈Sn

∑

a,b:Āab /∈{0,1}

nH(b)
∑

j=nH(b−1)+1

nH(a)
∑

i=nH(a−1)+1

·
∫

Π(j)
n

Π(j)−1
n

∫
Π(i)
n

Π(i)−1
n

ρ−1
n D

{

ρnf (x, y)
∣

∣

∣

∣ Ā(z)ab
}

dx dy,

with Sn the set of permutations of {1, . . . , n}. From Lemma A.4 we then
obtain

n2

∫
Π(j)
n

Π(j)−1
n

∫
Π(i)
n

Π(i)−1
n

ρ−1
n D

{

ρnf (x, y)
∣

∣

∣

∣ Ā(z)ab
}

dx dy

= ρ−1
n D

[

ρnf
(

ξ(Π{i}), ξ(Π{j})

) ∣

∣

∣

∣

∣

∣ Ā(z)ab

]

+OP

({

log (1/ρn) + log
(

h∨

2

)

}

n−α/2
)

,

where ξ(Π{i}) is the Π(i)th element of the ordered sample {ξ(i)}ni=1. Starting
from (A.5), we then have

inf
σ∈M

∫∫

f̂ /∈{0,1}
ρ−1
n D

{

ρnf
(

σ(x), σ(y)
)

∣

∣

∣

∣

∣

∣ ρnf̂ (x, y;h)
}

dx dy

≤ min
Π∈Sn

1

n2

∑

a,b:Ā(z)ab /∈{0,1}

nH(b)
∑

j=nH(b−1)+1





nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

{1 + I (a = b)}+ I (i = j)





· ρ−1
n D

[

ρnf
(

ξ(Π{i}), ξ(Π{j})

) ∣

∣

∣

∣

∣

∣
Ā(z)ab

]

+OP

({

log (1/ρn) + log
(

h∨

2

)

}

n−α/2
)

≤ 1

n2






2

∑

i<j:Ā(z)zizj /∈{0,1}

ρ−1
n D

{

pij
∣

∣

∣

∣ Ā(z)zizj
}

+
∑

1≤i≤n:Ā(z)zizi /∈{0,1}

ρ−1
n D

{

ρnf (ξi, ξi)
∣

∣

∣

∣ Ā(z)zizi
}







+OP

({

log (1/ρn) + log
(

h∨

2

)

}

n−α/2
)

,

(A.6)

where we have chosen Π = (·)−1 ◦ Π−1
z , so that Π(i) =

(

Π−1
z {i}

)−1
, with

(i)−1 the rank of ξi, from smallest to largest. This choice allows us to match
each ξ(Π{i}) to the corresponding group assignment zi of the ith network
node. To see this, recall from (4.1) that zi = H−1 {Πz(i)/n} , 1 ≤ i ≤ n, and
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from (4.3) and (C.6) respectively that

Ā(z)ab =
1

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

AΠ−1
z (i)Π−1

z (j),

p̄(z)ab =
1

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

ρnf
(

ξΠ−1
z (i), ξΠ−1

z (j)

)

.

Note that p̄(z)ab = E
{

Ā(z)ab | ξ, z
}

. Thus we relate each pij = ρnf (ξi, ξj)
to the average Ā(z)zizj of the block to which it is assigned by z.

Continuing from (A.6), we appeal to Lemma A.5 to bound the diagonal
term, thereby obtaining

inf
σ∈M

∫∫

f̂ /∈{0,1}
ρ−1
n D

{

ρnf
(

σ(x), σ(y)
)

∣

∣

∣

∣

∣

∣
ρnf̂ (x, y;h)

}

dx dy

≤ 1− 1
n

(

n
2

)

∑

i<j:Ā(z)zizj /∈{0,1}

ρ−1
n D

{

pij
∣

∣

∣

∣ Ā(z)zizj
}

+OP

({

log (1/ρn) + log
(h∨

2

)

}

n−α/2

+ log
(h∨

2

)

(ρnn)
−1
)

.

Lemma A.6 yields the denominator of (A.1), and the result follows by taking
the ratio of these terms.

Lemma A.4. Assume the setting of Theorem 3.1. Then for 1 ≤ i, j ≤
n, (a, b) : Ā(z)ab /∈ {0, 1}

(A.7) n2

∫
j
n

j−1
n

∫ i
n

i−1
n

ρ−1
n D

{

ρnf (x, y)
∣

∣

∣

∣ Ā(z)ab
}

dx dy;

= ρ−1
n D

{

ρnf
(

ξ(i), ξ(j)
) ∣

∣

∣

∣ Ā(z)ab
}

+OP

({

log (1/ρn) + log
(h∨

2

)

}

n−α/2
)

.

Proof. The result follows from a Taylor series of the integrand of (A.7),
which we will show to converge everywhere on the domain of integration, as
long as Ā(z)ab /∈ {0, 1}. We begin by noting that whenever f ∈ Hölderα(M),

we have from Lemma C.7 that for all (x, y) ∈
(

i−1
n , i

n

)

×
(

j−1
n , j

n

)

,

E
∣

∣f (x, y)− f
(

ξ(i), ξ(j)
)∣

∣ ≤ E
∣

∣

∣
f (x, y)− f

(

i
n+1 ,

j
n+1

)

∣

∣

∣

+ E
∣

∣

∣
f
(

i
n+1 ,

j
n+1

)

− f
(

ξ(i), ξ(j)
)

∣

∣

∣

≤ M
{

2−1/2(n+ 1)
}−α

+M {2(n + 2)}−α/2 .
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From Markov’s inequality, f
(

ξ(i), ξ(j)
)

= f (x, y) + OP

(

n−α/2
)

for every
fixed (x, y) in the domain of interest. Thus the following Taylor series holds
whenever f ∈ Hölderα(M) and Ā(z)ab /∈ {0, 1}:

(A.8) ρ−1
n D

{

ρnf
(

ξ(i), ξ(j)
) ∣

∣

∣

∣ Ā(z)ab
}

= ρ−1
n D

{

ρnf (x, y)
∣

∣

∣

∣ Ā(z)ab
}

+log

{

ρnf (x, y)

1− ρnf (x, y)
· 1− Ā(z)ab

Ā(z)ab

}

{

f
(

ξ(i), ξ(j)
)

− f (x, y)
}

+oP
(

n−α/2
)

.

To bound the second term in (A.8), let l = infx∈(0,1) f(x, x) and u =
supx∈(0,1) f(x, x). Since Ā(z)aa /∈ {0, 1}, we may bound the magnitudes of

log Ā(z)aa, log
{

1− Ā(z)aa
}

via log
(ha

2

)

≤ log
(h∨

2

)

. Then

(A.9) E

∣

∣

∣

∣

log

{

ρnf (x, y)

1− ρnf (x, y)
· 1− Ā(z)ab

Ā(z)ab

}∣

∣

∣

∣

≤ log
{

(ρnl)
−1
}

+ log
{

(1− ρnu)
−1
}

+ 2 log
(

h∨

2

)

.

The first two terms in (A.9) are bounded by hypothesis, and then we apply
Markov’s inequality to (A.8).

Lemma A.5. Assume the setting of Theorem 3.1. Then

(A.10) n−2
∑

1≤i≤n:Ā(z)zizi /∈{0,1}

ρ−1
n D

{

ρnf (ξi, ξi)
∣

∣

∣

∣ Ā(z)zizi
}

= OP

({

log (1/ρn) + ρ−1
n log

(h∨

2

)

}

n−1
)

.

Proof. Let l = infx∈(0,1) f(x, x) and u = supx∈(0,1) f(x, x). Since Ā(z)aa /∈
{0, 1}, we may bound the magnitudes of log Ā(z)aa and log

{

1− Ā(z)aa
}

via

log
(ha

2

)

≤ log
(h∨

2

)

. We bound the expectation of each summand in (A.10)
for 1 ≤ i ≤ n

E

[

f (ξi, ξi) log

{

ρnf (ξi, ξi)

Ā(z)zizi

}

+ ρ−1
n {1− ρnf (ξi, ξi)} log

{

1− ρnf (ξi, ξi)

1− Ā(z)zizi

}]

,

≤ u
{

log(ρnl)
−1 + log

(h∨

2

)

}

+ ρ−1
n

[

log
{

(1− ρnu)
−1
}

+ log
(h∨

2

)

]

= O
(

log (1/ρn) + ρ−1
n log h2∨

)

.

The result then follows from linearity of expectation and Markov’s inequal-
ity, as per Lemma A.4.
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Lemma A.6. Assume the setting of Theorem 3.1. Then

∫∫

f̂ /∈{0,1}
f (x, y) dx dy =

1− 1
n

ρn
(

n
2

)

∑

i<j:Ā(z)zizj /∈{0,1}

pij +OP

(

n−α/2
)

.

Proof. We start by discretizing the integral. We therefore write that

∫∫

f̂ /∈{0,1}
f (x, y) dx dy =

∑

a,b:Ā(z)ab /∈{0,1}

nH(b)
∑

j=nH(b−1)+1

nH(a)
∑

i=nH(a−1)+1

·
∫ j

n

j−1
n

∫ i
n

i−1
n

f (x, y) dx dy=
∑

Ā(z)zizj /∈{0,1}

pij
ρnn2

+
∑

Ā(z)ab /∈{0,1}

nH(b)
∑

j=nH(b−1)+1

nH(a)
∑

i=nH(a−1)+1

·
∫

j
n

j−1
n

∫ i
n

i−1
n

{

f (x, y)− f
(

ξ(i), ξ(j)
)}

dx dy,

where the latter term may be bounded using the technique of Lemma A.4,
yielding

(A.11)
∣

∣

∣

∫∫

f̂ /∈{0,1} f (x, y) dx dy −∑i,j:Ā(z)zizj /∈{0,1}
pij
ρnn2

∣

∣

∣
= OP

(

n−α/2
)

.

Note
∑

i,j:Ā(z)zizj /∈{0,1}
pij = 2

∑

i<j:Ā(z)zizj /∈{0,1}
pij+

∑

1≤i≤n:Ā(z)zizj /∈{0,1}
pii,

so that

E ρ−1
n n−2

∑

1≤i≤n:Ā(z)zizj /∈{0,1}
pii ≤ n−2

∑n
i=1 E f (ξi, ξi) = O

(

n−1
)

.

Applying Markov’s theorem and combining the result with (A.11) then yields
the stated result.

APPENDIX B: PROOF OF THEOREM 5.1 AND LEMMAS

B.1. Proof of Theorem 5.1. The proof is divided into four steps, with
each the subject of a technical lemma proved in Section B.2.

Lemma B.1 yields the key first step, which is to relate D
(

pij
∣

∣

∣

∣ Āzizj

)

to
D
(

pij
∣

∣

∣

∣ p̄zizj
)

for any z ∈ Zk, assuming that Āzizj /∈ {0, 1}. This ensures that
both terms are finite, and hence comparable. To obtain sufficient variance
reduction in this setting, every Āzizj must concentrate to its mean p̄zizj , in
that the ratio of mean to standard deviation must shrink. The minimum
effective block sample size

(h∧

2

)

ρ∧ must grow quickly enough that this takes
place, even for the sparsest of all possible fitted blocks.
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Lemma B.1. Assume conditions 1–3 of Theorem 5.1, and that
(

h∧

2

)

ρ∧ =

ω
(

log
(h∧

2

))

. Then

0 ≤
∑

i<j:Āzizj /∈{0,1}

{

D
(

pij
∣

∣

∣

∣ Āzizj

)

−D
(

pij
∣

∣

∣

∣ p̄zizj
)}

= OP





2 log |Zk|+
(k+1

2

)

(n
2

)

ρ̄

∑

i<j

pij



, ∀z ∈ Zk.

Our next step relies on controlling Pr(Āzizj ∈ {0, 1}) uniformly in z, via
Lemma B.2.

Lemma B.2. Assume conditions 1–3 of Theorem 5.1. Then
∑

i<j I
(

Āzizj ∈ {0, 1}
)

= OP

(

e−(
h∧
2 )ρ∧+log(1/ρ̄)∑

i<j pij

)

, ∀z ∈ Zk.

This result shows that the set of all Āzizj ∈ {0, 1} has vanishing relative
cardinality relative to

∑

i<j pij , no matter which z ∈ Zk is chosen. It is a
direct consequence of condition 3 of Theorem 5.1, which ensures that the
minimum fitted block size is uniformly lower-bounded by h∧ = ω(1).

Lemma B.2 has two immediate consequences. First, we may apply it to
conclude that

(B.1)

∑

i<j:Āzizj /∈{0,1}
pij

∑

i<j pij
= 1 +OP

(

e−(
h∧
2 )ρ∧+log(1/ρ̄)

)

, ∀z ∈ Zk.

Second, it enables us to substitute for the term
∑

i<j:Āzizj /∈{0,1}
D
(

pij
∣

∣

∣

∣ p̄zizj
)

in Lemma B.1 as follows.

Lemma B.3. Assume conditions 1–3 of Theorem 5.1. Then uniformly
for all z ∈ Zk,

0 ≤∑i<j D
(

pij
∣

∣

∣

∣ p̄zizj
)

−∑i<j:Āzizj /∈{0,1}
D
(

pij
∣

∣

∣

∣ p̄zizj
)

= OP

(

e−(
h∧
2 )ρ∧+log(1/ρ̄)∑

i<j pij

)

.

Thus whenever all of the above quantities are oP (1), we may combine
Lemmas B.1 and B.3 with (B.1) to obtain our first claimed result: for any
choice of z ∈ Zk, deterministic or random, we have that

(B.2)

∑

i<j:Āzizj /∈{0,1}
D
(

pij
∣

∣

∣

∣Āzizj

)

−∑i<jD
(

pij
∣

∣

∣

∣ p̄zizj
)

∑

i<j:Āzizj /∈{0,1}
pij

=OP

(

2 log|Zk|+(k+1
2 )

(n2)ρ̄
+e−(

h∧
2 )ρ∧+log(1/ρ̄)

)
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whenever conditions 1–3 of Theorem 5.1 hold,
(

h∧

2

)

ρ∧ = ω
(

log
(

h∧

2

))

and
the argument of the right-hand side of (B.2) is oP (1). Under these condi-
tions, the numerator term of (B.2), when scaled by

∑

i<j pij , converges in
probability to 0 and hence in law, whereas (B.1) converges in probability
to a non-zero constant. Thus by Slutsky’s theorem, their ratio converges in
law, and hence also in probability as per (B.2). Separating terms on the
left-hand side of (B.2), and then multiplying the latter numerator term by
∑

i<j pij/
∑

i<j pij , we obtain the first result of result of Theorem 5.1, as
stated in (5.1).

We now establish sufficient conditions for (B.2). We see immediately that
(

h∧

2

)

ρ∧ = ω
(

log(1/ρ̄)
)

must hold. Since Lemma B.1 requires that
(

h∧

2

)

ρ∧ =

ω
(

log
(h∧

2

))

, we obtain the combined requirement

(B.3) h2∧ρ∧ = ω
(

max
{

log h2∧, log(1/ρ̄)
})

⇐ h2∧ρ∧ = ω
(

log n
)

.

To see that this condition will be satisfied if the effective sample size of
every possible fitted block is ω

(

log n
)

, first note that h∧ ≤ n, and so log h2∧ =
O
(

log n
)

. Now observe that because ρ∧ ≤ ρ̄, it follows that h2∧ρ∧ = ω
(

log h2∧
)

implies h2∧ρ̄ = ω
(

log h2∧
)

, or equivalently, log(1/ρ̄) = o
(

log(h2∧/ log h
2
∧)
)

.
Since h∧ ≤ n, this in turn implies log(1/ρ̄) = o

(

log n
)

. Thus h2∧ρ∧ = ω
(

log n
)

implies (B.3) as claimed.
To achieve convergence in probability, (B.2) also requires n2ρ̄ = ω

(

log |Zk|+
(k+1

2

))

. To simplify this requirement and obtain a sufficient condition, ob-

serve that log |Zk| ≤ n log k, since Zk ⊆ {1, . . . , k}n. Now write
(k+1

2

)

=
k2 {1/2 +O(1)}, and let h̄ = n/k. From these simplifications we obtain
ρ̄ = ω

(

log(n/h̄)/n+h̄−2
)

, which is implied by h̄2ρ̄ = ω
(

max
{

h̄2/n, 1
}

log n
)

.
Finally, observe that since the results above hold uniformly over all z ∈

Zk, they also hold for z = ẑ(A,Zk), the maximum profile likelihood estima-
tor of z. The following lemma relates this choice to its oracle counterpart
z̄(p,Zk)—the best choice of z ∈ Zk—enabling us to strengthen (B.2).

Lemma B.4. Assume conditions 1 and 2 of Theorem 5.1. Then it follows
from the arguments of Theorems 2 and 3 of Choi, Wolfe and Airoldi (2012)
that for any ẑ(A,Zk) and z̄(p,Zk) as per (4.5) and (4.7),

0 ≤∑i<j

{

D
(

pij
∣

∣

∣

∣ p̄ẑiẑj
)

−D
(

pij
∣

∣

∣

∣ p̄z̄iz̄j
)}

=OP

(

log|Zk|+(k+1
2 )log{(n2)/(k+1

2 )+1}
(n2)ρ̄

)

+OP

(

log(1/ρ∧) log|Zk|

3(n2)ρ̄

(

1+

√

1+
18(n2)ρ̄
log|Zk|

)

∑

i<j pij

)

.
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Since z̄(p,Zk) results in the minimum value of
∑

i<j D
(

pij
∣

∣

∣

∣ p̄zizj
)

, this
difference is nonnegative. Its convergence in probability to 0 when suitably
normalized is due to the maximizing properties of ẑ(A,Zk) and z̄(p,Zk).
Thus we conclude that ẑ(A,Zk) serves as an empirical proxy for z̄(p,Zk).

To complete the proof, set z = ẑ(A,Zk) in (B.2) and combine it with
Lemma B.4. Comparing terms, we see that the latter’s will dominate the
rate of convergence, and so we upper-bound them using h̄ = n/k = ω(1),
subadditivity of the square root and the fact that

(n
2

)

/
(k+1

2

)

≤ h̄2. We thus
obtain
∑

i<j:Āẑiẑj
/∈{0,1} D

(

pij
∣

∣

∣

∣ Āẑiẑj

)

−minz∈Zk

∑

i<j D
(

pij
∣

∣

∣

∣ p̄zizj
)

∑

i<j pij

= OP

(

max

[

n log(n
h̄ )+(

n
h̄
+1

2
) log{h̄2(1+̄h−2)}
(n2)ρ̄

,

√

2 log(ρ−1
∧ )2 n log(n

h̄ )
(n2)ρ̄

(

1+

√

n log(n
h̄ )

9
2(

n
2)ρ̄

)])

= OP

(

max

[

n log(n
h̄ )+

n2

h̄2

(

1+ h̄
n

)

log[h̄{1+o(1)}]
n2ρ̄{1+o(1)}

,

√

log(1/ρ∧)
2 log(n/h̄)

nρ̄{1+o(1)} {1 + o(1)}
])

= OP

(

max

[

h̄−2(1+h̄/n) log h̄
ρ̄ ,max

{

log(n/h̄)
nρ̄ ,

√

log(1/ρ∧)
2 log(n/h̄)
nρ̄

}])

= OP

(

max

[

h̄−2{1+O(1)} log h̄
ρ̄ ,

√

log(n/h̄)
nρ̄ max

{
√

log(n/h̄)
nρ̄ , log (1/ρ∧)

}])

= OP

(

max

[

log h̄
h̄2ρ̄

,

√

log(1/ρ∧)
2 log(n/h̄)
nρ̄

])

,

(B.4)

where the final line follows because log(n/h̄) = o(nρ̄) is needed for (B.4)
to be oP (1), whereas ρ∧ ≤ ρ < 1/2 implies that log(1/ρ∧)

2 > log(2)2 =
ω
(

log(n/h̄)/(nρ̄)
)

. Thus we have derived the claimed rate of convergence,
with a sufficient condition being that h̄2ρ̄ = ω

(

max
{

h̄2/n, 1
}

log3 n
)

, since
together h̄2ρ̄ = ω

(

log n
)

and ρ = ω
(

log(n)3/n
)

imply that (B.4) is oP (1).
To complete the proof of Theorem 5.1, we now re-interpret the above

results under the scaled exchangeable random graph model of (2.2). Lem-
mas B.1–B.4 then hold for every realized value of ξ, and thus the implicit
conditioning on ξ inherent to these results can be removed. Specifically, in
Lemmas B.1 and B.4, we may marginalize (B.7) and (B.12) respectively via
the law of total probability, noting that their right-hand sides do not depend
on ξ. For Lemmas B.2 and B.3, we simply note that the bound of (B.8) holds
for all ξ.
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B.2. Proofs and auxiliary lemmas needed for Theorem 5.1.

Lemma B.1. We write

∑

i<j:Āzizj /∈{0,1}

{

D
(

pij
∣

∣

∣

∣ Āzizj

)

−D
(

pij
∣

∣

∣

∣ p̄zizj
)}

=
∑

i<j:Āzizj /∈{0,1}

{

pij log

(

p̄zizj
Āzizj

)

+ (1− pij) log

(

1− p̄zizj
1− Āzizj

)}

=
∑

a≤b:Āab /∈{0,1}

∑

i∈z−1(a),

j∈z−1(b)

{

pij log

(

p̄zizj
Āzizj

)

+ (1− pij) log

(

1− p̄zizj
1− Āzizj

)}

=
∑

a≤b:Āab /∈{0,1}

{

log

(

p̄ab
Āab

)

∑

i∈z−1(a),

j∈z−1(b)

pij + log

(

1− p̄ab
1− Āab

)

∑

i∈z−1(a),

j∈z−1(b)

(1− pij)

}

=
∑

a≤b:Āab /∈{0,1}

{

log

(

p̄ab
Āab

)

h2abp̄ab + log

(

1− p̄ab
1− Āab

)

h2ab (1− p̄ab)

}

=
∑

a≤b:Āab /∈{0,1}

h2ab D
(

p̄ab
∣

∣

∣

∣ Āab

)

.

(B.5)

Since (B.5) is a sum of Kullback–Leibler divergences, it is nonnegative. To
show its convergence when suitably normalized, we appeal to Lemma B.5
below, which implies the following under conditions 1–3 of Theorem 5.1 and
the hypothesis

(h∧

2

)

ρ∧ = ω
(

log
(h∧

2

))

:
For every ǫ > 0, eventually in n and with 1+/2 approaching arbitrarily
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closely to 1/2,

Pr
(

maxz∈Zk

∑

a≤b:Āab /∈{0,1}
h2ab D

(

p̄ab
∣

∣

∣

∣ Āab

)

≥ ǫ
∑

i<j pij

)

≤ exp

(

log |Zk| −
{

ǫ
∑

i<j pij−
1+

2 (k+1
2 )

}2

2ǫ
∑

i<j pij+
1+

2 (k+1
2 )

)

≤ exp

(

log |Zk| −
ǫ
∑

i<j pij max{ǫ∑i<j pij−1+(k+1
2 ),0}

2ǫ
∑

i<j pij+
1+

2 (k+1
2 )

)

(B.6)

≤ exp

(

log |Zk| −
max{ǫ∑i<j pij−1+(k+1

2 ),0}
2+ 1+

2 (k+1
2 )/(ǫ

∑

i<j pij)

)

≤ exp

(

log |Zk| −
max{ǫ(n2)ρ̄−1+(k+1

2 ),0}
2+ 1+

2 (k+1
2 )/{ǫ(n2)ρ̄}

)

,

(B.7)

where (B.6) follows as ǫ
∑

i<j pij ≥ 0 and (1+/2)
(k+1

2

)

≥ 0 eventually in n,
and (B.7) follows from condition 1 of Theorem 5.1, by which

∑

i<j pij(n) ≥
(n
2

)

ρ̄(n) eventually in n.

Lemma B.2. We will bound Pr(Āzizj ∈ {0, 1}) uniformly in z. Observe
that for any 1 ≤ a ≤ b ≤ k, conditionally on any z ∈ Zk, we have by the
arithmetic–geometric mean inequality that

Pr
(

Āab ∈ {0, 1} |Z = z
)

= Pr
(

Āab = 0 |Z = z
)

+ Pr
(

Āab = 1 |Z = z
)

=
∏

i∈z−1(a),

j∈z−1(b)

(1− pij) +
∏

i∈z−1(a),

j∈z−1(b)

pij

≤ (1− p̄(z)ab)
h2
ab + (p̄(z)ab)

h2
ab .(B.8)

Conditions 2 and 3 of Theorem 5.1 stipulate that for every pair (a, b)
and every z ∈ Zk, eventually in n, ρ∧(n) ≤ p̄ab(n) ≤ 1 −

√

ρ∧(n) and
h∧(n) ≤ ha(n). Hence (B.8) implies that, eventually in n, for 1 ≤ a ≤ b ≤ k

Pr
(

Āab ∈ {0, 1} |Z = z
)

≤ (1− ρ∧)
h2
ab + (1−√

ρ∧)
h2
ab ;

⇒ max
a≤b

Pr
(

Āab ∈ {0, 1} |Z = z
)

≤ 2(1 − ρ∧)
(h∧2 );

⇒ max
z∈Zk

max
i<j

Pr
(

Āzizj ∈ {0, 1} |Z = z
)

≤ 2(1− ρ∧)
(h∧2 ).(B.9)

Since the conditional probability Pr
(

Āzizj ∈ {0, 1} |Z = z
)

is upper-
bounded by (B.9) uniformly for every value of z ∈ Zk, this same bound also
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holds after marginalizing out Z. Thus, eventually in n,

(B.10) Pr
(

Āzizj ∈ {0, 1}
)

≤ 2(1− ρ∧)
(h∧2 ).

Applying Markov’s inequality, we see that for any ǫ > 0, eventually in n,

Pr





∑

i<j

I
(

Āzizj ∈ {0, 1}
)

≥ ǫ
∑

i<j

pij



 ≤
∑

i<j Pr
(

Āzizj ∈ {0, 1}
)

ǫ
∑

i<j pij

≤
(n
2

)

2(1− ρ∧)
(h∧2 )

ǫ
∑

i<j pij

≤ 2(1− ρ∧)
(h∧2 )

ǫρ̄

≤
2 exp

{

−
(

h∧

2

)

ρ∧

}

ǫρ̄

=
exp

{

−
(h∧

2

)

ρ∧ + log (1/ρ̄)
}

(ǫ/2)
,

where the second inequality follows directly from (B.10), the third inequality
follows from condition 1 of Theorem 5.1, by which

∑

i<j pij(n) ≥
(n
2

)

ρ̄(n)

eventually in n, and the final inequality follows from the fact that log
{

(1−
ρ∧)

(h∧2 )
}

=
(

h∧

2

)

log(1− ρ∧) ≤ −
(

h∧

2

)

ρ∧.

Lemma B.3. First, we express the term of interest as a sum of nonnega-
tive random variables:

∑

i<j

D
(

pij
∣

∣

∣

∣ p̄zizj
)

−
∑

i<j:Āzizj /∈{0,1}

D
(

pij
∣

∣

∣

∣ p̄zizj
)

=
∑

i<j

D
(

pij
∣

∣

∣

∣ p̄zizj
)

I(Āzizj ∈ {0, 1}).
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To show the claimed convergence in probability, we write

0 ≤
∑

i<j

D
(

pij
∣

∣

∣

∣ p̄zizj
)

I(Āzizj ∈ {0, 1})

= −
∑

i<j

{

pij log
(

p̄zizj
)

+ (1− pij) log
(

1− p̄zizj
)}

I(Āzizj ∈ {0, 1})

+
∑

i<j

{pij log (pij) + (1− pij) log (1− pij)} I(Āzizj ∈ {0, 1})

≤ −
∑

i<j

{

pij log
(

p̄zizj
)

+ (1− pij) log
(

1− p̄zizj
)}

I(Āzizj ∈ {0, 1})

= −
∑

a≤b

∑

i∈z−1(a),

j∈z−1(b)

{pij log (p̄(z)ab) + (1− pij) log (1− p̄(z)ab)} I(Āzizj ∈ {0, 1})

= −
∑

a≤b

h2ab {p̄(z)ab log (p̄(z)ab) + (1− p̄(z)ab) log (1− p̄(z)ab)} I(Āab ∈ {0, 1})

≤
∑

a≤b

h2ab(log 2) I(Āab ∈ {0, 1})

= (log 2)
∑

i<j

I(Āzizj ∈ {0, 1}).

The result then follows from Lemma B.2, which establishes that for every

z ∈ Zk, we have
∑

i<j I(Āzizj ∈ {0, 1}) = OP

(

e−(
h∧
2 )ρ∧+log(1/ρ̄)∑

i<j pij
)

under conditions 1–3 of Theorem 5.1.

Lemma B.4. In the notation of Choi, Wolfe and Airoldi (2012), define
for any fixed z ∈ Zk

L̄(z) =
∑

i<j

{

pij log p̄zizj + (1− pij) log
(

1− p̄zizj
)}

;

⇒ z̄(p,Zk) = argmax
z∈Zk

L̄(z) = argmin
z∈Zk

∑

i<j

D
(

pij
∣

∣

∣

∣ p̄zizj
)

.

where the implication follows directly from the definition of the “oracle”
MPLE in z̄(p,Zk) in (4.7). Thus

0 ≤
∑

i<j

{

D
(

pij
∣

∣

∣

∣ p̄ẑiẑj
)

−D
(

pij
∣

∣

∣

∣ p̄z̄iz̄j
)}

= L̄(z̄)− L̄(ẑ), z̄, ẑ ∈ Zk.

By construction, since z̄(p,Zk) maximizes L̄(z) over Zk, this difference is
nonnegative. Similarly, from (4.5) we see that ẑ(A,Zk) maximizes L(A; z)
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over Zk, and so L(A; ẑ)− L(A; z̄) ≥ 0. Hence,

0 ≤ L̄(z̄)− L̄(ẑ) ≤ L̄(z̄)− L̄(ẑ) + {L(A; ẑ) − L(A; z̄)} , z̄, ẑ ∈ Zk

= L̄(z̄)− L(A; z̄) + L(A; ẑ)− L̄(ẑ)

≤
∣

∣L̄(z̄)− L(A; z̄)
∣

∣ +
∣

∣L(A; ẑ)− L̄(ẑ)
∣

∣ ,(B.11)

and so the result will follow from (B.11) if we can show that
∣

∣L̄(z̄)− L(A; z̄)
∣

∣

and
∣

∣L(A; ẑ)− L̄(ẑ)
∣

∣ both converge in probability to zero when suitably
renormalized. We accomplish this in the manner of Choi, Wolfe and Airoldi
(2012, Theorem 2), who establish that maxz∈Zk

∣

∣L̄(z)− L(A; z)
∣

∣ /
∑

i<j pij
converges as required. Since this result holds for the maximum over all z ∈
Zk, then it must also hold for both ẑ and z̄, and we can therefore apply this
same result twice.

In particular, Theorem 2 of Choi, Wolfe and Airoldi (2012) shows that
for any fixed n, whenever maxij

∣

∣logit p̄zizj
∣

∣ is finite for all z ∈ Zk, it holds
that for all nonempty Zk ⊆ {1, . . . , k}n and any ǫ > 0,

(B.12) Pr



max
z∈Zk

∣

∣L(A; z) − L̄(z)
∣

∣ ≥ 2ǫ
∑

i<j

pij





≤ |Zk| exp
[

(k+1
2

)

log
{

(n
2

)

/
(k+1

2

)

+ 1
}

− ǫ
∑

i<j pij

]

+
∑

z∈Zk

2 exp

{

−
(

ǫ
∑

i<j pij
)2
/2

∑

i<j pij
∣

∣logit p̄zizj
∣

∣

2
+ (1/3)

(

ǫ
∑

i<j pij
)

maxi<j

∣

∣logit p̄zizj
∣

∣

}

.

From condition 2 of Theorem 5.1, we have that each pij(n) ∈ (0, 1) eventually
in n. This implies that maxij

∣

∣logit p̄zizj (n)
∣

∣ will eventually be finite for all
z ∈ Zk, and thus (B.12) holds eventually in n.

To simplify the right-hand side of (B.12), we upper-bound
∣

∣logit p̄zizj
∣

∣ via
maxi<j

∣

∣logit p̄zizj
∣

∣, which allows a factor of
∑

i<j pij to be canceled:

Pr



max
z∈Zk

∣

∣L(A; z)− L̄(z)
∣

∣ ≥ 2ǫ
∑

i<j

pij



 ≤ |Zk|

exp
[

(k+1
2

)

log
{

(n
2

)

/
(k+1

2

)

+ 1
}

− ǫ
∑

i<j pij

]

+
∑

z∈Zk

2 exp

{

−
(ǫ2/2)

∑

i<j pij

maxi<j

∣

∣logit p̄zizj
∣

∣

2
+ (ǫ/3)maxi<j

∣

∣logit p̄zizj
∣

∣

}

.

Next, we upper-bound maxi<j

∣

∣logit p̄zizj
∣

∣ uniformly in z via
maxz∈Zk

{

maxi<j

∣

∣logit p̄zizj
∣

∣

}

. This highlights the importance of bounding



NONPARAMETRIC GRAPHON ESTIMATION 31

pij away from 0 and 1. We may now sum over z ∈ Zk to obtain

Pr



max
z∈Zk

∣

∣L(A; z)− L̄(z)
∣

∣ ≥ 2ǫ
∑

i<j

pij



 ≤ |Zk|

exp





(

k + 1

2

)

log

{(

n

2

)

/

(

k + 1

2

)

+ 1

}

− ǫ
∑

i<j

pij





+2 |Zk| exp
{

− (ǫ2/2)
∑

i<j pij

[maxz∈Zk{maxi<j|logit p̄zizj |}]2+(ǫ/3)maxz∈Zk{maxi<j|logit p̄zizj |}

}

.

Condition 2 stipulates that every p̄zizj satisfies ρ∧(n) ≤ p̄zizj(n) ≤ 1 −
√

ρ∧(n) eventually in n, so

max
z∈Zk

{

max
i<j

∣

∣logit p̄zizj(n)
∣

∣

}

= max
z∈Zk

{

max
i<j

∣

∣

∣

∣

log

(

p̄zizj(n)

1− p̄zizj(n)

)∣

∣

∣

∣

}

= max
z∈Zk

[

max
i<j

{

max log

(

p̄zizj(n)

1− p̄zizj(n)

)

, log

(

1− p̄zizj (n)

p̄zizj(n)

)}]

≤ max
z∈Zk

[

max
i<j

{

max log

(

1−
√

ρ∧(n)
√

ρ∧(n)

)

, log

(

1− ρ∧(n)

ρ∧(n)

)

}]

≤ log {1/ρ∧(n)} ,

which is finite, as condition 1 specifies that 0 < ρ∧(n) < 1/2 for all n.
Finally, condition 1 of Theorem 5.1 ensures that

(

n
2

)

ρ̄(n) ≤ ∑

i<j pij(n)
eventually in n. Thus, recalling (B.11), we obtain the claimed result, since
we have shown that for all n sufficiently large,

Pr



max
z∈Zk

∣

∣L(A; z)− L̄(z)
∣

∣ ≥ 2ǫ
∑

i<j

pij





≤ exp
[

log |Zk|+
(k+1

2

)

log
{

(n
2

)

/
(k+1

2

)

+ 1
}

− ǫ
(n
2

)

ρ̄
]

+ 2exp

{

log |Zk| −
(n
2

)

ρ̄

log (1/ρ∧)
2

(

ǫ2/2

1 + (ǫ/3)/ log (1/ρ∧)

)

}

≤ 4 exp

{

log |Zk|

+max

[

(

k+1
2

)

log
{

(

n
2

)

/
(

k+1
2

)

+ 1
}

− ǫ
(

n
2

)

ρ̄,
−(n2)ρ̄

log(1/ρ∧)
2

(

ǫ2/2
1+(ǫ/3)/ log(1/ρ∧)

)

]}

.
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Lemma B.5. Assume conditions 1–3 of Theorem 5.1 and the hypothesis
(

h∧

2

)

ρ∧ = ω
(

log
(

h∧

2

))

, which together ensure that for every z ∈ Zk,

(B.13)

√

log
(

h2ab
)

/h2ab

min (p̄ab, 1− p̄ab) /
√
p̄ab

= o(1), 1 ≤ a ≤ b ≤ k.

Then for every ǫ > 0, we have eventually in n that

Pr



max
z∈Zk

∑

a≤b:Āab /∈{0,1}

h2ab D
(

p̄ab
∣

∣

∣

∣ Āab

)

≥ ǫ



 ≤ exp






log |Zk| −

{

ǫ− 1+

2

(k+1
2

)

}2

2ǫ+ 1+

2

(k+1
2

)






,

with 1+/2 approaching arbitrarily closely to 1/2 from above, at the rate given
by (B.13).

Proof. Observe that for any fixed z ∈ Zk, we may re-express
∑

a≤b:Āab /∈{0,1}
h2ab D

(

p̄ab
∣

∣

∣

∣ Āab

)

as a sum of the terms whose moments will
be bounded by Lemma B.6:

∑

a≤b:Āab /∈{0,1}

h2ab D
(

p̄ab
∣

∣

∣

∣ Āab

)

=
∑

a≤b

g
(

h2abĀab

)

, z ∈ Zk fixed.

Here, setting Xn = h2abĀab in (B.17) of Lemma B.6, we define g
(

h2abĀab

)

as

g
(

h2abĀab

)

=

{

h2ab

{

p̄ab log
(

p̄ab
Āab

)

+ (1− p̄ab) log
(

1−p̄ab
1−Āab

)}

if h2abĀab ∈ {1, . . . , h2ab − 1},
0 if h2abĀab ∈ {0, h2ab}.

By hypothesis, the conditions of Lemma B.6 apply for all 1 ≤ a ≤ b ≤ k
and every z ∈ Zk, and so each g

(

h2abĀab

)

behaves like a chi-square variate
on 1 degree of freedom in terms of its mth moment where m = 1, 2, . . .
(B.14)

E
{

g
(

h2abĀab

)m} ≤ Γ
(

m+ 1
2

)

√
π







1 +O





√

log
(

h2ab
)

/h2ab

min (p̄ab, 1− p̄ab) /
√
p̄ab











.

Controlling the moments of g
(

h2abĀab

)

enables us to apply a Bernstein
concentration inequality due to Birgé and Massart (1998, Lemma 8). To do
so requires the existence of constants v2 and c such that

(B.15)
(

k+1
2

)−1∑

a≤b

E
{

g
(

h2abĀab

)m} ≤ m!

2
v2cm−2, m = 2, 3, . . . .
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By hypothesis,

Γ
(

m+ 1
2

)

√
π







1 +O





√

log
(

h2ab
)

/h2ab

min (p̄ab, 1 − p̄ab) /
√
p̄ab











=
Γ
(

m+ 1
2

)

√
π

{1 + o(1)}

<
3

4
+ δ,

eventually in n, for every δ > 0. Thus we fix v2 arbitrarily close to 3/4, and
write v2 = 3+/4. To ensure that (B.15) is satisfied for each m, we then let
c = 1.

We can see from (B.14) that these choices of v2, c yield

(k+1
2

)−1∑

a≤b

E
{

g
(

h2abĀab

)m} ≤ Γ
(

m+ 1
2

)

√
π

{1 + o(1)} , m = 2, 3, . . .

<
Γ (m+ 1)√

π
, eventually in n,

≤ m!

2
v2cm−2, m = 2, 3, . . . ,

and thus (B.15) holds eventually in n. Lemma 8 of Birgé and Massart (1998)
then shows that for

Y =
∑

a≤b

g
(

h2abĀab

)

, with z ∈ Zk fixed,

the following concentration inequality holds for any ǫ > 0:

Pr
(

Y − EY ≥
(k+1

2

)

ǫ
)

≤ exp

(

−
(k+1

2

)

ǫ2/2

v2 + cǫ

)

⇒ Pr (Y ≥ ǫ) ≤ exp

(

− (ǫ− EY )2/2
(

k+1
2

)

v2 + c(ǫ− EY )

)

.(B.16)

Observe that since EY ≥ 0, (B.16) still holds if we replace EY with
an upper bound u, because for any u ≥ EY ≥ 0, the event Y − u ≥ ǫ
implies the event Y − EY ≥ ǫ, and so Pr (Y − u ≥ ǫ) ≤ Pr (Y − EY ≥ ǫ).
Thus, we may substitute the eventual upper bound u = (1+/2)

(k+1
2

)

≥ EY
from (B.14) into (B.16), where (1+/2) is arbitrarily close to 1/2. Substituting
(1+/2)

(k+1
2

)

in place of EY in (B.16), along with the constants v2 = 3+/4
and c = 1, we see that for any ǫ > 0, eventually in n,

Pr (Y ≥ ǫ) ≤ exp






−

{

ǫ− 1+

2

(k+1
2

)

}2
/2

(

k+1
2

)

3+

4 +
{

ǫ− 1+

2

(

k+1
2

)

}






.
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Simplifying this expression and applying a union bound over all z ∈ Zk then
yields the stated result.

Lemma B.6. Let Xn denote a sequence of Poisson–Binomial variates,
each with mean µn, and define
(B.17)

g(Xn) =

{

µn log
(

µn

Xn

)

+ (n− µn) log
(

n−µn

n−Xn

)

if Xn ∈ {1, 2, . . . , n− 1},
0 if Xn ∈ {0, n}.

If min (µn, n − µn) = ω
(√

µn log{max (µn, n− µn)}
)

, then the moments of
g(Xn) satisfy for m = 1, 2, . . .

E {g(Xn)
m} ≤ Γ

(

m+ 1
2

)

√
π

{

1 +O
(

√

µn log{max (µn, n − µn)}
min (µn, n− µn)

)}

.

Proof. To simplify notation, we suppress the dependence of X and µ on
n throughout; note, however, that m ∈ {1, 2, . . .} is fixed and so does not
depend on n. Using the fact that g(0) = g(n) = 0, we write

E {g(X)m} =

n
∑

k=0

g(k)m Pr (X = k) , m = 1, 2, . . .

=

n−1
∑

k=1

g(k)m Pr (X = k)

=





k1
∑

k=1

+

k2−1
∑

k=k1+1

+

n−1
∑

k=k2



 g(k)m Pr (X = k) ,(B.18)

with k1, k2 chosen to balance the contribution of the central sum in (B.18)
with that of the tail sums in (B.18):

k1 = max
{

1,
⌊

µ−
√

2µ(m+ δ) log µ
⌋}

,(B.19a)

k2 = min
{⌈

µ+
√

2µ(m+ δ) log(n− µ)
⌉

, n− 1
}

(B.19b)
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for any fixed δ > 0. Since g(k) ≥ 0 for every value of k, (B.18) implies that

E {g(X)m} ≤
{

max
1≤k≤k1

g(k)m
} k1
∑

k=1

Pr (X = k) +

k2−1
∑

k=k1+1

g(k)m Pr (X = k)

+

{

max
k2<k<n

g(k)m
} n−1
∑

k=k2

Pr (X = k)

≤
{

max
1≤k≤k1

g(k)m
}

Pr (X ≤ k1) +

k2−1
∑

k=k1+1

g(k)m Pr (X = k)

+

{

max
k2<k<n

g(k)m
}

Pr (X ≥ k2) .

(B.20)

We now bound the two tail terms in (B.20). From the definitions of k1 and
k2 in (B.19), our hypothesis min (µ, n− µ) = ω

(√

µ log{max (µ, n− µ)}
)

implies that eventually in n,

k1 = µ− ǫ1, ǫ1 ≥
√

2µ(m+ δ) log(µ),(B.21a)

k2 = µ+ ǫ2, ǫ2 ≥
√

2µ(m+ δ) log(n− µ).(B.21b)

Now recall the standard Chernoff bounds for Poisson–Binomial variates,
which hold for any ǫ > 0:

Pr (X ≤ µ− ǫ) ≤ exp

(

− ǫ2

2µ

)

,

Pr (X ≥ µ+ ǫ) ≤ exp

{

− ǫ2

2µ

(

1 +
ǫ

3µ

)−1
}

.

Applying these bounds to X ≤ µ − ǫ1 and X ≥ µ + ǫ2, respectively, we
conclude that eventually in n,

Pr (X ≤ k1) ≤ µ−(m+δ),

(B.22a)

Pr (X ≥ k2) ≤ exp

{

−(m+ δ) log(n− µ)

(

1 +

√
2(m+δ)

3

√

log(n−µ)
µ

)−1
}

= (n− µ)−(m+δ)

{

1 +O
(

√

log(n−µ)
µ

)}

,(B.22b)
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with the hypothesis min (µ, n− µ) = ω
(√

µ log{max (µ, n− µ)}
)

implying
that µ = ω

(

log(n− µ)
)

.
This hypothesis also implies that 1 < µ < n−1 eventually in n. Since g(k)

is strictly decreasing on 1 ≤ k < µ and strictly increasing on µ < k ≤ n− 1,
we have for m = 1, 2, . . . that max1≤k≤k1 g(k)

m = g(1)m ≤ (µ log µ)m and
maxk2<k<n g(k)

m = g(n− 1)m ≤ {(n− µ) log(n− µ)}m eventually in n.
Combining these two upper bounds with (B.20) and (B.22), we conclude

that, eventually in n,

(B.23) E {g(X)m} ≤ log(µ)mµ−δ +

k2−1
∑

k=k1+1

g(k)m Pr (X = k)

+ log(n − µ)m(n− µ)−δ

{

1 +O
(
√

log(n− µ)

µ

)}

.

As a final step, we bound
∑k2−1

k=k1+1 g(k)
m Pr (X = k) in (B.23). Recognizing

g(k) from (B.17) as a scaled form of a Bernoulli Kullback–Leibler divergence,
we have by the Taylor expansion of Lemma C.9 that

(B.24) g(k) ≤ n(k − µ)2

2µ(n − µ)

·
{

1 + 2
3

|k−µ|
min(µ,n−µ)

(

1− |k−µ|
min(µ,n−µ)

)−3
}

, |k − µ| < min(µ, n − µ).

Now, (B.21) implies that for all n sufficiently large,
|k − µ| ≤

√

2µ(m+ δ) log{max(µ, n − µ)} + 1 whenever k ∈ {k1, . . . , k2},
and so

|k − µ|
min (µ, n− µ)

≤
√

2(m+ δ)

[

√

µ log{max(µ, n − µ)}
min (µ, n− µ)

]

·
[

1 +
1

√

2µ(m+ δ) log{max(µ, n − µ)}

]

= O
(

√

µ log{max(µ, n − µ)}
min(µ, n − µ)

)

, k1 ≤ k ≤ k2,(B.25)

since the hypothesis min (µ, n− µ) = ω
(√

µ log{max (µ, n− µ)}
)

implies
that µ = ω(log n). From (B.25), we see that this hypothesis also implies
that the Lagrange remainder term in (B.24) is o(1).
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Therefore, we may use the Taylor expansion of (B.24) to obtain the upper
bound

k2−1
∑

k=k1+1

g(k)m Pr (X = k)

≤
k2−1
∑

k=k1+1

{

n(k − µ)2

2µ(n − µ)

}m{

1 +O
( |k − µ|
min(µ, n− µ)

)}m

Pr (X = k)

=

{

n

2µ(n − µ)

}m
{

1 +O
(

√

µ log{max(µ, n − µ)}
min(µ, n − µ)

)}

(B.26)

·
k2−1
∑

k=k1+1

(k − µ)2m Pr (X = k) .

Noting that each term appearing in the sum of (B.26) is nonnegative, we
see that

k2−1
∑

k=k1+1

(k − µ)2m Pr (X = k) ≤





k1
∑

k=0

+

k2−1
∑

k=k1+1

+

n
∑

k=k2



 (k − µ)2m Pr (X = k)

= E
{

(X − µ)2m
}

, m = 1, 2, . . . ,

with each E
{

(X − µ)2m
}

an even-order central moment of the Poisson–
Binomial random variable X.

Shaked and Shanthikumar (1994, Theorem 3.A.37) show that
Y ∼ Binomial(n, µ/n) is larger than X in the convex order, meaning that
Eφ(X) ≤ Eφ(Y ) holds for all convex functions φ : R → R for which the
expectations exist. Since the even-order central moments E(Y − µ)2m exist
and are convex for all m = 1, 2, . . ., it follows that

E
{

(X − µ)2m
}

≤ E
{

(Y − µ)2m
}

, m = 1, 2, . . . ,

where X is the Poisson–Binomial variate under study and the random vari-
able Y ∼ Binomial(n, µ/n) has a matched mean.

As observed by Romanovsky (1923), the central moments of the Binomial
distribution admit a recurrence relation that allows each of their leading-
order terms to be expressed in closed form:

E
{

(Y − µ)2m
}

= (2m− 1)!! (varY )m
{

1 +O
(

1

varY

)}

,

with
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varY =
µ(n− µ)

n

=

{

max (µ, n− µ)

n

}

min (µ, n− µ)

= Θ
(

min (µ, n− µ)
)

.

Thus we have from (B.26) that

k2−1
∑

k=k1+1

g(k)m Pr (X = k) ≤
{

n

2µ(n − µ)

}m
{

1 +O
(

√

µ log{max(µ, n− µ)}
min(µ, n− µ)

)}

·
[

(2m− 1)!!

{

µ(n− µ)

n

}m{

1 +O
(

1

min (µ, n− µ)

)}]

=
(2m− 1)!!

2m

{

1 +O
(

√

µ log{max(µ, n− µ)}
min(µ, n− µ)

)}

,(B.27)

where the combination of the O(·) terms follows because µ = ω(log n) is
implied by the hypothesis that min (µ, n− µ) = ω

(√

µ log{max (µ, n− µ)}
)

.
Finally, combining (B.23) with (B.27), and noting that (2m − 1)!!/2m =
Γ(m + 1/2)/

√
π, we obtain for any choice of δ > 0 and every fixed m =

1, 2, . . . that

E {g(X)m} ≤ log(µ)mµ−δ+
Γ(m+ 1/2)√

π

{

1 +O
(

√

µ log{max(µ, n − µ)}
min(µ, n − µ)

)}

+ log(n − µ)m(n− µ)−δ

{

1 +O
(
√

log(n− µ)

µ

)}

,

eventually in n. To complete the proof, observe that δ > 0 can be chosen
for each m such that the terms log(µ)mµ−δ and log(n− µ)m(n− µ)−δ tend
to 0 arbitrarily quickly in n, thus yielding the theorem.

APPENDIX C: PROOF OF THEOREM 6.1 AND LEMMAS

C.1. Proof of Theorem 6.1.

Proof. Recall that our aim is to establish (6.3), which asserts that
minz∈Zk

∑

i<j D
(

pij
∣

∣

∣

∣ p̄zizj
)

= OP

({

n−α + (n/h∨)
−2α
}

·∑i<j pij
)

. We will
do so by upper-bounding this risk in terms of a random community assign-
ment vector z̃∗ that depends on the ordered sample {ξ(i)}ni=1 of Uniform(0, 1)
variates that index the graphon f . Convergence of this ordered sample to
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the lattice (n+ 1)−1(1, . . . , n), coupled with the uniform continuity of f , as
enforced by a Hölder assumption, will yield the result.

We proceed as follows. Let z∗ be any minimizer of
∑

i<j D
(

pij
∣

∣

∣

∣ p̄zizj
)

over the set Zk of admissible blockmodel assignment vectors, and define
z̃∗i = H−1

k,z∗ {(i)−1/n}, with (i)−1 the rank of ξi from smallest to largest.

Thus z̃∗ = H−1
k,z∗ ◦ (·)−1, and therefore by construction, condition 3 of the

theorem ensures that z̃∗ ∈ Zk for any z∗ ∈ Zk. Hence we have the following
upper bound:

min
z∈Zk

∑

i<j

D
(

pij
∣

∣

∣

∣ p̄zizj
)

≤
∑

i<j

D
(

pij

∣

∣

∣

∣

∣

∣ p̄z̃∗i z̃∗j

)

=
∑

i<j

D
(

p(i)(j)

∣

∣

∣

∣

∣

∣ p̄z̃∗
(i)

z̃∗
(j)

)

,

with equality stemming from the fact that the sum over all i < j is invariant
to permutation, and hence we may re-order it in accordance with the ordered
sample {ξ(i)}ni=1.

Conditions 1 and 2 of the theorem then imply that Lemma C.1 holds,
thereby completing the proof.

C.2. Auxiliary lemmas needed for Theorem 6.1.

Lemma C.1. If rn → 0 in Lemma C.4, then

∑

i<jD
(

p(i)(j)

∣

∣

∣

∣

∣

∣
p̄z̃(i)z̃(i)

)

∑

i<j ρnf(ξi, ξj)
= OP

(

r2n
)

.

Proof. This follows from via Slutsky’s theorem, after combining the
results of Lemmas C.2 and C.3:

(n
2

)−1∑

i<j f (ξi, ξj) =
∫∫

(0,1)2 f (x, y) dx dy +OP

(

n−1/2
)

,
{

ρn
(n
2

)}−1∑

i<j D
(

p(i)(j)

∣

∣

∣

∣

∣

∣ p̄z̃(i)z̃(i)

)

= OP

(

r2n
)

.

Since the denominator term converges in probability to a constant, it also
converges in law. Thus by Slutsky’s theorem, the ratio converges in law to
a constant, and hence it also converges in probability.

Lemma C.2. Let f be a symmetric measurable function on (0, 1)2 with
bounded magnitude, and let {ξi}ni=1 be a random sample of Uniform(0, 1)
variates. Then

(n
2

)−1∑

i<j f (ξi, ξj) =
∫∫

(0,1)2 f (x, y) dx dy +OP

(

n−1/2
)

.



40 WOLFE & OLHEDE

Proof. The result follows from Chebyshev’s inequality. We obtain the
necessary moments as

E
(n
2

)−1∑

i<j f (ξi, ξj) =
∫∫

(0,1)2 f (x, y) dx dy,

var
(n
2

)−1∑

i<j f (ξi, ξj) =
(n
2

)−2∑

i<j

∑

k<l cov {f (ξi, ξj) , f (ξk, ξl)} .
(C.1)

Since |f (x, y)| is bounded by hypothesis, |cov {f (ξi, ξj) , f (ξk, ξl)}| is also
bounded. Furthermore, since elements of {ξ1, . . . , ξn} are independent, any
individual covariance term appearing in the sum of (C.1) can be nonzero
only if (i = k) ∪ (i = l) ∪ (j = k) ∪ (j = l). Thus we conclude that

var
(n
2

)−1∑

i<j f (ξi, ξj)

= O
(

(

n
2

)−2∑

i<j

∑

k<l {I (i = k) + I (i = l) + I (j = k) + I (j = l)}
)

.

The right-hand side of this expression is O
(

n−1
)

, and so Chebyshev’s in-
equality yields the result.

Lemma C.3. Whenever rn → 0 in (C.3) from Lemma C.4, we have that

{

ρn
(

n
2

)}−1∑

i<j D
(

p(i)(j)

∣

∣

∣

∣

∣

∣ p̄z̃(i) z̃(i)

)

= OP

(

r2n
)

.

Proof. The result follows by combining Lemmas C.4 and C.8. From
Lemma C.4, we have directly that

ρ−1
n D

(

p(i)(j)

∣

∣

∣

∣

∣

∣
p̄z̃(i)z̃(i)

)

= ρ−1
n D

{

p(i)(j)
∣

∣

∣

∣ ρnf̄
(

ξ(i), ξ(j)
)}

+OP

(

r2n
)

under the hypothesis that rn → 0, and thus

{

ρn
(n
2

)}−1∑

i<j D
(

p(i)(j)

∣

∣

∣

∣

∣

∣ p̄z̃(i)z̃(i)

)

=
{

ρn
(n
2

)}−1∑

i<j D
{

p(i)(j)
∣

∣

∣

∣ ρnf̄
(

ξ(i), ξ(j)
)}

+OP

(

r2n
)

=
{

ρn
(n
2

)}−1∑

i<j D
{

ρnf (ξi, ξj)
∣

∣

∣

∣ ρnf̄ (ξi, ξj)
}

+OP

(

r2n
)

,

after re-ordering the sum and applying the identity pij = ρnf (ξi, ξj). The
right-hand side of this expression is treated by Lemma C.8, which shows
whenever max1≤a,b≤k ∆ab = o(1) in (C.20) that

(C.2)
{

ρn
(n
2

)}−1
E
∑

i<j

D
{

ρnf (ξi, ξj)
∣

∣

∣

∣ ρnf̄ (ξi, ξj)
}

=
ρnM

2
(√

2max1≤a≤k ha/n
)2α {1 + o(1)}

min1≤a,b≤k

{

min
(

ρnf̄ab, 1− ρnf̄ab

)} .
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Since (C.21) of Lemma C.8 upper-bounds each ∆ab by the ratio of terms
ρnM

(√
2maxa ha/n

)α
/min

(

ρnf̄ab, 1− ρnf̄ab

)

, we see that ∆ab = O (rn),
and so the hypothesis rn → 0 is sufficient to imply that maxa,b ∆ab = o(1).

We also see that the main term in (C.2) is O
(

r2n
)

, since the quantity
min1≤a,b≤k

{

min
(

f̄ab, ρ
−1
n − f̄ab

)}

≤ sup(x,y)∈(0,1)2 f (x, y), and thus after
applying Markov’s inequality via (C.2), we obtain the result.

Lemma C.4. Let f be a symmetric Hölderα(M) function on (0, 1)2, with
f̄ (x, y;h) = f̄H−1(x)H−1(y) its stepfunction approximation, and let {ξ(i)}ni=1

be an ordered sample of independent Uniform(0, 1) random variables. As-
sume ρn > 0 and 0 < ρnf (x, y) < 1 everywhere on (0, 1)2. Then for any
z̃ such that Πz̃ = (·)−1, with (i)−1 denoting the rank of ξi from smallest to
largest, we have

ρ−1
n D

(

p(i)(j)

∣

∣

∣

∣

∣

∣ p̄z̃(i)z̃(i)

)

= ρ−1
n D

{

p(i)(j)
∣

∣

∣

∣ ρnf̄
(

ξ(i), ξ(j)
)}

+OP

(

r2n
)

whenever

(C.3) rn =

ρnM 2α/2
{

21−α

nα/2 +
2(max1≤a≤k ha)

α
+1+2α I(z̃(i)=z̃(j))
nα

}

min1≤a,b≤k

{

min
(

ρnf̄ab, 1 − ρnf̄ab

)} → 0.

Proof. We apply Taylor’s theorem, after first establishing via Markov’s
inequality that

(C.4) δn =
p̄z̃(i)z̃(i) − ρnf̄

(

ξ(i), ξ(j)
)

min
{

ρnf̄
(

ξ(i), ξ(j)
)

, 1− ρnf̄
(

ξ(i), ξ(j)
)} = OP (rn) .

To show (C.4), we lower-bound the denominator of δn, and then apply
Lemma C.5 to upper-bound E |δn|:

E |δn| ≤ E
ρn

∣

∣

∣
ρ−1
n p̄z̃(i)z̃(i) − f̄

(

ξ(i), ξ(j)
)

∣

∣

∣

min1≤a,b≤k

{

min
(

ρnf̄ab, 1− ρnf̄ab

)} ≤ rn.

We now apply Taylor’s theorem to expand D
(

p(i)(j)

∣

∣

∣

∣

∣

∣
p̄z̃(i)z̃(i)

)

as a func-

tion of δn about the point ρnf̄
(

ξ(i), ξ(j)
)

. Writing ¯̄p(i)(j) for ρnf̄
(

ξ(i), ξ(j)
)

,
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we have that if rn → 0, then

∣

∣

∣
D
(

p(i)(j)

∣

∣

∣

∣

∣

∣
p̄z̃(i)z̃(i)

)

−D
(

p(i)(j)
∣

∣

∣

∣ ¯̄p(i)(j)
)

∣

∣

∣
=

∣

∣

∣

∣

∣

(

¯̄p(i)(j) − p(i)(j)
) p̄z̃(i)z̃(i) − ¯̄p(i)(j)
¯̄p(i)(j)

(

1− ¯̄p(i)(j)
)

+
1

2

{

p(i)(j)
(

1− 2¯̄p(i)(j)
)

+ ¯̄p2(i)(j)

}

{

p̄z̃(i) z̃(i) − ¯̄p(i)(j)
¯̄p(i)(j)

(

1− ¯̄p(i)(j)
)

}2

+ oP
(

ρnr
2
n

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

¯̄p(i)(j) − p(i)(j)

max
(

¯̄p(i)(j), 1− ¯̄p(i)(j)
) δn +

p(i)(j)
(

1− 2¯̄p(i)(j)
)

+ ¯̄p2(i)(j)

2
{

max
(

¯̄p(i)(j), 1− ¯̄p(i)(j)
)}2 δ

2
n + oP

(

ρnr
2
n

)

∣

∣

∣

∣

∣

< 2ρnM
(√

2max1≤a≤k ha/n
)α |δn|+ 3ρn sup(x,y)∈(0,1)2 f (x, y) δ2n + oP

(

ρnr
2
n

)

,

(C.5)

where the terms in (C.5) follow because, by Lemma C.6,
∣

∣ ¯̄p(i)(j) − p(i)(j)
∣

∣ ≤
ρnM

(√
2max1≤a≤k ha/n

)α
, since f ∈ Hölderα(M); also, since 0 < ¯̄p(i)(j) <

1, we have that
∣

∣1− 2¯̄p(i)(j)
∣

∣ /max
(

¯̄p(i)(j), 1− ¯̄p(i)(j)
)

< 1; and likewise we
have max

(

¯̄p(i)(j), 1− ¯̄p(i)(j)
)

≥ 1/2. Since f ∈ Hölderα(M) is bounded by
hypothesis, the right-hand side of (C.5) is OP

(

ρnr
2
n

)

. The lemma follows
from multiplying both sides of (C.5) by ρ−1

n .

Lemma C.5. Let f be a symmetric Hölderα(M) function on (0, 1)2, and
let {ξ(i)}ni=1 be an ordered sample of independent Uniform(0, 1) variates. Let
ρn > 0 and define for zi = H−1{Πz(i)/n}:
(C.6)

p̄(z)ab =
1

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

ρnf
(

ξΠ−1
z (i), ξΠ−1

z (j)

)

.

Then for any z̃ such that Πz̃ = (·)−1, with (i)−1 denoting the rank of ξi from
smallest to largest, we have

(C.7) E
∣

∣

∣ρ−1
n p̄z̃(i)z̃(j)−f̄

(

ξ(i), ξ(j)
)

∣

∣

∣

≤ M 2α/2

{

21−α

nα/2
+
2 (max1≤a≤k ha)

α+1+2α I
(

z̃(i)= z̃(j)
)

nα

}

.

Proof. Define the k × k matrix f̃ such that ρ−1
n p̄(z̃)ab = f̃(z̃)ab +

OP

(

n−α/2
)

when f is α-Hölder:
(C.8)

f̃(z)ab =
1

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

f

(

Π−1
z {(i)−1}

n+1 ,
Π−1

z {(j)−1}
n+1

)

.
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Note that f̃(z̃) is deterministic, since the set of admissible z̃ has been chosen
such that Π−1

z

{

(i)−1
}

= i for all 1 ≤ i ≤ n. We will then obtain our claimed
result by bounding the expectation of

(C.9)
∣

∣

∣ρ−1
n p̄z̃(i)z̃(j) − f̄

(

ξ(i), ξ(j)
)

∣

∣

∣

≤
∣

∣

∣
ρ−1
n p̄z̃(i)z̃(j) − f̃ z̃(i) z̃(j)

∣

∣

∣
+
∣

∣

∣
f̃ z̃(i)z̃(j)

− f̄ (in, jn)
∣

∣

∣
+
∣

∣f̄ (in, jn)− f̄
(

ξ(i), ξ(j)
)∣

∣ .

We begin with the final term in (C.9), for which Lemma C.7 immediately
yields
(C.10)

E
∣

∣f̄ (in, jn)−f̄
(

ξ(i), ξ(j)
)∣

∣ ≤ M {2(n+ 2)}−α/2+2M
(√

2max1≤a≤k ha/n
)α

.

Next we consider the first term in (C.9). To bound its expectation, note
that both ρ−1

n p̄(z̃)ab and f̃(z̃)ab are averages over the same subset of indices
(i, j). From (C.6) and (C.8), we then have that

E
∣

∣

∣ρ−1
n p̄(z̃)ab − f̃(z̃)ab

∣

∣

∣

≤ 1

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

E
∣

∣

∣
f
(

ξ(i), ξ(j)
)

− f
(

i
n+1 ,

j
n+1

)

∣

∣

∣

(C.11)

≤ 1 ·M {2(n + 2)}−α/2 ,

(C.12)

with the final inequality following again from Lemma C.7. Since (C.12) holds
uniformly over all z̃ and every 1 ≤ a, b ≤ k, we have bounded E

∣

∣ρ−1
n p̄z̃(i) z̃(j)−

f̃ z̃(i) z̃(j)

∣

∣.

It remains only to bound E
∣

∣f̃ z̃(i)z̃(j)
− f̄ (in, jn)

∣

∣. We will do so using the
following deterministic upper bound, which we prove below, and which holds
uniformly over all z̃ and every 1 ≤ a, b ≤ k:

∣

∣

∣f̃(z̃)ab − f̄(z̃)ab

∣

∣

∣ ≤ M
{
√
2/(n+ 1)

}α
+M

(
√
2ha/n

)α
(ha − 1)−1

I (a = b)

(C.13)

≤ M 2α/2 n−α {1 + 2α I (a = b)} .(C.14)

Here the second inequality following because, by definition, any H(·) has
min1≤a≤k ha ≥ 2.
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Lemma C.10 yields (in, jn) ∈ ωz̃(i)z̃(j) for any z̃; thus f̄ z̃(i)z̃(j)
= f̄ (in, jn),

and so if (C.13) holds, then it applies to
∣

∣f̃ z̃(i)z̃(j)
− f̄ (in, jn)

∣

∣. Finally, sum-

ming (C.10), (C.12) and (C.14) to obtain (C.7) completes the proof.
To establish (C.13), let in = i/(n+1), and multiply f̃(z̃)ab from (C.8) by

1 = n2/n2 to obtain

f̃(z̃)ab =
n2

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

(

1

n2

)

f (in, jn) , 1 ≤ a < b ≤ k,

=
n2

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

(

∫ j
n

j−1
n

∫ i
n

i−1
n

dx dy

)

f (in, jn)

=
n2

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

(C.15)

·
∫

j
n

j−1
n

∫ i
n

i−1
n

[f (x, y) + {f (in, jn)− f (x, y)}] dx dy.

(C.16)

From (C.15) we will obtain the left-hand side of (C.13), plus a remainder
term when a = b, by writing

(C.17)

f̃(z̃)ab −
n2

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

∫
j
n

j−1
n

∫ i
n

i−1
n

f (x, y) dx dy

= f̃(z̃)ab−























n2

hahb

∫ H(b)

H(b−1)

∫ H(a)

H(a−1)
f (x, y) dx dy a 6= b,

n2

(

hb
2

)

nH(b)
∑

j=nH(b−1)+1

∫
j
n

j−1
n

(

∫ y

H(a−1)
−
∫ y

j−1
n

)

f (x, y) dx dy a = b.

We recognize the first case in (C.17) as f̄(z̃)ab,a6=b. Since f is symmetric, the
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second case can be written

f̄(z̃)bb +

nH(b)
∑

j=nH(b−1)+1

∫
j
n

j−1
n

[{

n2

(

hb
2

) − 2n2

h2b

}

∫ y

H(b−1)
− n2

(

hb
2

)

∫ y

j−1
n

]

f (x, y) dx dy

= f̄(z̃)bb +
1

hb − 1

nH(b)
∑

j=nH(b−1)+1

∫
j
n

j−1
n

{

2n2

h2b

∫ y

H(b−1)
−2n2

hb

∫ y

j−1
n

}

f (x, y) dx dy

= f̄(z̃)bb +
1

hb − 1







f̄(z̃)bb −
1

hb

nH(b)
∑

j=nH(b−1)+1

2n2

∫
j
n

j−1
n

∫ y

j−1
n

f (x, y) dx dy







= f̄(z̃)bb +
1

hb − 1





1

hb

nH(b)
∑

j=nH(b−1)+1

2n2

∫ j
n

j−1
n

∫ y

j−1
n

{

f̄(z̃)bb − f (x, y)
}

dx dy



 .

Since f̄ (x, y;h) = f̄(z̃)bb on the domain of interest ωbb = [H(b− 1),H(b))2,
we conclude

1

hb

nH(b)
∑

j=nH(b−1)+1

2n2

∫
j
n

j−1
n

∫ y

j−1
n

∣

∣f̄(z̃)bb − f (x, y)
∣

∣ dx dy ≤ 1 · 1 ·
∥

∥f̄ − f |ωbb

∥

∥

L∞(ωbb)

≤ M
(
√
2hb/n

)α
,

with the latter inequality from (C.19) of Lemma C.6, since f ∈ Hölderα(M).
This yields the upper bound term in (C.13) specific to a = b. To derive the
main term in (C.13), we return to (C.15), noting from Lemma C.7:

∣

∣

∣

∣

∣

n2

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

∫
j
n

j−1
n

∫ i
n

i−1
n

{f (in, jn)− f (x, y)} dx dy

∣

∣

∣

∣

∣

∣

≤ 1

h2ab

nH(b)
∑

j=nH(b−1)+1

nH(a) I(a6=b)+(j−1) I(a=b)
∑

i=nH(a−1)+1

· n2

∫ j
n

j−1
n

∫ i
n

i−1
n

|f (in, jn)− f (x, y)| dx dy

≤ 1 · 1 ·M
{
√
2/(n+ 1)

}α
.

Lemma C.6. Let f be a Hölderα(M) function on (0, 1)2, with f̄ (x, y;h) =
f̄H−1(x)H−1(y) its stepfunction approximation. Then for all 0 < p ≤ ∞,

‖f − f̄‖Lp((0,1)2) ≤ M
(√

2max1≤a≤k ha/n
)α

.
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Proof. Let ωab = [H(a− 1),H(a)) × [H(b− 1),H(b)) ⊆ (0, 1)2, and
denote by f |ωab

the restriction of f to ωab. By the definitions of f̄ab and
f̄ (x, y),

∣

∣f̄ab − f (x, y)
∣

∣ =

∣

∣

∣

∣

1

|ωab|

∫∫

ωab

f
(

x′, y′
)

dx′ dy′ − f (x, y)

∣

∣

∣

∣

, (x, y) ∈ (0, 1)2

⇒
∣

∣f̄ (x, y)− f (x, y)
∣

∣ ≤ 1

|ωab|

∫∫

ωab

∣

∣f
(

x′, y′
)

− f (x, y)
∣

∣ dx′ dy′, (x, y) ∈ ωab

⇒
∥

∥f̄ − f |ωab

∥

∥

L∞(ωab)
≤ 1

|ωab|

∫∫

ωab

∣

∣f
(

x′, y′
)

− f (x, y)
∣

∣ dx′ dy′, (x, y) ∈ ωab

≤ M

|ωab|

∫∫

ωab

∣

∣(x, y)− (x′, y′)
∣

∣

α
dx′ dy′, (x, y) ∈ ωab,(C.18)

since |f (x, y)− f (x′, y′)| ≤ M |(x, y)− (x′, y′)|α = M {(x − x′)2 + (y −
y′)2}α/2 holds on (0, 1)2.

To simplify (C.18), note that the diameter sup(x,y),(x′,y′)∈ωab
|(x, y)− (x′, y′)|

of the rectangular domain ωab evaluates to
√

h2a + h2b/n, where ha = H(a)−
H(a− 1). Thus (C.18) implies

(C.19)
∥

∥f̄ − f |ωab

∥

∥

L∞(ωab)
≤ M

(

√

h2a + h2b/n
)α

, 1 ≤ a, b ≤ k,

and so we immediately conclude ‖f̄ − f‖L∞((0,1)2) ≤ M
(√

2maxa ha/n
)α

.
Thus for any 0 < p < ∞,

‖f̄ − f‖p
Lp((0,1)2)

=

∫∫

(0,1)2

∣

∣f̄ (x, y)− (x, y)
∣

∣

p
dx dy

≤
∫∫

(0,1)2

{

‖f̄ − f‖L∞((0,1)2)

}p
dx dy.

Lemma C.7. Let f be a Hölderα(M) function on (0, 1)2, and let {ξ(i)}ni=1

be an ordered sample of independent Uniform(0, 1) random variables. Then,
recalling that E ξ(i) = i/(n + 1), we have for 1 ≤ i, j ≤ n:

E
∣

∣

∣
f
(

ξ(i), ξ(j)
)

− f
(

i
n+1 ,

j
n+1

)

∣

∣

∣

β
≤ Mβ {2(n + 2)}−αβ/2 , 0 < β ≤ 2;

E
∣

∣

∣
f̄
(

ξ(i), ξ(j)
)

− f̄
(

i
n+1 ,

j
n+1

)

∣

∣

∣
≤ M {2(n + 2)}−α/2 + 2M

(√
2max1≤a≤k ha/n

)α
,

where f̄ (x, y;h) = f̄H−1(x)H−1(y) is the stepfunction approximation of f .
Furthermore, we have for 1 ≤ i, j ≤ n that
∣

∣

∣f
(

i
n+1 ,

j
n+1

)

− f (x, y)
∣

∣

∣ ≤ M
{
√
2/(n+1)

}α
, (x, y) ∈

(

i−1
n , i

n

)

×
(

j−1
n , j

n

)

.
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Proof. Let in = E ξ(i) = i/(n + 1). Since f ∈ Hölderα(M), it holds
everywhere on (0, 1)2 that

∣

∣f
(

ξ(i), ξ(j)
)

− f (in, jn)
∣

∣

β ≤
{

M
∣

∣(ξ(i), ξ(j))− (in, jn)
∣

∣

α}β
, 1 ≤ i, j ≤ n,

where |·| is the Euclidean metric on R
2. By Jensen’s inequality, we have for

any 0 < αβ ≤ 2 that for 1 ≤ i, j ≤ n,

E
{

(ξ(i) − in)
2 + (ξ(j) − jn)

2
}αβ/2 ≤

(

var ξ(i) + var ξ(j)
)αβ/2 ≤ {2(n + 2)}−αβ/2 ,

with the latter inequality via var ξ(i) = in(1 − in)/(n + 2) ≤ (1/4)/(n + 2).
This proves the first result. For the second, we use Lemma C.6 and a chaining
argument, since f̄ is piecewise-constant on blocks:
∣

∣f̄
(

ξ(i), ξ(j)
)

− f̄ (in, jn)
∣

∣ ≤
∣

∣

(

f̄ − f
) (

ξ(i), ξ(j)
)∣

∣+
∣

∣f
(

ξ(i), ξ(j)
)

− f (in, jn)
∣

∣

+
∣

∣

(

f − f̄
)

(in, jn)
∣

∣

≤
∣

∣f
(

ξ(i), ξ(j)
)

− f (in, jn)
∣

∣+ 2M
(√

2max1≤a≤k ha/n
)α

.

Finally, f ∈ Hölderα(M) implies for (x, y) ∈
(

i−1
n , i

n

)

×
(

j−1
n , j

n

)

the uniform

upper bound for 1 ≤ i, j ≤ n:

|f (in, jn)− f (x, y)| ≤ M sup
(x,y)∈( i−1

n
, i
n)×(

j−1
n

, j
n)

{

(in − x)2 + (jn − y)2
}α/2

≤ M

[

max
1≤i≤n

{

2max

(

(in)
2

n2
,
(1− in)

2

n2

)}]α/2

.

Lemma C.8. Let f be a symmetric Hölderα(M) function on (0, 1)2, with
stepfunction approximation f̄ (x, y;h) = f̄H−1(x)H−1(y), and let {ξ(i)}ni=1 be
an ordered sample of independent Uniform(0, 1) random variables. Then
whenever ρn > 0 and 0 < ρnf (x, y) < 1 everywhere on (0, 1)2,

(C.20)
{

ρn
(

n
2

)}−1
Eξ

∑

i<j

D
{

ρnf (ξi, ξj)
∣

∣

∣

∣ ρnf̄ (ξi, ξj)
}

≤ ρnM
2
(√

2max1≤a≤k ha/n
)2α

min1≤a,b≤k

{

min
(

ρnf̄ab, 1− ρnf̄ab

)} · max
1≤a,b≤k

[

1 + ∆ab

{

1 +
2

3

1 + 2∆ab

(1−∆ab)
3

}]

,

where for f |ωab
the restriction of f to ωab = [H(a− 1),H(a))×[H(b− 1),H(b)),

we define
(C.21)

∆ab =
ρn
∥

∥f |ωab
− f̄ab

∥

∥

L∞(ωab)

min
(

ρnf̄ab, 1− ρnf̄ab

) ≤ ρnM
(√

2max1≤a≤k ha/n
)α

min
(

ρnf̄ab, 1− ρnf̄ab

) , 1 ≤ a, b ≤ k.
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Proof. Since {ξi}ni=1 is a random sample of Uniform(0, 1) variates, and
f is symmetric, we have

(C.22)
{

ρn
(n
2

)}−1
Eξ

∑

i<j

D
{

ρnf (ξi, ξj)
∣

∣

∣

∣ ρnf̄ (ξi, ξj)
}

=

∫∫

(0,1)2
ρ−1
n D

{

ρnf(x, y)
∣

∣

∣

∣ ρnf̄ (x, y)
}

dx dy.

Let p = ρnf̄ and δ = ρn(f − f̄) pointwise on (0, 1)2, in order to apply
Lemma C.9 to the integrand of (C.22), and define the following ratio: ∆ab =
ρn
∥

∥f |ωab
− f̄ab

∥

∥

L∞(ωab)
/min

(

ρnf̄ab, 1 − ρnf̄ab

)

. We may then write

∫∫

(0,1)2
ρ−1
n D

{

ρnf(x, y)
∣

∣

∣

∣ ρnf̄ (x, y)
}

dx dy

=

k
∑

a=1

k
∑

b=1

∫∫

ωab

ρ−1
n D

{

ρnf(x, y)
∣

∣

∣

∣ ρnf̄ab
}

dx dy

≤
k
∑

a=1

k
∑

b=1

∫∫

ωab

ρ−1
n

∣

∣ρnf(x, y)− ρnf̄ab
∣

∣

2

2ρnf̄ab
(

1− ρnf̄ab
)

[

1 + ∆ab

{

1 +
2

3

1 + 2∆ab

(1−∆ab)
3

}]

dx dy

≤ max
1≤a,b≤k





1 + ∆ab

{

1 + 2
3

1+2∆ab

(1−∆ab)
3

}

2ρnf̄ab
(

1− ρnf̄ab
)



 ρn‖f − f̄‖2L2((0,1)2)
.

Our final step is to control the norms
∥

∥f |ωab
− f̄ab

∥

∥

L∞(ωab)
and ‖f−f̄‖2L2((0,1)2)

in this bound. To do so, we apply Lemma C.6, which asserts that whenever
f ∈ Hölderα(M), we have for all 1 ≤ a, b ≤ k that
(C.23)

∥

∥f |ωab
− f̄ab

∥

∥

L∞(ωab)
≤ ‖f − f̄‖L2((0,1)2) ≤ M

(√
2max1≤a≤k ha/n

)α
.

The result follows from (C.23), since by hypothesis max
(

ρnf̄ab, 1− ρnf̄ab

)

≥
1/2 for every (a, b), and so

ρn‖f − f̄‖2L2((0,1)2)

2ρnf̄ab
(

1− ρnf̄ab
) ≤

ρn‖f − f̄‖2L2((0,1)2)

min
(

ρnf̄ab, 1− ρnf̄ab

) ≤ ρnM
2
(√

2max1≤a≤k ha/n
)2α

min
(

ρnf̄ab, 1− ρnf̄ab

) .

Lemma C.9. Consider the Bernoulli Kullback–Leibler divergence quan-
tities D(p || p+ δ) and D(p+ δ || p), where 0 < p < 1 and −p ≤ δ ≤ 1 − p.
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If |δ| < min (p, 1− p), then the following bounds hold:
∣

∣

∣

∣

D(p || p+δ)−
δ2

2p(1−p)

∣

∣

∣

∣

δ2/{2p(1−p)}
≤ 2

3
|δ|

min(p,1−p)

(

1− |δ|
min(p,1−p)

)−3
,

∣

∣

∣

∣

D(p+δ || p)−
δ2

2p(1−p)

∣

∣

∣

∣

δ2/{2p(1−p)}
≤ |δ|

min(p,1−p)

{

1 + 2
3

(

1 + 2|δ|
min(p,1−p)

)(

1− |δ|
min(p,1−p)

)−3
}

.

Now consider ρn, f, g > 0 such that 0 < ρnf, ρng < 1. Then |f − g|2 ≤
2fρ−1

n D(ρnf || ρng).

Proof. The first result follows by manipulating a Taylor series expansion
of D (p || p+ δ) using the Lagrange form of the remainder. For some δ′, δ′′

satisfying 0 < |δ′| < |δ| and 0 < |δ′′| < |δ|, we have
(C.24)

D (p || p+ δ) = δ2

2p(1−p)

[

1 + 2
3

δ
min(p,1−p)

{

p2
(

1−
δ′′

1−p

)−3
−(1−p)2

(

1+
δ′

p

)−3

max(p,1−p)

}]

.

The first result then follows by controlling the scaled difference of the re-
mainder terms appearing in (C.24), both of which are non-negative. We
upper-bound this difference by the maximum of these two quantities, writ-
ing

max
{

p2
(

1− δ′′

1− p

)−3
, (1 − p)2

(

1 +
δ′

p

)−3}

≤
{

max (p, 1− p)
}2 {

1− |δ| /min (p, 1− p)
}−3

.

The second result follows similarly, by manipulating a Taylor series expan-
sion of D (p+ δ || p).

The final result follows from rewriting D (ρnf || ρng) as D (ρn(g + d) || ρng),
with d = f−g. We first bound the second derivative of D (ρn(g + d) || ρng) in
d below by ρn/f , and then integrate twice, using that D (ρn(g + d) || ρng) = 0
if d = 0.

Lemma C.10. Let in = i/(n + 1) and jn = j/(n + 1). Then (in, jn) ∈
ωaibj , where ai and bj are defined by

ai = H−1 (i/n) , bj = H−1 (j/n) , 1 ≤ a, b ≤ k, 1 ≤ i, j ≤ n.

Proof. From the definition of ai we may directly compute

H {ai} = H
{

H−1 (i/n)
}

= n−1

min{H−1(i/n),k}
∑

a=1

ha

{

= i/n if
∑ai

a=1 ha = i,

≥ (i+ 1)/n if
∑ai

a=1 ha 6= i.
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We also have that

H (ai − 1) = H
{

H−1 (i/n)− 1
}

= n−1

min{H−1(i/n)−1,k}
∑

a=1

ha

{

= (i− 1)/n if
∑ai−1

a=1 ha = i− 1,

≤ (i− 2)/n if
∑ai−1

a=1 ha 6= i− 1.

We have by definition that ωaibj =
[

H
{

H−1 (i/n)− 1
}

,H
{

H−1 (i/n)
})

×
[

H
{

H−1 (j/n)− 1
}

,H
{

H−1 (j/n)
})

. SinceH(·) and its inverse H−1(·) are
non-decreasing functions, it follows that H

{

H−1 (i/n)
}

≥ i/n ≥ i/(n+1) =
in. Thus the claimed upper bound is respected. Furthermore, for the lower
limit, H

{

H−1 (i/n)− 1
}

≤ (i − 1)/n ≤ in, as (i − 1)/n ≤ i/(n + 1) =
in ⇔ i ≤ n+ 1. Thus the claimed lower bound is also respected, and so by
symmetry, we conclude that (in, jn) ∈ ωaibj .
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