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Abstract

Identifying disease-related genes is an important issue in computational biology. Module structure widely exists in biomolecule
networks, and complex diseases are usually thought to be caused by perturbations of local neighborhoods in the networks, which can
provide useful insights for the study of disease-related genes. However, the mining and effective utilization of the module structure
is still challenging in such issues as a disease gene prediction.
We propose a hybrid disease-gene prediction method integrating multiscale module structure (HyMM), which can utilize multiscale
information from local to global structure to more effectively predict disease-related genes. HyMM extracts module partitions from
local to global scales by multiscale modularity optimization with exponential sampling, and estimates the disease relatedness of
genes in partitions by the abundance of disease-related genes within modules. Then, a probabilistic model for integration of gene
rankings is designed in order to integrate multiple predictions derived from multiscale module partitions and network propagation,
and a parameter estimation strategy based on functional information is proposed to further enhance HyMM’s predictive power. By a
series of experiments, we reveal the importance of module partitions at different scales, and verify the stable and good performance of
HyMM compared with eight other state-of-the-arts and its further performance improvement derived from the parameter estimation.
The results confirm that HyMM is an effective framework for integrating multiscale module structure to enhance the ability to predict
disease-related genes, which may provide useful insights for the study of the multiscale module structure and its application in such
issues as a disease-gene prediction.

Keywords: disease-gene prediction, association prediction, complex networks, biological networks, multiscale module structure,
ranking methods

Introduction
The progress of human disease gene discovery has pro-
moted the understanding of the underlying molecular
basis of human diseases, but genes known to be associ-
ated with diseases only account for a very small propor-
tion of the incidences [1–4]. Traditional approaches such
as linkage analysis and genome-wide association studies
(GWAS) often provide a long list of candidate genes,
requiring expensive and time-consuming experimental
identification [5, 6]. Therefore, with the accumulation of
biomedical data [7–10], developing computational algo-
rithms for predicting disease-related candidate genes
is indispensable to accelerate the discovery of disease-
related genes [3, 11, 12].

Organism as a complex biological system is composed
of a large number of biomolecules (e.g. genes and

proteins) with complex relationships (physical interac-
tions or functional associations), forming a complex
biomolecule network system, where the biomolecules
exert biological functions through intermolecular syn-
ergy while rarely function alone. Human complex
diseases can be viewed as the consequences of per-
turbations or functional abnormalities of associated
synergistic biomolecules in the complex network system
[13]. Therefore, it is very necessary to study complex
diseases and relevant biological phenomena from the
perspective of system biology, and biological networks
provide an important means for the research of system
biology [14–18]. Especially, network-based algorithms
have been a popular strategy for the study of disease-
related genes [3, 19–28], since genes associated with the
same or similar diseases are more similar functionally
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and their products tend to be highly interconnected in
biomolecule networks [4, 29] (see next section). However,
how to mine the characteristics of biomolecule networks
so as to more effectively explore disease-related genes
and related issues is still under continuous exploration
due to the inherent complexity of biomolecule networks
and the limitation of existing knowledge (e.g. the
incompleteness of protein interactome) [15, 17, 30–34].

As we know, module structure as a common property
of complex networks is ubiquitous in biomolecule net-
works, and the modular nature of human diseases can
provide useful insights for the study of diseases, but it
has not been fully explored in disease-gene prediction
[35–37]. Generally, the genes and their products of disease
tend to form a disease module due to their high inter-
connectivity in biomolecule networks [4, 29], but they are
usually found to be distributed in multiple modules/sub-
networks due to the intrinsic definition of a specific algo-
rithm and the existence of multiscale module structure
in the networks [4, 38–41]. The multiscale structure is
indeed widespread in biological networks. For example,
a module in a protein network may contain several sub-
modules, e.g. some protein complexes (such as SAGA)
contain several secondary complexes; most of the bio-
logical information (e.g. in Gene Ontology) is organized
in the form of hierarchical structure. Many algorithms
with a flexible resolution parameter have been proposed
and applied to mine multiscale module structures in
biological networks [42–45], where the resolution param-
eter can adjust the size or scale of identified modules
(see next section). This can provide richer information
for studying complex systems such as biomolecule net-
works, but there are still many challenging issues, such as
how to effectively identify the multiscale modules from
a network and how to mine the valuable information
hidden in the multiscale structure.

To make use of multiscale module structure to more
effectively predict disease-related genes, we therefore
propose a hybrid method integrating the information of
multiscale modules (HyMM) (Figure 1). HyMM extracts a
series of module partitions from local to global scales by
multiscale modularity optimization (MO) with exponen-
tial sampling, and estimates the disease relatedness of
genes in partitions by the abundance of disease-related
genes in modules. Then, a probabilistic model for integra-
tion of gene rankings is designed so as to integrate mul-
tiple predictions derived from multiscale module parti-
tions and network propagation, and a parameter estima-
tion strategy based on functional information for Gene
Ontology (GO) annotations, pathways or disease genes is
proposed to further enhance HyMM’s predictive power.

The rest of the paper is organized as follows. Firstly, we
introduce some related work in this study (including the
identification of module structure and the prediction of
disease-related genes). Secondly, we present the datasets
and details of HyMM, as well as evaluation methods.
Thirdly, we study the effectiveness of multiscale module
information in disease-gene prediction by combining the

functional analysis of multiscale modules; then, by a
series of experimental tests, we verify the good perfor-
mance of HyMM and study the effects of various factors
including the definition of conditional probability, multi-
scale module extraction, parameter estimation based on
functional information, sampling of multiscale module
partitions and random shuffling of disease-gene associ-
ations. Furthermore, we apply HyMM to other datasets as
well as specific diseases [e.g. Alzheimer’s disease (AD)] to
further demonstrate the effectiveness of HyMM. These
results confirm that HyMM can enhance the ability to
predict disease-related genes by integrating a multiscale
module structure. It is a protocol for disease-gene predic-
tion integrating multiscale module structure, which may
become a very useful computational tool for the study of
disease-related genes.

Related work
In this study, we focus on the mining of information
hidden in the multiscale structure to enhance the abil-
ity of disease-gene prediction, which involves two main
aspects: disease-gene prediction and (multiscale) module
identification (also called community detection or com-
munity mining in the field of complex networks [46–48]).

Disease-gene prediction is not only an important
issue in computational biology but also is an important
field of network medicine/biology [4, 14, 16, 17, 19, 43–
45]. Numerous network-based methods for disease-
gene prediction have been proposed, based on various
approaches, e.g. from homogeneous (HO) network to
heterogeneous (HE) network and from single-layer
network to multi-layer network [15, 17, 34, 49–52].
For HO network model, for example, Köhler et al. [53]
predicted disease-associated genes by the random walk
with restart (RWR) on a protein interactome; Chen et al.
[54] prioritized disease candidate genes by the k-step
markov (KS) method; Hsu et al. [55] developed the gene
interconnectedness-based method to rank candidate
genes by evaluating the network closeness of them
to seeds (known disease-related genes); Zhu et al. [56]
proposed the vertex similarity-based (VS) method to dis-
cover disease-associated genes. For HE network model,
for example, Li et al. [57] proposed the RWR on a disease-
gene HE network to infer disease-gene associations; Wu
et al. [58] proposed the network-based global inference
method called CIPHER to predict human disease-related
genes; Xie et al. [59] proposed the bi-random walk (BiRW)
to predict disease-gene associations; Singh-Blom et al.
[60] predicted disease-gene associations by developing
the KATZ measure on a HE network, inspired by social
network analyses. For more sophistic network models
or techniques, for example, Valdeolivas et al. proposed
the RWR on multiplex and HE networks [27]; Xiang et al.
[34] proposed the network impulsive dynamics on the
multiplex network for disease-gene prediction; Liu et al.
[33] proposed a new network embedded representation
algorithm to infer pathogenic genes; Xiang et al. [61]
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Figure 1. Workflow of the HyMM method integrating multiscale module structure. (a) Datasets: GG, DD and DG denote the gene–gene, disease–disease
and disease–gene associations, respectively; GO and PW denote the GO annotations and pathways of genes, respectively. (b) Extract multiscale module
partitions by multiscale algorithm. (c) The extracted module partitions are transformed into matrix representation. (d) A ranking list of genes is generated
for each partition matrix; these ranking lists are organized into a ranking matrix of genes, and then, an integrated ranking list of genes based on this
ranking matrix is generated by a probabilistic model along with a parameter estimation based on functional information. (e) Generate a ranking list of
genes by network propagation. (f) Final rankings of genes are generated by integrating the ranking lists of genes from multiscale modules and network
propagation.

proposed a disease-gene-prediction method based on
fast network embedding, which can effectively use
information in a multi-source HE network constructed by
integrating multiple types of association data. Moreover,
some module-based algorithms are also applied to the

analysis of disease-related genes/modules as well as
related issues [42, 62–65]. See references [2, 3, 15, 19,
66–68] for related reviews.

The existing methods in literature have promoted the
progress of disease-gene prediction, while the ‘guilt-by-
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association’ becomes a top-down central principle for
predicting disease-related genes in the networks [69].
Evaluating the closeness or distance between candidates
and known disease-related genes is a direct strategy to
infer disease-related genes in the networks [20, 55, 56],
while network propagation (e.g. RWR, KS, RWRH and
BiRW) can effectively make use of more information
in the whole network to mine potential disease-gene
associations [26, 53, 54, 70, 71]. Network propagation
(especially the RWR) shows excellent performance in
many scenarios [19], so it has been widely applied in the
study of bio-entity associations including disease-gene
prediction [70].

Biological networks such as protein–protein interac-
tion networks are an important basis for network-based
methods in disease-gene prediction, and the mining of
biological networks can be helpful for understanding the
characteristics of networks and promoting the study of
relevant issues. The existence of module structure is an
important property of biological networks [72–74], and
the research of module structure has been an impor-
tant topic in the study of complex networks including
biological networks. In the past decades, a large num-
ber of different types of algorithms based on various
approaches (e.g. MO [75], dynamics [76] and statistical
inference [77]) were proposed to identify modules (or say
communities) in networks, which involve various types
of modules (e.g. from single scale to multiple scales, and
from non-overlapping to overlapping) and various types
of networks (e.g. from unweighted to weighted networks,
from undirected to directed networks, and from unsigned
to signed networks) [46, 47]. Many of the module identifi-
cation algorithms, especially MO-based algorithms, have
been applied to the study of biological networks, e.g.
functional module mining [72, 74, 78], protein complex
detection [79–81], and disease module identification [42].

As mentioned above, genes/proteins associated with
the same disease tend to form relevant disease modules
in a biomolecule network [4, 29], but these genes are
usually distributed in multiple modules by specific algo-
rithms [4, 38]. There are several possible reasons for this
phenomenon. (i) Complex diseases usually involve func-
tional abnormalities of multiple genes, and these genes
may have different functions, playing different roles in
the development of complex diseases [82]. (ii) The exist-
ing biomolecule networks such as protein–protein inter-
actions are still incomplete [30, 83]. This may cause the
detected network modules to be broken and incomplete.
(iii) Detected modules in networks are often algorithm-
specific, because specific definitions of modules are dif-
ferent for different algorithms [46]. Some algorithms may
split a large module into several small submodules in
a network, or aggregate several small modules into a
large one, because of the existence of a resolution limit
that is related to the intrinsic definition or mechanism
of algorithms [39–41]. This also implies the existence of
a multiscale structure in the network.

In fact, multiscale structure widely exists in various
natural and artificial complex networks, including

biological networks [84, 85]. In this case, algorithms with
flexible resolution parameters, e.g. multiscale MO [86,
87], may more effectively mine the module structure
of networks at different scales, where the resolution
parameter can be used to tune the scale or size of
identified modules [48, 86, 88]. For example, multiscale
MO can find relatively large modules in a network when
the resolution parameter is small, while it can identify
relatively small modules when the resolution parameter
is large. This is similar to observing an object from a
local to a global scale by a microscope with adjustable
resolution parameters. Modules at different scales from
local to global ones can be identified by adjusting the
resolution parameter in continuous real number space.
To study modules at different scales, one generally
extracts a set of module partitions corresponding to a
set of values sampled from the space of the resolution
parameter by a suitable strategy (e.g. exponential
sampling).

Multiscale module identification is important for
studying biomolecule networks. Dunn et al. [89] have
used edge-betweenness clustering to separate protein
interaction networks into modules correlating to anno-
tated gene functions, where modules of different sizes
can be identified by removing different numbers of edges.
Lewis et al. [90] investigated the correlation between
the functions of sets of proteins and network module/-
community structure at multiple resolutions/scales, and
they showed that there exist different important scales
of module/community structure depending on studied
proteins and processes. Wang et al. [91] proposed a fast
hierarchical clustering (HC) algorithm using the local
metric of edge clustering value, which can uncover the
hierarchical organization of functional modules that
approximately corresponds to the hierarchical structure
of GO annotations. Extended (multiscale) MO was used
to identify disease modules [42]. More recently, Zheng
et al. developed a multiscale approach called HiDeF to
identify robust structures at all scales by integrating the
concept of persistent homology with existing community
detection algorithms (e.g. multiscale MO).

The mining of multiscale module structure can reveal
the features of biological networks at multiple scales,
reflecting the correlations of network nodes (e.g. genes)
at different levels. This can provide more abundant infor-
mation for the relevant research involving biological net-
works, such as network-based disease–gene prediction
and protein–protein interaction prediction. Therefore, in
this study, we will explore methods for disease-gene
prediction by integrating a multiscale module structure.

Materials and methods
Here, we introduce the datasets in this study, and then
propose the details of HyMM (including multiscale
MO with exponential sampling, disease-relatedness
estimation of genes based on multiscale modules, a
probabilistic model for integration of multiple gene
rankings as well as parameter estimation based on
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functional information) and evaluation methods. See
Figure 1 and Supplementary Note 1 (see Supplementary
Data available online at https://academic.oup.com/bib)
for the workflow of HyMM.

Datasets
To investigate the predictive ability of algorithms, we
employ the disease-gene associations, gene–gene associ-
ations and disease-disease associations. In order to con-
duct functional analysis of modules and parameter esti-
mation based on functional information, we adopt three
types of functional groups: GO annotations, PW, and
disease-gene sets. See Supplementary Note 2 (see Sup-
plementary Data available online at https://academic.
oup.com/bib) for details of datasets.

Disease–gene associations

We use three disease-gene association datasets. (i) The
first dataset is an integrated disease-gene dataset [30, 92]
retrieved from GWAS and Online Mendelian Inheritance
in Man [93]. It is denoted as the Medical Subject Headings
Ontology (MeSH) dataset, since MeSH is used to combine
the different disease nomenclatures of the two sources
into a single standard vocabulary. (ii) The second one is
obtained from the DISEASES database, which is a weekly
updated web resource for disease-gene associations [94].
(iii) The third one is obtained from the DisGeNet database
(https://www.disgenet.org/), which is known as a plat-
form that contains one of the largest publicly available
collections of disease-related genes [95]. The UMLS (Uni-
fied Medical Language System) diseases in the dataset
are mapped into MeSH diseases.

Gene–gene associations

Genes and their products mainly perform their biological
functions through their direct or indirect interactions,
forming a complex gene–gene association network [83,
96–99]. The gene–gene associations are very important
for the study of disease research, since complex diseases
are usually considered to be caused by local disturbances
of complex biomolecule networks [17, 100, 101]. Here, the
gene–gene associations are derived from protein–protein
interactions (PPIs). Because single-source protein–protein
networks are often incomplete and there exist data
noises in existing protein networks, we adopt a compre-
hensive protein interactome that consists of multiple
sources of protein–protein interactions: regulatory
interactions, binary interactions from several yeast two-
hybrid high-throughput and literature-curated datasets,
literature-curated interactions derived mostly from low-
throughput experiments, metabolic enzyme-coupled
interactions, protein complexes, kinase-substrate pairs
and signaling interactions [30]. The network data consid-
ers only physical protein interactions with experimental
support. The identifiers of proteins are mapped into gene
symbols.

These gene–gene associations form a HO network of
genes. Furthermore, we construct a disease-gene HE net-
work by integrating gene–gene associations, disease-gene

associations and disease-disease associations mentioned
above. Note that only the disease-gene associations in
the training set are used in the construction of the HE
network.

Disease–disease associations

The disease-disease associations can provide useful
knowledge for the discovery of disease-related genes.
Here, the disease–disease association network is con-
structed by using the associations between symptoms
and diseases. The strengths of these associations
between a symptom s and a disease d are quantified
through the co-occurrence (Cd,s) of their MeSH terms
in literature, i.e. the number of PubMed identifiers
where two MeSH terms occur together, and then they
are normalized as wd,s = Cd,s log(n/ns) by the term
frequency-inverse document frequency, where n denotes
the number of diseases and ns ≥ 1 denotes the number
of diseases with symptoms [102]. Finally, the association
score between two diseases is quantified by the cosine
similarity scores of their normalized symptom vectors,
Score(Vd, Vb) = 〈Vd, Vb〉/√〈Vd, Vd〉〈Vb, Vb〉, where Vd =
(wd,1, wd,2, . . . , wd,s, . . . , wd,n)

T denotes the normalized
symptom vector of disease d and 〈· , · 〉 denotes the scalar
product of two vectors.

Three types of functional groups

(i) The GO annotations are downloaded from the Molec-
ular Signatures Databases (MSigDB) [103, 104], which
omits GO terms with fewer than 5 genes or in very
broad categories; (ii) the pathway-gene sets (PW) are
also obtained from MSigDB, which were curated from
several online pathway databases (such as KEGG and
Reactome), publications in PubMed and knowledge of
domain experts [105, 106] and (iii) the disease-gene sets
(DG) are obtained as mentioned above.

Multiscale MO with exponential sampling
Identification of module/community structure itself is
an important issue in the research of networked systems
[46, 48, 107]. We here extract module structure from
local to global scales by MO with exponential sam-
pling. Moreover, we also consider two other multiscale
methods: asymptotic surprise (AS) [88] and fast HC
[91]. All of them have flexible resolution parameters
to adjust the scale or size of modules. Given a set of
reasonably sampled resolution-parameter values, they
can generate a set of network module partitions that
contain important information of network structure.
(see Supplementary Note 3, see Supplementary Data
available online at https://academic.oup.com/bib, for
details).

Multiscale MO

MO detects module structure via optimizing modularity
Q—a widely used quality function of module structure
[108]. Original modularity can just generate a single-scale
module structure due to its fixed resolution [39]. There-
fore, its multiscale variants have been widely studied. For
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example, the self-loop rescaling strategy can naturally
transform the original single-scale modularity into a
multiscale one, and the original optimization algorithms
can be applied directly without the need for any other
modification [87]. Given a module partition of a network,
the general definition of modularity Q can be written as

Q =
∑

s

(
kin

s

2M
− γ

(
ks

2M

)2
)

, (1)

where γ is the resolution parameter; M is the total
number of edges in the network; kin

s the inner degree
of module s; ks the total degree of module s;

∑
the sum

over all modules in the network.
MO can detect module structure at different scales by

varying the resolution parameter γ . It can find global-
scale modules (i.e. relatively large modules) when the
γ -value is small; it can find local-scale modules (i.e.
relatively small modules) when the γ -value is large. It will
decompose a network into a set of single-node modules
when γ is large enough, e.g. γ > 2M/k2

min, where kmin

is the minimum node degree in the network [109]. This
is similar to what happens when we observe objects
by a microscope with adjustable resolution. When the
resolution of the microscope is high, we can see very local
and subtle areas of the object in the field of vision of the
microscope; when the resolution is low, we can see its
relatively macro and coarse-grained areas, and even its
global appearance in the field of vision of the microscope.
There is no strict threshold to distinguish between local
and global modules, but the limit of ‘local scale’ is that
the network is split into a set of single-node modules,
and the limit of ‘global scale’ is that the whole network
is considered as a large module.

MO needs to be realized with the help of effective
optimization algorithms. Here, the Louvain algorithm is
applied, because it is a very effective and widely used
strategy for optimizing objective functions of module
structure in networks, and we have shown that it can
be further improved by an effective initialization process
and refining process [48, 75, 88].

Exponential sampling of multiscale module partitions

To extract a set of meaningful module partitions from
local to global scales {Ψh | h = 1 ∼ H}, where Ψh

denotes the h-th module partition and H denotes the
number of extracted module partitions, we first define
a meaningful range of the resolution parameter γ ∈
[γmin, γmax], which covers all possible sampled resolution-
parameter values. In a network with N nodes, γmin and
γmax can theoretically be defined as γmin = max{γ |#[Ψh] =
1} and γmax = min{γ |#[Ψh] = N]}, where #[Ψh] denotes
the number of modules in the partition Ψh, but it is
usually not easy to obtain accurate interval boundaries.
Therefore, we use semi-empirical boundaries according
to previous research [87, 110].

The resolution parameter belongs to a continuous real
number space. We sample γ -values from γmin to γmax

by exponential sampling method, because it can give a
reasonable coverage to different scales in the network,
according to previous research [87, 88]. The exponential
sampling generates a set of γ -values that are equally
spaced on a logarithmic scale, i.e.

log γh+1 − log γh ≡ Δ log γ . (2)

According to the set of sampled γ -values, the above
multiscale algorithms can extract a set of corresponding
module partitions.

Disease-relatedness estimation of genes based
on multiscale module structure
Given the set of extracted module partitions {Ψh | h =
1 ∼ H}, known disease-gene associations as well as
disease-disease associations, we calculate the disease-
relatedness scores of modules and genes in each mod-
ule partition by the abundance of disease-related genes
within modules, and then generate a disease-relatedness
scoring/ranking matrix of genes (see Figure 1). The basic
hypothesis of estimating the disease relatedness of mod-
ules/genes in a module is that the larger the abun-
dance of specific disease-related genes in the module, the
more likely the module and its genes are related to the
disease.

Definition 1. A vector indicating association scores
between N genes and a disease under study is
defined as

−→
l = (

l1, l2, · · · , li, · · · lN
)T ∈ RN×1, (3)

where li=1 if the ith node is a known disease-related gene
and li=0 otherwise, e.g. in a gene–gene network.

Definition 2. A partition matrix B(h) is defined to
indicate the hth module partition, where B(h)

i,j

indicates whether gene i belongs to module j in
this partition (see Figure 1).

Definition 3. A diagonal matrix C(h) for each
partition is defined as

C(h) =
(
diag

(−→e T
B(h)

))−1
, (4)

where −→e = (1, 1, · · · , 1)T ∈ RN×1.

Definition 4. The disease relatedness scorings of
modules in the hth module partition are
defined as

−→s (h)

M =
(−→

l
T
B(h)C(h)

)T

. (5)

Definition 5. The disease-relatedness scores of
genes in the hth module partition are defined as
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−→s (h)

G = B(h)−→s (h)

M . (6)

We introduce a union matrix of gene scorings, SG =
(
−→s (1)

G , −→s (2)

G , · · · , −→s (h)

G , · · · , −→s (H)

G ), to store the gene scoring
lists for all module partitions. For the sake of compu-
tation, we construct a union matrix B of all partition
matrices by B = (B(1), B(2), . . . , B(H)), and define a block
matrix SM of disease-related scores of modules by

SM =

⎛
⎜⎜⎜⎜⎜⎝

−→s (1)

M 0 · · · 0

0 −→s (2)

M · · · 0
...

...
. . . 0

0 0 0 −→s (H)

M

⎞
⎟⎟⎟⎟⎟⎠ . (7)

Then, the union matrix of gene scorings can be calcu-
lated by SG = BSM. Finally, we generate a union matrix

of gene rankings, RG = (
−→r (1)

G , −→r (2)

G , · · · , −→r (h)

G , · · · , −→r (H)

G ), by
the decreasing order of genes’ scores, RG = generank(SG).
Note that the mean value of ranking is used for genes
with the same scores.

According to the above gene scoring/ranking strategy,
genes within the same module have the same disease-
relatedness scorings/rankings. Therefore, these scor-
ing/ranking lists of genes contain the information of
disease relatedness as well as the information of multi-
scale module structure from low to high resolutions. For
example, if a module partition consists of two modules:
one contains disease-related genes while not for another,
gene scorings/rankings will have two values/levels. If the
module with disease-related genes is further split into
two sub-modules with disease-related genes, then gene
scorings/rankings will have three values/levels if there
is no degeneracy of module scorings. The number of
values/levels in the scoring/ranking list of genes is closely
related to the number of disease-related modules in a
module partition. As the resolution increases, we can get
the gene scoring/ranking lists with more levels/values,
thereby revealing different levels of disease-related
information in the network.

From the perspective of kernel function, a kernel
matrix for each module partition Ψh can be defined as

K(h) = B̃(h)
(
B̃(h)

)T
, (8)

where B̃(h) = B(h)C̃(h) is a normalized partition matrix,

C̃(h) = (diag(
−→e T

B(h)))
−1/2

and −→e = (1, 1, · · · , 1)T ∈ RN×1.
This kernel matrix indicates the relationships between
genes at the hth partition; that is, the information
extracted from this partition has been contained in the
kernel matrix. As a result, all the information extracted
from multiscale module partitions can be recorded in
the set of module kernel matrices {K(h) | h = 1 ∼ H}.
And then, the disease-relatedness scores of all genes for

module partition Ψh can be calculated by

−→s (h)

G = K(h)
−→
l . (9)

This provides another possible way to understand the
scorings based on multiscale module partitions.

Probabilistic model for integration of multiple
gene rankings
Integration of multiple gene rankings is an important
way to fuse information from multiple features [111–
113]. The Bayesian theory provides a usefully theoreti-
cal framework for integrating multi-feature information.
Here, we introduce a probabilistic model for the inte-
gration of multiple gene rankings based on the Bayesian
theory. By considering the set of above module partitions
as a set of features {fh = Ψh|h = 1 ∼ H}, the comprehen-
sive conditional probability of a candidate gene g being
related to a disease can be expressed as,

P
(
xg

∣∣{fh
} ) = P

(
xg

)
P

({
fh

} |x g
)
/P

({
fh

})
= P

(
xg

) ∏H
h=1P

(
fh

∣∣xg
)
/P

({
fh

}) , (10)

where P(xg) denotes the prior probability of a gene being
at state xg (see Supplementary Note 4, see Supplemen-
tary Data available online at https://academic.oup.com/
bib). P(fh|xg) = P(fh)P(xg|fh)/P(xg), and the prior probabil-
ities P({fh}) and P(fh) are independent of specific genes,
so the conditional probability about all features can be
rewritten as P(xg|{fh}) ∝ P(xg)

∏H
h=1P(xg|fh)/P(xg). Here, it

can be regarded as the likelihood ratio of a posteriori
probability to a priori probability. For convenience, the
comprehensive scores of genes can be evaluated by the
logarithm of the conditional probability above,

−→s G = log
(
P

(
xg

)) +
H∑

h=1

log
(
P

(
xg

∣∣fh
)
/P

(
xg

))
. (11)

The prior knowledge P(xg) can contribute to the eval-
uation of the genes’ scores if it is available, or it can be
set as a constant if no prior knowledge is available for
specific genes.

In order to calculate the final scores of candidate
genes, it is necessary to provide an explicit mathemat-
ical form of the above conditional probability function
(CPF) P(xg|fh) about each feature (denoted as CPF). For
each module partition, we have calculated the scoring

list −→s (h)

G of candidate genes being related to a disease,

and get the ranking list −→r (h)
of the genes. The higher

ranking of a gene generally means its larger probability of
disease relatedness, which provides a possible way to the
definition of CPF. In this study, we design three explicit
forms of CPF (denoted as CPF1, CPF2 and CPF3), which
correspond to three variants of HyMM.
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Without loss of generality, given a ranking list of genes
−→r (h)

G = (r(h)

1 , r(h)

2 , . . . , r(h)
g , . . . , r(h)

N )
T

based on the decreasing
order of disease-relatedness of genes, CPF can be defined
as follows,

CPF1: P(xg|fh) ∝ 1 − r(h)
g /N;

CPF2: P(xg|fh) ∝ 1/r(h)
g ;

CPF3: P(xg|fh) ∝ exp(−βhr(h)
g ),

where β = {βh} is a set of tunable parameters (see
Supplementary Note 4, see Supplementary Data avail-
able online at https://academic.oup.com/bib, for details).

For CPF1, P(xg|fh) linearly varies with the value of gene
ranking; for CPF2, P(xg|fh) is inversely proportional to
the value of gene ranking; for CPF3, P(xg|fh) exponen-
tially decreases with the value of gene ranking. CPF2
and CPF3 are typically nonlinear functions, which decay
more strongly than CPF1 (Figure S1, see Supplementary
Data available online at https://academic.oup.com/bib).
As a result, CPF2 and CPF3 prefer genes with higher
rankings, i.e. genes at the top of the ranking list, because
the higher-ranked genes will be assigned the relatively
higher possibility values than other lower-ranked genes
(Figure S1, see Supplementary Data available online at
https://academic.oup.com/bib). This will be conducive to
the mining of disease-related genes.

Given the above union matrix of gene rankings from
multiscale modules, a comprehensive scoring list −→s G

of genes can be generated by the above integration
strategy. Then, we get the ranking list of genes −→r MM =
generank(

−→s G) by the decreasing order of genes’ scores
(see Figure 1). The above process can be regarded as a
raw algorithm for disease-gene prediction (denoted as
MM for simplicity).

The scorings/rankings from multiscale modules may
provide useful and complementary information for
disease-gene prediction, which is different from that
of many other algorithms based on various principles,
e.g. network propagation. So, we further integrate the
ranking list −→r MM with that (denoted by −→r TA) of network
propagation, e.g. the random walk with a restart in
HO/HE networks (see Figure 1). The final scores/rankings
of genes will be used to prioritize candidate genes.
We will show that this integration can very effectively
enhance the ability to predict disease-related genes due
to information complementarity.

Parameter estimation based on functional
information
Because of the good performance of CPF3, it will be used
as the default form of P(xg|fh) in this study. This integra-
tion strategy for multiple gene rankings provides a possi-
ble theoretical explanation for classical rank aggregation
methods such as Borda count [114], since it degenerates
into the arithmetic mean of rankings about multiple
features when the parameters β ≡ 1. However, differ-
ent from the classical Borda count, the optimization of
β = {βh} can further improve the ability to disease-gene

prediction, e.g. by using functional information such as
GO annotations and PW.

Module partitions at different scales provide different
levels of information, which have different degrees of
importance for problems such as disease-gene predic-
tion. To study the statistical properties of module parti-
tions at different scales and their importance in disease-
gene prediction, we therefore define functional consis-
tency metrics of network modules and module partitions.

Definition 6. We firstly introduce the functional
consistency of a module Mm with respect to a
functional group Gf , by

Cf ,m = ∣∣Gf ∩ Mm
∣∣ / |Mm| , (12)

where a functional group denotes a set of genes with
common characteristics and |∗| denotes the number of
elements in the group.

Definition 7. For a set of functional groups, the
functional consistency of a module is defined as
the maximal functional consistency over all the
functional groups

Cm = max
f

Cf ,m. (13)

Definition 8. The functional consistency of a
module partition Ψh is defined as the weighted
arithmetic mean of the functional consistency
scores of related modules in the module
partition

C(h) =
∑

m
ωmCm/

∑
m
ωm, (14)

where ωm is a parameter for module Mm, which can be a
constant or proportional to the module size.

We will use the functional consistency metrics to
quantify the functional relevance of network modules
and module partitions, based on the set of functional
groups for GO/PW/DG. This may provide insights for
parameter estimation of β = {βh} so as to improve the
ability of HyMM to disease-gene prediction.

Evaluation methods
We implement the above procedure of HyMM (includ-
ing the multiscale algorithms) by Matlab (2016 version).
To evaluate the performance of algorithms in disease-
gene prediction, we use two evaluation strategies: tra-
ditional 5-fold cross-validation (5FCV) and independent
test (IndTest). (i) For 5FCV, known disease-related genes
for each disease are randomly split into five subsets. In
each realization, one of the subsets is treated as a test set,
while the rest is treated as a training set. (ii) For IndTest,
the disease-gene associations in the MeSH dataset are
used as a training set, and the disease-gene associations
that only belong to the DisGeNet dataset are used as a
test set.
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To construct the candidate set of genes, which con-
sists of a test set of genes and a control set of genes,
we will construct two kinds of control sets: artificial
linkage-interval control set (ALICS) and whole-genome
control set (WGCS). (i) For ALICS, each test gene selects
99 control genes from genes closest to this test gene on
the same chromosome. This simulates the scenario with
disease-related mutation locations (e.g. derived from the
genome-wide association study or linkage analysis) [53].
(ii) For WGCS, all unknown genes outside the training
and test sets are used as a control set. This simulates
the scenario without the information of disease-related
mutation locations.

Then, based on the ranking list of candidate genes,
several standard evaluation metrics (AUPRC, Recall, and
Precision) are used to quantify the performance of pre-
diction algorithms. (i) AUPRC denotes the area under
the Precision-Recall curve (PRC), where the PRC curve
has Recall on the x-axis and Precision on the y-axis.
This is a widely used metric to comprehensively evaluate
the performance of algorithms. (ii) Recall measures the
ratio of known disease-related genes found in the top-
k ranking list compared to the test set, which focuses on
how many disease-related genes in the test set have been
retrieved. (iii) Precision (Prec) measures the probability
of discovering known disease-related genes in the top-
k ranking list. Recall and Precision as a function of k-
value can provide an intuitive comparison for the local
performance of prediction algorithms.

Experimental results
In this section, we first study the effectiveness of multi-
scale modules and display the good performance of the
HyMM framework in disease-gene prediction by a series
of experimental tests, including the effect of various
factors such as the CPF, multiscale algorithm, parameter
estimation based on functional information, and sam-
pling of multiscale module partitions.

Effectiveness of multiscale modules in
disease-gene prediction
Here, we study the predictive performance of each
module partition being used independently (Figure 2;
Figures S2–S4, and Supplementary Note 5, see Sup-
plementary Data available online at https://academic.
oup.com/bib). As a whole, the predictive power of the
algorithm based on single-scale module partition first
has a large upward trend and then a downward trend
with the increase of resolution, and the downward
trend appears earlier and is more obvious in the HO
network. This clearly indicates that different scale
module partitions have different levels of importance
in disease-gene prediction.

The main reason behind the above phenomenon is
that as the resolution increases, modules become more
and more fine-grained, and the relevance between nodes

in the same module is getting higher and higher. Grad-
ually splitting modules into more fine-grained ones can
filter low-relevance nodes while retaining high-relevance
nodes in a module, but this will also lead to the loss of
information, resulting in the decline of prediction power,
because modules without disease-related information
are trivial for our scoring strategy.

In order to verify the relationship between the above-
mentioned functional relevance of nodes inside mod-
ules and the studied scale (resolution), we calculate the
functional consistency of module partitions at different
scales by using the GO, PW and DG functional groups.
The results show that the functional consistency scores
of module partitions increase with the increase of resolu-
tion (Figure S5, see Supplementary Data available online
at https://academic.oup.com/bib). This means that the
ratio of similar genes within the modules is increasing
with the resolution: these genes are more likely to have
the same GO annotations or belong to the same pathway
or disease-gene set. This is because the edge density in
the modules becomes higher with the increase of reso-
lution. Genes in the modules are more likely to tend to
interact with each other and thus have the same or sim-
ilar functions or participate in a common biological pro-
cess. Therefore, the module partitions at different scales
can provide different levels of information about the rela-
tionship between genes. This may provide a more com-
prehensive understanding of genes and their functions.

Further, with the increase of resolution, disease-
related genes also tend to be dispersed into more mod-
ules with smaller sizes but stronger functional relevance
(e.g. for GO, PW or DG) (Figure S6, see Supplementary
Data available online at https://academic.oup.com/bib).
As a whole, candidate genes in these modules will be
more likely to be disease-related. So, the predictive power
of the algorithm based on single-scale module partition
gradually increases with the increase of resolution,
but the decline of predictive power may appear due
to information loss caused by over-filtering of low-
relevance nodes, especially when the network is divided
into extremely broken modules.

HyMM effectively enhances ability to
disease-gene prediction
HyMM outperforms baseline algorithms

Here, we evaluate the performance of HyMM/MM when
default setting is used, by comparing to eight baseline
algorithms: RWR (Random Walk with Restart) [53],
KS (K-Step Markov) [54], VS (Vertex Similarity) [56],
ICN (Interconnectedness) [55], RWRH (Random Walk
with Restart on Heterogeneous network) [57], CIPHER
(Correlating protein Interaction network and PHEnotype
network to pRedict disease genes) [58], BiRW (Bi-Random
Walk) [59] and KATZ [60] (also see Supplementary Note
6). MM denotes the algorithm that uses only multiscale
modules to generate predictive scores. For simplicity, we
here define the ratio of performance improvement as
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Figure 2. Predictive ability of MO-based module partitions at different scales in disease-gene prediction, as a function of resolution parameter, in HO
and HE networks, under different control sets (WGCS and ALICS).

(x − y)/y,where x and y denote the results of HyMM and
the best baseline algorithm(s), respectively.

The experimental results show that HyMM outper-
forms all these baseline algorithms, in both the HO and
HE networks, under both the ALICS and WGCS control
sets (see the results of AUPRC/Recall/Prec in Figure 3;
Figures S7 and S10, see Supplementary Data available
online at https://academic.oup.com/bib). Specifically,
under the ALICS control set, HyMM in the HO network
exceeds the best baseline algorithm by 7, 4 and 7% in
AUPRC, Recall and Prec metrics, respectively; HyMM in
the HE networks exceeds the best baseline algorithm
by 27, 25 and 23% in AUPRC, Recall and Prec metrics,
respectively. Under the WGCS control set, HyMM in
HO exceeds the best baseline algorithms by 9, 21 and
31% in AUPRC, Recall and Prec, respectively; HyMM in
HE exceeds the best baseline algorithm by 28, 33 and
32% in AUPRC, Recall and Prec, respectively. The results
of top-k Recall/Prec curves have again confirmed the
performance of HyMM (Figure 4; Figures S8 and S11,
see Supplementary Data available online at https://
academic.oup.com/bib).

HyMM provides a useful framework to enhance ability to
disease-gene prediction

We systematically test the performance of the HyMM
framework by integrating it with other baseline algo-
rithms. For simplicity, we here define the ratio of per-
formance improvement due to the HyMM framework as
(x−y)/y,where x and y denote the results of the improved
and original algorithms, respectively. The results show
that the HyMM framework can improve the performance
of these algorithms in various test scenarios (Figure 5;
Figures S9 and S12, see Supplementary Data available
online at https://academic.oup.com/bib). For example,
under the ALICS control set, the AUPRC, Recall and Prec
of CIPHER improve by 87, 88 and 100%, respectively;
the AUPRC, Recall and Prec of KATZ improve by 64,
50 and 61%, respectively. Under the WGCS control set,
the AUPRC, Recall and Prec of CIPHER improve by 125,
100 and 157%, respectively; the AUPRC, Recall and Prec

of KATZ improve by 140, 145 and 158%, respectively.
All these results indicate that HyMM is a very effective
framework for integrating multiscale modules to pro-
mote the ability to disease-gene prediction.

Moreover, ALICS and WGCS simulate the scenarios
with and without disease-related mutation locations,
respectively. ALICS has a smaller set of candidate
genes than WGCS, due to its more information (about
mutation locations). Thus, ALICS generally has relatively
larger values of evaluation metrics (AUPRC, Recall, and
Precision). In fact, this can also be understood from a
random point of view, since the probability of randomly
selecting correct genes in a smaller candidate set is
usually greater.

Comparison of different CPFs
We have compared the performance of HyMM using
different CPFs (CPF1/CPF2/CPF3) (Figures S13 and S14,
in Supplementary Note 7, see Supplementary Data
available online at https://academic.oup.com/bib). In HE,
CPF3 can obtain the best performance under both the
ALICS and WGCS control sets. In HO, HyMM using CPF3
has comparable or better performance than that using
CPF1/CPF2 under the ALICS and WGCS control sets. So,
CPF3 is used as the default form of CPF.

Moreover, it is interesting that the nonlinear forms
of CPF (e.g. CPF2/CPF3) are better than the linear form
(e.g. CPF1). This means that it is beneficial to give more
preference to high-ranking genes in this probabilistic
framework.

Comparison of different multiscale algorithms
We have compared the performance of HyMM using
different multiscale algorithms (MO/AS/HC). Under
the ALICS control set, HyMM using MO outperforms
HyMM using AS and HC in most cases, while the
Recall- and Prec-values of AS in HE are slightly higher
than those of MO (Figure 6; Figure S15, in Supplemen-
tary Note 8, see Supplementary Data available online
at https://academic.oup.com/bib). Under the WGCS
control set, HyMM using MO has good performance,
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Figure 3. Performance comparison of HyMM/MM to different baseline algorithms under the ALICS control set. (a and b) AUPRC, (c and d) Recall and (e
and f) Precision (Prec) in the HO/HE networks.

although HC is the best in HO, and AS is the best in HE
(Figure S16, see Supplementary Data available online at
https://academic.oup.com/bib). Moreover, MM using MO
is better than that using AS and HC in all the cases.
Overall, MO can robustly produce better or comparable
performance in various tests, so MO is used as the default
choice.

Performance improvement through parameter
estimation based on functional information
Since module partitions at different scales are of
different importance for disease-gene prediction, the
optimization of β may further enhance the ability of
HyMM, although the default setting has been capa-
ble of producing good performance in disease-gene
prediction. Due to the close correlation between the
functional consistency and predictive power of module
partitions, we further use the functional consistency
scores of GO/PW/DG as parameter estimation of β.
The results show that the parameter estimation can
indeed improve the ability of HyMM/MM (using MO,
AS or HC) comprehensively (Figure 7; Figures S17 and

S18, in Supplementary Note 9, see Supplementary Data
available online at https://academic.oup.com/bib).

Stability to sampling of multiscale module
partitions
Sampling of multiscale module partitions is closely
related to the number of multiscale module partitions
and the amount of information extracted from the
network. To study the effect of sampling of multiscale
module partitions on prediction performance, we eval-
uate the performance of HyMM for different values of
resolution interval Δlogγ . The results show that HyMM
using MO/AS is very stable to module partition sampling
in various scenarios, while HyMM using HC has relatively
large fluctuations and declines (Figure 8; Figures S19 and
S20, in Supplementary Note 10, see Supplementary Data
available online at https://academic.oup.com/bib).

Effect of random shuffling of disease-gene
associations
Further, we study the effect of random shuffling of
disease-gene associations on the predictive performance
of algorithms. We generate a series of disease-gene
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Figure 4. Comparison of local performance of HyMM to different baseline algorithms under the ALICS control set. (a and b) Top-k Recall and Precision
in the HO network; (c and d) top-k Recall and Precision in the HE network.

Figure 5. Performance improvement of different baseline algorithms
due to the use of multiscale module information in (a) HO and (b) HE
networks, under the ALICS control set. −MM and + MM denote the non-
use and use of multiscale module information, respectively.

datasets with different degrees of randomization from
no randomization to complete randomization by ran-
domly replacing a certain ratio of known disease-gene

associations in a dataset with randomly sampled
unknown associations; and then we test the performance
of algorithms on these datasets (see Supplementary Note
11, see Supplementary Data available online at https://
academic.oup.com/bib, for details).

The results show that HyMM consistently outperforms
other baseline algorithms with an increasing degree of
randomization (Figure 9, Figures S21 and S22, see Supple-
mentary Data available online at https://academic.oup.
com/bib). This again confirms the stable and good per-
formance of HyMM in disease-gene prediction. Moreover,
as expected, the performance of all algorithms obviously
degrades as the degree of randomization increases. This
means that HyMM on real datasets is far superior to that
on random datasets, and the known disease-gene asso-
ciations are critical for effectively inferring disease-gene
associations. The predictive power of existing prediction
algorithms is extremely dependent on the accumula-
tion of confirmed and reliable disease-gene associations,
which is the solid basis for the development of disease-
gene-prediction algorithms.

Applications to other datasets
In the above sections, we have demonstrated that
HyMM has stable and good performance in disease-
gene prediction. Here, we further apply HyMM to

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/3/bbac072/6547263 by Staats-und U

niversitätsbibliothek Brem
en user on 03 O

ctober 2022

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac072#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac072#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac072#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib


HyMM | 13

Figure 6. For HyMM/MM, comparison of different multiscale algorithms (MO, AS and HC) under the ALICS control set. (a and b) AUPRC, (c and d) Recall
and (e and f) Precision (Prec), in HO and HE networks. HyMM/MM denotes the default algorithms using MO; HyMM-AS/MM-AS and HyMM-HC/MM-HC
denote the algorithms using AS and HC, respectively.

the other two datasets: the DISEASES and DisGeNET
datasets, e.g. by cross-validation and independent test
(see Supplementary Note 12, see Supplementary Data
available online at https://academic.oup.com/bib).

Performance evaluation in cross-validation

For the DISEASES dataset, the disease terminology in
Disease Ontology (DO) database is used, and thus the
similarity scores between diseases are calculated based
on the DO database by the DOSE package [115]. For the
DisGeNet dataset, the UMLS diseases are mapped into
the MeSH diseases according to the disease mappings in
the DisGeNet database, and thus the MeSH symptom-
based disease similarity scores are still used. Here, the
disease-gene associations in the two datasets will be
used as a benchmark in turn, and we have tested the
performance of HyMM in the two datasets by cross-
validation experiments (Figures S23 and S24, see Supple-
mentary Data available online at https://academic.oup.
com/bib). In the DISEASES dataset, HyMM has higher
or comparable values of AUPRC/Recall/Prec than the
best baseline algorithm(s) under both the ALICS control

set, and HyMM has good overall performance under the
WGCS control set (see Supplementary Note 12, see Sup-
plementary Data available online at https://academic.
oup.com/bib). In the DisGeNet dataset, HyMM consis-
tently has higher values of AUPRC/Recall/Prec than the
best baseline algorithm(s) under both the control sets.
These results show that, as in the MeSH dataset, HyMM
also has good performance when applied to the datasets,
further confirming the effectiveness of HyMM in disease-
gene prediction.

Performance evaluation on external dataset

Furthermore, we evaluate HyMM by experimental test
on the external dataset (also denoted as IndTest). We
calculate the scores of candidate genes by using the
MeSH dataset of disease-gene associations as a training
set and then evaluate the prediction performance
by using the disease-gene associations belonging to
DisGeNet (excluding the training set) as a test set, since
DisGeNet is one of the largest publicly available datasets
of disease-related genes. In this test, HyMM shows higher
Recall- and Prec-values than the baseline algorithms

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/3/bbac072/6547263 by Staats-und U

niversitätsbibliothek Brem
en user on 03 O

ctober 2022

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac072#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac072#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac072#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac072#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib


14 | Xiang et al.

Figure 7. Due to the use of functional information of DG/GO/PW, performance improvement of (a–c) MM and (d–f) HyMM (HE) (using MO, AS and HC),
under the ALICS control set. EW denotes that equal weight is used.

under both the ALICS and WGCS control sets (Figure S25,
see Supplementary Data available online at https://
academic.oup.com/bib). Especially, the Prec of HyMM is
obviously better than the baseline algorithms.

Applications to specific diseases
In the above sections, we have confirmed the ability
of HyMM to a disease-gene prediction by its average
performance in different datasets. Here, we further dis-
play the predictive ability of HyMM for specific diseases.

Disease-specific performance evaluation

We first study the effectiveness of the HyMM framework
in enhancing the ability of predicting specific disease-
related genes by using the MeSH dataset as a benchmark.
The results of AUPRC/Recall/Prec show that HyMM can
improve the ability of predicting disease-related genes for
many diseases such as AD (see Figures S26–S28, see Sup-
plementary Data available online at https://academic.
oup.com/bib).

Then, we further study the performance of HyMM for
AD and some related diseases. Figure 10 and Figures S29
and S30 (see Supplementary Data available online at
https://academic.oup.com/bib) display the results of AD,
Huntington disease (HD), Parkinson disease (PD), Lewy
Body disease (LBD), Frontotemporal Lobar Degeneration
(FLD), Anxiety Disorder (Anxiety), Major Depressive Dis-
order (MDD), and Depressive Disorder (DD). The results

show that, under both ALICS and WGCS control sets,
for AD and some related diseases (e.g. HD, PD and LBD),
HyMM has consistently better performance of AUPRC
than the best baseline algorithm(s), except for the results
of FLD. Under ALICS, for most diseases (e.g. AD, Anx-
iety, MDD, DD, HD, PD and LBD), HyMM has compa-
rable or higher values of Recall/Prec compared to the
best baselines. Especially for AD, Anxiety, MDD, PD and
LBD, HyMM has obviously higher values of Prec. Under
WGCS, for most diseases (e.g. AD, Anxiety, MDD, DD,
HD and LBD), HyMM has higher values of Recall/Prec
compared to the best baselines, except for the results
of PD and FLD. Especially for AD, MDD, DD and HD,
HyMM has obviously higher values of Recall/Prec. see
Supplementary Note 13 (see Supplementary Data avail-
able online at https://academic.oup.com/bib) for details.

Overall, HyMM has good performance for AD and
many related diseases. Especially for AD and some
related diseases, HyMM has better performance than
the best baseline algorithm(s), though it is not specially
designed for these diseases.

Case study

AD is a progressive neurodegenerative disease and the
most common dementia. Its prevalence is increasing in
our aging population, resulting in a huge socio-economic
burden [116–118]. AD involves specific onset and course
of age-related cognitive and functional decline, as well as
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Figure 8. Performance stability of HyMM using MO/AS/HC (i.e. HyMM_MO, HyMM_AS and HyMM_HC) under the ALICS control set, as a function of
resolution interval: (a) AUPRC, (b) Recall and (c) Precision in the HO network; (d) AUPRC, (e) Recall and (f) Precision in the HE network.

Figure 9. Effect of random shuffling of disease-gene associations on predictive performance under the ALICS control set, as a function of ratio of shuffled
disease-gene associations: (a and b) AUPRC, (c and d) Recall and (e and f) Precision, in the HO and HE networks, respectively.
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Figure 10. Performance of HyMM and other methods for specific diseases in DisGeNet dataset under ALICS control set: (a) AUPRC, (b) Recall and (c) Prec.

specific neuropathology. It is a highly hereditary disease
with high complexity, and identifying AD-related genes
is of great significance for determining its therapeutic
targets [118]. Here, we calculate the scores of candidate
genes related to AD by using the known disease-gene
associations in the MeSH dataset as a training set and
then obtain the top-20 genes from the ranking list of can-
didate genes based on the decreasing order of the scores
(Table S1, see Supplementary Data available online at
https://academic.oup.com/bib).

Through literature verification, we find that some
biomedical studies have implied the associations between
AD and many genes in this list of candidate genes [119–
125]. For example, Park et al. [119] showed that ALK was
important to the tau-mediated AD pathology; Annun-
ziata et al. [120] showed that the deficiency of NEU1
caused the occurrence of an AD-like amyloidogenic
process; Qi et al. [126] showed that GAA promoted Aβ

clearance by promoting autophagy via the Axl/Pak1
signaling pathway in microglial cells and improved
cognitive deficiency in a mouse model; Michele et al.
[123] observed a statistically significant increase of CNVs
for C4B in AD patients, suggesting a possible role for
C4A CNVs in the risk of AD; Pichiah et al. [124] showed

that C4B was differentially expressed in AD; Lian et al.
[121] showed that the dysregulation of neuron–glia
interaction through NFκB/C3/C3aR signaling might lead
to synaptic dysfunction in AD; Rasmussen et al. [122]
confirmed that the low baseline levels of complement
C3 were associated with a high risk of AD; Stoye et al.
[125] demonstrated that APOA1 might be a key factor
within intestine altered in AD-like pathology. Rai et al.
[127] showed that the MTHFR C677T polymorphism
was associated with an increased risk of AD; Feng
et al. showed that the autophagosome-lysosome fusion
could be repressed by the AD-like MAPT accumulation,
showing a vicious cycle of MAPT accumulation and
autophagy deficit in the chronic course of AD [128].
MTHFR and MAPT have been recorded as related to AD
in DisGeNet.

By the enrichment analysis of the above genes, we
obtain the most relevant KEGG pathways and GO terms
(Tables S2 and S3, see Supplementary Data available
online at https://academic.oup.com/bib), many of which
are known to be related to AD, such as the pathways
(Lysosome, Metabolic pathways, Oxidative phosphoryla-
tion and PD) and the GO annotations (myeloid leukocyte
activation, leukocyte mediated immunity, regulated
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exocytosis, oxidation–reduction process, glycosphin-
golipid metabolic process, mitochondrial respiratory
chain complex I assembly, neutrophil degranulation,
energy derivation by oxidation of organic compounds,
mitochondrion organization, small molecule metabolic
process). As we know, lysosomes are the main digestive
compartments in cells that degrade extracellular and
intracellular substances by a series of processes (e.g.
autophagy, endocytosis and phagocytosis), and the
dysfunction of lysosomes leads to the accumulation of
undigested substances [129]. For example, pathological
aggregates of proteins Aβ and τ can result in AD [130].
Autophagy-lysosome defects appear in the early stage
of AD and are considered to be an important factor
in the AD process [131]. Removing these aggregates by
autophagy and degrading them in lysosomes may be a
promising treatment. Many evidences showed that AD
is a widespread metabolic disorder that is related to the
dysregulation of multiple biochemical pathways [132,
133]. Understanding the metabolic perturbations related
to AD is essential to identify new therapeutic targets. The
reduction of oxidative phosphorylation enzyme activities
may be related to β- Amyloid accumulation or other
neurodegenerative processes, which may play a critical
role in the pathology of AD [134, 135]. Many neurode-
generative disorders are closely related [136, 137]. For
example, iron plays an important role in maintaining
the normal physiological function of the brain, and
the iron metabolism dysregulation associated with cell
injury and oxidative stress often co-occurs in several
neurodegenerative diseases such as AD and PD [136].

In addition, we analyze the druggability of the candi-
date genes (Table S1, see Supplementary Data available
online at https://academic.oup.com/bib) and find that
there are many genes corresponding to protein targets
of approved or clinical trial-phase drug candidates [138,
139], and many genes have a large number of interacting
drugs [140], which may be potential therapeutic agents.

Conclusions and discussions
Identifying disease-related genes is important for the
study of human diseases. Network-based algorithms
for disease-gene prediction are very popular, because
human complex diseases are usually considered to be
caused by the perturbations or functional abnormalities
of biomolecule networks. Multiscale module structure
widely exists in the biomolecule networks, but it is not
fully utilized in the analysis and prediction of disease-
related genes. Therefore, we proposed the hybrid method
called HyMM that integrates the information of multi-
scale modules to more effectively predict disease-related
genes. HyMM consists of several key components: the
multiscale MO with exponential sampling for extracting
multiscale module structure, the disease-relatedness
estimation of genes based on multiscale modules and
the probabilistic model for integration of multiple gene

rankings, along with the parameter estimation based on
functional information.

We first revealed the importance of module partitions
at different scales in disease-gene prediction by the
partition-by-partition analysis of multiscale modules
(e.g. by MO, AS and HC). Then, by a series of experimental
tests, we verified the good performance of HyMM, and
showed the effect of different conditional probability
forms and different multiscale module extraction algo-
rithms. Next, we confirmed the performance improve-
ment derived from parameter estimations based on
functional information (DG/PW/GO), and the stability
of HyMM to multiscale module partition sampling and
random shuffling of disease-gene associations. Finally,
the applications of HyMM to other datasets as well as
specific diseases further demonstrated the effectiveness
of HyMM. Overall, HyMM provides an effective frame-
work for integrating multiscale module structure to
enhance the ability to predict disease-related genes. This
framework can provide useful insights for the study of
the multiscale module structure and its application in
such issues as a disease-gene prediction.

In this study, multiscale module identification is
critical to the HyMM framework, but we confirmed the
effectiveness of multiscale modules in enhancing the
ability of disease-gene prediction by using only MO and
two other multiscale algorithms. There is a great possi-
bility that HyMM can be further improved by using more
advanced module identification algorithms, sampling
methods and parameter estimation methods. Motifs,
i.e. small patterns recurring in a network, widely exist
in many biological networks (e.g. metabolic networks
and PPI networks), which are generally considered as
building blocks of biological networks [141], while we
do not specifically consider network motifs in module
identification. The study of motifs in networks is an
important topic, and there has been some research on
network clustering using motifs. For example, HiSCF
(Higher-order Structural Clustering Framework) [142] is
able to perform the clustering analysis by exploiting a
variety of network motifs, which demonstrates that the
consideration of higher-order network motifs gains new
insight into the analysis of biological networks. Moreover,
the extracted multiscale modules are used by HyMM in
the way of integrating independent rankings of genes,
but they can also form a (feature) matrix reflecting the
module affiliations of genes at different scales, which
may be used to infer disease-associated genes by kernel
method or machine learning algorithm [143–146]. These
interesting ideas are worth further trying in the future.

Biomedical data is an important basis for the research
of complex diseases and their related genes [7, 8]. Indi-
vidual status (disease or health) can be reflected through
gene expression, which is affected by multiple factors
such as gene mutation, methylation and transcription
factors, so the analysis of multi-omics data is very impor-
tant for disease research, which may promote the dis-
covery of unknown biological knowledge. With the devel-
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opment of high-throughput sequencing technologies, a
large amount of omics data (e.g. from genomics and
transcriptomics to proteomics and metagenomics) are
continuously being generated [9, 147–149], and disease-
related research will benefit from the increase in the
amount and type of the data as well as the improve-
ment in data quality [14]. The integrative use of omics
data is expected to improve the ability of disease-related
association prediction, and may promote the innovation
of relevant technologies and methods (e.g. dimension
reduction techniques, network embedding, structured
sparsity regularization and multilayer network meth-
ods), accelerating the development of systems biology
[14, 16, 146, 150–155]. However, it is still difficult to man-
age, analyze and use these data, though many studies for
integrative bioinformatics and omics data source inter-
operability are actively promoting the solution of the
related problems [9, 149, 156–158]. For example, HE repos-
itories with multiple formats and different quality levels
hinder the integration of genomic data [156]. The disease-
related datasets also have similar problems: diversity of
disease terminology systems, disease term redundancy,
lack/incompleteness of mapping between terminologies
in different datasets, data reliability, etc.

Moreover, precision medicine is to realize the person-
alized diagnosis and treatment of diseases, while the
research on disease-gene prediction in literature basi-
cally focuses on the disease class or its subclass. Patient-
level datasets with genotypic data and phenotypic data
provide the possibility to study individual pathogenic
genes [10], [154]. Especially with the development of
single-cell sequencing technologies, a large amount of
cell-level multi-omics data is growing explosively [147,
158], which provides new opportunities for the research
of tissue heterogeneity, and cell function, as well as the
personalized study of diseases and pathological genes.
The integrative analysis of single-cell data at different
molecular levels is expected to reveal the overall com-
plexity of biological systems. We believe that these are
worthy of further exploration in the future, though the
integration of the single-cell data is still a challenge due
to their intrinsic heterogeneity.

Key Points

• Developing computational methods for predicting
disease-related genes is important to the study of human
diseases, due to the high cost and time consumption of
biological experiments.

• We proposed a hybrid framework for disease-gene-
prediction by integrating multiscale module structure
(HyMM), which can utilize multiscale information from
local to global structure to more effectively predict
disease-related genes.

• HyMM extracts module partitions from local to global
scales by multiscale modularity optimization with expo-
nential sampling, and estimates the disease relatedness

of genes in partitions by the abundance of disease-
related genes within modules. A probabilistic model for
aggregation of gene rankings is designed in order to inte-
grate multiple predictions derived from multiscale mod-
ule partitions and network propagation, and a parameter
estimation strategy based on functional information is
proposed to further enhance HyMM’s predictive power.

• By a series of experiments, we reveal the importance
of module partitions at different scales, and verify the
good performance of HyMM and its further performance
improvement derived from the parameter estimation.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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