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Abstract. We analyze maximum entropy random graph ensembles with
constrained degrees, drawn from arbitrary degree distributions, and a tuneable
number of 3-loops (triangles). We find that such ensembles generally exhibit
two transitions, a clustering and a shattering transition, separating three distinct
regimes. At the clustering transition, the graphs change from typically having
only isolated loops to forming loop clusters. At the shattering transition the
graphs break up into extensively many small cliques to achieve the desired
loop density. The locations of both transitions depend nontrivially on the
system size. We derive a general formula for the loop density in the regime
of isolated loops, for graphs with degree distributions that have finite and second
moments. For bounded degree distributions we present further analytical results
on loop densities and phase transition locations, which, while non-rigorous, are
all validated via MCMC sampling simulations. We show that the shattering
transition is of an entropic nature, occurring for all loop density values, provided
the system is large enough.
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1. Introduction

Graph theory was introduced by Euler to solve the problem of the seven bridges of
Königsberg [1]. He noted that upon stripping all unnecessary details to solve this
problem, one was left only with a set of 4 nodes and 7 links between them. Since
then, networks and graphs have proven to be fundamental in the modelling of many
real world phenomena. While with the advent of powerful computers accessible to
almost all researchers it is now typical for network scientists to work on a daily basis
with networks of nodes ranging from thousands to millions, still the modelling strategy
is the same: remove unnecessary details and reduce the problem to nodes and links.

For scientists, and especially those with a statistical training – used to thinking
in terms of null models in hypothesis testing [2] – it is natural to ask a very simple
question regarding observed networks: which are typical and which are atypical
topological features? To answer this question one commonly works with random
graph ensembles, designed to mimic real-world networks; see e.g. [3–6]. In addition
to studying properties of graphs, one usually also seeks to understand processes for
which these graphs define the interaction infrastructure, and the relation between
graph topology and process efficacy. Here one would benefit from exact analytical
solutions for processes defined on nontrivial graph ensembles. Unfortunately, this is
hard. While there has been an explosion of exact solutions for processes on random
graphs, the vast majority of these are locally tree-like graphs. This property allows
one to write recursive equations, that become exact for large graphs and show very
good agreement with simulations on finite ones. Ironically, this property that makes
the models solvable is the same property that makes them unrealistic.

In addition to the previous complication, there is also the fact that there is no
easily controllable random graph ensemble that generates graphs with given numbers
of links and triangles. The natural extension of the Erdös-Rényi ensemble [7] was
presented by Strauss [8], who observed that the ensemble condensed very quickly into
dense graphs, losing any resemblance to real networks. There is a long history of
attempts at understanding this transition [9–12], and many alternative loopy random
graph ensembles and algorithms have since then been presented [13–20], yet none
generate easily controllable graphs. It appears very hard to access a regime where
there is high number of triangles while keeping a ‘nice’ topology. More recent models
conserve the degree sequence to avoid the condensation observed by Strauss, but still
show a transition into a clustered regime [19–25]. The logical way of stopping the
appearance of a clustered regime is to restrict the number of triangles in each node
via a hard constraint, as proposed in [15, 16]. While there have been numerical and
theoretical advances with this model [26–31], it remains difficult to keep the target
degree distribution and the target total number of triangles under control [32].

In this paper we study a random graph ensemble with a tuneable number of loops,
achieved with a soft global constraint on the number of triangles in combination with
a hard constraint on the degrees, each drawn from a fixed degree distribution. This
guarantees that our graphs will both be loopy and sparse, which are desired properties
to mimic real networks. This model was previously studied in [17]. However, in
that previous study the chosen MCMC move acceptance probabilities did not ensure
convergence to the target distribution. This was pointed out in [5, 33], where it was
shown that in edge swap graph dynamics nontrivial acceptance probabilities are needed
(see also Appendix A). We show in this paper that with the correct MCMC sampling
the model again displays a transition into a clustered phase, and that the overall
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phenomenology presented in [17] coincides with our results. We then proceed to
develop an extended theoretical and quantitative understanding of the behaviour of
the model, including an analytic characterization of the low triangle density phase,
expressions for the locations of the two (clustering and shattering) transitions, and
scalar measures to probe the interactions between loops and their relevance for the
phases of the ensemble. Our results and predictions are supported via nontrivial
graph sampling simulations involving different degree distributions, using the exact
move acceptance probabilities of [5, 33].

2. The model

We study a random graph ensemble defined on the set of N -node graphs with a
given degree distribution. A graph is an ordered pair (V,E) of nodes and edges,
respectively. We model graphs through their adjacency matrices A, defined by the
entries Aij = 1 if (i, j) ∈ E, and 0 otherwise. We will only be concerned with simple
undirected graphs, which in terms of the adjacency matrix implies that Aij = Aji

and Aii = 0 for all (i, j). The degree of a node is the number of edges connected
to it, ki(A) =

∑

j Aij . Throughout this paper we will work with graphs that have
exactly the same degree sequence {ki}i=1,...,N . Each element of this sequence is drawn
randomly and independently from a given distribution p(k). In the large N limit we
know that the empirical distribution of degrees will converge to the target distribution,
p(k) = limN→∞ N−1

∑N
i=1 δk,ki

.
The number of triangles in a graph is easy to calculate if we identify them with

the loops of length three, up to overcounting. There is a loop of length three around
node i if there exist j and k such that (i, j) ∈ E, (j, k) ∈ E, and (k, i) ∈ E. Since our
graph is simple, the indices i, j, k are all different. In the language of the adjacency
matrix, the indicator function for a given 3-loop takes the simple form

I [(i→ j → k → i) ∈ A] = AijAjkAki. (1)

The total number of 3-loops is then simply the trace of the third power of the adjacency
matrix (modulo overcounting by a factor 6),

M(A) =
∑

ijk

I [(i→ j → k → i) ∈ A] = Tr(A3). (2)

We now define an ensemble of random graphs such that the average number of triangles
can be controlled, using a parametrized distribution over graphs denoted by p(A). Our
choice is a maximum entropy (ME) ensemble. That is, we take p(A) to be such that
the average number of triangles is fixed,

M∗ =
∑

A

p(A)Tr(A3), (3)

and that the degree sequence k = {ki}i=1,...,N is achieved exactly. Among those
distributions p(A) that share these two properties, we choose the one that maximizes
the Shannon entropy S[p] = −

∑

A
p(A) log p(A). This will guarantee that the

distribution is statistically unbiased [34]. The ME distribution is of an exponential
form, with one tuneable parameter α,

p(A) =
1

Z(α)
eαTr(A3)

N
∏

i=1

δki,
∑

j Aij
. (4)
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The product over Kronecker deltas enforces the degree sequence of the graph. For
α = 0 the ensemble reduces to the configuration model [35] (CM), a uniform
distribution over all graphs with degree sequence k.

Our main observable of the ensemble will be the number of 3-loops per node. We
will refer to it as the loop density,

m(α) = N−1 〈M(A)〉 = N−1
〈

Tr(A3)
〉

. (5)

Where 〈f(A)〉 =
∑

A
p(A)f(A). This quantity reflects the typical number of loops

in the neighborhood of a node. Each node can have a different maximum number of
triangles, depending on its degree. Once a random graph ensemble like (4) is defined
it is desirable to have both an algorithm to generate graph samples numerically and
an analytic theory of its statistical properties. In order to generate samples form an
ensemble such as (4) we use a Markov Chain Monte Carlo (MCMC) approach. The
algorithm starts with a seed graph satisfying the degree sequence, and evolves it by
performing degree preserving edge swaps as shown in Figure A1. Edge swaps are either
accepted or rejected, with a nontrivial acceptance probability that not only takes into
account the specific ensemble (4) but also the availability of possible edge swaps as
the graph evolves. The theory of this MCMC algorithm was developed in [33] and
presented more extensively in [5]. It is also summarized briefly in Appendix A.

To find an analytic expression for the loop density we need to calculate the
generating function φ(α):

φ(α) =
1

N
logZ(α) =

1

N
log
∑

A

eαTr(A3)
N
∏

i=1

δki,
∑

j
Aij

(6)

m(α) =
∂φ(α)

∂α
=

〈

1

N
Tr(A3)

〉

(7)

Ideally, knowledge of the functions φ(α) and m(α) would allow us to generate random
graphs with any desired loop density. Although it is not possible to calculate φ(α)
analytically, in section 3 we will show that a small α approximation will give very
good results for a wide range of values. Additionally we will give a description of the
general behaviour of this ensemble for the whole range of α values. Another important
observable of the ensemble reports on the amount of interaction between the triangles
in the graph, i.e. the number of edges and nodes that different triangles share. This
varies in a nontrivial way with different values of α and different system sizes N . To
measure the degree of interaction between loops, we define

r(A) =
#nodes in triangles

# of triangles
=

∑N
i=1 Θ[(A3)ii]
1
6 Tr(A

3)
∈ [0, 3], (8)

where Θ(x) = 1 if x > 0 and zero otherwise. This ratio of triangle vertices to triangles
is independent of the total number of triangles in the graph. If r(A) = 3, the triangles
are all non-interacting in the sense that they do not share any nodes. If r(A) < 3
triangles are sharing nodes. Some simple examples are shown on the top row of Figure
5. In the particular case where graphs form cliques of q + 1 nodes, we would have
r(A) = 6/(q2 − q); this is a natural lower bound for graphs of maximum degree q.
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2.1. Main results

We will now outline the main results of our analysis of the ensemble (4). We found
the same initial behaviour for all degree distributions as the triangle-inducing control
parameter α is increased form α = 0. This behaviour depends only on the first two
moments of the degree distribution, c = k and k2 (where f(k) = N−1

∑N
i=1 f(ki)),

and on the maximum degree q = maxi=1,...,N{ki} (for bounded degree distribution).
We will only consider the case where N is sufficiently large, Np(q)≫ q+1, so that all
degrees are typically represented in the graph with an extensive number of nodes.

In Figure 1 we show the results of numerical sampling of graphs from (4), using an
appropriate MCMC process. The triangle density m(α) increases with α, as expected.
We observe distinct regimes of α-values, as had already been observed for regular
graphs in [25]. Interestingly, to understand properly the nature of the different regimes
of the ensemble it is necessary to also look at two other graph observables: the level of
interaction between loops, measured with r(A) as defined in (8), and the number n(A)
of connected components of the graph. We define their respective ensemble averages
as r(α) = 〈r(A)〉 and n(α) = 〈n(A)〉. The observed regimes are the following:

• α ∈ [0, α1(N)]: Connected regime

The loop density m(α) grows exponentially with α, following

m(α) =
1

N

(

k2/c− 1
)3

e6α. (9)

Only the proportionality constant and the transition point α1(N) depend on the
degree distribution. This formula allows for an explicit calculation of α, given a
desired loop density, simply by inversion. For α = 0 it reproduces the rigorous
result for the loop density for large graphs in [35]. The degree of interaction
between loops is as low as r(A) ≈ 3 for large graphs. The number n(α) of
components of the graph is the same as in the α = 0 case. It is relatively easy to
obtain samples in this regime with the MCMC edge swap dynamics.

• α ∈ [α1(N), α2(N)]: Clustered regime

Here the triangle density m(α) grows faster than (9). Depending on the chosen
degree distribution, this growth may exhibit sudden jumps or may be more
smooth. The main difference with the previous regime is that loops start sharing
edges. This follows from the observed drop of r(α). Nodes start to form clusters
of similar degree. We call this the clustered regime, and α1(N) the clustering
transition point.

• α ∈ [α2(N),∞): Disconnected regime

There is a drastic topological change associated with a second transition at α2(N):
the graph breaks down into small disconnected cliques. Cliques of k + 1 nodes
maximize the number of loops around a node of degree k, see Figures 2 and 3.
Cliques associated with the maximum degree, with q+ 1 nodes, will appear first,
followed by those of the second largest degree, and so on. If, due to finite size
effects, there are insufficient nodes to generate cliques, the graphs break down
into small incomplete cliques. We call the transition at α2(N) the shattering

transition, and this phase α > α2(N) the disconnected or shattered phase. The
rest of the nodes, those unable due to degree constraints to form cliques, will
continue to be connected and follow qualitatively similar regimes, but now for a
new degree distribution that excludes the separated nodes.
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Figure 1. Values of the three main topological observables as measured in
numerical sampling simulations of the random graph ensemble (4), all with
N = 1000. The loop interaction observable r(α), defined in (8), is shown as solid
lines with values on the left vertical axis. The triangle density m(α) is shown
as dashed lines with values on the right vertical axis. The number of connected
graph components n(α) is shown as dashed-dotted line with values on the right
vertical axis. Different panels refer to different degree distribution. Top left:
p(k) = bim(k|3, 7); top right: p(k) = Poiss(k|10); bottom left: p(k) = exp(k|4);
bottom right: p(k) = PL(k). See Table 1 for the corresponding definitions. Error
bars are omitted to avoid clutter; see Figures 5 and 6 for examples of typical error
bar values.

The transitions at α = α1,2(N) are not phase transitions in the conventional sense
– they depend on N , which is taken to be large but still finite – so they are not marked
by non-analyticities in the thermodynamic limit. The definitions given for α1(N) and
α2(N) are instead of a descriptive nature, marking the α-values where 〈r(A)〉 drops
for the first time and where 〈n(A)〉 increases for the first time, respectively. As will
become apparent in the next section, the system size N affects severely the ensemble.

We make a distinction between bounded and unbounded degree distributions p(k),
since boundedness affects the way in which the ensemble behaves with increasing N ,
e.g. in the asymptotics of α1(N) and α2(N). For large graphs with bounded degree
distributions both transitions are close, α1(N) ≈ α2(N). There is a sudden appearance
of disconnected cliques of q + 1, nodes giving rise to a sharp jump in m(α). Strong
numerical evidence and mathematical arguments support the proposition that α1(N)
and α2(N) both scale as O (logN). For graphs with unbounded p(k), the maximum
degree present in the graph will diverge slowly withN . Hence there are not many nodes
of large degree to create cliques, and the structures created when the graphs shatter
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α = 0.125:
m = 1.1

α = 0.275:
m = 4.6

α = 0.35:
m = 36.2

α = 0.75:
m = 39.4

Figure 2. Results of numerical sampling simulations of the random graph
ensemble (4), with N = 500 and p(k) = 1

2
δk,3 + 1

2
δk,9. The four different images

correspond to four different values of α, with different loop densities m(α), as
indicated.

are less clear. The asymptotics of α1(N) and α2(N) should depend heavily on the tail
of p(k), as this tail governs the growth of the maximum degree with N . Nevertheless,
in both cases the ensemble will end in a set of disconnected cliques, as this is the
graph that maximizes the number of loops around each node. The difference between
bounded and unbounded p(k) can be seen clearly when comparing Figure 3 and Figure
2. For the graph with a bimodal degree distribution in Figure 3 the cliques appear
immediately as the graph clusters, while for the one with an exponential distribution
in Figure 2 one can see clusters appearing before the breaking down of the graph.

Expressions like (6) are hard to evaluate analytically, especially for a finite N .
The typical approach of statistical mechanics would be to derive exact results in the
limit N → ∞, and then to show they are a good approximation for finite N . In
contrast, here it is important not to take the limit N → ∞, but rather to work with
asymptotically vanishing expressions for the loop density, m(α) = O

(

N−δ
)

. A clear
example is that of the connected non interacting loopy regime; here equation (9) shows
correctly that limN→∞ m(α) = 0, but it is the way in which m(α) approaches 0 that
gives us formula (9), which is seen to be very accurate. One would normally rescale α
with N to avoid this effect, but it will become clear that in that case m(α1(N))→ 0
for any proper scaling of α with N , meaning that the description of the first regime
would vanish, which is not something we want.

Regarding the sampling, we note that convergence from a given seed towards



Loopy random graphs with fixed degrees and arbitrary degree distributions 8

α = 0.075:
m = 0.8

α = 0.3:
m = 16.9

α = 0.5:
m = 24.3

α = 0.7:
m = 26.4

Figure 3. Results of numerical sampling simulations of the random graph

ensemble (4), with N = 1000 and p(k) = 1

4

(

4

5

)k
. The four different images

correspond to four different values of α, with different loop densities m(α), as
indicated. Zero degree nodes are omitted.

equilibration requires increasing numbers of edge swaps as α is increased. Only for
values in the connected regime α ∈ [0, α1(N)) will equilibration be fast enough to
sample graphs in a reasonable amount of time on a personal computer. Close to the
transitions there is a significant divergence of relaxation times. We conjecture that the
main reason for this change is precisely the clustering of triangles: in order to break
a clique one has to destroy many triangles, an event that becomes extremely unlikely
during the dynamics for large graphs. Therefore we expect there to be an effective
breaking of ergodicity when sampling with MCMC for α>α2(N) and large N .

For the above reasons, from the point of view of applied network science, working
with the loopy ensemble (4) has to be done carefully. Given a seed network, it is
possible to randomize via edge swaps while retaining the value of the loop density,
but there will be two problems. First, it could be that it takes a long time to sample
correctly. Second, it could be that samples generated with the same loop density have
completely different topologies, according to their values of r(A). The first problem
is a matter of computing power and speed. The second problem is more tricky, and
essentially unsolvable without modifying (4). If the graph one wants to randomize
has a value of r(A) that deviates significantly from 〈r(A)〉, then all samples will be
typically very different in structure, even though they share the same loop density.
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3. The connected regime

We will now present an effective approximation for the generating function (6). It
is analogous to the one presented in [25], but generalized for an arbitrary degree
distribution p(k) with finite first and second moments. We use a small α (or large N)
approximation to derive (9), using a known result about the distribution of triangles
in the CM [35]. It is found to give very good results, suggesting it could be exact
asymptotically, at least for bounded degree distributions. If we denote by T (A) the
number of triangles in A, we have (due to overcounting):

Tr(A3) = 6T (A). (10)

We can therefore calculate the generating function (6) as follows:

φ(α) =
1

N
log
∑

A

e6αT (A)
N
∏

i=1

δki,
∑

j
Aij

=
1

N
log
∑

T

e6αTPN (T ) +
1

N
logNk (11)

Where we have introduced,

PN (T ) =
1

Nk

∑

A

δT,T (A)

N
∏

i=1

δki,
∑

j
Aij

(12)

Nk =
∑

A

N
∏

i=1

δki,
∑

j
Aij

(13)

Our approximation now consists in replacing PN (T ) by the known asymptotic
distribution of isolated triangles, that is triangles that do not share edges or nodes.
The latter was computed rigorously in [35]:

PN (T ) ≈ Poiss(T |λt) = e−λt
(λ)T

T !
(14)

λ =
1

6

∑N
i=1 ki(ki − 1)
∑N

i=1 ki
=

1

6

(

k2

c
− 1

)

(15)

This then leads us to the the following approximation for (11) and m(α):

φ(α) ≈
1

N
λT

(

e6α − 1
)

+
1

N
logNk (16)

m(α) ≈
1

N
6λT e

6α =
1

N

(

k2/c− 1
)

e6α (17)

This formula has a simple interpretation. At α = 0 it correctly predicts the expected
number of triangles in a CM, where one pictures these triangles to be very far away
from each other. When α > 0 this number of triangles is multiplied by e6α, giving
another finite but larger amount of triangles when N →∞. In this scenario we would
view these triangles to be simply further and further apart as the system size grows.
This picture will be revisited in the next section.

We have tested the above approximation extensively with numerical simulations.
We generated samples from (4) for many different degree distributions, shown in Table
1. The results are shown in Figure 4, where we have plotted the results for systems
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Table 1. Different degree distributions used for numerical experiments.

type name formula p(k) parameter values

unbounded exponential exp(k|c) =
(

c
c+1

)k
1

c+1 c = 3, 4, 5, 10

unbounded Poissonian Poiss(k|c) = e−c c
k

k! c = 3, 4, 5, 10

unbounded power law PL(k) = Ak−γ k ≥ 2 γ = 4 (k ≈ 2.5)

bounded bimodal bim(k|3, q) = 1
2 (δk,3 + δk,q) q = 5, 7, 9

bounded uniform u(k) = 1
5

∑5
j=1 δk,j -

bounded non uniform v(k) =
∑5

j=1 wjδk,j w = ( 1
10 ,

2
10 ,

3
10 ,

3
10 ,

1
10 )

of multiple sizes N ∼ 100− 4000. In order to have a better visualization, we plotted
the loop densities against a rescaled parameter α̃, defined via α = α̃+ 1

6 logN ,

m
(

α̃+
1

6
logN

)

≈
(k2

c
− 1
)3

e6α̃ for α̃ ≤ α̃1(N). (18)

For this regime we used waiting times of 2 · 104 AESPL (Attempted Edge Swaps
Per Link), and subsequently recorded 20 samples spaced by 2 · 103 AESPL. To show
the accuracy of the theory with a modest number of samples, we plot the average of
the loop density over the full time series of loop densities between samples. We do
this to reduce noise, and because our theory refers to the average (7), not to graph
instances, since there is no self averaging at finite sizes. For graphs larger then 500
nodes, error bars are of the order of magnitude of the markers. For smaller graphs
the error bars can be appreciated on the right panel of Figure 6. In the remaining
loop density plots the error bars were omitted, in order to avoid cluttering of figures.
Note that the scaling in (18) collapses all curves of the same degree distribution, up
to a certain value α̃1(N). As we will show in the next section, the loop density at the
transition vanishes as N →∞, m(α̃1(N))→ 0. This can be clearly seen in Figure 4.

The accuracy of (9) suggests that it could be the exact asymptotic result when
N →∞. This would imply that a bias of the form (4) with α = O (1) only modifies the
number of expected triangles in large graphs by an O (1) amount, implying that the
loop density will still vanish asymptotically. To achieve a nonvanishing loop density
in the asymptotic limit, a different scaling of α should be introduced, as was done in
[20] for 2-regular graphs, i.e. for p(k) = δk,2. However, as will be discussed in the next
section, for general degree distributions the effect of scaling α with N is much more
complicated than in the 2-regular case.

4. The clustered and disconnected regimes

4.1. General results

We next investigate the behaviour of the ensemble beyond the clustering transitions,
i.e. for α > α1(N), where (9) no longer reproduces the correct loop density. For the
2-regular case, the only loopy structure that can exist inside a graph is an isolated
cycle, therefore it is possible for (18) to be exact asymptotically. For other degree
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Figure 4. The loop density m as measured in numerical MCMC simulations
of the ensemble (4), plotted against the rescaled control parameter α̃ =
α − 1

6
logN . Left panel: p(k) = 1

2
δk3 + 1

2
δk9 (circles, for system sizes

N = 100, 200, 300, 400, 500, 750, 1000, 2000, 4000, from right to left), and p(k) =
1

5

∑

5

j=1
δkj (squares, for system sizes N = 500, 750, 1000, 2000, from right to

left). Right panel: p(k) = exp(k|5) (circles), p(k) = Poiss(k, 5) (squares), and
p(k) = PL(k) (triangles), all for system sizes N = 500, 1000, 2000. See Table 1
for the relevant definitions. Error bars were omitted for clarity. The solid lines
correspond to the corresponding theoretical prediction (18).

distributions, many other loop structures can appear in a graph. As we will show,
it seems that structures with strongly interacting triangles dominate entropically.
Therefore the statistics of different local structures needs to be taken into account,
making (9) insufficient to describe the ensemble for all values of α.

In the regime α < α1(N), the desired loop density is achieved by creating further
triangles that are independent and far from each other, without sharing nodes. For
α > α1(N), in contrast, the desired loop density is achieved by creating triangles
that share as many edges as possible. This qualitative change appears to be purely
entropic, since the latter regime appears for all loop densities as long as the system is
large enough, that is even for very small values of m. Put differently, the transition
at α1(N) does not happen because there are too many triangles which need to share
nodes due to of lack of space in the graph, as one might guess initially. The transition
happens because for a given loop density the number of graphs one can create by
‘putting triangles aside’ in small clusters is larger than the number of graphs one can
create by embedding them in the graph in a non-interacting way. While we cannot
prove this assertion rigorously, extensive numerical experiments support this claim.

We measured the interaction between loops in samples of (4) using the observable
r(A) defined in (8). The empirical value r(α) = 〈r(A)〉 was measured in all the
numerical experiments listed in table 1. For values α > α1(N) we increased the
number of AESPL by a factor ten, giving waiting times of 2 ·105 AESPL and inter-
sample intervals of 2·104 AESPL. In all experiments we observed the same behaviour
as shown for the two cases in Figure 5. An initial phase of 〈r(A)〉 ≈ 3, indicating non-
interacting loops, is followed by a sudden drop to 〈r(A)〉 = rmin(N) < 1, indicating
interacting loops. At the value of α marking this sudden drop, which we defined to be
α1(N), the graph has become clustered in order to achieve the desired loop density.
This α value coincides precisely with the point where formula (9) stops working, as
can be seen in Figure 1.
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Figure 5. Top row: examples of small graphs and their corresponding values of
r(A). Bottom row: plots of r(α) as measured in simulations, shown versus α,
with standard deviations shown as error bars. Left: p(k) = 1

2
δk3 + 1

2
δ5k, with

graph sizes N = 100, 200, 300, 400, 500, 750, 1000, 2000, 4000 (from left to right).
Right: p(k) = e−55k/k!, with graph sizes N = 500, 1000, 2000 (from left to right).

When increasing the system size N , it is clear that the initial parts of the curves
tend to flatten to plateaux at the level r = 3. This is consistent with the fact that
equation (9), which accurately describes the loop density in this regime, was derived
assuming an underlying Poissonian distribution of triangles; the latter assumes, in
turn, that the triangles are non-interacting [35].

The remaining question is how the two values α1(N) and rmin(N) depend on N .
For rmin(N) the following possibilities must be considered:

(i) limN→∞ rmin(N) = r∗ > 0

(ii) limN→∞ rmin(N) = 0

Given that for a finite graph r(A) is always bounded from below by r = 6/(q2 − q),
the second option is only a possibility for unbounded graphs. For α1(N) we have the
following possibilities, with their different physical implications:

(i) limN→∞ α1(N) =∞, asymptotically the loop density vanishes for all values of α.

(ii) limN→∞ α1(N) = α∗ > 0, there is a first order phase transition at α∗.

(iii) limN→∞ α1(N) = 0, all α values have a finite density loop density m(α) > 0.

We made the distinction between bounded and unbounded distributions precisely
because we believe that the behaviour of the ensemble for these distribution families
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Figure 6. Plots of m against rescaled variable γ = α − [2(q + 1)]−1 logN ,
showing the collapse of the second (shattering) transition point for different
system sizes, predicted by (29). Left: p(k) = 1

2
δk3 + 1

2
δk5 (circles), and

p(k) = 1

2
δk3 + 1

2
δk9 (squares). System sizes were N = 200, 300, 400, 500, 750,

from bottom to top. Error bars are omitted to reduce cluttering. Right: close-
up in the neighbourhood of the shattering transition, for p(k) = 1

2
δk3 + 1

2
δk7,

for system sizes N = 200, 300, 400 (from bottom to top). Here the error bars
correspond to average plus/minus one standard deviation.

might not be the same. As can already be seen in the bound r(A) ≥ 6/(q2 − q), if
q is growing with N , then r can approach the value 0 arbitrarily closely, contrary to
the bounded case. This can also be appreciated in Figure 5, for the exponentially
distributed degree distribution 〈r(A)〉 appears to reach a lower value for larger N .

For the case of bounded distributions, the maximum degree q asymptotically
provides sufficiently many nodes to create cliques that will achieve the desired loop
density, see for example Figure 3. If the desired loop density is higher, then this
density will be realized via cliques of the next highest degree k < q, in descending
order. For unbounded degree distributions, this picture changes. Here one cannot
guarantee the abundance of such cliques, therefore the observed topology seems to
remain connected for larger values of α, in what we have called the clustered regime.

4.2. Results for bounded degree distributions

In this subsection we develop a further theoretical description of our graph ensemble for
the case of bounded degree distributions. As mentioned before, numerical simulations
suggest the need to include the statistics of the cliques formed by nodes of maximum
degree. We denote by Kq(A) the number of fully connected cliques of q+1 nodes,
and by T (A) the number of triangles that are not in cliques of degree q. We can then
decompose the total number of 3-loops in the following way:

Tr(A3) = 6T (A) + (q + 1)q(q − 1)Kq(A). (19)
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With this decomposition we can write the partition function as

φ(α) =
1

N
log
∑

A

e6αT (A)+α(q+1)q(q−1)Kq(A)
N
∏

i=1

δki,
∑

j
Aij

=
1

N
log
∑

T,K

PN (T,K)e6αT eq(q
2−1)αK +

1

N
logNk (20)

where we introduced Nk =
∑

A

∏

i≤N δki,
∑

j
Aij

, and the joint distribution of triangles
and cliques for the unbiased CM,

PN (T,K) =
1

Nk

∑

A

δT,T (A)δK,Kq(A)

N
∏

i=1

δki,
∑

j
Aij

. (21)

Our main approximation consists in assuming that asymptotically the random
variables T and K become independent, each described by Poisson distribution. This
means that we again assume the main contribution of triangles for T (A) to come from
isolated triangles. Since isolated triangles and cliques are almost independent, and are
rare events in the CM, one could argue that according to the Poisson Paradigm in [36],
they should both be Poissonian random variables. For a similar argument regarding
loops of different lengths see [37]. Thus we put

PN (T,K) ∼ Poiss(T |λt)Poiss(K|λKq
(N)) (22)

We can then immediately proceed to calculate the partition function,

φ(α) ≈
λT

N

(

e6α − 1
)

+
λKq

(N)

N

(

eq(q
2−1)α − 1

)

+
1

N
logNk, (23)

which leads to the following expression for the loop density,

m(α) ≈
6λT

N
e6α +

q(q2 − 1)

N
λKq

(N)eq(q
2−1)α. (24)

Contrary to the regular case discussed in [25], there is for an arbitrary p(k) no
established rigorous result for the expected number λK(N) of cliques. Nevertheless,
there is a good idea of what its scaling with N should be [38]. The expected number of
isomorphisms of a given strictly balanced graph H (see [38] for definition) is expected
to be O

(

Nv(H)−e(H)
)

, where e(H) and v(H) are the number of edges and nodes of H
respectively. In the case of a clique of q+1 nodes these numbers are, e(Kq) =

1
2q(q+1)

and v(Kq) = q + 1. Therefore,

λK(N) = O

(

1

N
1
2 q(q−1)−1

)

∼
cq

N
1
2 q(q−1)−1q(q2 − 1)

. (25)

We have included the factor q(q2 − 1) in the denominator for convenience. With this
expression we obtain the following result for small values α

m(α) ≈
1

N

(

k2/c− 1
)3

e6α +
cq

N
1
2 q(q−1)

eαq(q
2−1) (26)

The first term corresponds to the contribution from isolated triangles at low density, to
be denoted by mt(α). The second term represents triangles in the previously described
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cliques, we denote is as mK(α). The latter is bounded since the number of cliques of
q + 1 nodes is bounded. This then gives

mK(α) ≈

{

N− 1
2 q(q−1)cqe

q(q2−1)α if α ≤ α2(N)

p(q)q(q − 1) if α ≥ α2(N)
(27)

It is convenient to define the shattering transition as the point where all the cliques of
degree q have appeared. This automatically gives an estimate of how α2(N) behaves
with N . Here we can see that α2(N) diverges logarithmically with N :

α2(N) =
1

2(q + 1)
logN +

1

q(q2 − 1)
log

[

p(q)q(q − 1)

cq

]

(28)

This result depends on the degree distribution p(k) explicitly through q and p(q),
but also implicitly through cq. Since we do not generally know cq, we can not test
the accuracy of the above prediction directly. Only for regular graphs cq is available,
leading to accurate predictions for α2(N) [20]. However, alternative tests are possible.
Equations (28) predicts a collapse of the various α2(N) curves under the following
change of variable, α = γ + 1

2(q+1) logN ,

m

(

γ +
1

2(q + 1)
logN

)

≈

{

N−
q−2
q+1 e6γ for γ ≤ γ1(N)

cqe
q(q2−1)γ for γ1(N) ≤ γ ≤ γ2(N)

(29)

Even though it is hard to sample graphs very precisely in the clustering regime, given
that the waiting time of the MCMC algorithm is very large, overall the transition
points of the curves do collapse nicely, as can be seen in Figure 6. We stress that
close the transition waiting times were so long that points on the steep part of the
left panel on Figure 6 were probably not equilibrated for system sizes N ≥ 1000. For
this reason we show in the right panel that for system sizes N = 200, 300, 400 we do
see an almost perfect collapse of the transitions points of the curves. For these small
sizes was it possible to have confidence in the equilibration of the MCMC algorithm
so close to the transition. The prefactor slope of 1

2(q+1) for the term proportional to

logN in α2(N) in (28) was also tested. Results are presented in Table 2. We find a
very good agreement for the bimodal distributions. For distributions u(k) and v(k)
the prediction is close enough to the predicted value 0.83, but the observed value of
0.10(1) in both cases is actually closer to what we would observe with q = 4. This is
consistent with the fact that, for these particular distributions, both degrees have a
similar density and k = 4 is more abundant in the case of v(k).

With our estimate for α2(N) we can also derive an upper bound on the loop
density achieved in the connected regime,

mu = mt(α2(N)) =
1

N
q−2
q+1

(k2/c− 1)3(p(q)q(q − 1)/cq)
6

q(q2−1) (30)

This value corresponds to the loop density that would be reached if the contribution
of cliques were not present, given that cliques appear before it becomes impossible
to reach this density in the connected phase. Even though cq is unknown, we can
conclude that mu vanishes when N → ∞, which is indeed consistent with numerical
experiments, as can be seen in Figure 7. The results are very good when looking at
the chosen bimodal degree distributions, p(k) = 1

2δk3 +
1
2δkq . Figure 7 confirms two
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Table 2. Comparison of the slope of α2(N) plotted against logN , as measuerd
from data in Figure 7, versus the theoretically predicted value [2(q+1)]−1 of (28).
The degree distributions bim(k, a, b), u(k) and v(k) are defined as in Table 1.

p(k) bim(k|3, 5) bim(k|3, 7) bim(k|3, 9) u(k) v(k)

theory 0.083̄ 0.0625 0.05 0.083̄ 0.083̄

simulation 0.079(5) 0.066(2) 0.057(3) 0.10(1) 0.10(1)

theoretical predictions. First, we see that the last value of the loop density before the
steep jump into the clustered phase scales with N in the manner predicted by (30).
Second, the final value of the jump at α2(N) coincides with the prediction p(q)q(q−1),
as indicated by the dotted-dashed line in Figure 7.

As a final comment, we point out that the Poissonian assumption of (22) implies
that the shattering transition is of an entropic nature. To see this, we can study the
behaviour of the ratio

N (k|T )

N (k|K)
=

#of graphs with degree sequence k and T isolated triangles

#of graphs with degree sequence k and K q-regular cliques
(31)

If we fix the loop density to any arbitrary value m∗ < p(q)q(q − 1), this value can be
achieved by the following numbers of triangles or cliques.

T =
m∗

6
N, K =

m∗

q(q − 1)
N (32)

Using the Poissonian assumption, we can then prove (see Appendix B) that

lim
N→∞

N (k|m∗N/6)

N (k|m∗N/(q2 − q))
= lim

N→∞
e−

m∗

6
q−2
q+1N logN = 0 (33)

Hence, no matter how small m∗ is, for a large enough system there will always be
infinitely many more graphs that achieve it via cliques than via isolated triangles.

5. Discussion

In this letter we have presented and analyzed a random graph ensemble were samples
are both sparse and loopy. Even though this ensemble (4) can be regarded as
the simplest random loopy graph ensemble, it is found to exhibit rather nontrivial
behaviour. While one would hope for and expect a smooth and easy controllability of
the loop density via the control parameter α, we see that in fact there are very special
nontrivial regimes, and there is surprisingly a very strong influence of the system size,
i.e. the number of nodes in the graphs. Still, with appropriate care this ensemble
could be used by practitioners of network science as a null model of loopy networks. If
one has a given real network A0, that is to be compared with random samples having
the same loop density m(A0), we propose the following steps should be taken:

(i) Calculate the following properties of the initial graph: k(A0),m(A0), r(A0), n(A0)

(ii) Sample graphs repeatedly from (4), varying α until the value α∗ where observed
and required loop densities match, m(α) = m(A0). An initial guess for α might
be α0 = 1

6 log(m(A0)N/(k2/c− 1)3), especially if if α1(N) > α0.
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Figure 7. Top: scatter plots of triangle density m shown versus system size N .
The width of the markers is proportional to the number of connected components.
Top left: p(k) = bim(k|3, 7), with dashed-dotted line corresponding to the
prediction p(q)q(q − 1) of (26). The observed slope of −0.64(5) is consistent with
the predicted −0.625 of (30). Top right: p(k) = PL(k), and inset p(k) = exp(k|5).
Here solid lines are only guides to the eye. Bottom left: linear/log plot of α2(N)
versus N from simulation data. Dotted line shows linear fit in good agreement
with theoretical prediction (28), see table 2. Bottom right: conjectured phase
diagram of the ensemble (4), in the (m,N) plane.

(iii) Once loop densities are matched, compare the other properties r(A) and n(A).

• If n(α) ≈ n(A0) and r(α) ≈ r(A0), then (4) is a suitable null model for A0.
• If they are different, it means that A0 is still extremely atypical in (4), and
thus it is not a suitable null model

Even if all observables m(A), r(A) and n(A) of initial and sampled graphs match, it
still could be the case that equilibration waiting times of the MCMC are very large.
For graphs of more than a thousand nodes it could take days or more to get well-mixed
samples. This just shows how the applied network scientist should be cautious when
applying tools like edge swapping without a proper theory.

To summarize, we present our conjectured phase diagram in Figure 7 (bottom
right). With an exact solution for (6) one could find an analytic expression for the
phase boundaries shown. The main lessons are that the same loop densities may
have very different topologies for different systems sizes, and that sampling anywhere
outside the connected regime takes a very long time, potentially days or weeks for large
graphs, even on fast multi-core machines. We expect that for any model, any desired
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loop density eventually falls in the disconnected regime as N grows. For the case of
bounded degree distributions with Np(q) >> q + 1, the clustered region practically
vanishes.

There are many directions in which to pursue further research, ranging from
practical to theoretical. From a rigorous point of view it would be interesting to see
how to prove or disprove any of the assertions made in this work, that is extending
rigorous results of CM beyond uniform models. Additionally, longer and more
extensive simulations should be carried out to try to determine the exact dependence
on N of α1(N) and α2(N), especially to find out whether there is indeed a transition
without scaling parameters for unbounded degree distributions.

The enormous waiting times seem to be due in part to the fact that in the clustered
and disconnected phases many loops have to broken in a predetermined sequence to
get rid of certain structures like cliques. Given that this is unlikely, an alternative
MCMC with moves that involve more edges rather than only 2 could be studied, in
order to speed up the algorithm and let it explore more quickly the graph space.

Finally, there are many interesting questions about the spectral properties of (4)
to discover. First, in [25] an analytic expression for the spectral density was found for
the case of regular graphs in the connected regime. We are currently working on a
generalization for an arbitrary degree distribution like in (4). The formation of clusters
after the clustering transition points to a localization transition for the eigenvectors of
A. A similar observation has been made for dense graphs in [24], where its nontrivial
spectral properties were found; such spectral analysis has not been done yet for the
sparse case like ours.

Overall, there are many open question when it comes to presenting random
counterparts of real networks. It is safe to say that they are not defined by loopiness
alone. It seems like real networks occupy a very small area of the abstract graph
space. Finding the correct properties that will make a maximum entropy ensemble
sample from a pool of realistically looking graphs is still very much an open problem.
An alternative is to impose a constraint on the full set of eigenvalues of the adjacency
matrix, in this way all loop lengths would be controlled simultaneously. This full
spectral constraint has been discussed in [25, 39, 40].
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Appendix A. Numerical sampling

In order for this paper to be sufficiently self-containment, we will present a brief recap
of the algorithms described in [5, 33] for generating samples from nondirected random
graph ensembles with hard-constrained degrees. The main task is to define a Markov
chain with the following characteristics:

pt+1(A) =
∑

A′∈ΩM

W (A|A′)pt(A
′), (A.1)

(i) The measure pt converges to the invariant measure p∞(A) = 1
Z
e−H(A).

(ii) The allowed transitions constitute a limited set Φ of elementary moves

F : ΩF ⊆ ΩM → ΩM

(iii) For each F ∈ Φ there exists a unique inverse F−1 that acts on the same set of
graphs, ΩF−1 = ΩF

With these condition we will be able to define a dynamical process that will allow us
to sample effectively from ensemble (4). The reason we need nontrivial moves is to
be sure we respect the degree constraints; a single edge dynamics cannot achieve this.
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Figure A1. Edge swap for MCMC dynamics in the space of simple nondirected
graphs. This is the simplest type of move in that leaves all degree invariant.

The simplest elementary move that respects the values of all degrees is called an edge
swap. It involves choosing a pair of edges and interchanging them, see Figure A1.

We next need to define the transition probabilities W (A|A′) of the Markov chain.
They are chosen such as to obey the detailed balance condition, with (4) as invariant
measure, i.e. W (A|A′)p∞(A′) = W (A′|A)p∞(A) for all (A,A′). Together with the
known ergodicity of the edge swap moves [41], detailed balance is a sufficient condition
to satisfy (i). We can write the transition probabilities as

W (A|A′) =
∑

F∈Ω′

IF (A
′)

n(A′)
[δA,FA′A(FA′|A′) + δA,A′ [1−A(FA′|A′)]] . (A.2)

with the definitions

Ω′ = {F ∈ Φ| ∃A ∈ ΩM s.t. FA 6= A}

IF (A) =

{

1 if A→ FA is an allowed move
0 otherwise

n(A) =
∑

F∈Ω′

IF (A)

A(FA|A) : acceptance probability of move A→ FA (A.3)

The interpretation of the above transition probabilities is as follows. At each step
a candidate move is chosen uniformly at random from all possible moves, with
probability 1/n(A). It is then accepted with probability A(FA|A), and otherwise
rejected. The acceptance probabilities must satisfy the detailed balance condition

(∀A∈Ω)(∀F ∈Ω′) : A(FA|A)e−H(A)/n(A) = A(A|FA)e−H(FA)/n(FA) (A.4)

This condition is satisfied by multiple choices; here we choose

A(A|A′) =
1

1 + eE(A)−E(A′)
(A.5)

with the effective energy E(A) = H(A) + logn(A). This expression stresses the fact
that the acceptance probabilities cannot depend only on the function H(A), but also
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on the current state via n(A). In [5] it is shown that n(A) an be written explicitly as

n(A) =
1

4

(

∑

i

ki

)2

+
1

4

∑

i

ki −
1

2

∑

i

k2i −
1

2

∑

ij

kiAijkj +
1

4
Tr
(

A4
)

+
1

2
Tr
(

A3
)

(A.6)

Appendix B. Entropic argument

Let us assume that in the configuration model (CM) both T and K are Poissonian
random variables,

PN (T ) = Poiss(T |λt), QN(K) = Poiss(K|cq/N
d−1) (B.1)

with d = 1
2q(q− 1). They are simply related to the number of graphs that exist, given

the prescribed degree sequence, with the stated number of triangles or cliques, so

PN (T )

QN (K)
=

∑

A
δT,T (A)

∏N
i=1 δki,

∑
j
Aij

∑

A
δK,K(A)

∏N
i=1 δki,

∑
j Aij

= e−λt+
cq

Nd
(λt)

T

(cq/Nd−1)K
K!

T !
(B.2)

We want to determine for a given loop density whether asymptotically there are more
graphs that realize the joint values (T,K) through triangles or through cliques. For
this we need to write the number of triangles and cliques in terms of the desired loop
density, which gives

T =
m

6
N, K =

m

q(q2 − 1)
N (B.3)

We can now inspect the asymptotic limit

lim
N→∞

PN

(

m
6 N

)

QN

(

m
q(q2−1)N

) = lim
N→∞

exp

(

−λt +
cq
Nd

+
m

6
N logλt −

m

q(q2 − 1)
N log(cq)

+
md

q(q2 − 1)
N log(N) +

(

m

q(q2 − 1)
N

)

!−
(m

6
N
)

!

)

(B.4)

We note, upon using Stirling’s expression for the factorials, that this quantity is
dominated by the N logN term, since d = 1

2q(q − 1). Hence

lim
N→∞

PN

(

m
6 N

)

QN

(

m
q(q2−1)N

) = lim
N→∞

exp

(

−m

(

1

6
−

1

2(q + 1)

)

N logN

)

= 0. (B.5)


