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Annealed importance sampling
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Simulated annealing—moving from a tractable distribution to a distribution of interest via a sequence
of intermediate distributions—has traditionally been used as an inexact method of handling isolated
modes in Markov chain samplers. Here, it is shown how one can use the Markov chain transitions for
such an annealing sequence to define an importance sampler. The Markov chain aspect allows this
method to perform acceptably even for high-dimensional problems, where finding good importance
sampling distributions would otherwise be very difficult, while the use of importance weights ensures
that the estimates found converge to the correct values as the number of annealing runs increases. This
annealed importance sampling procedure resembles the second half of the previously-studied tempered
transitions, and can be seen as a generalization of a recently-proposed variant of sequential importance
sampling. It is also related to thermodynamic integration methods for estimating ratios of normalizing
constants. Annealed importance sampling is most attractive when isolated modes are present, or when
estimates of normalizing constants are required, but it may also be more generally useful, since its
independent sampling allows one to bypass some of the problems of assessing convergence and
autocorrelation in Markov chain samplers.

Keywords: tempered transitions, sequential importance sampling, estimation of normalizing
constants, free energy computation

1. Introduction

In Bayesian statistics and statistical physics, expectations of var-
ious quantities with respect to complex distributions must often
be computed. For simple distributions, we can estimate expecta-
tions by sample averages based on points drawn independently
from the distribution of interest. This simple Monte Carlo ap-
proach cannot be used when the distribution is too complex to
allow easy generation of independent points. We might instead
generate independent points from some simpler approximating
distribution, and then use an importance sampling estimate, in
which the points are weighted to compensate for use of the wrong
distribution. Alternatively, we could use a sample of dependent
points obtained by simulating a Markov chain that converges
to the correct distribution. I show in this paper how these two
approaches can be combined, by using an importance sampling
distribution defined by a series of Markov chains.

This method is inspired by the idea of “annealing” as a way of
coping with isolated modes, which leads me to call it annealed
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importance sampling. The method is especially suitable when
multimodality may be a problem, but may be attractive even
when it is not, since it allows one to bypass some of the problems
of convergence assessment. Annealed importance sampling also
supplies an estimate for the normalizing constant of the distri-
bution sampled from. In statistical physics, minus the log of the
normalizing constant for a canonical distribution is known as the
“free energy”, and its estimation is a long-standing problem. In
independent work, Jarzynski (1997a, b) has described a method
primarily aimed at free energy estimation that is essentially the
same as the annealed importance sampling method described
here. I will focus instead on statistical applications, and will dis-
cuss use of the method for estimating expectations of functions
of state, as well as the normalizing constant.

Importance sampling works as follows (see, for example,
Geweke 1989). Suppose that we are interested in a distribution
for some quantity, x , with probabilities or probability densities
that are proportional to the function f (x). Suppose also that
computing f (x) for any x is feasible, but that we are not able to
directly sample from the distribution it defines. However, we are
able to sample from some other distribution that approximates
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the one defined by f (x), whose probabilities or probability den-
sities are proportional to the function g(x), which we are also
able to evaluate.

We base our estimates on a sample of N independent points,
x (1), . . . , x (N ), generated from the distribution defined by g(x).
For each x (i), we compute an importance weight as follows:

w(i) = f
(
x (i)
)/

g
(
x (i)
)

(1)

We can then estimate the expectation of a(x) with respect to the
distribution defined by f (x) by

ā =
N∑

i=1

w(i)a
(
x (i)
)/ N∑

i=1

w(i) (2)

Provided g(x) 6= 0 whenever f (x) 6= 0, it is easy to see that
N−1

∑
w(i) will converge as N → ∞ to Z f /Zg , where Z f =∫

f (x) dx and Zg =
∫

g(x) dx are the normalizing constants for
f (x) and g(x). One can also see that ā will converge to the
expectation of a(x) with respect to the distribution defined by
f (x).

The accuracy of ā depends on the variability of the impor-
tance weights. When these weights vary widely, the estimate
will effectively be based on only the few points with the largest
weights. For importance sampling to work well, the distribution
defined by g(x) must therefore be a fairly good approximation
to that defined by f (x), so that the ratio f (x)/g(x) does not vary
wildly. When x is high-dimensional, and f (x) is complex, and
perhaps multimodal, finding a good importance sampling dis-
tribution can be very difficult, limiting the applicability of the
method.

An alternative is to obtain a sample of dependent points by
simulating a Markov chain that converges to the distribution of
interest, as in the Metropolis-Hastings algorithm (Metropolis
et al. 1953, Hastings 1970). Such Markov chain methods have
long been used in statistical physics, and are now widely applied
to statistical problems, as illustrated by the papers in the book
edited by Gilks, Richardson and Spiegelhalter (1996).

Markov chains used to sample from complex distributions
must usually proceed by making only small changes to the state
variables. This causes problems when the distribution contains
several widely-separated modes, which are nearly isolated from
each other with respect to these transitions. Because such a chain
will move between modes only rarely, it will take a long time
to reach equilibrium, and will exhibit high autocorrelations for
functions of the state variables out to long time lags.

The method of simulated annealing was introduced by
Kirkpatrick, Gelatt and Vecchi (1983) as a way of handling
multiple modes in an optimization context. It employs a se-
quence of distributions, with probabilities or probability den-
sities given by p0(x) to pn(x), in which each p j differs only
slightly from p j+1. The distribution p0 is the one of interest.
The distribution pn is designed so that the Markov chain used
to sample from it allows movement between all regions of the

state space. A traditional scheme is to set p j (x) ∝ p0(x)β j , for
1 = β0 > β1 > · · · > βn ≥ 0.

An annealing run is started at some initial state, from which
we first simulate a Markov chain designed to converge to pn , for
some number of iterations, which are not necessarily enough to
actually approach equilibrium. We next simulate some number
of iterations of a Markov chain designed to converge to pn−1,
starting from the final state of the previous simulation. We con-
tinue in this fashion, using the final state of the simulation for
p j as the initial state of the simulation for p j−1, until we finally
simulate the chain designed to converge to p0.

We hope that the distribution of the final state produced by this
process is close to p0. Note that if p0 contains isolated modes,
simply simulating the Markov chain designed to converge to p0

starting from some arbitrary point could give very poor results,
as it might become stuck in whichever mode is closest to the
starting point, even if that mode has little of the total probabil-
ity mass. The annealing process is a heuristic for avoiding this,
by taking advantage of the freer movement possible under the
other distributions, while gradually approaching the desired p0.
Unfortunately, there is no reason to think that annealing will
give the precisely correct result, in which each mode of p0 is
found with exactly the right probability. This is of little conse-
quence in an optimization context, where the final distribution
is degenerate (at the maximum), but it is a serious flaw for the
many applications in statistics and statistical physics that require
a sample from a non-degenerate distribution.

The annealed importance sampling method I present in this
paper is essentially a way of assigning weights to the states
found by multiple simulated annealing runs, so as to produce
estimates that converge to the correct value as the number of
runs increases. This is done by viewing the annealing process
as defining an importance sampling distribution, as explained
below in Section 2. After discussing the accuracy of importance
sampling in general in Section 3, I analyse the efficiency of an-
nealed importance sampling in Section 4, and find that good
results can be obtained by using a sufficient number of interpo-
lating distributions, provided that these vary smoothly. Demon-
strations on simple distributions in Section 5 and on a statistical
problem in Section 6 confirm this.

Annealed importance sampling is related to tempered transi-
tions (Neal 1996a), which are another way of modifying the an-
nealing procedure so as to produce correct results. As discussed
in Section 7, annealed importance sampling will sometimes
be preferable to using tempered transitions. When tempered
transitions are still used, the relationship to annealed impor-
tance sampling allows one to find estimates for ratios of nor-
malizing constants that were previously unavailable. Section 8
shows how one can also view a form of sequential impor-
tance sampling due to MacEachern, Clyde and Liu (1999)
as an instance of annealed importance sampling. Finally, in
Section 9, I discuss the general utility of annealed importance
sampling, as a way of handling multimodal distributions, as a
way of calculating normalizing constants, and as a way of
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combining the adaptivity of Markov chains with the advantages
of independent sampling.

2. The annealed importance
sampling procedure

Suppose that we wish to find the expectation of some function of
x with respect to a distribution with probabilities or probability
densities given by p0(x). We have available a sequence of other
distributions, given by p1(x) up to pn(x), which we hope will
assist us in sampling from p0, and which satisfy p j (x) 6= 0
wherever p j−1(x) 6= 0. For each distribution, we must be able to
compute some function f j (x) that is proportional to p j (x). We
must also have some method for sampling from pn , preferably
one that produces independent points. Finally, for each j from
1 to n − 1, we must be able to simulate some Markov chain
transition, Tj , that leaves p j invariant.

The sequence of distributions used can be specially con-
structed to suit the problem, but the following scheme may be
generally useful. We fix f0 to give the distribution of interest,
and fix fn to give the simple distribution we can sample from,
and then let

f j (x) = f0(x)β j fn(x)1−β j (3)

where 1=β0>β1> · · ·>βn = 0. Note that the traditional sim-
ulated annealing scheme with f j (x) = f0(x)β j would usually be
less suitable, since it usually leads to a pn for which independent
sampling is not easy.

For applications in Bayesian statistics, fn would be the prior
density, which is often easy to sample from, and f0 would be
the unnormalized posterior distribution (the product of fn and
the likelihood). When only posterior expectations are of interest,
neither the prior nor the likelihood need be normalized. When the
normalizing constant for the posterior (the marginal likelihood)
is of interest, the likelihood must be properly normalized, but
the prior need not be, as discussed below.

The Markov chain transitions are represented by functions
Tj (x, x ′) giving the probability or probability density of moving
to x ′ when the current state is x . It will not be necessary to
actually compute Tj (x, x ′), only to generate an x ′ from a given
x using Tj . These transitions may be constructed in any of the
usual ways (eg, Metropolis or Gibbs sampling updates), and
may involve several scans or other iterations. For the annealed
importance sampling scheme to be valid, each Tj must leave the
corresponding p j invariant, but it is not essential that each Tj

produce an ergodic Markov chain (though this would usually be
desirable).

Annealed importance sampling produces a sample of points,
x (1), . . . , x (N ), and corresponding weights, w(1), . . . , w(N ). An
estimate for the expectation of some function, a(x), can then
be found as in equation (2). To generate each point, x (i), and
associated weight, w(i), we first generate a sequence of points,

xn−1, . . . , x0, as follows:

Generate xn−1 from pn .

Generate xn−2 from xn−1 using Tn−1.

. . .

Generate x1 from x2 using T2.

Generate x0 from x1 using T1.

(4)

We then let x (i) = x0, and set

w(i) = fn−1(xn−1)

fn(xn−1)

fn−2(xn−2)

fn−1(xn−2)
· · · f1(x1)

f2(x1)

f0(x0)

f1(x0)
(5)

To avoid overflow problems, it may be best to do the computa-
tions in terms of log(w(i)).

To see that annealed importance sampling is valid, we can
consider an extended state space, with points (x0, . . . , xn−1).
We identify x0 with the original state, so that any function of the
original state can be considered a function of the extended state,
by just looking at only this component. We define the distribution
for (x0, . . . , xn−1) by the following function proportional to the
joint probability or probability density:

f (x0, . . . , xn−1) = f0(x0) T̃ 1(x0, x1) T̃ 2(x1, x2) · · ·
× T̃ n−1(xn−2, xn−1) (6)

Here, T̃ j is the reversal of the transition defined by Tj . That is,

T̃ j (x, x ′) = Tj (x
′, x) p j (x

′)/p j (x)

= Tj (x
′, x) f j (x

′)/ f j (x) (7)

The invariance of p j with respect to Tj ensures that these are
valid transition probabilities, for which

∫
T̃ j (x, x ′) dx ′ = 1. This

in turn guarantees that the marginal distribution for x0 in (6) is
the same as the original distribution of interest (since the joint
probability there is the product of this marginal probability for x0

and the conditional probabilities for each of the later components
given the earlier components).

For use below, we apply equation (7) to rewrite the function
f as follows:

f (x0, . . . , xn−1)

= f0(x0)
f1(x0)

f1(x0)
T̃ 1(x0, x1)

f2(x1)

f2(x1)
T̃ 2(x1, x2) · · ·

× fn−1(xn−2)

fn−1(xn−2)
T̃ n−1(xn−2, xn−1) (8)

= f0(x0)

f1(x0)
T1(x1, x0)

f1(x1)

f2(x1)
T2(x2, x1) · · ·

× fn−2(xn−2)

fn−1(xn−2)
Tn−1(xn−1, xn−2) fn−1(xn−1) (9)

We now look at the joint distribution for (x0, . . . , xn−1) de-
fined by the annealed importance sampling procedure (4). It is
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proportional to the following function:

g(x0, . . . , xn−1) = fn(xn−1)Tn−1(xn−1, xn−2) · · ·
× T2(x2, x1)T1(x1, x0) (10)

We regard this as an importance sampler for the distribution
(6) on the extended state space. The appropriate importance
weights are found using equations (1), (9), and (10). Dropping
the superscript (i) on the right side to simplify notation, they
are:

w(i) = f (x0, . . . , xn−1)

g(x0, . . . , xn−1)

= f0(x0)

f1(x0)

f1(x1)

f2(x1)
· · · fn−2(xn−2)

fn−1(xn−2)

fn−1(xn−1)

fn(xn−1)
(11)

These weights are the same as those of equation (5), showing
that the annealed importance sampling procedure is valid.

The above procedure produces a sample of single independent
points x (i) for use in estimating expectations as in equation (2).
In practice, better estimates will often be obtained if we use each
such point as the initial state for a Markov chain that leaves p0

invariant, which we simulate for some pre-determined number,
k, of iterations. We can then estimate the expectation of a(x) by
the weighted average (using the w(i)) of the simple average of a
over the states of this Markov chain.

This procedure is valid because the expectation of a(x) with
respect to p0(x) is the same as the expectation with respect to
p0(x) of the average value of a along a Markov chain that leaves
p0 invariant and which is started in state x (since if the start
state has distribution p0, all later states will also be from p0).
Another way of viewing the procedure is as an extension of the
annealing run to generate states x−1, x−2, . . . , x−k using transi-
tions T0, T−1, . . . , T−(k−1), which are all the same, and which all
leave p0 invariant. The functions f−1, . . . , f−k are all the same
as f0, so the extra factors that this extension adds to the weights
are all equal to one, leaving the weights the same as before. The
extended state, (x−k, . . . , x−1, x0, . . . , xn−1), has a distribution
defined analogously to equation (6), in which the marginal distri-
butions for x−k, . . . , x−1, x0 are all p0. The expectation of a(x)
with respect to p0 can therefore be estimated by the expectation
of the average value of a over x−k, . . . , x−1, x0.

Annealed importance sampling also provides an estimate of
the ratio of the normalizing constants for f0 and fn . Such normal-
izing constants are important in statistical physics and for statis-
tical problems such as Bayesian model comparison. The normal-
izing constant for f , as defined by equation (6), is the same as
that for f0, and the normalizing constant for g in equation (10) is
the same as that for fn . The average of the importance weights,∑
w(i)/N , converges to the ratio of these normalizing constants,

Z0/Zn , where Z0 =
∫

f0(x) dx and Zn =
∫

fn(x) dx .
In a Bayesian application where fn is proportional to the prior

and f0 is the product of fn and the likelihood, the ratio Z0/Zn

will be the marginal likelihood of the model—that is, the prior
probability or probability density of the observed data. Note
that the prior need not be normalized, since any constant factors

there will cancel in this ratio, but the likelihood must include all
constant factors for this estimate of the marginal likelihood to
be correct.

The data collected during annealed importance sampling runs
from pn down to p0 can also be used to estimate expectations
with respect to any of the intermediate distributions, p j for
0< j < n. One simply uses the states, x j , found after applica-
tion of Tj+1 in (4), with weights found by omitting the factors
in equation (5) that pertain to later states. Similarly, one can es-
timate the ratio of the normalizing constants for f j and fn by
averaging these weights.

Finally, although we would usually prefer to start annealing
runs with a distribution pn from which we can generate inde-
pendent points, annealed importance sampling is still valid even
if the points xn−1 generated at the start of each run are not inde-
pendent. In particular, these points could be generated using a
Markov chain that samples from pn . The annealed importance
sampling estimates will still converge to the correct values, pro-
vided the Markov chain used to sample from pn is ergodic.

3. Accuracy of importance sampling estimates

Before discussing annealed importance sampling further, it is
necessary to consider the accuracy of importance sampling es-
timates in general. These results will also be needed for the
demonstrations in Sections 5 and 6.

For reference, here again is the importance sampling estimate,
ā, for E f [a], based on points x (i) drawn independently from the
density proportional to g(x):

ā =
N∑

i=1

w(i)a
(
x (i)
)/ N∑

i=1

w(i)

= N−1
N∑

i=1

w(i)a
(
x (i)
)/

N−1
N∑

i=1

w(i) (12)

where w(i) = f (x (i))/g(x (i)) are the importance weights.
The accuracy of this importance sampling estimator is dis-

cussed by Geweke (1989). An estimator of the same form is
also used with regenerative Markov chain methods (Mykland,
Tierney and Yu 1995, Ripley 1987), where the weights are the
lengths of tours between regeneration points.

In determining the accuracy of this estimator, we can assume
without loss of generality that the normalizing constant for g
is such that Eg[w(i)] = 1, since multiplying all the w(i) by a
constant has no effect on ā. We can also assume that E f [a] =
Eg[w(i)a(x (i))] = 0, since adding a constant to a(x) simply shifts
ā by that amount, without changing its variance. For large N , the
numerator and denominator on the right side of equation (12)
will converge to their expectations, which on these assumptions
gives

ā = (E[w(i)a
(
x (i)
)]+ e1

)/(
E
[
w(i)

]+ e2
)

= e1

1+ e2
= e1 − e1e2 + · · · (13)
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where e1 and e2 are the differences of the averages from their ex-
pectations. When N is large, we can discard all but the first term,
e1. We can judge the accuracy of ā by its variance (assuming this
is finite), which we can approximate as

Varg(ā) ≈ Varg(e1) = N−1 Eg

[(
w(i)a

(
x (i)
))2]

(14)

We now return to an actual situation, in which Eg[w(i)] may
not be one, and E f [a] may not be zero, by modifying equa-
tion (14) suitably:

Varg(ā) ≈ N−1 Eg

[(
w(i)

(
a
(
x (i)
)− E f (a)

))2]/
Eg

[
w(i)

]2

(15)

Geweke (1989) estimates this from the same data used to com-
pute ā, as follows:

V̂ar(ā) =
N∑

i=1

(
w(i)

(
a
(
x (i)
)− ā

))2

/[
N∑

i=1

w(i)

]2

(16)

This is equivalent to the estimate discussed by Ripley (1987,
Section 6.4) in the context of regenerative simulation. When N
is small, Ripley recommends using a jacknife estimate instead.

Whenw(i) and a(x (i)) are independent under g, equation (15)
simplifies to

Varg(ā) ≈ N−1 Eg

[(
w(i)

)2]
× Eg

[(
a
(
x (i)
)− E f (a)

)2]/
Eg

[
w(i)

]2
(17)

= N−1
[
1+ Varg

[
w(i)

/
Eg

(
w(i)

)]]
×Var f

[
a
(
x (i)
)]

(18)

The last step above uses the following:

Var f

[
a
(
x (i)
)] = E f

[(
a
(
x (i)
)− E f (a)

)2]
= Eg

[
w(i)

(
a
(
x (i) − E f (a)

)2]/
Eg

[
w(i)

]
(19)

= Eg

[(
a
(
x (i)
)− E f (a)

)2]
(20)

Equation (18) shows that whenw(i) and a(x (i)) are independent,
the cost of using points drawn from g(x) rather than f (x) is
given by one plus the variance of the normalized importance
weights. We can estimate this using the sample variance of
w

(i)
∗ = w(i)/N−1

∑
w(i). This gives us a rough indication of

the factor by which the sample size is effectively reduced, with-
out reference to any particular function whose expectation is to
be estimated. Note that in many applications the expectations of
several functions will be estimated from the same sample of x (i).
This “rule of thumb” has also been suggested by Liu (1996).

The variance of thew(i)
∗ is also intuitively attractive as an indi-

cator of how accurate our estimates will be, since when it is large,
the few points with the largest importance weights will dominate
the estimates. It would be imprudent to trust an estimate when
the adjusted sample size, N/(1+Var(w(i)

∗ )), is very small, even
if equation (16) gives a small estimate for the variance of the
estimator. One should note, however, that it is possible for the

sample variance of the w(i)
∗ to be small even when the estimates

are wildly inaccurate, since this sample variance could be a very
bad estimate of the true variance of the normalized importance
weights. This could happen, for example, if an important mode
of f is almost never seen when sampling from g.

Earlier, it was suggested that E f [a] might be estimated by the
weighted average of the values of a over the states of a Markov
chain that is started at each of the x (i). The accuracy of such an
estimate should be estimated by treating these average values for
a as single data points. Treating the dependent states from along
the chain as if they were independently drawn from g could lead
to overestimation of the effective sample size.

Finally, if the x (i) are not independently drawn from g, but
are instead generated by a Markov chain sampler, assessing the
accuracy of the estimates will be more difficult, as it will depend
both on the variance of the normalized importance weights and
on the autocorrelations produced by the Markov chain used. This
is one reason for preferring a pn from which we can generate
points independently at the start of each annealed importance
sampling run.

4. Efficiency of annealed importance sampling

The efficiency of annealed importance sampling depends on the
normalized importance weights, w(i)/Eg[w(i)], not having too
large a variance. There are several sources of variability in the
importance weights. First, different annealing runs may end up
in different modes, which will be assigned different weights. The
variation in weights due to this will be large if some important
modes are found only rarely. There is no general guarantee that
this will not happen, and if it does, one can only hope to find a
more effective scheme for defining the annealing distributions,
or use a radically different Markov chain that eliminates the
isolated modes altogether.

High variability in the importance weights can also result from
using transitions for each of these distributions that do not bring
the distribution close to equilibrium. The extreme case of this is
when all the Tj do nothing, in which case annealed importance
sampling reduces to simple importance sampling based on pn ,
which will be very inefficient if pn is not close to p0. Variability
from this source can reduced by increasing the number of iter-
ations of the basic Markov chain update used. For example, if
each Tj consists of K Metropolis updates, the variance of the
importance weights might be reduced by increasing K , so that
Tj brings the state closer to its equilibrium distribution, p j (at
least within a local mode).

Variability in the importance weights can also come from us-
ing a finite number of distributions to interpolate between p0

and pn , We can analyse how this affects the variance of the w(i)

when the sequence of distributions used comes from a smoothly-
varying one-parameter family, as in equation (3). For this analy-
sis, we will assume that each Tj produces a state drawn from p j ,
independent of the previous state. This assumption is of course
unrealistic, especially when there are isolated modes, but the
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purpose here is to understand effects unrelated to Markov chain
convergence.

As discussed in Section 3, we can measure the inefficiency of
estimation by one plus the variance of the normalized importance
weights. Rather than look atw(i) directly, it is more convenient to
look at log(w(i)). Using the fact that E[Y q ] = exp(qµ+q2σ 2/2)
when Y = exp(X ) and X is Gaussian with mean µ and variance
σ 2, we see that if the log(w(i)) are Gaussian with mean µ and
variance σ 2, the sample size will be effectively reduced by the
factor

1+ Varg

[
w(i)

Eg

(
w(i)

)] = E
[(
w(i)

)2]
E
[
w(i)

]2

= exp(2µ+ 4σ 2/2)

[exp(µ+ σ 2/2)]2
= exp(σ 2) (21)

From equation (5),

log
(
w(i)

) = n∑
j=1

[log( f j−1(x j−1))− log( f j (x j−1))] (22)

If the distributions used are as defined by equation (3),

log
(
w(i)

) = n∑
j=1

(β j−1 − β j )

× [log( f0(x j−1))− log( fn(x j−1))] (23)

If we further assume that the β j are equally spaced (between 0
and 1), we have

log
(
w(i)

) = 1

n

n∑
j=1

[log( f0(x j−1))− log( fn(x j−1))] (24)

Under the assumption that Tj produces a state drawn indepen-
dently from p j , and provided that log( f0(x j−1))− log( fn(x j−1))
has finite variance (when x j−1 is drawn from p j ), the Central
Limit Theorem can be applied to conclude that log(w(i)) will
have an approximately Gaussian distribution for large n (keep-
ing f0 and fn fixed as n increases). The variance of log(w(i))
will asymptotically have the form σ 2

0 /n, for some constant σ 2
0 ,

and one plus the variance of the normalized weights will have
the form exp(σ 2

0 /n). If we assume that each transition, Tj , takes
a fixed amount of time (regardless of n), the time required to
produce an estimate of a given degree of accuracy will be pro-
portional to n exp(σ 2

0 /n), which is minimized when n = σ 2
0 , at

which point the variance of the logs of the importance weights
will be one and the variance of the normalized importance
weights will be e − 1.

The same behaviour will occur when the β j are not equally
spaced, as long as they are chosen by a scheme that leads to
β j−1 − β j going down approximately in inverse proportion to
n. Over a range of β values for which p j is close to Gaussian,
and pn(x) is approximately constant in regions of high density
under p j , an argument similar to that used for tempered transi-
tions (Neal 1996a, Section 4.2) shows that the best scheme uses

a uniform spacing for log(β j ) (ie, a geometric spacing of the
β j themselves). The results above also hold more generally for
annealing schemes that are based on families of distributions for
which the density at a given x varies smoothly with a parameter
analogous to β.

We can get some idea of how the efficiency of annealed im-
portance sampling will be affected by the dimensionality of the
problem by supposing that under each p j , the K components
of x are independent and identically distributed. Assuming as
above that each Tj produces an independent state drawn from p j ,
the quantities log( f0(x j−1)) − log( fn(x j−1)) will be composed
of K identically distributed independent terms. The variance of
each such quantity will increase in proportion to K , as will the
variance of log(w(i)), which will asymptotically have the form
Kσ 2

0 /n. The optimal choice of n will be Kσ 2
0 , which makes the

variance of the normalized importance weights e− 1, as above.
Assuming that behaviour is similar for more interesting distribu-
tions, where the components are not independent, this analysis
shows that increasing the dimensionality of the problem will
slow down annealed importance sampling. However, this linear
slowdown is much less severe than that for simple importance
sampling, whose efficiency goes down exponentially with K .

The above analysis assumes that each Tj generates a state
nearly independent of the previous state, which would presum-
ably require many Metropolis or Gibbs sampling iterations. It is
probably better in practice, however, to use transitions that do
not come close to producing an independent state, and hence
take much less time, while increasing the number of interpo-
lating distributions to produce the same total computation time.
The states generated would still come from close to their equi-
librium distributions, since these distributions will change less
from one annealing step to the next, and the increased number of
distributions might help to reduce the variance of the importance
weights, though perhaps not as much as in the above analysis,
since the terms in equation (24) would no longer be independent.

We therefore see that the variance of the importance weights
can be reduced as needed by increasing the number of distribu-
tions used in the annealing scheme, provided that the transitions
for each distribution are good enough at establishing equilib-
rium. When there are isolated modes, the latter provision will
not be true in a global sense, but transitions that sample well
within a local mode can be used. Whether the performance of
annealed importance sampling is adequate will then depend on
whether the annealing heuristic is in fact capable of finding all
the modes of the distribution. In the absence of any theoretical
information pointing to where the modes are located, reliance
on some such heuristic is inevitable.

5. Demonstrations on simple distributions

To illustrate the behaviour of annealed importance sampling,
I will show how it works on a simple distribution with a sin-
gle mode, using Markov chain transitions that sample well for
all intermediate distributions, and on a distribution with two
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modes, which are isolated with respect to the Markov chain
transitions for the distribution of interest. Both distributions are
over R6.

In the unimodal distribution, the six components of the state,
x1 to x6, are independent under p0, with the distribution for
each being Gaussian with mean 1 and standard deviation 0.1.
This distribution was defined by

f0(x) = exp

[
− 1

2

6∑
i=1

(xi − 1)2

0.12

]
(25)

whose normalizing constant is (2π0.12)6/2 = 0.000248. A se-
quence of annealing distributions was defined according to the
scheme of equation (3). Under the distribution chosen for pn , the
components were independent, each being Gaussian with mean
zero and standard deviation 1. The function fn used to define
this distribution was chosen to be the corresponding Gaussian
probability density, which was normalized. We can therefore
estimate the normalizing constant for f0 by the average of the
importance weights.

To use annealed importance sampling, we must choose a se-
quence of β j that define the intermediate distributions. Both the
number and the spacing of the β j must be appropriate for the
problem. As mentioned in the previous section, for a Gaussian
p0, and a diffuse pn , we expect that a geometric spacing will
be appropriate for the β j that are not too far from one. I spaced
the β j near zero arithmetically. In detail, for the first test, I used
40 β j spaced uniformly from 0 to 0.01, followed by 160 β j

spaced geometrically from 0.01 to 1, for a total of 200 distribu-
tions. In later tests, annealing sequences with twice as many and
half as many distributions were also used, spaced according to
the same scheme.

We must also define Markov chain transitions, Tj , for each of
these distributions. In general, one might use different schemes
for different distributions, but in these tests, I used Metropolis
updates with the same proposal distributions for all Tj (the tran-
sition probabilities themselves were of course different for each
Tj , since the Metropolis acceptance criterion changes). In de-
tail, I used sequences of three Metropolis updates, with Gaussian
proposal distributions centred on the current state having covari-
ances of 0.052 I , 0.152 I , and 0.52 I . Used together, these three
proposal distributions lead to adequate mixing for all of the in-
termediate distributions. For the first test, this sequence of three
updates was repeated 10 times to give each Tj ; in one later test,
it was repeated only 5 times.

For each test, 1000 annealing runs were done. In the first test,
200 states were produced in each run, as a result of applying each
Tj in succession, starting from a point generated independently
from p200. I saved only every twentieth state, however, after
applying T180, T160, etc. down to T0. Note that T0 was applied
at the end of each run in these tests, even though this is not
required (this occurs naturally with the program used). Only the
state after applying T0 was used for the estimates, even though
it is valid to use the state after T1 as well.

Figure 1 shows the results of this first test. The upper graphs
show how the variance of the log of the importance weights
increases during the course of a run. (Importance weights before
the run is over are defined as in equation (5), but with the factors
for the later distributions omitted.) When, as here, the transitions
for all distributions are expected to mix well, the best strategy for
minimizing the variance of the final weights is to space the β j so
that the variance of the log weights increases by an equal amount
in each annealing step. The plot in the upper right shows that the
spacing chosen for this test is close to optimal in this respect.
Furthermore, according to the analysis of Section 4, the number
of intermediate distributions used here is close to optimal, since
the variance of the logs of the weights at the end of the annealing
run is close to one.

The lower two graphs in Fig. 1 show the distribution of the
value of the first component of the state (x1) in this test. As seen
in the lower left, this distribution narrows to the distribution
under p0 as β approaches one. The plot in the lower right shows
the values of the first component and of the importance weights
for the states at the ends of the runs. In this case, the values and
the weights appear to be independent.

The estimate for the expectation of the first component of
the state in this first test is 1.0064, with standard error 0.0050,
as estimated using equation (16). This is compatible with the
true value of one. In this case, the error estimate from equa-
tion (16) is close to what one would arrive at from the estimated
standard deviation of 0.10038 and the adjusted sample size of
N / (1+Var(w∗)) = 1000 / (1+1.12) = 472, as expected when
the values and the weights are independent. The average of the
importance weights for this test was 0.000236, with standard
error 0.000008 (estimated simply from the sample variance of
the weights divided by N ); this is compatible with the true nor-
malizing constant of 0.000248.

Two tests were done in which each run used half as much
computer time as in the first test. In one of these, the anneal-
ing sequence was identical to the first test, but the number of
repetitions of the three Metropolis updates in each Tj was re-
duced from 10 to 5. This increased the variance of the normal-
ized importance weights to 2.18, with a corresponding increase
in the standard errors of the estimates. In the other test, the
number of distributions in the annealing sequence was cut in
half (spaced according to the same scheme as before), while the
number of Metropolis repetitions was kept at 10. This increased
the variance of the normalized importance weights to 2.72. As
expected, spreading a given number of updates over many inter-
mediate distributions appears to be better than using many up-
dates to try to produce nearly independent points at each of fewer
stages.

The final test on this unimodal distribution used twice as many
intermediate distributions, spaced according to the same scheme
as before. This reduced the variance of the normalized impor-
tance weights to 0.461, with a corresponding reduction in stan-
dard errors, but the benefit in this case was not worth the factor
of two increase in computer time. However, this test does confirm
that when each Tj mixes well, the variance of the importance
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Fig. 1. Results of the first test on the unimodal distribution. Upper left: the logs of the importance weights at ten values of β, for each of the
1000 runs. Upper right: the variance of the log weights as a function of the index of β. Lower left: the distribution of the first component of the
state at ten β values. Lower right: the joint distribution of the first component and the importance weight at the ends of the runs. Random jitter
was added to the β values in the plots on the left to improve the presentation.

weights can be reduced as desired by spacing the β j more
closely.

Tests were also done on a distribution with two modes, which
was a mixture of two Gaussians, under each of which the six
components were independent, with the same means and stan-

dard deviations. One of these Gaussians, with mixing proportion
1/3, had means of 1 and standard deviations of 0.1, the same as
the distribution used in the unimodal tests. The other Gaussian,
with mixing proportion 2/3, had means of −1 and standard de-
viations of 0.05. This mixture distribution was defined by the
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following f0:

f0(x) = exp

[
− 1

2

6∑
i=1

(xi − 1)2

0.12

]

+ 128 exp

[
− 1

2

6∑
i=1

(xi + 1)2

0.052

]
(26)

The normalizing constant for this f0 is 3 (2π0.12)6/2 =
0.000744. The means of the components with respect to this
p0 are −1/3.

The same fn as before was used for these tests (independent
standard Gaussian distributions for each component, normal-
ized). The same transitions based on Metropolis updates were
used as well, along with the same scheme for spacing the β j .
For the first test, the number of distributions used was 200, as in
the first test on the unimodal distribution.

The results are shown in Fig. 2. As seen in the lower left of the
figure, the distributions for β near zero cover both modes, but as
β is increased, the two modes become separated. The Metropolis
updates are not able to move between these modes when β is
near one, even when using the larger proposals with standard
deviation 0.5, since the probability of proposing a movement to
the other mode simultaneously for all six components is very
small. Both modes are seen when annealing, but the mode at
−1 is seen only rarely—27 times in the 1000 runs—despite the
fact that it has twice the probability of the other mode under the
final distribution at β = 1. An unweighted average over the final
states of the annealing runs would therefore give very inaccurate
results.

The plot in the lower right of the figure shows how the impor-
tance weights compensate for this unrepresentative sampling.
The runs that ended in the rarely-sampled mode received much
higher weights than those ending in the well-sampled mode. The
estimate for the expectation of the first component from these
runs was −0.363, with an estimated standard error of 0.107
(from equation (16)), which is compatible with the true value of
−1/3. This standard error estimate is less than one might expect
from the estimated standard deviation of 0.92 and the adjusted
sample size of N / (1 + Var(w∗)), which was 35.0. The differ-
ence arises because the values and the importance weights are
not independent in this case.

The average of the importance weights in these runs was
0.000766, with an estimated standard error of 0.000127, which
is compatible with the true value of 0.000744 for the normalizing
constant of f0.

We therefore see that annealed importance sampling produces
valid estimates for this example. However, the procedure is less
efficient than we might hope, because so few runs end in the
mode at−1. Another symptom of the problem is that the variance
of the normalized importance weights in this test was 27.6—
quite high compared to the variance of 1.12 seen in the similar
test on the unimodal distribution. We can see how this comes
about from the upper plots in Fig. 2. For small values of β, these

plots are quite similar to those in Fig. 1, presumably because
the mode at −1 has almost no influence for these distributions.
However, this mode becomes important as β approaches one,
producing a high variance for the weights at the end.

One might hope to reduce the variance of the importance
weights by increasing the number of intermediate distributions
(ie, by spacing the β j more closely). I ran tests with twice as
many distributions, and with four times as many distributions, in
both cases using the same number of Metropolis updates for each
distribution as before. The results differed little from those in the
first test. The variance of the importance weights for runs ending
within each mode was reduced, but the difference in importance
weights between modes was not reduced, and the number of runs
ending in the mode at −1 did not increase. There was therefore
little difference in the standard errors for the estimates.

For this example, the annealing heuristic used was only
marginally adequate. One could expect to obtain better results
only by finding a better initial distribution, pn , or a better scheme
for interpolating from pn to p0 than that of equation (3). This
example also illustrates the dangers of uncritical reliance on em-
pirical estimates of accuracy. If only 100 runs had been done,
the probability that none of the runs would have found the mode
at −1 would have been around 0.065. This result can be sim-
ulated using the first 100 runs that ended in the mode at +1
from the 1000 runs of the actual test. Based on these 100 runs,
the estimate for the expectation of the first component is 0.992,
with an estimated standard error of 0.017, and the estimate for
the normalizing constant of f0 is 0.000228, with an estimated
standard error of 0.000020. Both estimates differ from the true
values by many times the estimated standard error. Such un-
recognized inaccuracies are of course also possible with any
other importance sampling or Markov chain method, whenever
theoretically-derived guarantees of accuracy are not available.

6. Demonstration on a linear
regression problem

To illustrate the use of annealed importance sampling for sta-
tistical problems, I will briefly describe its application to two
Bayesian models for a linear regression problem, based on Gaus-
sian and Cauchy priors. This example, and that of the previ-
ous section, are implemented using my software for flexible
Bayesian modeling. The data and command files used are in-
cluded with that software, which is available from my web page.

The data consists of 100 independent cases, each having 10
real-valued predictor variables, x1, . . . , x10 and a real-valued
response variable, y, which is modeled by

y =
10∑

k=1

βk xi + ε

The residual, ε, is modeled as Gaussian with mean zero and
unknown variance σ 2. The 100 cases were synthetically gener-
ated from this model with σ 2 = 1 and with β1 = 1, β2 = 0.5,
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Fig. 2. Results of the first test on the distribution with two modes. The four plots here correspond to those in Fig. 1.

β3 = −0.5, and βk = 0 for 4 ≤ i ≤ 10. The predictor variables
were generated from a multivariate Gaussian with the variance
of each xi being one and with correlations of 0.9 between each
pair of xi .

Two Bayesian models were tried. In both, the prior for the re-
ciprocal of the residual variance (1/σ 2) was gamma with mean
1/0.12 and shape parameter 0.5. Both models also had a hyper-
parameter, v2, controlling the width of the distribution of the

βk . Its reciprocal was given a gamma prior with mean 1/0.052

and shape parameter 0.25. For the model with Gaussian priors,
ν2 was the variance of the βk , which had mean zero, and were
independent conditional on ν2. The model based on Cauchy pri-
ors was similar, except that ν was the width parameter of the
Cauchy distribution (ie, the density for βk conditional on ν was
(1/πν)[1+β2

k /ν
2]−1). One might suspect that the Cauchy prior

will prove more appropriate for the actual data, since this prior
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gives substantial probability to situations where many of the βk

are close to zero, but a few βk are much bigger.
It seems quite possible that the posterior using the Cauchy

prior could be multimodal. Since the xi are highly correlated,
one βk can to some extent substitute for another. The Cauchy
prior favours situations where only a few βk are large. This could
produce several posterior modes that correspond to different sets
of βk being regarded as significant.

I sampled for both models using a combination of Gibbs sam-
pling for σ 2 and the “hybrid Monte Carlo” method for the βk

(see Neal 1996b). There was no sign of any problems with iso-
lated modes, but it is difficult to be sure on this basis that no
such modes exist. Annealed importance sampling was applied
in order to either find any isolated modes or provide further ev-
idence of their absence, and also to compare the two models by
calculating their marginal likelihoods.

An annealing schedule based on equation (3) was used. Af-
ter some experimentation, adequate results were obtained using
such a schedule with 1000 distributions: 50 distributions geo-
metrically spaced from β = 10−8 to β = 10−6, then 450 distri-
butions geometrically spaced from β = 10−6 to β = 0.05, and
finally 500 distributions geometrically spaced from β = 0.05 to
β = 1. Hybrid Monte Carlo updates were used for each distri-
bution. A single annealing run took approximately 3.3 seconds
on a 550 MHz Pentium III machine. I did 1000 such runs for
each model.

Because a few of the annealing runs resulted in much smaller
weights than others, the variance of the logs of the weights was
very large, and hence was not useful in judging whether the
annealing schedule was good. Instead, I looked at W = log(1+
Var(w(i)

∗ )), the log of one plus the variance of the normalized
importance weights. If the distribution of the logs of the weights
were Gaussian, W would be equal to the variance of the logs of
the weights. When this distribution is not Gaussian, W is less
affected by a few extremely small weights. Plots of W show
that for both models it increases approximately linearly with the
index of the distribution, reaching a final value around 0.65, only
a bit less than the optimal value of one.

For both models, the estimates of the posterior means of the
βk found using annealed importance did not differ significantly
from those found using hybrid Monte Carlo without annealing.
It therefore appears that isolated modes were not present in this
problem. The annealed importance sampling runs yielded esti-
mates for the log of the marginal likelihood for the model with
Gaussian priors of−158.67 and for the model with Cauchy pri-
ors of−158.30, with a standard error of 0.03 for both estimates.
The difference of 0.37 corresponds to a Bayes factor of 1.45 in
favour of the model with Cauchy priors.

7. Relationship to tempered transitions

Several ways of modifying the simulated annealing procedure
in order to produce asymptotically correct estimates have been
developed in the past, including simulated tempering (Marinari

and Parisi 1992, Geyer and Thompson 1995) and Metropolis
coupled Markov chains (Geyer 1991). The method of tempered
transitions (Neal 1996a) is closely related to the annealed im-
portance sampling method of this paper.

The tempered transition method samples from a distribution
of interest, p0, using a Markov chain whose transitions are de-
fined in terms of an elaborate proposal procedure, involving a
sequence of other distributions, p1 to pn . The proposed state is
found by simulating a sequence of base transitions, T̂ 1 to T̂ n ,
which leave invariant the distributions p1 to pn , followed by a
second sequence of base transitions, Ť n to Ť 1, which leave pn

to p1 invariant, and which are the reversals of the corresponding
T̂ j with respect to the p j . The decision whether to accept or re-
ject the final state is based on a product of ratios of probabilities
under the various distributions; if the proposed state is rejected,
the new state is the same as the old state.

In detail, such a tempered transition operates as follows,
starting from state x̂0:

Generate x̂1 from x̂0 using T̂ 1.

Generate x̂2 from x̂1 using T̂ 2.

. . .

Generate x̄n from x̂n−1 using T̂ n .

Generate x̌n−1 from x̄n using Ť n .

. . .

Generate x̌1 from x̌2 using Ť 2.

Generate x̌0 from x̌1 using Ť 1.

(27)

The state x̌0 is then accepted as the next state of the Markov
chain with probability

min

[
1,

p1(x̂0)

p0(x̂0)
· · · pn(x̂n−1)

pn−1(x̂n−1)
· pn−1(x̌n−1)

pn(x̌n−1)
· · · p0(x̌0)

p1(x̌0)

]
(28)

The second half of the tempered transition procedure (27)
is identical to the annealed importance sampling procedure (4),
provided that Ť n in fact generates a point from pn that is indepen-
dent of x̄n . We can also recognize that the annealed importance
sampling weight given by equation (5) is essentially the same as
the second half of the product defining the tempered transition
acceptance probability (28). Due to these similarities, the charac-
teristics of annealed importance sampling will be quite similar
to those of the corresponding tempered transitions. In partic-
ular, the comparison by Neal (1996a) of tempered transitions
with simulated tempering is relevant to annealed importance
sampling as well.

The major difference between annealed importance sampling
and tempered transitions is that each tempered transition requires
twice as much computation as the corresponding annealing run,
since a tempered transition involves an “upward” sequence of
transitions, from p1 to pn , as well as the “downward” sequence,
from pn to p1, that is present in both methods. This is a reason to
prefer annealed importance sampling when it is easy to generate
independent points from the distribution pn . When this is not
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easy, tempered transitions might be preferred, though annealed
importance sampling could still be used in conjunction with a
Markov chain sampler that produces dependent points from pn .
With tempered transitions, there is also the possibility of using
more than one sequence of annealing distributions (with the se-
quence chosen randomly for each tempered transition, or in some
fixed order). Potentially, this could lead to good sampling even
when neither annealing sequence would be adequate by itself.
There appears to be no way of employing multiple annealing
sequences with annealed importance sampling without adding
an equivalent of the “upward” sequence present in tempered
transitions.

When tempered transitions are used, the idea behind annealed
importance sampling can be applied in order to estimate ratios of
normalizing constants, which were previously unavailable when
using tempered transitions. To see how to do this, note that the
first half of a tempered transition (up to the generation of x̂n−1

from x̂n−2 using T̂ n−1) is the same as an annealed importance
sampling run, but with the sequence of distributions reversed (p0

and pn exchange roles, the first state of the run is the current state,
x̂0, which comes from p0, and in general, x j of (4) corresponds
to x̂n−1− j of (27)). The importance weights for this backwards
annealed importance sampling are

ŵ(i) = f1(x̂0)

f0(x̂0)

f2(x̂1)

f1(x̂1)
· · · fn−1(x̂n−2)

fn−2(x̂n−2)

fn(x̂n−1)

fn−1(x̂n−1)
(29)

The average of these weights for all tempered transitions (both
accepted and rejected) will converge to

∫
fn(x) dx/

∫
f0(x) dx ,

the ratio of normalizing constants for fn and f0.
A similar estimate can be found by imagining the reversal of

the Markov chain defined by the tempered transitions. In this
chain, the states are visited in the reverse order, the accepted
transitions of the original chain become accepted transitions in
the reversed chain (but with the reversed sequence of states), and
the rejected transitions of the original chain remain unchanged.
An importance sampling estimate for the ratio of normalizing
constants for fn and f0 can be obtained using this reversed chain,
in the same manner as above. The importance weights for the
accepted transitions are as follows, in terms of the original chain:

w̌(i) = f1(x̌0)

f0(x̌0)

f2(x̌1)

f1(x̌1)
· · · fn−1(x̌n−2)

fn−2(x̌n−2)

fn(x̌n−1)

fn−1(x̌n−1)
(30)

The importance weights for the rejected transitions are the same
as in equation (29). These two estimates can be averaged, pro-
ducing an estimate that uses the states at both the beginning
and the end of the accepted transitions, plus the states at the
beginning of the rejected transitions, with double weight.

An estimate for the ratio of the normalizing constant for f j

to that for f0 can be found in similar fashion for any of the
intermediate distributions, by simply averaging the weights ob-
tained by truncating the products in equations (29) and (30) at
the appropriate point. These weights can also be used to estimate
expectations of functions with respect to these intermediate dis-
tributions. Note that error assessment for all these importance

sampling estimates will have to take into account both the vari-
ance of the importance weights and the autocorrelations pro-
duced by the Markov chain based on the tempered transitions.

A cautionary note regarding these estimates comes from con-
sidering the situation when only two distributions are used, which
are the prior and the posterior for a Bayesian model. The es-
timate for the reciprocal of the marginal likelihood based on
equation (29) will then be the average over points drawn from
the posterior of the reciprocal of the likelihood. This estima-
tor will often have infinite variance, and will be very bad for
any problem where there is enough data that the posterior is not
much affected by the prior (since the marginal likelihood is af-
fected by the prior). Compare this to the annealed importance
sampling estimate for the marginal likelihood using just these
two distributions, which will be the average of the likelihood
over points drawn from the prior. This is not very good when
the posterior is much more concentrated than the prior, but it is
not as bad as averaging the reciprocal of the likelihood. Even
when many intermediate distributions are used, it seems possi-
ble the annealed importance sampling estimates may be better
than the corresponding “backwards” estimates using tempered
transitions (assuming that pn is more diffuse than p0).

8. Relationship to sequential
importance sampling

A variant of sequential importance sampling recently developed
by MacEachern, Clyde and Liu (1999) can be viewed as an in-
stance of annealed importance sampling, in which the sequence
of distributions is obtained by looking at successively more data
points.

This method (which MacEachern et al. call Sequential Impor-
tance Sampler S4) applies to a model for the joint distribution
of observable variables x1, . . . , xn along with associated latent
variables s1, . . . , sn (which have a finite range). We are able to
compute these joint probabilities, as well as the marginal prob-
abilities for the xk together with the sk over any subset of the
indexes. We wish to estimate expectations with respect to the
conditional distribution of s1, . . . , sn given known values for
x1, . . . , xn . We could apply Gibbs sampling to this problem, but
it is possible that it will be slow to converge, due to isolated
modes.

The method of MacEachern et al. can be viewed as annealed
importance sampling with a sequence of distributions, p0 to pn ,
in which p j is related to the distribution conditional on n − j
of the observed variables; p0 is then the distribution of interest,
conditional on all of x1, . . . , xn . In detail, these distributions
have probabilities proportional to the following f j :

f j (s1, . . . , sn) = P(s1, . . . , sn− j , x1, . . . , xn− j )

×
n∏

k=n− j+1

P(sk | x1, . . . , xk, s1, . . . , sk−1)

(31)
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We can apply annealed importance sampling with this se-
quence of distributions, using transitions defined as follows.
Tj begins with some number of Gibbs sampling updates for
s1 to sn− j , based only on P(s1, . . . , sn− j | x1, . . . , xn− j ). We can
ignore sn− j+1 to sn here because we can generate values for
them afterward from their conditional distribution (under f j )
given s1 to sn− j , independently of their previous values. This is
done by forward simulation based on their conditional probabil-
ities. (Actually, there is no need to generate values for sk with
k > n − j + 1, since these values have no effect on the subse-
quent computations anyway.) This is easily seen to be equivalent
to the sampling done in procedure S4 of MacEachern et al.

The importance weights of equation (5) are products of factors
of the following form:

f j−1(s1, . . . , sn)

f j (s1, . . . , sn)

= P(s1, . . . , sn− j+1, x1, . . . , xn− j+1)

P(s1, . . . , sn− j , x1, . . . , xn− j )P(sn− j+1 | x1, . . . , xn− j+1, s1, . . . , sn− j )

(32)

= P(sn− j+1, xn− j+1 | x1, . . . , xn− j , s1, . . . , sn− j )

P(sn− j+1 | x1, . . . , xn− j+1, s1, . . . , sn− j )
(33)

= P(xn− j+1 | x1, . . . , xn− j , s1, . . . , sn− j ) (34)

The product of these factors produces the same weights as used
by MacEachern et al.

Sequential Importance Sampler S4 of MacEachern et al. is
thus equivalent to annealed importance sampling with the an-
nealing distributions defined by equation (31). Unlike the family
of distributions given by equation (3), these distributions form a
fixed, discrete family. Consequently, the variance of the impor-
tance weights cannot be decreased by increasing the number of
distributions. This could sometimes make the method too ineffi-
cient for practical use. However, it is possible that the sequence
of distributions defined by equation (31) could be extended to
a continuous family by partially conditioning on the xk in some
way (eg, by adjusting the variance in a Gaussian likelihood).
Other forms of annealed importance sampling (eg, based on the
family of equation (3)) could also be applied to this problem.

9. Discussion

Annealed importance sampling is potentially useful as a way of
dealing with isolated modes, as a means of calculating ratios of
normalizing constants, and as a general Monte Carlo method that
combines independent sampling with the adaptivity of Markov
chain methods.

Handling isolated modes was the original motivation for an-
nealing, and has been the primary motivation for developing
methods related to annealing that produce asymptotically correct
results. Annealed importance sampling is another such method,
whose characteristics are similar to those of tempered transi-
tions. As I have discussed (Neal 1996a, b), which of these meth-
ods is best may depend on whether the sequence of annealing

distributions is “deceptive” in certain ways. It is therefore not
possible to say that annealed importance sampling will always
be better than other methods such as simulated tempering, but
it is probably the most easily implemented of these methods.

Annealing methods are closely related to methods for estimat-
ing ratios of normalizing constants based on simulations from
many distributions, many of which are discussed by Gelman
and Meng (1998). It is therefore not surprising that the meth-
ods of simulated tempering (Marinari and Parisi 1992, Geyer
and Thompson 1995) and Metropolis coupled Markov chains
(Geyer 1991) easily yield estimates for ratios of normalizing
constants as a byproduct. Tempered transitions were previously
seen as being deficient in this respect (Neal 1996a, b), but we
now see that such estimates can in fact be obtained by using
annealed importance sampling estimators in conjunction with
tempered transitions. One can also estimate expectations with
respect to all the intermediate distributions in this way (as is
also possible with simulated tempering and Metropolis coupled
Markov chains).

Ratios of normalizing constants can also be obtained when
using annealed importance sampling itself, which from this per-
spective can be seen as a form of thermodynamic integration (see
Gelman and Meng 1998). One might expect a thermodynamic
integration estimate based on a finite number of points to suffer
from systematic error, but the results of this paper show that
the annealed importance sampling estimate for the ratio of nor-
malizing constants is in fact unbiased, and will converge to the
correct value as the number of annealing runs increases. (Note
that in this procedure one averages the estimates from multiple
runs for the ratio of normalizing constants, not for the log of this
ratio, as might perhaps seem more natural.)

Unlike simulated tempering and the related method of um-
brella sampling (Torrie and Valleau 1977), no preliminary esti-
mates for ratios of normalizing constants are required when us-
ing annealed importance sampling. Metropolis coupled Markov
chains share this advantage, but have the disadvantage that
they require storage for states from all the intermediate distri-
butions. Annealed importance sampling may therefore be the
most convenient general method for estimating normalizing
constants.

In addition to these particular uses, annealed importance sam-
pling may sometimes be attractive because it combines indepen-
dent sampling with the ability of a Markov chain sampler to adapt
to the characteristics of the distribution. Evans (1991) has also
devised an adaptive importance sampling method that makes
use of a sequence of intermediate distributions, similar to that
used for annealing. His method requires that a class of tractable
importance sampling densities be defined that contains a density
appropriate for each of the distributions in this sequence. An-
nealed importance sampling instead uses a sampling distribution
that is implicitly defined by the operation of the Markov chain
transitions, whose density is generally not tractable to compute,
making its use for simple importance sampling infeasible. From
this perspective, the idea behind annealed importance sampling
is that one can nevertheless find appropriate importance weights
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for use with this sampling distribution by looking at ratios of
densities along the sequence of intermediate distributions.

In this paper, annealing has been done using sequences of dis-
tributions that interpolate between the distribution of interest and
a much different distribution, which is easier to sample from, and
which is broad enough to encompass all potential modes. An-
other possibility would be to use annealed importance sampling
to extend the domain of conventional importance sampling. With
this scheme, fn would be chosen to approximate f0 as closely as
is feasible—eg, by using the Hessian of the log probability den-
sity at the mode of the distribution to define an approximating
Gaussian distribution. For some low-dimensional distributions,
such an approximation may be adequare when used as a simple
importance sampler. When this is not the case, as is typical for
high-dimensional distributions, good results might still be ob-
tainable using annealed importance sampling with a fairly small
number of intermediate distributions, provided that fn is at least
roughly correct (eg, does not omit important modes).

One annoyance with Markov chain Monte Carlo is the need to
estimate autocorrelations in order to assess the accuracy of the
estimates obtained. Provided the points from pn used to start the
annealing runs are generated independently, there is no need to
do this with annealed importance sampling. Instead, one must
estimate the variance of the normalized importance weights.
This may perhaps be easier, though nightmare scenarios in which
drastically wrong results are obtained without there there being
any indication of a problem are possible when using methods
of either sort. For annealed importance sampling, this can occur
when the distribution of the importance weights has a heavy
upward tail that is not apparent from the data collected.

Another annoyance with Markov chain Monte Carlo is the
need to decide how much of a run to discard as “burn-in”—
ie, as not coming from close to the equilibrium distribution.
If only one, long run is simulated, the exact amount discarded
as burn-in may not be crucial, but if several shorter runs are
done instead, as is desirable in order to diagnose possible non-
convergence, the decision may be harder. Discarding too little
will lead to biased estimates; discarding too much will waste
data. With annealed importance sampling, one must make an
analogous decision of how much computation time to spend on
the annealing runs themselves, which determine the importance
weights, and how much to spend on simulating a chain that sam-
ples from p0 starting from the final state from the annealing run
(as is usually desirable, see Section 2). However, this decision
affects only the variance of the estimates—the results are asymp-
totically correct regardless of how far the annealing process is
from reaching equilibrium.

Regenerative methods (Mykland, Tierney and Yu 1995) also
eliminate the problems of dealing with sequential dependence
(and also replace them with possible problems due to heavy-
tailed distributions). To use regenerative methods, an appropriate
“splitting” scheme must be devised for the Markov chain sam-
pler. For high-dimensional problems, this may be harder than
defining an appropriate sequence of intermediate distributions
for use with annealed importance sampling.

As discussed in Section 4, the time required for annealed
importance sampling can be expected to increase in direct pro-
portion to the dimensionality of the problem (in addition to any
increase due to the Markov chain samplers used being slower in
higher dimensions). One must also consider the human and com-
puter time required to select an appropriate sequence of interme-
diate distributions, along with appropriate Markov chain transi-
tions for each. For these reasons, annealed importance sampling
will probably be most useful when it allows one to find needed ra-
tios of normalizing constants, or serves to avoid problems with
isolated modes. One should note, however, that the potential
for problems with multiple modes exists whenever there is no
theoretical guarantee that the distribution is unimodal.
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