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Abstract. The properties of the first (largest) eigenvalue and its eigenvector (first

eigenvector) are investigated for large sparse random symmetric matrices that are

characterized by bimodal degree distributions. In principle, one should be able

to accurately calculate them by solving a functional equation concerning auxiliary

fields which come out in an analysis based on replica/cavity methods. However, the

difficulty in analytically solving this equation makes an accurate calculation infeasible

in practice. To overcome this problem, we develop approximation schemes on the basis

of two exceptionally solvable examples. The schemes are reasonably consistent with

numerical experiments when the statistical bias of positive matrix entries is sufficiently

large, and they qualitatively explain why considerably large finite size effects of the

first eigenvalue can be observed when the bias is relatively small.
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1. Introduction

Since their introduction by Wigner for approximating the complex Hamiltonian of heavy

nuclei, random matrices have been used in various fields of physics and other disciplines.

The list of applications includes nuclear theory [1], quantum chaos [2], localization

in electron systems [3], finance [4], complex networks [6], wireless communication [5],

combinatorial problems in computer science [7], and more.

In general, the purpose of random matrix theory (RMT) is to investigate the

statistical properties of physical quantities that are defined by samples drawn from an

ensemble of N ×N random matrices. A major topic is the evaluation of the asymptotic

eigenvalue spectrum, which is the typical distribution of eigenvalues as N → ∞.

For a Gaussian orthogonal ensemble (GOE), whose matrix entries are independently

distributed obeying identical Gaussian distributions of zero mean, the spectrum follows

the Wigner semicircle distribution [8]. Another type of asymptotic spectrum, termed the

Marc̆enko-Pastur distribution, comes from the covariance matrix of rectangular matrices

whose entries are independently sampled from identical Gaussian distributions of zero

mean [9]. Recent developments on sparsely connected disordered systems have led to

significant progress in being able to analyze the spectrum of sparse random matrices

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

Evaluation of the first (largest) eigenvalue and its eigenvector (first eigenvector)

is another major topic of RMT. For a GOE, the first eigenvalue converges to 2 when

the variance of the matrix entries is provided as N−1 in the limit of N → ∞, and

the finite size correction follows the Tracy-Widom distribution when N is large but

finite [22]. As for the covariance matrix of dense random rectangular matrices, the

asymptotic behaviors of the first eigenvalue/eigenvector have been examined analytically

and numerically in situations where one can set the strength of preferential directions

underlying the random rectangular matrices [23, 24]. For sparse matrices, convergence to

the Tracy-Widom distribution was recently proved for the first eigenvalue in the case of

fixed degrees, which denote the numbers of nonzero entries per row/column in matrices,

and entries of random signs [25]. There are also various studies on the second eigenvalue

of adjacency matrices of fixed degrees [26, 27]. However, as far as the authors know,

the first eigenvalue problem for ensembles of sparse matrices has not been sufficiently

examined yet, despite there being analyses of their spectrum. Moreover, the need for

an accurate solution to the first eigenvalue problem seems to be growing, because the

first eigenvector is useful for extracting valuable information in the field of data analysis

[28, 29] and in constructing approximate solutions of various combinatorial problems

[7, 30].

In light of this potential need, we herein investigate the asymptotic properties of the

first eigenvalue/eigenvector for ensembles of sparse symmetric matrices. A preliminary

investigation indicated that the properties are considerably influenced by the fluctuation

of degrees [31]. In order to be able to control the influence of the degree fluctuation and

the properties of the first eigenvector in a simple manner, we focus on matrix ensembles
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that are characterized by a bimodal degree distribution and a biased binary distribution

of nonzero matrix entries.

This article is organized as follows. In the next section, we explain the model

that we will examine. Section 3 introduces the methodological bases for analyzing the

model. Although the model we investigate seems quite simple, analyzing it exactly in

general situations is technically difficult. Nevertheless, one can still analytically solve

the problem in two specific cases, which are shown in section 4. On the basis of lessons

derived from the solvable cases, we develop approximate assessment schemes for handling

a more general situation in section 5. The final section is devoted to a summary.

Some contents in the following are shared with a conference paper [31]. Precisely,

the model to examine is identical, and the methodology in section 3.2 and the solvable

example in section 4.1 were shown for the first time in the conference paper. The other

parts are, however, newly provided in the present article.

2. Model definition

We consider a sparse network of N nodes indexed by i = 1, 2, . . . , N . The network is

characterized by a bimodal distribution p(k) = p1δk,c1 +p2δk,c2 of degree k(= 0, 1, 2, . . .),

which stands for the number of links from each node to other nodes. Here, we assume

that p1, p2 ∈ [0, 1] satisfy p1 + p2 = 1 and c1 ≤ c2. Moreover, δx,y = 1 if x = y, and it

vanishes, otherwise. We denote the average degree as c = p1c1 + p2c2, and suppose that

the network is constructed randomly for aspects other than degree. A practical scheme

for generating such a network is basically as follows [32]:

(S) Set ki = c1 and ki = c2 for Np1 and Np2 indices of i = 1, 2, . . . , N , respectively,

and make a set of indices U to which each index i attends ki times. Accordingly,

steps (A)-(C) are iterated as follows.

(A) Choose a pair of two different elements from U randomly.

(B) Denote the values of the two elements as i and j. If i 6= j and the pair of i

and j have not been chosen up to that moment, make a link to the pair, and

remove the two elements from U . Otherwise, return them back to U .

(C) If U becomes empty, finish the iteration. Otherwise, if there is no possibility

that any more links can be made by (A) and (B), return to (S).

Once we have generated the network, we assign entries Jij = ±1 to the links

generated by the above procedure, sampling ±1 randomly and independently from a

biased binary distribution:

pJ(Jij|∆) =
1 +∆

2
δJij ,1 +

1−∆

2
δJij ,−1. (1)

We set Jij = 0 if i and j are not connected in the network. This yields a sample

J = (Jij) of sparse random symmetric matrices that we will focus on.
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The objective of our study is to investigate how the properties of the first eigenvalue

Λ/eigenvector V = (V1, V2, . . . , VN) of the random matrix J depend on the system

parameters c1, c2, p1 = 1 − p2 and ∆ as N tends to infinity. A simple consideration

guarantees that Λ is upper bounded by c2 for any realization of J (Appendix A). On

the other hand, when p1 = 1 and ∆ = 1, which means each row/column of J has

c1 entries of unity exactly, Λ = c1 and V ∝ (1, 1, . . . , 1)T hold, where T denotes the

matrix transpose operation. This implies that the inverse participation ratio (IPR) of V ,

IPR ≡ (
∑N

i=1 V
4
i )/(

∑N
i=1 V

2
i )

2, converges to zero, and therefore V extends over almost

all nodes as N tends to infinity in the vicinity of this parameter setting. However,

earlier studies have indicated that V can be localized in the vicinity of a few nodes

being characterized by a finite IPR when a small number of nodes of larger degree c2
are added to the sparse network and if c2 is sufficiently large [11, 12, 17]. One of our

interests is to clarify how such a change in the profile of V is related to the value of Λ.

3. Analytical bases: replica and cavity methods

3.1. Replica method

Formulating the first eigenvalue problem as

Λ =
1

N
max
v

{
v
T
Jv
}

subj. to |v|2 = N, (2)

will form the basis of our analysis. Here, maxX{f(X)} denotes maximization of a

function f(X) with respect to X . The solution to this problem accords with V .

Identifying −(1/2)vT
Jv as the Hamiltonian of the dynamical variable v yields the

partition function,

Z(β;J) =

∫
dvδ

(
|v|2 −N

)
exp

(
βvT

Jv

2

)
. (3)

This offers another way to express the first eigenvalue: Λ = 2 limβ→∞(Nβ)−1 lnZ(β;J).

The typical first eigenvalue can be obtained by averaging the logarithm of the partition

function over the random matrix J .

The above considerations naturally lead one to consider trying a solution using the

replica method [33]. Hereafter, let us generally denote [O(X)]X as the average of O(X)

with respect to random variable X . In the replica method, we first evaluate analytical

expressions of the moment of Z(β;J), [Zn(β;J)]J , for ∀n = 1, 2, . . . ∈ N utilizing

an identity Zn(β;J) =
∫
(
∏n

a=1 dv
aδ(|va|2 −N)) × exp

(
(β/2)

∑n
a=1(v

a)TJva
)
, which

is valid for only n ∈ N. The integration variables v
a (a = 1, 2, . . . , n) are sometimes

termed “replicas” since they can be regarded as n copies of the original variable v

that share the identical external random coupling J . Although the identity is valid for

only n ∈ N, the expressions of [Zn(β;J)]J evaluated with the saddle point method for

N ≫ 1 under appropriate assumptions about the permutation symmetry of the replica

indices a = 1, 2, . . . , n are likely to hold for n ∈ R as well. Therefore, we can employ

the analytical expressions for computing the average of the logarithm of the partition
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function by utilizing the identity N−1 [lnZ(β;J)]J = limn→0(∂/∂n)N
−1 ln [Zn(β;J)]J .

In particular, under the replica symmetric (RS) ansatz, which implies that the saddle

point is invariant under any permutation of the replica indices, this yields an expression

for the typical first eigenvalue as

[Λ]J = extr
q(·),q̂(·),λ

{
c

2
I1[q(·)]− cI2[q(·), q̂(·)] + I3[q̂(·), λ] + λ

}
, (4)

where

I1[q(·)] ≡
∫

dA1dH1q(A1, H1)

∫
dA2dH2q(A2, H2)

×
[(

A2H
2
1 + 2JH1H2 + A1H

2
2

A1A2 − 1
− H2

1

A1
− H2

2

A2

)]

J

, (5)

I2[q(·), q̂(·)] ≡
∫

dAdHq(A,H)

∫
dÂdĤq̂(Â, Ĥ)

(
(H + Ĥ)2

A− Â
− H2

A

)
,(6)

and

I3[q̂(·), λ] ≡ p1

∫ c1∏

µ=1

dÂµdĤµq̂(Âµ, Ĥµ)

(∑c1
µ=1 Ĥµ

)2

λ−∑c1
µ=1 Âµ

+ p2

∫ c2∏

µ=1

dÂµdĤµq̂(Âµ, Ĥµ)

(∑c2
µ=1 Ĥµ

)2

λ−∑c2
µ=1 Âµ

. (7)

Here, [· · ·]J denotes the average with respect to (1). Hereafter, we shall not distinguish

between Λ and [Λ]J because Λ → [Λ]J should hold with a probability of unity for

N → ∞ because of the self-averaging property. The variational functions q(A,H) and

q̂(Â, Ĥ) are joint distributions that come from the RS saddle point calculation, whereas

λ originates from the constraint of the δ-function in (3). The notation extrX{f(X)}
generally stands for extremization of f(X) with respect to X . A derivation of (4)–(7)

is shown in Appendix B.

3.2. Cavity method

An alternative approach, termed the cavity method [34], is of utility for understanding

the physical implications of the seemingly artificial extremization variables q(A,H),

q̂(Â, Ĥ) and λ. In the spirit of mean field theory, directly approximating the multivariate

optimization problem of (2) by a bunch of single-variable problems as

max
vi

{
−Aiv

2
i + 2Hivi

}
(8)

(i = 1, 2, . . . , N) is another promising scheme for computing Λ, wherein the coefficients

Ai and Hi are to be determined in a self-consistent manner. In the cavity method, this

is done by determining the cavity fields Ai→j and Hi→j, which denote the coefficients

of (8) for the j-cavity system, where a node j of the neighbor of a focused node i is
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removed, by using the belief propagation algorithm [35, 31, 36]:

Âi→j =
1

Ai→j
, Ĥi→j =

JjiHi→j

Ai→j
, (9)

Ai→j = λ−
∑

k∈∂i\j

Âk→i, Hi→j =
∑

k∈∂i\j

Ĥk→i. (10)

Here, λ is a Lagrange multiplier for introducing the constraint |v|2 = N of (2) while

new auxiliary variables Âi→j and Ĥi→j are sometimes termed the cavity biases. ∂i

denotes the neighbor of i and ∂i\j stands for a set defined by removing node j from ∂i.

After determining the cavity fields/biases, the coefficients of the approximate objective

functions are found to be

Ai = λ−
∑

k∈∂i

Âk→i, Hi =
∑

k∈∂i

Ĥk→i. (11)

In a random sparse network, the typical lengths of cycles in the network

grow as O(lnN), which means that the system can be locally regarded as a tree,

ignoring any feedback effects. This allows us to characterize the macroscopic

properties of the objective system by utilizing the distributions of the cavity

fields/biases q(A,H) = (
∑N

i=1 |∂i|)−1
∑N

i=1

∑
j∈∂i δ(A−Aj→i)δ(H−Hj→i) and q̂(Â, Ĥ) =

(
∑N

i=1 |∂i|)−1
∑N

i=1

∑
j∈∂i δ(Â− Âi→j)δ(Ĥ − Ĥi→j), where |S| stands for the number of

elements in the set S. Equations (9) and (10) indicate that q(A,H) and q̂(Â, Ĥ) are

determined in a self-consistent manner:

q̂(Â, Ĥ) =

∫
dAdHq(A,H)

[
δ

(
Â− 1

A

)
δ

(
Ĥ − JH

A

)]

J

, (12)

q(A,H) = r1

∫ c1−1∏

µ=1

dÂµdĤµq̂(Âµ, Ĥµ)δ

(
A−λ+

c1−1∑

µ=1

Âµ

)
δ

(
H−

c1−1∑

µ=1

Ĥµ

)

+ r2

∫ c2−1∏

µ=1

dÂµdĤµq̂(Âµ, Ĥµ)δ

(
A−λ+

c2−1∑

µ=1

Âµ

)
δ

(
H−

c2−1∑

µ=1

Ĥµ

)
, (13)

where r1 ≡ c1p1/c represents the probability that one terminal node has degree c1 when

a link is chosen randomly from the connectivity network and similarly for r2 ≡ c2p2/c.

On the other hand, (11) means that the joint distribution of Ai and Hi of (8) is

Q(A,H) = p1

∫ c1∏

µ=1

dÂµdĤµq̂(Âµ, Ĥµ)δ

(
A−λ+

c1∑

µ=1

Âµ

)
δ

(
H−

c1∑

µ=1

Ĥµ

)

+ p2

∫ c2∏

µ=1

dÂµdĤµq̂(Âµ, Ĥµ)δ

(
A−λ+

c2∑

µ=1

Âµ

)
δ

(
H−

c2∑

µ=1

Ĥµ

)
, (14)

which leads to the extremization condition with respect to the Lagrange multiplier:

1 =

∫
dAdHQ(A,H)

(
H

A

)2

. (15)

It is noteworthy that (12), (13) and (15) exactly constitute the extremization

condition of (4). This allows us to interpret q(A,H), q̂(Â, Ĥ) and λ in (4) as distributions
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of the cavity fields/biases and the Lagrange multiplier, respectively. This interpretation

indicates that the supports of q(A,H), q̂(Â, Ĥ) and Q(A,H) cannot be extended to

the region of neither A < 0 nor Â < 0 in order to make the approximate single body

maximization problems (8) well-posed. This condition plays a crucial role in the later

analysis.

4. Two solvable examples

Now we are ready to tackle the first eigenvalue problem. However, solving the problem

exactly is still difficult since it involves functional equations of (12) and (13). Therefore,

we shall first analyze two solvable examples in order to get insights into constructing

appropriate approximation schemes.

4.1. Single-degree model

The first example is the case in which p1 = 1 exactly holds, which means that all

nodes possess the same degree c1. We will refer to this example as the single-degree

model. Equations (12) and (13) imply that marginal distributions q(A) =
∫
dHq(A,H)

and q̂(Â) =
∫
dĤq̂(Â, Ĥ) generally constitute a set of closed equations while q(H) =∫

dAq(A,H) and q̂(Ĥ) =
∫
dÂq̂(Â, Ĥ) do not. In particular, in the case of p1 = 1, for

which r1 = 1 and r2 = 0 hold, this allows us to assume that the distributions are of the

forms q(A) = δ(A− a) and q̂(Â) = δ(Â− â). Inserting these into (4) yields

Λ = extr

{
c1

(
am2 +∆m2

1

a2 − 1

)
− c1

(
m2 + 2m1m̂1 + m̂2

a− â

)

+
c1(m̂2 − m̂2

1) + c21m̂
2
1

λ− c1â
+ λ

}
, (16)

where m1 and m2 are the first and second moments (about the origin) with respect to

q(H|A) = q(H), and similarly for m̂1 and m̂2. The extremization is carried out with

respect to all variables except for ∆. After some algebra, the extremization conditions

of (16) can be summarized as

â =
1

λ− (c1 − 1)â
, (17)

m̂1 =
∆(c1 − 1)m̂1

λ− (c1 − 1)â
, (18)

(c1 − 1)(c1 − 2)m̂2
1

(λ− (c1 − 1)â)2
=

(
1− c1 − 1

(λ− (c1 − 1)â)2

)
m̂2, (19)

c1(m̂2 − m̂2
1) + c21m̂

2
1

(λ− c1â)2
= 1. (20)

Equation (18) indicates that the solutions can be classified into two types depending on

whether m̂1 vanishes or not:
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Figure 1. (Color online) Theoretical predictions and experimental results for the

single-degree model of c1 = 3. (a) The first eigenvalue. (b) M = N−1

∣∣∣
∑N

i=1
Vi

∣∣∣ of
the first eigenvector V = (Vi). Symbols represent averages over 1000 experiments

for N = 250, 500, and 1000 systems from the bottom and the top in (a) and (b),

respectively. The solid curves are the theoretical predictions (23) and (25) for (a) and

(b), respectively. (c) Symbols denote IPR of V for ∆ = 0 and 1 from the top. A slope

of O(N−1) is shown as a broken line for reference.

• m̂1 6= 0: Equation (18) means that ∆(c1 − 1)/(λ− (c1 − 1)â) = 1 holds for m̂1 6= 0.

This, in conjunction with (17), gives

λ = (c1 − 1)∆ +
1

∆
, (21)

and â = 1/(∆(c1 − 1)). Inserting these values into (19) and (20) yields nonzero

values of m̂1 and m̂2, and the positivity of m̂2 makes this solution valid only for

∆ > ∆c = 1/
√
c1 − 1.

• m̂1 = 0: Equation (19) means that (c1 − 1)/(λ− (c1 − 1)â)2 = 1 holds for m̂1 = 0.

This, in conjunction with (17), gives

λ = 2
√
c1 − 1, (22)

and â = 1/
√
c1 − 1. Inserting these and m̂1 = 0 into (20) yields the value of m̂2.

In both cases, Λ = λ after extremization. Therefore, the first eigenvalue of the single-

degree model can be written as

Λ =

{
(c1 − 1)∆ + 1/∆, ∆ > ∆c,

2
√
c1 − 1, ∆ ≤ ∆c.

(23)

Inserting the functional forms of q(A) = δ(A − a) and q̂(Â) = δ(Â −
â) into (12) and (13) yields a self-consistent equation for q(H) as q(H) =
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∫ ∏c1−1
µ=1 dHµq(Hµ)

[
δ(H −∑c1−1

µ=1 JµHµ/a)
]
{Jµ}

. This indicates that the moment

generating function of q(H), gH(t) ≡
∫
dHq(H)etH , satisfies a relation gH(t) =(

1+∆
2

gH(t/a) +
1−∆
2

gH(−t/a)
)c1−1

. The first and second moments, m1 and m2, of q(H)

are determined by solving the extremization problem of (16). For higher moments of

degree n ≥ 3, taking n-th derivative of gH(t) at t = 0 offers a formula that evaluates

n-th moment, mn, of q(H) from the moments of lower degrees m1, m2, . . . , mn−1. In

particular, the formulae for m3 and m4 are provided as m3 = (a3 − (c1 − 1))−1(c1 −
1)(c1 − 2) (3m2m1 + (c1 − 3)m3

1) and

m4 =
(c1 − 1)(c1 − 2)

a4 − (c1 − 1)
×
(
3m2

2 + 4m3m1 + 6(c1 − 3)m2m
2
1 + (c1 − 3)(c1 − 4)m4

1

)
, (24)

respectively. These guarantee that moments of q(H) are finite at least up to the fourth

degree. As n-th moment of the distribution of entries of the first eigenvector P (V ) ≡
N−1

∑N
i=1 [δ(V − Vi)]J =

∫ ∏c1
µ=1 dHµq(Hµ)

[
δ(V −∑c1

µ=1 JµHµ/(a(λ− c1/a)))
]
{Jµ}

can be evaluated from m1, m2, . . . , mn, this indicates that the fourth moment of P (V )

is finite, and therefore IPR of the single-degree model vanishes as O(N−1) as N → ∞.

The above computation also implies that the first moment of P (V ) is given as

M =

{
c1(c1 − 1)∆2m̂1/((c1 − 1)2∆2 − 1), ∆ > ∆c,

0, ∆ ≤ ∆c.
(25)

This indicates that V for ∆ > ∆c is macroscopically polarized in the direction

of (1, 1, . . . , 1)T, although the objective function v
T
Jv is invariant under the

transformation of v → −v. This is analogous to the spontaneous symmetry breaking

observed in models of ferromagnetism, and therefore we will term the solutions of

this type ferromagnetic solutions. On the other hand, (22) corresponds to the critical

condition that equation (17), which is a function of â, has complex solutions for a given

λ. The complex solutions of â are generally associated with the eigenvalue distribution

of J [16], and (17) actually matches the larger band edge of the asymptotic eigenvalue

spectrum of the single-degree model. Therefore, solutions of this type will be referred

to as band edge solutions.

4.2. Defect model

Another solvable model can be created by adding only one node of a larger degree

c2 > c1 to the single-degree model. We refer to the larger degree node as the center,

indexed as i = 0. Let us pay attention to the tree structure rooted at the center 0.

In the following, we approximately handle the network as an infinite tree rooted at 0

since feedback effects are expected to be negligible in large random sparse networks as

mentioned in section 3.2. Equations (9) and (10) indicate that for a given λ, all of the

A-cavity biases heading for the center are given as the smaller solution of (17). Using

this, the second order coefficient of the center node is provided as

A0 = λ− c2â. (26)
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This means that A0 ≥ 0 is a required condition for determining the first eigenvalue,

yielding

Λ = λ =
c2√

c2 − c1 + 1
. (27)

The expression of (27) was also obtained recently in a mathematically rigorous manner

for ∆ = 1 [37]. We will term solutions of this type defect solutions because of their

physical implications shown by the following naive analysis [11].

Since the tree is free of cycles, one can always convert the eigenvalue problem into

one for unit nonzero entries of Jij = 1 by making a gauge transformation. Let us denote

the distance between node i and 0 as d. Due to the spatial symmetry, the entries of

the first eigenvector Vi only depend on d. Therefore, we will rewrite their values as Vd,

which allows us to express the eigenvalue equation as

λV0 = c2V1,

λVd = Vd−1 + (c1 − 1)Vd+1 (d = 1, 2, . . .) (28)

after the gauge transformation.

The Perron-Frobenius theorem indicates that Vd is of an identical sign for ∀d ≥ 0.

In addition, the normalization constraint of |V |2 = N requires the boundary condition

limd→∞(c1 − 1)dV 2
d < ∞. This choice of solution reproduces the expression of the first

eigenvalue (27) and leads to

Vd = (c2 − c1 + 1)−d/2V0. (29)

This indicates that the first eigenvector is localized in the vicinity of the center yielding

a finite IPR,

IPR =
(c2 − 2c1 + 2)2(c2 − c1 + 2)

4(c2 − c1 + 1) ((c2 − c1 + 1)2 − c1 + 1)
, (30)

while the first eigenvector for the single-degree model extends over all nodes making

IPR vanish as N → ∞ for both the ferromagnetic and band edge solutions.

The analysis shown above means that the existence of a few nodes of larger degree

can change the first eigenvalue/eigenvector significantly, as also pointed out in earlier

literature [11, 12]. Nodes of sufficiently larger degree act as defects receiving more

cavity biases than nodes of their surroundings, which boosts the first eigenvalue due

to the positivity condition of (26) creating a localized eigenvector. In the current case,

this occurs for sufficiently small ∆ if c2 > 2(c1 − 1) and for ∀∆ ≤ 1 if c2 ≥ c1(c1 − 1).

Figure 2 compares the theoretical predictions and the results of numerical experiments

for (a) the first eigenvalue and (b) IPR of the first eigenvector in the case of c1 = 3

while varying c2 from 4 to 7. The numerical experiments were carried out for randomly

generated networks of finite sizes while the theory is based on the tree approximation.

In spite of this difference, the theoretical curves of these plots are good matches for the

numerical ones.

In practice, our analysis implies that sufficient precautions must be taken when one

utilizes the first eigenvector as a heuristic solution for extracting certain information
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Figure 2. (Color online) Theoretical predictions and experimental results for the

single-defect models of c1 = 3 and c2 = 4 ∼ 7. (a) The first eigenvalue. (b) IPR of the

first eigenvector. The squares, triangles, asterisks, and circles of both figures represent

averages over 100 experiments for N = 8000 (odd c2) or 8001 (even c2) systems of

c2 = 4, 5, 6, and 7, respectively. The lines are theoretical predictions.

from a sparse matrix J . Even if information on a certain preferential direction is

embedded in J as the first eigenvector, the information can be easily hidden by adding

only one node of a sufficiently larger degree. To avoid such possibilities, the earlier

literature [30] suggested a preprocessing removing nodes of extraordinarily large degree.

Equation (26) indicates that the eigenvalue of the defect solution becomes larger

as the cavity biases coming to the center increase. In addition, the right hand side

of (17) shows that the cavity biases heading for the center increas as the degrees of

surrounding nodes grow. This means that if the number of nodes of the large degree is

fixed, the first eigenvalue will be maximized when they are aggregated in the vicinity of

the center. As a simple model for representing such situations, let us consider cases in

which all nodes within a certain radius g(= 0, 1, 2, . . .) from the center have the larger

degree c2, while the degrees of the other nodes have c1. The case of g = 0 corresponds

to the single-defect model. The analysis above indicates that the first eigenvalue of this

aggregated defect model can be estimated by solving the recursive equation,

V1 = (λ/c2)V0,

Vd+1 =

{
(λVd − Vd−1)/(c2 − 1) (d = 1, . . . , g)

(λVd − Vd−1)/(c1 − 1) (d = g + 1, . . .)
(31)

under the condition that Vd is of an identical sign for ∀d ≥ 0 and limd→∞(c1−1)dV 2
d < ∞.

Given λ, the solution that satisfies this condition is generally represented as Vd =

const× (â∗(λ))
d for d ≥ g+1, where â∗(λ) is the smaller solution of (17). The condition
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Figure 3. (Color online) ln(Vd) versus d for the recursive equation (31) for the case

of c1 = 3 and c2 = 7. Circles represent the solution obtained from the expression for

1 ≤ d ≤ g of (31). Lines stand for the slope of ln(â∗(λ)). (a): λ is chosen so that

ln(Vg+1)− ln(Vg) = ln(â∗(λ)) holds for g = 2. Asterisks represent the correct solution

of (31) for d ≥ (g + 1) + 1 = 4. The requirement offers λ = Λ = 4.1350. (b) The case

of λ = 2
√
c2 − 1 = 4.8990. For λ ≥ 2

√
c2 − 1, ln(Vd+1) − ln(Vd) > ln(â∗(λ)) holds for

∀d ≥ 0. Therefore, there is no g that satisfies (32).

under which (31) possesses a solution of this type is expressed as

Vg+1

Vg
=

Vg+2

Vg+1
= â∗(λ), (32)

which can be used to get the first eigenvalue Λ of the aggregated defect model. The

IPR of the first eigenvector also comes from (31).

Figure 3 (a) illustrates how to arrived at (32). This figure characterizes the first

eigenvalue Λ by the condition that the difference ln(Vg+1) − ln(Vg) accords to the

target value ln(â∗(λ)). For λ ∈ (2
√
c1 − 1, 2

√
c2 − 1), the left and right terminals of

which correspond to the band edge solutions of single-degree models of degree c1 and

c2, respectively, the difference ln(Vd+1) − ln(Vd) of the solution of the expression for

1 ≤ d ≤ g of (31) (circles) can generally vary from a larger value to smaller values

than ln(â∗(λ)) as d increases from 0. This is because the roots of the characteristic

equation of the recursive equation are complex numbers, and therefore the solution

governed by this recursive equation vanishes in the manner of a damped oscillation

as d grows. This means that, for a given g ≥ 0, there always exists a certain value

of λ ∈ (2
√
c1 − 1, 2

√
c2 − 1) that satisfies (32). On the other hand, in the region of

λ ≥ 2
√
c2 − 1, the characteristic equation yields roots of positive numbers that are larger

than ln(â∗(λ)), which means that ln(Vd+1)− ln(Vd) is always larger than ln(â∗(λ)). This

makes it impossible for (32) to hold (figure 3 (b)). Consequently, the first eigenvalue of

the aggregated defect models increases from the value of (27) to 2
√
c2 − 1 as g grows
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Figure 4. (Color online) Log-log plot of δΛ = 2
√
c2 − 1−Λ versus g for the solutions

of ADA in the case of c1 = 3 and c2 = 7 (symbols). Slopes of g−1 and g−2 (lines) are

plotted for reference.

from 0 to ∞, while the IPR of the first eigenvector decreases from the value of (30) to

zero.

The convergence behavior of Λ is roughly evaluated as follows. For λ = 2
√
c2 − 1−ǫ,

where 0 < ǫ ≪ 1, the imaginary part of the roots of the characteristic equation of the

expression for 1 ≤ d ≤ g of (31) scales as O(ǫ1/2). The radius g that satisfies (32) for

given λ is supposed to be in the same range as the period of the damped oscillation

caused by the complex roots. This leads to g ∼ O(ǫ−1/2), and yields an asymptotic

relation Λ ∼ 2
√
c2 − 1− O(g−2) for g ≫ 1 (figure 4).

Figure 5 shows the first eigenvalue (a) and IPR of the first eigenvector (b) for c1 = 3

and c2 = 7 in the case of ∆ = 0. Experimental results for N = 1000 ∼ 32000 exhibit

excellent agreement with the theoretical prediction.

5. Approximation for the general case

Let us consider a more general situation in which both p1 and p2 are O(1). The

framework developed in section 3 would in principle be valid even in such cases; one

would be able to accurately evaluate the typical first eigenvalue by utilizing the solution

of (12) and (13). Unfortunately, this is difficult in practice. First of all, analytically

finding the solution is a hopeless task. Even numerical methods using the standard

discretization approach, with the current level of computational resources, have trouble

in achieving enough accuracy because of quantization errors. Statistical fluctuations

also prevent a sampling approach using population dynamics despite that it performs

pretty well in evaluating the bulk profile of the asymptotic eigenvalue spectrum [16, 17].
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Figure 5. (Color online) Theoretical predictions and experimental results for the

aggregated defect models of c1 = 3 and c2 = 7. (a) The first eigenvalue. (b) IPR of the

first eigenvector. Symbols denote averages over 100 experiments forN = 1000 ∼ 32000.

Lines represent theoretical predictions.

We will avoid such difficulties by taking an alternative strategy. Specifically, we

will develop an approximate evaluation scheme that can be handled without solving the

functional equations. This scheme does not suffer from either quantization errors or

statistical fluctuations, although its estimate may be structurally biased.

5.1. Effective medium approximation

The first approximation involves restricting the variational functions in (4) to those of

the forms q(A,H) = δ(A−a)q(H) and q̂(Â, Ĥ) = δ(Â−â)q̂(Ĥ) as assumed in the single-

degree model. We call this the effective medium approximation (EMA) since a similar

scheme is referred to by this name in a study of evaluating the asymptotic eigenvalue

spectrum [11]. This approximation yields

Λ = extr

{
c

(
am2 +∆m2

1

a2 − 1

)
− c

(
m2 + 2m1m̂1 + m̂2

a− â

)

+p1
c1(m̂2 − m̂2

1) + c21m̂
2
1

λ− c1â
+ p2

c2(m̂2 − m̂2
1) + c22m̂

2
1

λ− c2â
+ λ

}
. (33)

The implications of the variables are similar to those of (16), and the extremization is

carried out with respect to all variables except ∆. The extremization condition of (33)

yields the following self-consistent equations:

â =
1

â+ Σ−1
, (34)

m̂1 = ∆(1− â2)

(
r1(c1 − 1)

λ− c1â
+

r2(c2 − 1)

λ− c2â

)
m̂1, (35)
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(

2â

1− â2

(
r1(c1 − 1)

λ− c1â
+

r2(c2 − 1)

λ− c2â

)
−
(
r1(c1 − 1)

(λ− c1â)2
+

r2(c2 − 1)

(λ− c2â)2

))
m̂2

1

=

(
r1c1

(λ− c1â)2
+

r2c2
(λ− c2â)2

− â2 + 1

(1− â2)2

)
m̂2, (36)

p1
c1m̂2 + c1(c1 − 1)m̂2

1

(λ− c1â)2
+ p2

c2m̂2 + c2(c2 − 1)m̂2
1

(λ− c2â)2
= 1, (37)

where

Σ ≡ r1
λ− c1â

+
r2

λ− c2â
. (38)

Similarly to the case of the single-degree model, equation (35) indicates that the

solutions can be classified into two types depending on whether m̂1 vanishes or not:

• m̂1 6= 0: Equation (35) means that

∆(1− â2)

(
r1(c1 − 1)

λ− c1â
+

r2(c2 − 1)

λ− c2â

)
= 1. (39)

This and (34) together determine λ and â. Inserting the determined λ and â into

(36) and (37) yields m̂1 and m̂2. We will refer to this estimate as the ferromagnetic

approximation (FA).

• m̂1 = 0: Equation (36) means that

r1c1
(λ− c1â)2

+
r2c2

(λ− c2â)2
=

(â2 + 1)

(1− â2)2
. (40)

This and (34) determine λ and â. Equation (40) coincides with the critical condition

of λ that (34) possesses a solution with a complex â (see Appendix C), which gives

the larger band edge of the asymptotic eigenvalue spectrum under EMA. Therefore,

we will call this estimate the band edge approximation (BEA). Inserting the values

of λ and â into (37) yields m̂2.

5.2. Aggregated defect approximation

In addition to the above, the analysis of the defect models offers another criterion for

the first eigenvalue. According to the cavity interpretation, â is an exemplary value of

the cavity biases Âi→j. Therefore, the requirement that (26) must not be negative for

any node of the network leads to the condition,

λ = c2â, (41)

which corresponds to the single-defect approximation (SDA) in the estimate of the

eigenvalue spectrum [11, 12]. However, this, being combined with (34) and (38), always

yields a solution of â = 1 and λ = c2, which corresponds to the trivial upper bound of

Λ for the current bimodal degree model.

For improving on this result, we can generalize the SDA to higher level of

approximation by replacing (41) with (32) and identifying the solution of (34) as â∗(λ).

We shall refer to the estimate based on this idea as the aggregated defect approximation
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(ADA). A similar idea was mentioned in an earlier study on the eigenvalue spectrum

[12].

Similarly to the argument presented in section 4.2, the estimate of the first

eigenvalue becomes larger as g grows from 1 to infinity. In particular, the ADA estimate

converges to that of the band edge solution of the single-degree model of c2, 2
√
c2 − 1,

as g → ∞. Aggregations of the larger degree nodes of arbitrary sizes appear with a

probability of unity as N tends to infinity as long as both p1 and p2 are O(1). This

indicates that 2
√
c2 − 1 is the appropriate estimate of ADA for the current model of

N → ∞ irrespective of the details of the degree distribution.

However, this does not mean that the estimate is practically relevant for explaining

the results of experiments on computationally feasible system sizes. The number of

nodes of the larger degree c2 surrounding the center of an aggregated defect of radius g

is ng ≡ c2 + c2(c2 − 1) + c2(c2 − 1)2 + . . . + c2(c2 − 1)g−1 = c2((c2 − 1)g − 1)/(c2 − 2).

Using this formula, the probability of a node being the center of the aggregated defect is

Pg ≃ p2×r
ng

2 , when both p1 and p2 areO(1). The typical size of the largest aggregation in

a network of N nodes can be roughly found using the condition NPgmax
≃ 1. This yields

ngmax
∼ O(lnN) and therefore the maximum radius gmax typically scales as O(ln lnN).

This, in conjunction with the argument of section 4.2, indicates that the first eigenvalue

behaves as Λ ∼ 2
√
c2 − 1 − O((ln lnN)−2). The ln ln-dependence on N implies that Λ

can be arbitrarily close to 2
√
c2 − 1 as N → ∞, but a very large N is necessary for

experimentally observing the convergent behavior.

5.3. Comparison with experimental results

The largest value among the estimates of FA, BEA, and ADA is an approximate estimate

of Λ. To examine the utility of our approximation scheme, we compared the estimated

values of Λ with the results of numerical experiments for the cases of c1 = 3, c2 = 7,

and p1 = 1 − p2 = 0.9 by varying N from 1000 to 32000. The results are depicted in

Fig. 6 (a). Symbols represent the averages of the first eigenvalues for 100 realizations

of matrices.

As for the choice of parameters, BEA offers an estimate ΛBEA = 3.9146. As shown

in figure 6 (a), the estimate of FA, ΛFA, generally bifurcates from that of BEA at a

critical value ∆c, which is evaluated as 0.6762 for the current parameter choice, as ∆

grows larger from below. The results of the experiments show fairly good accordance

with the estimate of FA as ∆ approaches 1 in the region of ∆ > ∆c. On the other hand,

those for ∆ < ∆c grow gradually as N increases. This is probably because the typical

size of the maximum aggregation of the larger degree nodes that dominates the first

eigenvalue in the network increases very slowly, as estimated above. ADA estimates

ΛADA to be 3.9676, 4.2119, and 4.8990 for g = 1, 2, and ∞, respectively. The condition

of NPgmax
≃ 1 gives gmax ≃ 0.6281 ∼ 0.8575 for N = 1000 ∼ 32000. This implies that

an ADA of g = 1 is closest to those of the experiments. Actually, it exhibits reasonable

consistency with data on larger system sizes N = 8000, 16000, and 32000, even though
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Figure 6. (Color online) Theoretical predictions and experimental results in the cases

of c1 = 3, c2 = 7, and p1 = 1 − p2 = 0.9. (a): The first eigenvalue. Symbols represent

averages over 100 experiments for N = 1000, 2000, 4000, 8000, 16000, and 32000

systems from the bottom. Lines represent the theoretical predictions by BEA and

ADAs of g = 1 and 2 from the bottom while the curve stands for that by FA. The

results of ADA indicate that the first eigenvalue converges to 2
√
c2 − 1 = 4.8990 as

N tends to infinity. However, due to the ln ln-dependence of gmax on N , a very large

N would be necessary for experimentally confirming the convergence. (b): IPR of the

first eigenvector. Symbols represent averages over 100 experiments for N = 1000, 2000,

4000, 8000, 16000, and 32000 systems from the top. Lines represent the theoretical

predictions of ADAs of g = 1 and 2 from the top.

the current estimate of gmax is based on a rough argument.

Figure 6 (b) plots the average of IPR for the first eigenvector. The results of the

experiments (symbols) are considerably smaller than the theoretical predictions of ADA

of g = 1, 2 (lines). When a network is randomly generated, multiple aggregations of the

larger degree nodes appear simultaneously, which reduces the value of IPR. This may

be the reason for the significant discrepancy between the theoretical and experimental

results.

6. Summary

We investigated the properties of the first (maximum) eigenvalue and its eigenvector

(first eigenvector) by using methods of statistical mechanics for sparse symmetric

random matrices characterized by a bimodal degree distribution. Employing the replica

method, we provided a general formula for evaluating the typical first eigenvalue in

the large system size limit. Unfortunately, the replica-based scheme involves functional

equations, which are difficult to solve accurately. Therefore, we developed approximate

evaluation schemes based on the results for two solvable cases and techniques previously
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proposed for estimating the eigenvalue spectrum. Our schemes are reasonably consistent

with results of experiments when the statistical bias of the positive matrix entries is

sufficiently large, and they qualitatively explain why considerably large finite size effects

can be observed when the bias is relatively small.

Promising future research includes an exploration of degree correlated models

[18, 38] as well as a refinement of the approximation schemes.
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Appendix A. A proof of Λ ≤ c2

The Perron-Frobenius theorem guarantees that the inequalities

Λ =
1

N
max
v

{
∑

i,j

Jijvivj

}
subj. to |v|2 = N

≤ 1

N
max
v

{
∑

i,j

|Jij||vi||vj|
}

subj. to |v|2 = N

=
1

N
max
v

{
∑

i,j

|Jij|vivj
}

subj. to |v|2 = N (A.1)

hold for an arbitrary symmetric matrix ∀J = (Jij). Therefore, we only have to consider

the cases in which all nonzero entries are unity. Given such a sample matrix J for which

Np1 nodes have degree c1 while the other Np2 nodes have degree c2, we shall add entries

of unity, so as to make all nodes have degree c2 while keeping the matrix symmetric.

We denote the resultant matrix J
′ = (J ′

ij). We also write the first eigenvector of J

as V = (Vi), assuming a normalization of |V |2 = N . The Perron-Frobenius theorem

ensures that ∀Vi is non-negative as well. This indicates that the inequality

Λ =
1

N

∑

ij

JijViVj ≤
1

N

∑

ij

J ′
ijViVj

≤ 1

N
max
v

{
∑

ij

J ′
ijvivj

}
subj. to |v|2 = N (A.2)

holds since entries of V , J and J
′ are all non-negative and the number of nonzero

entries of J ′ is larger than that of J . The last expression of (A.2) is maximized by

v = (1, 1, . . . , 1)T for any realization of J ′, which yields N−1
∑

ij J
′
ijvivj = c2. Therefore,

Λ ≤ c2 always holds for our ensemble of random matrices.
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Appendix B. Replica approach to finding the first eigenvalue

Although we shall focus on the bimodal degree distribution for simplicity, extending the

following calculation to general degree distributions is straightforward. To calculate

the moment of the partition function (3), we first express the matrix entries as

Jij = Jji = L〈ij〉B〈ij〉, where 〈ij〉 denotes the unordered pair of i and j. L〈ij〉 is set

to unity if there is a link for 〈ij〉, and it vanishes, otherwise, and B〈ij〉 is a binary value

sampled from (1). Permutation symmetry in indexing the nodes allows us to choose a

joint distribution of {L〈ij〉} ∈ {0, 1}N(N−1)/2,

pL
(
{L〈ij〉}

)
= N−1

Np1∏

i=1

δ

(
∑

j 6=i

L〈ij〉 − c1

)
N∏

i=Np1+1

δ

(
∑

j 6=i

L〈ij〉 − c2

)

= N−1

Np1∏

k=1

∮
dZkZ

−(c1+1)
k

2πi
×

N∏

l=Np1+1

∮
dZlZ

−(c2+1)
l

2πi

×
N∏

i=1

Z
∑

j 6=i L〈ij〉

i (B.1)

reflecting our assumptions on the graph generation. Here, N denotes a constant to

normalize pL
(
{L〈ij〉}

)
, i =

√
−1, and we have utilized a contour integral expression

δ(x) =
∮
dZZ−(x+1)/(2πi) for the integer x. The joint distribution of {B〈ij〉} ∈

{+1,−1}N(N−1)/2 is pB
(
{B〈ij〉}

)
=
∏

〈ij〉 pJ(B〈ij〉|∆) by definition.

Next, we evaluate the average of Zn(β;J) with respect to these distributions by uti-

lizing an identity Zn(β;J) =
∫
(
∏n

a=1 dv
aδ(|va|2 −N))× exp

(
(β/2)

∑n
a=1(v

a)TJva
)
=

∫
(
∏n

a=1 dv
aδ(|va|2 −N))× exp

(∑
〈ij〉

∑n
a=1 βL〈ij〉B〈ij〉v

a
i v

a
j /2
)
. This identity is math-

ematically valid only for n ∈ N. In this evaluation, the following expression appears:

G(n) =
∑

{L〈ij〉},{B〈ij〉}

pB({B〈ij〉})
N∏

i=1

Z
∑

j 6=i L〈ij〉

i exp


∑

〈ij〉

n∑

a=1

βL〈ij〉B〈ij〉v
a
i v

a
j

2




=
∏

〈ij〉


1 + ZiZj

n∏

a=1

∑

B〈ij〉=±1

pJ(B〈ij〉|∆) exp

(
βB〈ij〉v

a
i v

a
j

2

)


= exp


∑

〈ij〉

ln


1 + ZiZjexp

(
n∑

a=1

βBvai v
a
j

2

)




≃ exp


∑

〈ij〉

ZiZjexp

(
n∑

a=1

βBvai v
a
j

2

)


≃ exp


N2

2

∫
du1Q(u1)

∫
du2Q(u2)exp

(
n∑

a=1

βBua
1u

a
2

2

)
 , (B.2)

where exp(βBu1u2/2) ≡ ∑
B=±1 pJ(B|∆) exp(βBu1u2/2), uk ≡ (u1

k, u
2
k, . . . , u

n
k) (k =
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1, 2), and we have introduced an order parameter function,

Q(u) ≡ 1

N

N∑

i=1

Zi

n∏

a=1

δ(vai − ua). (B.3)

We shall also introduce a conjugate function Q̂(u) for utilizing an identity for ∀u

1 =

∫
dQ(u)δ

(
1

N

N∑

i=1

Zi

n∏

a=1

δ(vai −ua)−Q(u)

)

=

∫
NdQ(u)dQ̂(u)

2π
exp

(
Q̂(u)

(
N∑

i=1

Zi

n∏

a=1

δ(vai −ua)−NQ(u)

))
,(B.4)

and employ another identity

δ
(
|va|2 −N

)
=

∫
βdλa

4π
exp

(
−βλa

2

(
n∑

i=1

(vai )
2 −N

))
. (B.5)

These, in conjunction with employment of the saddle point method for the integration

with respect to Q(u), Q̂(u), and λa (a = 1, 2, . . . , n), lead us to an expression for the

average of Zn(β;J):

1

N
ln [Zn(β;J)]J = extr

Q(·),Q̂(·),{λa}

{
1

N
lnG(n)−

∫
duQ(u)Q̂(u)

+ p1 ln

(∫
du exp

(
−

n∑

a=1

βλa(ua)2

2

)
Q̂c1(u)

)

+ p2 ln

(∫
du exp

(
−

n∑

a=1

βλa(ua)2

2

)
Q̂c2(u)

)

− 1

N
lnN +

n∑

a=1

βλa

2

}
(B.6)

for n ∈ N.

In the calculation of (B.6), we assume that the saddle point is dominated by

functions of the form

Q(u) = T

∫
dAdHq(A,H)

(
βA

2π

)n/2

exp

(
−βA

2

n∑

a=1

(
ua − H

A

)2
)
,(B.7)

and

Q̂(u) = T̂

∫
dÂdĤq̂(Â, Ĥ) exp

(
n∑

a=1

(
βÂ

2
(ua)2 − βĤua

))
, (B.8)

where T and T̂ are normalization factors so as to make q(A,H) and q̂(Â, Ĥ) distribution

functions. We also assume that λa = λ (a = 1, 2, . . . , n) holds at the dominant saddle

point. These correspond to the replica symmetric ansatz [33] in the current system.

The saddle point method gives N−1 lnN = (c/2) ln(Nc)− p1 ln c1!− p2 ln c2!. Inserting

these into (B.6) and extremizing the resultant expression with respect to T and T̂ yields

1

N
ln [Zn(β;J)]J = extr

q(·),q̂(·),λ

{
c

2
ln (K1 [q(·);n])− c ln (K2 [q(·), q̂(·);n])
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+p1K31 ln ([q̂(·), λ;n]) + p2 ln (K32 [q̂(·), λ;n]) +
nβλ

2

}
, (B.9)

where

K1 [q(·);n] ≡
∫

dA1dH1q(A1, H1)

∫
dA2dH2q(A2, H2)

×
[
exp

(
nβ

(
A2H

2
1 + 2JH1H2 + A1H

2
2

2(A1A2 − 1)
− H2

1

2A1
− H2

2

2A2

))]

J

×
(

A1A2

A1A2 − 1

)n/2

, (B.10)

K2 [q(·), q̂(·);n] ≡
∫

dAdHq(A,H)

∫
dÂdĤq̂(Â, Ĥ)

× exp

(
nβ

(
(H + Ĥ)2

2(A− Â)
− H2

2A

))
×
(

A

A− Â

)n/2

,(B.11)

K3k [q̂(·), λ;n] ≡
∫ ( ck∏

µ=1

dÂµdĤµq̂(Âµ, Ĥµ)

)
× exp


nβ

(∑ck
µ=1 Ĥµ

)2

λ−∑ck
µ=1 Âµ




×


 2π

β
(
λ−∑ck

µ=1 Âµ

)




n/2

, (k = 1, 2). (B.12)

Although we estimated [Zn(β;J)]J for n ∈ N with the saddle point

method, the expressions (B.9)–(B.12) are likely to hold for n ∈ R as well.

Therefore, we employ them to evaluate [Λ]J = 2 limβ→∞(βN)−1 [lnZ(β;J)]J =

2 limβ→∞ limn→0(∂/∂n)(βN)−1 ln [Zn(β;J)]J , which yields (4)–(7).

Appendix C. Critical condition on emergence of complex solution for (34)

Let us consider a linear perturbation â → â + iδâ around a fixed point of (34) for a

given λ, which yields

δâ = − 1

(â + Σ−1)2

(
δâ− 1

Σ2

∂Σ

∂â
δâ

)
=

1

(Σâ+ 1)2

(
∂Σ

∂â
− Σ2

)
δâ. (C.1)

This means that a critical condition so that (33) possesses a complex solution is provided

as

1 =
1

(Σâ+ 1)2

(
∂Σ

∂â
− Σ2

)
. (C.2)

Equation (38) indicates that

∂Σ

∂â
=

r1c1
(λ− c1â)2

+
r2c2

(λ− c2â)2
(C.3)

and

Σ =
â

1− â2
(C.4)

hold. Inserting these into (C.2) results in an expression equivalent to (40).
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