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Latent Space Approaches to Social Network Analysis
Peter D. Hoff, Adrian E. Raftery, and Mark S. Handcock

Network models are widely used to represent relational information among interacting units. In studies of social networks, recent
emphasis has been placed on random graph models where the nodes usually represent individual social actors and the edges represent the
presence of a speci� ed relation between actors. We develop a class of models where the probability of a relation between actors depends
on the positions of individuals in an unobserved “social space.” We make inference for the social space within maximum likelihood and
Bayesian frameworks, and propose Markov chain Monte Carlo procedures for making inference on latent positions and the effects of
observed covariates. We present analyses of three standard datasets from the social networks literature, and compare the method to an
alternative stochastic blockmodeling approach. In addition to improving on model � t for these datasets, our method provides a visual
and interpretable model-based spatial representation of social relationships and improves on existing methods by allowing the statistical
uncertainty in the social space to be quanti� ed and graphically represented.

KEY WORDS: Conditional independence model; Latent position model; Network data; Random graph; Visualization.

1. INTRODUCTION

Social network data typically consist of a set of n actors
and a relational tie yi1 j , measured on each ordered pair of
actors i1 j D 11 : : : 1 n. This framework has many applications
in the social and behavioral sciences including, for exam-
ple, the behavior of epidemics, the interconnectedness of the
World Wide Web, and telephone calling patterns. Quantitative
research on social networks has a long history, going back at
least to Moreno (1934). The development of log-linear statisti-
cal models by Holland and Leinhardt (1981); Fienberg, Meyer,
and Wasserman (1985); Wang and Wong (1987); and others
represent major advances.

In the simplest cases, yi1 j is a dichotomous variable indi-
cating the presence or absence of some relation of interest,
such as friendship, collaboration, transmission of information
or disease, and so forth. The data are often represented by
an n � n sociomatrix Y . In the case of binary relations, the
data can also be thought of as a graph in which the nodes are
actors and the edge set is 84i1 j5 2 yi1 j

D 19. If 4i1 j5 is in the
edge set, then we write i ! j. If ties are undirected, in that
yi1 j

D yj1 i for all i 6D j by logical necessity, then we write i ¹ j
if yi1 j

D 1. However, even in the case of directed relations,
ties often tend to be reciprocal (yi1 j

D yj1 i with high probabil-
ity) and transitive (i ! j1 j ! k ) i ! k with high probabil-
ity). As such, probabilistic models of network relations have
typically allowed for some sort of dependence between ties.
For example, the p1 model of Holland and Leinhardt (1981)
includes parameters for the propensity of ties to be recipro-
cal, as well as parameters for the number of ties and individ-
ual tendencies to give or receive ties. However, these models
are restrictive, as they assume the

¡
n

2

¢
dyads 4yi1 j1 yj1 i5 to be

independent.
Frank and Strauss (1986) characterized the exponential fam-

ily of random graph models by elaborating work of Besag
(1974) developed in the context of spatial statistics. These
have been referred to as the p ü class of models in the psychol-
ogy and sociology literature (Wasserman and Pattison 1996).

Peter D. Hoff is Assistant Professor of Statistics (E-mail: hoff@stat.
washington.edu), Adrian E. Raftery is Professor of Statistics and Sociol-
ogy (E-mail: raftery@stat.washington.edu), and Mark S. Handcock is Pro-
fessor of Statistics and Sociology, University of Washington, Seattle, WA
98195 (E-mail: handcock@stat.washington.edu). Raftery’s research was sup-
ported by Of� ce of Naval Research grant N00014-96-1-1092,and Handcock’s
research was supported by National Institutes of Health grant R01 DAI2831-
01. The authors thank two referees for helpful comments.

Given their general nature and applicability, we refer to them
simply as (exponentially parameterized) random graph mod-
els. Frank and Strauss (1986) also proposed models with
Markov structure that allow for forms of dyad dependence,
often referred to as homogeneous monadic Markov mod-
els. Recent work of Corander, Dahmström, and Dahmström
(1998); Crouch, Wasserman, and Trachtenberg (1998); Besag
(2000); Handcock (2000); and Snijders (2002) has developed
likelihood-based inference for these models based on Markov
chain Monte Carlo (MCMC) algorithms. Approximate max-
imum likelihood approaches have been developed by Frank
and Strauss (1986). Alternative estimating procedures based
on the concept of pseudolikelihood (Besag 1974) have been
proposed by Strauss and Ikeda (1990) and Wasserman and
Patterson (1996); however, the statistical properties of pseu-
dolikelihood estimators in this context have been criticized by
Besag (2000) and Snijders (2002).

Recent works have explored the properties of homoge-
neous monadic Markov models. Results of Besag (2000),
Handcock (2000), and Snijders (2002) suggest that commonly
used models are more global than local in structure and that
this contributes to model degeneracy and instability problems
(Ruelle 1968). These issues are not resolved by alternative
forms of estimation, but rather represent defects in the mod-
els themselves—at least to the extent that they are useful for
modeling realistic social networks. These factors have moti-
vated the development of alternative models without these
restrictions.

For networks in which actors belong to prespeci� ed groups
Wang and Wong (1987) developed a stochastic blockmodel, an
extension of the p1 model that includes parameters describing
differential rates of between-group and within-group ties. For
cases in which group membership is not observed, Nowicki
and Snijders (2001) presented a model in which the dyads in a
social network are conditionally independent, given the latent
class membership of each actor. In such a model, actors within
a latent class are treated as stochastically equivalent; that is,
the events 4i1

! j15 and 4i2
! j25 have the same probabil-

ity if actors i1 and j1 are in the same respective latent classes
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Hoff, Raftery, and Handcock: Social Network Analysis 1091

as i2 and j2. Such a model may prove useful in identifying
clusters of individuals for whom stochastic equivalence holds,
that is, clusters of individuals who relate to all other actors in
the system in a similar way. However, models based on dis-
tinct clusters may not � t well when many actors fall between
clusters, or when relations are transitive yet there is no strong
clustering.

In some social network data, the probability of a relational
tie between two individuals may increase as the character-
istics of the individuals become more similar. A subset of
individuals in the population with a large number of social
ties between them may be indicative of a group of individu-
als who have nearby positions in this space of characteristics,
or “social space.” Various concepts of social space have been
discussed by McFarland and Brown (1973) and Faust (1988).
In the context of this article, social space refers to a space
of unobserved latent characteristics that represent potential
transitive tendencies in network relations. A probability mea-
sure over these unobserved characteristics induces a model in
which the presence of a tie between two individuals is depen-
dent on the presence of other ties. Relations modeled as such
are probabilistically transitive in nature. The observation of
i ! j and j ! k suggests that i and k are not too far apart
in social space, and therefore are more likely to have a tie. In
Section 2 we develop a latent variable model for such tran-
sitive relations in which it is assumed each actor i has an
unknown position zi in social space. The ties in the network
are assumed to be conditionally independent given these posi-
tions, and the probability of a speci� c tie between two indi-
viduals is modeled as some function of their positions, such
as the distance between the two actors in social space. Estima-
tion of positions is simpli� ed by the use of a logistic regres-
sion model, and con� dence regions for latent positions are
computable using standard MCMC algorithms, as we describe
in Section 3. In Section 4 we � t these latent-space models
to a number of standard datasets and compare their perfor-
mance in terms of model � t to alternative stochastic block-
models. In addition to improving on model � t, the results
from our approach are relatively easy to interpret, and model-
ing the positions as belonging to a low-dimensional Euclidean
space provides a model-based means of graphically represent-
ing social network data.

2. LATENT POSITION METHODS

The data we model in this article consist of an n � n
sociomatrix Y , with entries yi1 j denoting the value of the rela-
tion from actor i to actor j, and possibly additional covariate
information X . We focus on binary-valued relations, although
the methods in this article can be extended to more general
relational data using ideas from generalized linear models.
Both directed and undirected relations can be analyzed with
our methods, although the features of the model are slightly
different in the two cases, as described below.

We take a conditional independence approach to modeling
by assuming that the presence or absence of a tie between two
individuals is independent of all other ties in the system, given
the unobserved positions in social space of the two individuals,

P4Y —Z1 X1 ˆ5 D
Y

i 6Dj

P4yi1 j
—zi1 zj1 xi1 j1 ˆ51

where X and xi1 j are observed characteristics which are poten-
tially pair-speci� c and vector-valued and ˆ and Z are param-
eters and positions to be estimated.

2.1 Distance Models

A convenient parameterization of P4yi1 j
—zi1 zj1 xi1 j1 ˆ5 is the

logistic regression model in which the probability of a tie
depends on the Euclidean distance between zi and zj , as well
as on observed covariates xi1 j that measure characteristics of
the dyad,

‡i1 j
D logodds4yi1 j

D 1—zi1 zj1 xi1 j1 �1‚5

D � C ‚0xi1 j
ƒ —zi

ƒ zj
—0 (1)

This model has a simple interpretation: For two actors j and
k equidistant from i, the log odds ratio of i ! j versus i ! k

is ‚04xi1 j
ƒ xi1 k5.

Note that the —zi
ƒ zj

—’s could be replaced by an arbi-
trary set of distances 8di1 j9, satisfying the triangle inequal-
ity, di1 j µ di1 k

C dk1 j
8 8i1 j1 k9. A semiparametric modeling

approach would impose no further constraints on the distances,
and so the parameter space would include

¡
n

2

¢
distances to

estimate, subject to the inequality constraints. Generally, we
prefer to model the di1 j’s as distances between actors in some
low-dimensional Euclidean space for reasons of parsimony
and ease of model interpretability.

The latent position model is inherently reciprocal and transi-
tive: If i ! j and j ! k, then di1 j and dj1 k are probably not too
large, making the events j ! i (reciprocity) and i ! k (tran-
sitivity) more probable. One interesting feature of the model
is that it provides an essentially perfect model � t for many
social network datasets with undirected relations, in a param-
eter space of much lower dimension than that of the data [nk

vs. n4n ƒ 15]. To explore this feature further, consider the fol-
lowing reparameterization of (1) in the case of no covariate
information and an undirected relation yi1 j

D yj 1 i:

logodds4yi1 j
D 1—di1 j1 xi1 j1�5 D �41 ƒ di1 j 50 (2)

We say a set of distances 8di1 j9 represents the network Y if

8di1 j > 1 8 i1 j 2 yi1 j
D 09

and

8di1 j < 1 8 i1 j 2 yi1 j
D 190 (3)

For such a set of distances, the probability of the data under
parameterization (2) will converge to unity as � ! ˆ. As we
model the distances as being Euclidean distances in some k-
dimensional space, we say that a network is dk representable if
there exist points zi

2 <k such that the distances di1 j
D —zi

ƒ zj
—

satisfy (3). In such a space, dk representability is equivalent
to being able to � nd a set of points for the actors such that
i ¹ j if and only if i and j lie within k-dimensional unit balls
centered around each other.

It is interesting to note there are many examples of social
networks which are dk representable for k much smaller than
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1092 Journal of the American Statistical Association, December 2002

n, and even for k D 2. Consider, for example, an n-star net-
work composed of one central actor having ties to n ƒ 1 oth-
erwise unconnected actors. Such a network is trivially d n

2
ƒ1

representable for any n, by positioning pairs of noncentral
actors on either sides of the central actor along one of the
n=2 coordinate axes. As another example, consider an n-chain
network, in which there is an ordering of n actors so that
1 ¹ 2 ¹ 3 ¹ ¢ ¢ ¢ ¹ n ¹ 1. This network is d2 representable
for all n by placing the actors equidistant from the origin but
separated by equal angles. Such results suggest that distance-
based models may provide a good method of data reduction
and presentation for undirected relational data. Although the
foregoing examples may seem contrived, in Section 4.2 we
analyze a real-life 15-actor network that is d2 representable.

2.2 Projection Models

The distance model presented earlier is inherently symmet-
ric in that p4i ! j5 D p4j ! i5. However, in many networks
such symmetry is not achieved. For example, perhaps actor
i sends a large number of ties, whereas j sends ties to a
small subset of the actors receiving ties from i. In this case
we want to model that i and j are “similar” but i is more
“socially active.” Such a model could be achieved by including
actor-speci� c activity parameters, an approach used by Wang
and Wong (1987) to allow for actor-level variability in their
stochastic blockmodel.

Alternatively, variable levels of activity can be modeled par-
simoniously in the context of a latent position model which
allows for probabilistic transitivity in the relations, as well as
individual-speci�c levels of social activity. Suppose each actor
i has an associated unit-length k-dimensional vector of char-
acteristics vi . These characteristics can be thought of as points
on a k-dimensional sphere of unit radius. We might imagine
that i and j are prone to having ties if the angle between them
is small, neutral to having ties if the angle is a right angle,
and averse to ties if the angle is obtuse. These three situations
correspond to v0

ivj > 0, v0
ivj

D 0, and v0
ivj < 0, respectively. In

other words, i and j are more likely to have a tie if the char-
acteristics of i and j are in the same direction, and less likely
to have a tie if they have characteristics in opposite directions.
Adding a parameter for each node to allow for different lev-
els of activity is equivalent to having latent vectors of various
lengths: Letting ai > 0 be the activity level of actor i, we can
model the probability of a tie from i to j as depending on the
magnitude of aiv

0
ivj or, equivalently, z0

izj=—zj
—, where zi

D aivi .
This is the signed magnitude of the projection of zi in the
direction of zj and can be thought of the extent to which i

and j share characteristics, multiplied by the activity level of
i. For convenience, we parameterize the probability of a tie
from i to j using the logistic regression model as before,

logodds4yi1 j
D 1—zi1 zj1 xi1 j1�1‚5 D � C ‚0xi1 j

C z0
izj

—zj
— 0

In some situations we may wish to model differential rates
of accepting ties. In this case, the foregoing probability could
depend on the latent vectors through z0

izj=—zi
—.

3. ESTIMATION

In contrast to the p ü and Markov random graph models,
the log-likelihood of a conditional independence model is
relatively simple,

logP4Y —‡5 D
X

i 6Dj

8‡i1 jyi1 j
ƒ log41 C e‡i1 j 591 (4)

where ‡ is a function of parameters, unknown positions, and
perhaps known explanatory variables. As such, likelihood-
based estimation methods, such as maximum-likelihood and
Bayesian inference, are feasible.

The likelihood (4) is strictly concave in the matrix ‡ D
8‡i1 j9. Consider � rst the semiparametric model ‡ D �110 ƒ D,
where D is constrained only to be a positive symmetric matrix
of values satisfying the triangle inequality. As the parameter
space 8�1 D9 is convex and ‡4�1D5 is af� ne, there is a unique
value of �110 ƒD maximizing the likelihood. (Note, however,
� is confounded with D, as the addition of a positive con-
stant to a set of distances gives a set of distances.) Unfortu-
nately, the log-likelihood is not generally concave in 8�1 Z9
for either the distance model or the projection model, because
the function ‡ D ‡4�1Z5 is not af� ne. This makes identi� ca-
tion of a global maximum likelihood estimator (MLE) prob-
lematic. However, one approach is to � rst identify a set of
distances, not necessarily Euclidean, that maximize the likeli-
hood (a convex minimization problem). A set of positions in
<k approximating the distances can then be found using mul-
tidimensional scaling methods. This set of positions can be
used as a starting point in a nonlinear optimization routine. A
simpler approach that works well in the examples in this arti-
cle is to obtain a set of dissimilarities between nodes based on
an ad hoc measure, such as the Euclidean distances between
rows or columns of the sociomatrix or the geodesic distance
(path length) between the nodes (Wasserman and Faust 1994).
Starting values for the positions can then be found using mul-
tidimensional scaling.

Distances between a set of points in Euclidean space are
invariant under rotation, re� ection, and translation. Therefore,
for each k � n matrix of latent positions Z, there is an in� -
nite number of other positions giving the same log-likelihood.
More speci� cally, logPr4Y —Z1 �5 D logPr4Y —Z ü 1�5 for any
Z ü that is equivalent to Z under the operations of re� ection,
rotation, or translation. A con� dence region that includes two
equivalent positions Z1 and Z2 is in a sense overestimating the
variability in the unknown positions (although not overestimat-
ing the variability in distances or relative positions, because
these are identical for Z1 and Z2). Fortunately, this problem
can be resolved by basing inference on equivalence classes of
latent positions: Let 6Z7 be the class of positions equivalent
to Z under rotation, re� ection, and translation. For each 6Z7,
there is one set of distances between the nodes. We call this
class of positions a con�guration.

We make inference on con� gurations via inference on par-
ticular elements of con� gurations that are comparable across
con� gurations. For a given con� guration 6Z7, we select for
inference Z ü D argminTZ tr4Z0 ƒ TZ504Z0 ƒ TZ5, where Z0 is
a � xed set of positions and T ranges over the set of rotations,
re� ections, and translations. Z ü is a “Procrustean” transfor-
mation of Z, being the element of 6Z7 closest to Z0 in terms
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Hoff, Raftery, and Handcock: Social Network Analysis 1093

of the sum of squared positional difference and is unique if
Z0Z

0 is nonsingular (Sibson 1979). Z ü is relatively easy to
compute: Assuming Z and Z0 are both centered at the origin,
Z ü is given by Z ü D Z0Z

04ZZ 0
0Z0Z

05ƒ1=2Z. We typically take
Z0

D bZ, an MLE of the latent positions centered at the origin.
Given prior information on �, ‚, and Z, our procedure for

sampling from the posterior distribution is as follows:

1. Identify an MLE bZ of Z, centered at the origin, by direct
maximization of the likelihood.

2. Using Z0
D bZ as a starting value, construct a Markov

chain over model parameters as follows:

a. Sample a proposal LZ from J4Z—Zk5, a symmetric pro-
posal distribution.

b. Accept LZ as ZkC1 with probability p4Y — LZ1�k 1‚k 1X5

p4Y —Zk 1�k 1‚k 1X5

� 4 LZ5

� 4Zk5
;

otherwise, set ZkC1 D Zk.
c. Store eZkC1 D arg minTZkC1

tr4bZ ƒTZkC15
04bZƒTZkC15.

3. Update � and ‚ with a Metropolis–Hastings algorithm.

Because each con� guration can be represented by its unique
Procrustean statistic, the posterior distribution of the con� g-
uration around bZ is represented by samples of eZ from the
Markov chain.

The computational details for the projection model are the
same as before, except that the likelihood is invariant under
rotation and re� ection of positions, but not under transla-
tion. Therefore, the only modi� cation to the foregoing is to
let eZkC1 D arg minTZkC1

tr4bZ ƒ TZkC15
04bZ ƒ TZkC15, where T

ranges over the set of rotations and re� ections.

4. EXAMPLES

Here we analyze three standard datasets from the social
networks literature: Sampson’s (1968) Monk data, Padgett and
Ansell’s (1993) data on marriage relations between Florentine
families, and Hansell’s (1984) classroom data.

4.1 Monk Data

Sampson (1968) collected data on a variety of interpersonal
relations among 18 monks. Of particular interest has been
the data on positive affect relations, in which each monk was
asked whether he had positive relations to each of the other
monks. Based on the network and other data, Sampson origi-
nally classi� ed each monk as belonging to one of four groups:
the loyal opposition (monks 2–6), the young Turks (monks
8–14), the outcasts (monks 16–18), or the waverers (monks
1, 7, and 15). Subsequent data analyses have placed monks 1
and 7 with the loyal opposition and monk 15 with the outcasts.

These data are standard in the social network analysis liter-
ature, having been modeled by Holland and Leinhardt (1981),
Reitz (1982), Holland, Laskey, and Leinhardt (1983), and
Fienberg et al. (1981). Wang and Wong (1987) extended these
models by allowing for individual-level variation in relations
as well as group-level preferences for ties, and obtained a
substantially improved � t. Speci� cally, their stochastic block-
model modeled each pair 8yi1 j1 yj1 i9 as depending on param-
eters for actor-speci� c rates of sending and receiving ties, a
parameter representing mutuality of ties, and a parameter rep-
resenting the preference of actors to send ties to members of

their own group. Note that Wang and Wong took the group
membership information as given, even though it was derived
to some extent from the data.

The relations between the monks are somewhat transitive.
The number of nonvacuously transitive ordered triples (i ! j,
j ! k, i ! k) is 49. In 500 random reallocations of ties, hold-
ing the number of ties sent by each actor constant, the largest
number of nonvacuously transitive triads was 35. The distance
model takes advantage of this transitivity and can achieve a
better � t than Wang and Wong’s model, using fewer parame-
ters and not presuming the a priori existence of distinct groups.
Our model is the distance model presented in Section 2.1,

P4Y —�1Z5 D
nY

i 6Dj

p4yi1 j
—�1 zi1 zj5

and

logit p4yi1 j
D 1—�1 zi1 zj5 D � ƒ —zi

ƒ zj
—1 (5)

where the zi’s lie in <2. Note that the probability of the
data depends only on the distances, which are invariant under
re� ection, rotation, and location shift. As a result, 3 of the
18 � 2 model parameters can be � xed, so this model has
33 C 1 D 34 parameters (including �).

The distance between each pair of nodes was � rst calculated
as the average of the two directed path lengths between each
pair. Crude estimates of latent positions were then found using
multidimensional scaling, and the results were used as starting
values for the nonlinear minimizer optim in the R statistical
programming environment. Random sampling of starting val-
ues from a normal distribution produced identical results.

As shown in Table 1, the maximized log-likelihood is
ƒ66002 with 34 parameters, compared with the maximized
log-likelihood of the stochastic blockmodel � t of ƒ82012 with
37 parameters (Wang and Wong 1987). The improvement of
the position-based model over the stochastic blockmodel of
Wang and Wong suggests that because relationships are indeed
transitive to some extent, modeling them as such leads to
an improvement in model � t. The maximum likelihood esti-
mates of monk positions from the distance model are shown
in Figure 1(a).

The conditional independence model lends itself relatively
easily to a Bayesian analysis. Priors can be formulated for �

and Z, and posterior inference can be made about each. In par-
ticular, this provides a means of making con� dence regions for
the positions of the actors in social space. Using diffuse inde-
pendent normal priors for � and Z with mean 0 and standard
deviation 100, we performed a Bayesian analysis via 205� 106

scans from a Markov chain as described in Section 3. The
chain mixes reasonably quickly in the zi’s and the pairwise

Table 1. Model Fitting Results for the Monk Data

Maximized Number of
Model log-likelihood parameters

Distance model (<3) ƒ34.04 50
Distance model (<2) ƒ66.02 34
Stochastic blockmodel ƒ82.12 37
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1094 Journal of the American Statistical Association, December 2002

Figure 1. Maximum Likelihood Estimates (a) and Bayesian Marginal
Posterior Distributions (b) for Monk Positions. The direction of a relation
is indicated by an arrow.

distances between nodes, but quite slowly in � , as shown in
Figure 2(b). Output from the chain was saved every 2,000
scans, and positions of the different monks are plotted for each
saved scan in Figure 1(b) (the plotting color for each monk
is based on their mean angle from the positive x-axis and
their mean distance from the origin). The categorization of the
monks given at the beginning of this section is validated by the
distance model � tting, as there is little between-group overlap
in the posterior distribution of monk positions. Additionally,
this model is able to quantify the extent to which some actors
(such as monk 15) lie between other groups of actors.

The extent to which model � t can be improved by increas-
ing the dimension of the latent space was examined by � tting
the distance model in <3, that is, zi

2 <3 for i D 11 : : : 1 n. The
maximum likelihood for this model is ƒ34004 in 50 param-
eters, a substantial improvement over the � t in <2 at a cost
of 16 additional parameters. It is interesting to note that the
� t cannot be improved by going into higher dimensions. This
can be seen as follows. For a given dataset Y , the best-� tting
symmetric model (pi1 j

D pj1 i) has the property that pi1 j
D 1

for yi1 j
D yj1 i

D 1, pi1 j
D 0 for yi1 j

D yj1 i
D 0, and pi1 j

D 1=2
for yi1 j

6D yj1 i . The log-likelihood of such a � t is thus ƒa log4,
where a is the number of asymmetric dyads. For the monk
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Figure 2. MCMC Diagnostics for the Monk Analysis. (a) Log-
likelihood; (b) alpha.

dataset, the number of asymmetric dyads is 26, and so the
maximum possible log-likelihood under a symmetric model is
ƒ26 log4 D ƒ36004, which is achieved by the distance model
in <3. More precisely, there exists a set of positions Ozi

2 <3

and a rate parameter O� such that limc!ˆ logP4Y —c O�1 cbZ5 D
ƒ26 log4.

4.2 Florentine Families

Padgett and Ansell (1993) compiled data on marriage
and business relations between 16 historically prominent
Florentine families, using a history of this period given by
Kent (1978). We analyze data on the marriage relations tak-
ing place during the 15th century. The actors in the population
are families, and a tie is present between two families if there
is at least one marriage between them. This is an undirected
relation, as the respective families of the husband and wife in
each marriage were not recorded. One of the 16 families had
no marriage ties to the others, and was consequently dropped
from the analysis. If included, this family would have in� nite
distance from the others in a maximum likelihood estimation
and a large but � nite distance in a Bayesian analysis, as deter-
mined by the prior.

Modeling di1 j
D —zi

ƒ zj
—1 zi1 zj

2 <2 and using the param-
eterization ‡i1 j

D �41 ƒ di1 j 5 as described in Section 2, the
likelihood of (�1Z5 can be made arbitrarily close to 1 as
� ! ˆ for � xed Z D bZ; that is, the data are d2 representable.
Such a representing bZ is plotted in Figure 3(a). Family 9 is
the Medicis, whose average distance to others is greater only
than that of families 13, the Ridol� s and 16, the Tornabuonis.
Another d2 representation is given in Figure 3(b). This con� g-
uration is similar in structure to the � rst, except that the seg-
ments 9-1 and 9-14-10 have been rotated. This is somewhat
of an artifact of our choice of dimension: When modeled in
three dimensions, 1 and 14 are � t as being relatively equidis-
tant from 6.

One drawback of the MLEs presented earlier is that they
over� t the data in a sense, as the � tted probabilities of ties are
all either 0 or 1 (or nearly so, for very large �). Alternatively,
a prior for � can be formulated to keep predictive probabilities
more in line with our beliefs; for example, that the probabil-
ity of a tie rarely goes below some small, but not in� nitesi-
mal value. Using the MCMC procedure outlined in Section 3,
the marriage data were analyzed using an exponential prior
with mean 2 for � and diffuse independent normal priors for
the components of Z (mean 0, standard deviation 100). The
MCMC algorithm was run for 5 � 106 scans, with the output
saved every 5,000 scans. This chain mixes faster than that of
the monk example, as can be seen in the diagnostic plots of
Figure 4 and in plots of pairwise distances between nodes (not
shown). Marginal con� dence regions are represented by plot-
ting samples of positions from the Markov chain, shown in
Figure 3(c). Note that the con� dence regions include both the
con� gurations given in Figure 3(a) and (b). Actors 14 and 10
(in red and purple) are above or below actor 1 (in green) for
any particular sample; the observed overlap of these actors in
the � gure is due to the bimodality of the posterior and that the
plot gives the marginal posterior distributions of each actor.
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Figure 3. (a) and (b) Alternate d2 Representations of the Florentine Family Data. (c) Marginal posterior distributions of family positions.

4.3 Classroom Data

Hansell’s (1984) data measure the existence of strong
friendship ties between 13 boys and 14 girls in a sixth-grade
classroom. Each student was asked whether he or she liked
each other student “a lot,” “some,” or “not much.” A strong
friendship tie is considered present if a student likes another
student “a lot.”

The number of ties sent by each student varies consider-
ably, ranging from 0 to 19 with a mean of 5.8 and a standard
deviation of 4.7. (The standard deviation of the number of
ties received was 3.2.) For this reason, we choose to analyze
the data using the projection model described in Section 2.2,
which allows for a variable rate in sending ties across students.
Additionally, 72% of the ties are same sex, indicating that the
friendship relation is more prevalent within sex. Finally, the
relations are transitive, in that the number of nonvacuously
transitive ordered triples is 400, compared to a maximum of
347 in 500 random reallocations of ties, holding constant the
number of ties sent by each student.

To illustrate the features of the projection model, we � t
models both with and without covariate information on the
sex of the students, that is, we consider both of the following

0 1000 3000 5000

55
50

45
4

0
35

3
0

25
20

scan x 103

lo
g 

lik
e

lih
oo

d

0 1000 3000 5000

6
8

10
12

scan x 103

al
ph

a

(a) (b)

Figure 4. MCMC Diagnostics for the Florentine Family Analysis. (a) Log-likelihood; (b) alpha.

formulations:

¡ Projection model, no covariate: logit4pi1 j5 D � C z0
izj =—zj

—
¡ Projection model, one covariate: logit4pi1 j5 D � C ‚xi1 j

C
z0

izj=—zj
—.

The covariate xi1 j is the indicator of actors i and j being of
the same sex. We also compare these models to the stochastic
blockmodel � t of Wang and Wong (1987).

We � rst obtained distance estimates for both models by cal-
culating the average of the directed path lengths between each
pair. Crude positions in a single dimension were found using
Sammon’s (1969) nonlinear mapping. These positions were
converted into positions on a circle, which became the start-
ing values of the latent vectors in the optimization routine.
Randomly sampled starting values give the same optimum � t
(Table 2). The projection model with sex as a covariate gives
the best � t, with the coef� cient ‚ being nominally signi� cant
based on a likelihood ratio test.

Fitting the model without the covariate information on sex
gives the estimates of positions shown in Figure 5(a). Here
the students are plotted along the circumference of a circle
according to the angle of their latent vector, and the size of the
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Table 2. Model-Fitting Results for Classroom Data

Maximized Number of
Model log-likelihood parameters

Projection, with covariate ƒ224.58 55
Stochastic blockmodel ƒ227.57 55
Projection, no covariate ƒ229.05 54

plotting character for a student is increasing in the magnitude
of their vector. The model identi� es two somewhat orthogonal
groups of actors falling on vectors emanating from the origin,
one consisting of mostly boys (&); the other, girls (�). The
difference between the boys’ and girls’ median angles, plotted
in dashed lines, is 76 degrees.

Note that if the sexes were separated by 180 degrees, then
based on the model, it would be improbable for actors to
have ties to both boys and girls, which is not completely
uncommon in the data. By having the group vectors sepa-
rated by 76 degrees, the model predicts ties between the sexes
as rare, although it allows for a nonnegligible probability of
some actors sending ties to both groups or even sending ties
primarily to members of the opposite group.

A further application of the projection model is as a means
of identifying boys and girls who may be in similar social
groups, after having accounted for the fact that the frequency
of between-sex friendship ties is low. The estimated posi-
tions after having partially accounted for this known covariate
structure are shown in Figure 5(b). Note there is still con-
siderable separation of the sexes, although the difference in
median angles has been reduced to 60 degrees. This suggests
that the single covariate xi1 j does not fully explain the dif-
ferent rates of within-sex and between-sex friendship ties. A
“full” model would have different baseline rates for the four
different types of ties (boy ! boy, boy ! girl, girl ! girl, and
girl ! boy). Indeed, inclusion of these parameters reduces the
median angle between the sexes to 13 degrees. We present
only the model with the single covariate, as this data analysis
is meant primarily as an illustrative example.

12
34

56

7

8

9

101112

13

14
15

16

17
18

1920 21

22
23

24
25

26

27

No covariate information

1
2

3 4 5
6

7

8
9

10
111213

14
15

16

17
181920

21

22

23

24

25

26
27

Using indicator of same sex

0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

beta

p(
be

ta
)

(a) (b) (c)

Figure 5. Maximum Likelihood Estimates of Student Positions (a) No covariate information; (b) using indicator of same sex, and (c) the
posterior of ‚.

The foregoing model could also be used as a means of mak-
ing inference on the preference for within-sex friendship ties.
A naive approach to inference would be to treat each possible
tie as a Bernoulli random variable, independent of the other
ties. Using logistic regression, we would estimate the log-odds
ratio of a between-sex pair being friends compared with that
of a within-sex pair being friends as 1.3, with a standard error
of .2. Of course, we would expect a con� dence interval based
on such an analysis to be too small, because ties between
individuals are not independent, unconditional on the latent
positions. As an alternative, we performed a Bayesian analysis
as outlined in Section 3. We constructed a Markov chain of
length 5 � 106 scans, starting at the MLE. Output was saved
every 1,000 scans, which we then used to make marginal pos-
terior inference on ‚. The marginal posterior density of ‚ is
given in Figure 5(c), in which the solid vertical line represents
the MLE from the projection model and the dashed lines rep-
resent the MLE plus and minus two standard errors, based on
an ordinary logistic regression. As we would expect, a 95%
con� dence region from the Bayesian analysis would be longer
than the one based on the ordinary logistic regression.

5. DISCUSSION

This article proposes a new model for social networks based
on spatial representation for which maximum likelihood and
Bayesian inference are practical to implement. The approach
has some advantages over existing social network models and
inferential procedures. First, the proposed method provides a
visual and interpretable model-based spatial representation of
network relationships. Second, it improves on existing meth-
ods by allowing the statistical uncertainty in the social space
to be quanti� ed and graphically represented. Third, it is � ex-
ible and can be easily generalized to allow for multiple rela-
tionships, ties with varying strengths (using generalized linear
models), and time-varying relations (by modeling the latent
positions as stochastic processes). Fourth, it deals easily with
missing data, at least if information on ties is missing at
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random: The likelihood includes only terms corresponding to
observed ties. Finally, the model is inherently transitive, and
so we can expect an improved � t over models lacking such
structure (such as the stochastic blockmodel) when the rela-
tions are transitive in nature.

It may be desirable to allow for further dependence in
the model. For example, the data might exhibit more or less
reciprocity (yi1 j

D yj1 i) than is estimated by the model. In
such a case, the model can be extended by treating each
dyad 4yi1 j1 yj1 i5 as independent of other dyads, given posi-
tions Z and parameters � and ƒ, where ƒ models the depen-
dence between ties within a dyad. In the absence of such a
model, some aspects of potential lack of � t can be checked.
For example, using the � tted probabilities of ties and assum-
ing the conditional independence model, we can calculate
the expected number of reciprocal, nonreciprocal, and null-
reciprocal dyads in a dataset and compare these with the
observed numbers. For the monk data using the distance
model in <2, the expected counts are 417031210411140351

and the observed counts are 41512611125. For the class-
room data, the model with one covariate gives expected
counts of 426071 103061220075, whereas the observed counts
are 424110912185, indicating a reasonable � t according to this
criteria (although both datasets exhibit slightly less reciprocity
than suggested by the estimated models).

The nonconcavity of the log-likelihood as a function of the
latent positions presents dif� culties in � nding MLEs of the
parameters. The likelihood surface needs to be carefully exam-
ined to differentiate between global and local maxima. MCMC
methods can be a useful tool in this regard. For example, in
the analysis of the Florentine family data, the MCMC proce-
dure was able to identify and mix over two separate maxima.
Additionally, we reiterate that the log-likelihood is concave
in 4�1 D5, where D is the set of distances not constrained to
be Euclidean. One could potentially do model � tting in this
high-dimensional space and then examine (graphically or oth-
erwise) pairs or subnetworks in lower dimensions.

We have not discussed in detail the choice of a prior distri-
bution for latent positions in this article. Although simple, the
diffuse independent normal priors presented in the examples
may not accurately represent prior beliefs about the structure
of social networks. More appropriate might be clustered point
processes or mixtures of normals with an unknown number of
components. Such priors could allow one to incorporate prior
information on tendencies for clustering, without specifying
cluster membership. This would add another level of hierarchy
to the analysis, although the resulting model would be more
� exible and perhaps more accurately represent any tendencies
of populations to form segregating groups.

As an alternative to the models presented in this arti-
cle, multiple-dimensional scaling (MDS) is a widely used
method of representing the spatial structure of a social net-
work (Breiger, Boorman, and Arabie 1975; Faust and Romney
1985). In this context, MDS is a class of methods that can be
used to produce a spatial representation of individuals based
on similarity or dissimilarity measures between pairs of indi-
viduals. Such applications of MDS differ from the models pre-
sented here in that MDS is used primarily as a data-analytic
means of visualizing given dissimilarities, whereas our method

is a model-based representation of the measured relations and
latent positions, although recently DeSarbo, Kim, and Fong
(1999) and Oh and Raftery (2001) developed model-based
MDS applicable to two-mode networks within a Bayesian
framework. Our model has a number of advantages over
MDS. First, our method directly models the response, whereas
the usual choices for dissimilarities in MDS are ad hoc and
do not re� ect the stochastic nature of the sociomatrix. Sec-
ond, current versions of MDS use maximum likelihood or
other optimization methods over large numbers of parame-
ters (e.g., linear in the number of individuals). The asymp-
totic properties of these methods are largely unknown, and the
uncertainty in the latent positions is dif� cult to quantify. To
avoid this, some versions of MDS assume that individuals can
be grouped into homogeneous clusters—so-called latent class
MDS (Lazarsfeld and Henry 1968; DeSarbo et al. 1994). How-
ever, individual-speci�c variability in relative position is often
the primary focus in the social network context—something
that can be quanti� ed in an interpretable way via a Bayesian
analysis of one of the position-based models discussed in this
article.

R-code for implementing the proposed methods will
be available through the � rst author’s website, www.stat.
washington.edu/hoff.

[Received November 2001. Revised April 2002.]
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