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ON A GENERAL CLASS OF MODELS FOR INTERACTION*
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Abstract. This paper develops a class of probability models for configurations of interacting points in a
domain. The distributions depend on a function which may be viewed as giving the potential energy of the
configurations. Examples include models for interaction in a spatial region and on lattices and graphs. New
models in the general class arise naturally, an example being a spatial model for points of different categories.
Some general methods, including series expansions and a simulation method known from statistical mecha-
nics, can be useful for many of these models. Several applications of this kind are considered, and some
connections between the models and with the statistical mechanics are explored.
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1. Introduction. This paper considers a class of probability models for interactive
systems. Some examples where the models may be appropriate are:

(a) Patterns of points in Euclidean space, the points perhaps representing mole-
cules of a gas, plants or insects in a field, or village on a map. In each case
there may be attractions or repulsions between pairs of points which are
close.

(b) Probabilistic colorings of a regular lattice; the colors might correspond to
presence or absence of a gas molecule at a given site, or to the types of
vegetation in a digitized earth satellite photograph. Again, there will typically
be clustering or repulsion.

(c) In a random graph, perhaps representing a social network, an edge between
two vertices might represent acquaintance between two individuals. Interac-
tions between the edges may arise as a clustering tendency or a bias towards
clique formation.

(d) Sequences of events in time, such as accidents in a large factory; the occur-
rence of an event at a given time may affect the likelihood of another event in
a short period thereafter.

The common feature of the models considered is that the probability of a config-
uration depends on an “energy” function measuring the amount of interaction. Some
models of this type are well known in statistical mechanics as Gibbs ensembles. In this
paper, we develop a unified framework for studying interactive systems. This includes
the standard physics models arising from examples (a) and (b) above, and also encom-
passes others, such as the interactive graph models, which do not seem to arise in
physics. Because applications arise in fields such as sociology and botany, we shall be
concerned with statistical questions, such as parameter estimation.

A unified framework for the models confers several benefits. It provides a conveni-
ent setting for the development of new models, an example being the spatial model for
colored points considered in §6. Further, there are general methods and properties that
may be applicable to any potential model. We shall see, for instance, that certain
Markov graph models display a “degeneracy” closely related to the well-known insta-
bility of a spatial model. The emphasis of the paper is on general methods, and we
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attempt to bring out some connections between the models and with statistical mecha-
nics.

The potential models, as they will be called, have two components: a null measure
1 and a potential function U. The measure determines the “structure” by specifying a
neutral distribution for the number, location and coloring of the points. For example,
in some applications p specifies a fixed number of points independently and uniformly
distributed in the domain. The function U may then be viewed as defining the potential
energy of interaction for each configuration; in most cases U will be taken to be a sum
of pairwise interactions depending on the color and interpoint distances. A model is
specified by a probability density, with respect to p, proportional to exp(— U).

Section 2 introduces formalism for potential models and indicates the connection
with Markov fields and with an entropy argument. Section 3 outlines some parametric
models for spatial, lattice, and graph distributions. The three remaining sections take
up some general methods and apply them to various models. Section 4 concerns the
possibility that the potential tends to its minimum as the system becomes large; this
will be called degeneracy. Section 5 reviews a simulation technique known from statisti-
cal mechanics and adapts it to the Markov graph models. Section 6 considers some
series expansions for the awkward normalizing constant in the probability distribu-
tions. As illustration, this is used to provide an easy derivation of some new results for
a spatial model.

2. Preliminaries. In this section we define the potential models and discuss some
principles from which they may be derived. To encompass the range of applications the
notation needs to be rather general.

2.1. Notation and definitions. For n>1, let x,,- - -, x,, be elements (“points”) of a
set D. This may, for example, be the set of sites of a lattice or a subset of Euclidean
space. Let C be a finite set of colors, or marks, and associate with each x; a color
¥,€ C. For each n, the realizations, or states, are elements of Q,={(xy, ¥;),* - -, (X, V) }»
with x,€D, y,€C. We set ;= . A general state, denoted by S, is an element of the
sample space Q=UY_o{D"XC"}.

A potential function U is a real symmetric function on {; it gives the “interactive
potential energy” of configurations S€. Let p be a measure on a suitably chosen
o-field of subsets of ©. The number of points » may be fixed or random, depending on
the choice of u. We can then define a potential model as a probability distribution P on
Q whose Radon-Nikodym derivative with respect to p is

1) 2L (5)- 2205

provided this exists. The normalizing constant, or partition function, in (2.1)

(22) z=[ exp(-U(S)) du(5)

will play an important role in what follows. The probability distribution of states (2.1)
is sometimes called a Gibbs ensemble.
The models to be considered all have potential functions of the form

(2.3) U(S)=2LT,(S).
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Each a is a set of two or more integers from Z ={1,2, - - - }, and the interaction T,(S)
is independent of (x;, y;) unless i € a. Terms with |a|=1 are excluded because they are
not interactive, and can thus be absorbed into p.

Let r be a metric on D, and write r;; for ||x;—x,||. We will assume homogeneity:
that the 7, in (2.3) depend on x;, x; only through their distances 7, In many
applications each T, will involve just two arguments; then (2.3) may be written

(24) U(S)=Zuab(rij)

i<j

where a=y,, b=y;, and the functions u,, are the pair-potential functions for colors
a,b. The r;; have argument S, but we will frequently suppress this argument for
convenience. It is usually convenient to take u(0)= oo, thereby making the density P
vanish when the x; are not all distinct.

2.2. The link with random fields. Suppose that D is a finite set, with elements
{1,---,V}. If S consists of n distinct elements, with n <V, we can assign a null color
Yo to the remaining ¥ — n. The null color is reserved exclusively for elements not in S.
There then is a (1—1) correspondence between realizations on Q and colorings y=
(»1,- - +» yy) of D. We consider probability distributions P(y) on the colorings.

Write i ~j if the distribution of y,, conditional on { y,: k#i}, is dependent on y,.
The relation ~ is a symmetric one. Such pairs (i, j) are neighbors; they define an
undirected dependence graph G={(i, j): i~j; 1gi<j<V}. A probability distribution
on D, together with its dependence graph, specifies a Markov random field. A set
ACD is a clique if it has only one element or if (i, j)€ G for all i, j€ A. Suppose that
P(y)>0 for all y, and that there is a coloring y = 0. According to the Hammersley—Clif-
ford theorem (Besag (1974)), Q(y)=In{ P(y)/P(0) can be expressed uniquely as

(2.5) o= X yNO)+X Xy, (v y)+ -

l1<isV i<j
+y - -yl,?\l...y(}’D' T yV)’

where A =0 unless 4 is a clique. Subject to this the A’s may be chosen arbitrarily.
Now

(2.6) U(s)=0{y(5)} -L{y(5)},

where L depends only on the linear terms in (2.5). Hence the interactions T,(S) in (2.3)
are identically zero unless the elements of a form a clique in D. Thus the dependence
graph G specifies which tems appear in (2.3).

Equation (2.6) suggests that the potential function could be defined simply on the
colorings of D rather than on £, and for finite lattices and graphs this is indeed
sufficient. The full formulation of a random number of colored points at random
locations seems necessary, however, if D is a continuum as, for example, in the case of
spatial models.

2.3. The loglinear distributional form. In expression (2.3) for the potential func-
tion, we will generally take each 7,(S) to be the product of a parameter and a statistic.
This results in a loglinear model for the probability distribution. Various arguments
may be advanced for the loglinear form. In the case of a finite D, it arises from (2.5)
with a natural parametrization. For some spatial models the loglinear form has been
shown to follow from certain axioms on the probability distribution; see for example,
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Kelly and Ripley (1976). Finally, the exponential dependence on U can be derived from
the Maximum Entropy Principle (e.g. Jaynes (1978)). This argument, which is familiar
for energy distributions in statistical mechanics, can be stated very simply and generally
as follows. Let P, be the probability of a state with potential U (for convenience we
take £ to be discrete). Take the expected potential YUP, as fixed. The task is to
maximize the entropy —XP,In(P,) with respect to the distribution P, subject to
Y P,=1 and YUP,=constant. A straightforward application of Lagrange multipliers
then shows that In(P,) is a linear function of U.

3. Some potential models. In this section we briefly describe some models ex-
pressible in the general form (2.1). Various properties of the models will be discussed in
subsequent sections.

3.1. Spatial models. We begin with the one color case with a fixed number of
points. Take p to be Lebesgue measure on the Borel sets of D", where the domain D is
a bounded Borel subset of Euclidean space. The metric r is Euclidean distance.
Suppose the potential function takes the pairwise additive form

(3.1) u@s)= ¥ uln)
l<i<jzn
where S=(xy,- -+, x,) and r;;=|x,— x,|. Then
(32) P(s)=exp( - Tu(r,)) /z.
i<j

For various choices of u, such systems have been extensively studied in statistical
mechanics, and have been applied to the statistical modelling of spatial patterns (Ogata
and Tanemura (1981), (1984), Ripley (1977), (1981), Saunders et al. (1982), Strauss
(1975)). We shall refer later to the “square-well potential” given by

o if0gr<e,
(3.3) u(r)={ —v ife<r<R,
0 otherwise

and two special cases: a simple hard core model

oo f0<r<e
34 = = ’
(3.4) u(r) {0 otherwise
and

— if0<r<R
35 = = =
( ) u(r) {0 otherwise.

If the number of points is to be random, we may, for example, choose p so that n
is an observation from a Poisson distribution with mean m, and p conditional on » is
uniform on D”. In statistical mechanics a distribution defined by (2.1) with such a
choice of p is called a grand canonical ensemble. The distribution for fixed n is a
canonical ensemble.

New models for colored points are simply defined for all these cases by replacing
u(-) by a set {u,,(-): a,b€C}. Let there be n, points of color a, with Xn =n.
Subject to this condition we may take each of {n,} and n to be either fixed or random
by suitable choice of u. For example, to model a data set with given {n,} it may be
appropriate to take p to be uniform over all configurations on D" consistent with {n,}
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and zero elsewhere. Such models are potentially useful in biological applications; the
colors might represent different species, and the interactions, perhaps corresponding to
competition, will depend on the species pair in question. We will return to the colored
points model in §6.

It is, of course, not necessary to take p to be uniform over D”. Certain choices for
p correspond to heterogeneity in the space D, such as a fertility trend in a field plot.
Similar remarks apply to the lattice and graph models below.

3.2. Lattice systems. In a lattice system, the domain is taken to be a regular array
of elements or sites. An example to be considered later is the square lattice, a connected
subset of Z2, where Z is the set of integers. Besag (1974) discusses a number of
applications. The lattice may be used to model a continuous system; an example is the
so-called lattice gas, with two colors corresponding to presence or absence of a mole-
cule at a site. Such representations have the advantage that the integrals arising in the
spatial model are replaced by counts (of paths) in the lattice.

It will often be reasonable to take only the nearest neighbor pairs as elements of
the dependence graph G. In this case we have the classical Ising model of statistical
mechanics (Baxter (1982)). We suppose in this section that D is finite; then (2.5)
applies, with A , =0 for |4|>2. Besag (1974) discusses a number of parametric models
of this form. For a realization S coloring n of the sites of D and leaving the rest empty,
the potential is

(3.6) U= Y uy(i,J)

@i, ))e6

where, for (i, j)€ G, u,, (i, j) is the interaction between colors a, b. Under homogene-
ity the interactions are assumed translation and rotation invariant. Then (3.6) becomes

(37) v U=2Nabuab’

where N,, is the number of nearest neighbor pairs with colors a, b, and u,, is the
corresponding nearest neighbor interaction. The simplest nontrivial case arises when
there are just two colors, one of which can be regarded as null. This would be
appropriate if the colors represent presence/absence. We then have U= Nf3, where 8 is
an intensity parameter and N is the number of occupied nearest neighbor pairs.

The number of occupied sites n can be fixed or random. In the latter case, it is
convenient to define p so that n has a binomial distribution with parameters (| D}, p)
for some p in (0,1) and that, conditional on n, p is uniform over subsets of » elements
of D. This formulation is again consistent with the grand canonical ensemble. The
corresponding probability distribution is

(3.8) P(S)=Z"'exp(an+pBN)

where a=In{ p/(1-p)}; see, for example, Domb (1974). We shall refer to this model
later.

3.3. Markov graphs. We begin by outlining some definitions and results of Frank
and Strauss (1986), who also discuss sociological applications. Let I be a vertex set,
with elements i, j,---, and write I, for the set of unordered distinct pairs {i, j}.
Elements of I, will be called edges. For simplicity we only consider here the case of an
undirected finite graph H which associates one of two colors with each edge in I,. The
colors, corresponding to presence or absence of a line, are denoted by y;;=1 and y,;=0
respectively. If the y,; are independent and identically distributed H is said to be a
Bernoulli graph. H is called a Markov graph if y,; and y,,, conditional on all other
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y€1,, are independent whenever {i, j} and {k,/} are disjoint. This means that only
lines which share a common vertex are neighbors; equivalently the pair ({i, j},{k,1})
is in the dependence graph G only if {i, j} and {k,!} intersect. Dropping some
brackets, we can express the cliques in G as triads of form {ij, jk, ki } and stars of order

m of form {ij,---,i,}. Under a homogeneity assumption, as in §3.2, the general
potential is
(3.9) U=+T+ Y, p,R,,
m=2
where

T= Zzzyi,}’jkyki,

i<j<k

the number of transitive triads, and R,,=X,Xy,; ---y;; , the number of m-stars. We
absorb the term p, R, into the measure .

We now express the model in the general form of §2. It is convenient to take n to
be the number of lines. The number of vertices is m, with V'=(%')>n. Then D is the set
of pairs {i, j} with 1 <i<j<m. A state S is an upper triangular array consisting of n
ones and V' — n zeros. As in the lattice system, n may be taken as fixed or as binomially
distributed with parameters (¥, p). The neighbors of {i, j} €D are pairs {k,/}€D
such that

{i,j}In{k,1}+ 2.

Thus as n— oo the number of neighbors of a site grows unboundedly. This contrasts
sharply with lattice systems, and has rather striking consequences as we shall see.
We shall later consider two special cases of (3.9):

(3.10) P(S)xexp(pR)/Z,
where p=p,, R=R,(S), and
(3.11) P(S)xexp(T)/Z,.

The first is a clustering model: if p>0 the number R of interacting line pairs tends to
increase, while p<0 corresponds to repulsion between the lines. The second is a
transitivity model.

4. Degeneracy. When n is nonrandom there are cases where the potential U will
tend in probability to its minimum value as n becomes large. We shall introduce a
concept of degeneracy to describe such behavior. Degeneracy does not necessarily mean
that the model in question is unsuitable for data analysis, especially if the number of
points is small. It is useful, however, to be aware of the large sample behavior. When n
is random and D infinite there are cases where U does not define a model at all, in the
sense that there is no finite normalizing constant for (2.1). In this section we derive
some sufficient conditions for such events, and apply the conditions to the models of
the previous section. It is likely that the theorem could be sharpened, but it seems in its
present form to cover most cases of practical interest.

It will be convenient to distinguish the cases of random and nonrandom numbers
of points.

4.1. Nonrandom number of points. Suppose that for each n>0 there is a null
measure g, concentrated on Q,=D"XC". Let P, be the probability measure (2.1)
corresponding to a potential U, on Q,, and set M,=inf{U,(S,): S,€Q,}. We shall
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assume that M,— — oo as n—> oco; this will hold for all the applications considered
below. For ¢ in the open interval (0,1) write

(4.2) 4, .={5,€9,: U,(S,)<(1-e)M,}
and
(4.2) L,.=-In{p,(4,.))}.

We shall say that the sequence {U,} is degenerate if, for all ¢, P,(4, )—1 as n— oo.
The sequence is proper if there is an ¢> 0 such that P,(4, ,)—0as n— oco.
THEOREM. (i) The sequence {U,} is degenerate if for all € in (0,1)

(43) lim (L, ,/(~M,))=0.

(i) Given that the null mean E, (U,)— — oo, the sequence is proper if for some ¢ in
©,1)

for all sufficiently large n. _
Proof. (i) Let 8 be in (0, ¢). Write 4, , for @,—A4,, .. For each n,

Pn(Al,G) — fAn,Bexp(— Un)d”'n
P(4,,) Iz .exp(-U,)dp,

- exp{ —(1-8)M, }exp{-L, ;}
= exp{ —(1-¢) M, }

=exp{ —.Mn(e—6+Ln,8/Mn)}'

(4.4)

If (4.3) holds, (4.4) tends to infinity. Hence P(A_,,,e)—>0 as n—> o0, and {U,} is
degenerate.

(i)

/An,z exp(_ U”) d”n < exp{ Mn }exp{ _Ln,e}
fﬂ,, (_ (Jn)d""n - fﬂ,, exp(— Un)d”n .

By majorization, the denominator > exp{ E,(— U,)}. It follows under the conditions of
(ii) that P, (4, ,)— 0 for some ¢, as required.

Degeneracy is related to the notion of instability (Ruelle (1969, §3.2)) of statistical
mechanics. We shall see that in several applications L, , is bounded by a linear
function of n. In this case, it follows from part (i) of the theorem that we have
degeneracy if there is no B> 0 such that M, > — Bn for all n. This condition on M, is
just the definition of instability given by Ruelle.

P(4,,.)=

4.2. Random number of points. Consider first a spatial model, D being a subset of
Euclidean space. As in §3.1, we choose p so that n has a Poisson distribution with
mean m. Then a potential U on 2 =UZ_,(D"X C") defines a valid distribution if and
only if

0 n
— —mm_ -U
(4.5) Z= n{:oe o L"e du
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is finite. Let I, be the logarithm of the integral in (4.5). It can be seen that
(i) If there is a 6> 0 such that

(4.6) n 178 500 asn- oo,
then Z= 0.
(ii) If there is a B such that for all n
(4.7) n~'I,<B,
then Z < oo0.

If D is a finite set of V elements, take p so that the distribution of » is binomial
(V,p) as in §3.2. Given a potential U(S) for S €2, we have

(4.8) P(S)=exp{-U(S)}/2Z,

where, corresponding to (4.5), Z, is given by

Vv
Zy=2 ( ,I,/)p”(l —p)V_"fQ e Vdp.
n=0 'n

Now suppose that we have a sequence { D,: ¥'=1,2,--- }, with corresponding poten-
tials U,, and random variables n,. Arguing just as in the theorem, we find that

(i) If (4.6) holds, then {n,/V } -1 in probability (with respect to (4.8)) as V' — oo.
We shall again use the term degenerate for this case.

(ii) If (4.7) holds and E,{U} } > — oo, then for all £in (0,1)

P{n,>(1-¢e)V} >0 asV-co.
In this case the model will again be called proper.

4.3. Applications. We apply these ideas to some of the models in §3.

4.3.1. A degenerate spatial model. Consider, for example, the pair potential (3.5).
We discuss first the nonrandom case, with » points. If v>0, the minimum energy
configuration occurs when all n points are packed into a cluster with maximum
separation <R. Denote this event by «,. Then p,(m,)>c,c5, for some c¢;>0 and
0<c,<1. Thus L, ,=O(n), for all e<1. On the other hand M, = —v(3). Hence, by
the theorem, the model is degenerate when v > 0. One way of expressing this is that, for
any level of attraction v, the probability tends to 1 that an arbitrarily large proportion
of the points will be packed into a tight cluster. Gates and Westcott (1982) provide
calculations showing that such models, which had been fitted to empirical data sets,
would almost certainly display far more clustering than was actually present in the
data.

Next consider the case of random n, with p such that n has a Poisson distribution.
If v>0, (4.6) holds for any § <1. Hence in this case (3.5) does not define a model at
all; in effect the system “explodes” (Kelly and Ripley (1976), Saunders et al. (1982)).

For completeness we mention the case v <0, corresponding to repulsion between
the points. Formally as n— oo with D fixed the minimum energy configuration be-
comes “uniform.” That is, the fraction of points in any region D;CD tends to
w(D;)/w(D). Again, M,=0(n?*) as n— oco. Hence in the limit we have a degeneracy.
In most applications, however, n is small enough that 7R?n <V, and so M, =0.

4.3.2. Lattice systems. For simplicity, we consider the two parameter model (3.8).
There are V sites, of which a random number » are occupied and the remainder empty.
An essential feature of lattice systems is that the number of nearest neighbors of a site
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is fixed and so M, is bounded below by — Bn, for some positive number B. Because of
this (4.7) holds for all parameter values, and so the random n model is always proper.
Similar arguments apply to other lattice models.

There is, however, the possibility of singularities in the limit as ¥ — 0. Clearly Z
in (3.8) is bounded above by 2" exp(BV), and it can be shown that the limit of ¥ "1InZ
always exists. For 8> B,=4sinh™!(1) this limit as a function of & is nonanalytic at
a=0 (Griffiths (1972)). The phenomenon is known in statistical mechanics as a phase
transition; in the case of the lattice gas B is proportional to the inverse temperature and
the gas may condense when B exceeds a critical point B, (Baxter (1982, Chap. 7)).
Pickard (1977) gives some distributional results for 8 near the critical point.

4.3.3. The Markov graph clustering model. The behavior of the p-model (3.10)
closely resembles that of the spatial model with potential (3.5). Consider the case p >0,
with nonrandom n. Suppose that m~n® as n— co. We must have a> %; for ease of
calculation we will assume a > 1, though this restriction is not necessary. Since

A, > {all lines meet at vertex 1}

we have
2 n
w(4,0>( =)

so that L, _ is bounded by Anlnn for some A. On the other hand M, = —p(%), so that
by the theorem the model is degenerate. An interpretation is that for any value of the
clustering parameter p the probability tends to 1 that one vertex will dominate and an
arbitrarily large proportion of the lines will radiate from it. (If a <1 the graph will be
more dense, and v vertices rather than 1 will enjoy this property, where v ~n/m.) Note
that the degeneracy depends on the rate of growth of m with n. For example, if
m ~ exp(n®) for a>1 it can be shown that n=2L, ,— 0o as n— oo for all &. By part (ii)
of the theorem the model is then proper. Such a rate of growth, however, gives rise to a
rather uninterestingly sparse graph.

Figure 1(a) illustrates the degeneracy. Each curve is the plot of the expectation of
R against p. The curves were obtained by a simulation method to be described in the
next section; the three pairs (m,n) were chosen so that in each case E(R) has the same
value (60) when p=0. Note that as (m,n) increase, the right derivative of E(R) at the
origin increases. In the limit the derivative is singular at the origin.

For the random n case when p> 0 it is straightforward to verify (4.6), so that the
model is degenerate. It can also be seen that whether » is fixed or random the model is
proper when p <0, which corresponds to repulsion between the lines.

4.3.4. The Markov graph transitivity model. The properties of the 7-model (3.11)
are very similar to those of the p-model. For simplicity, suppose n=(%), where k is an
integer. When 7>0, the minimum energy configuration for n lines is a complete
subgraph of k vertices. Thus M, = (%), the number of distinct triads. Since M, = O(n'?),
we again find that the model is degenerate in the nonrandom case, and also in the
random case if p is chosen as in §4.2. The nonrandom degeneracy can be interpreted as
follows: if a graph has a positive transitivity tendency (however small), then as the
number of lines increases the probability tends to one that an arbitrarily large fraction
of the lines will coalesce into a clique. This is illustrated by Fig. 1(b), which shows the
same general features as Fig. 1(a).
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F1G. 1. Plots of expectations against parameters for Markov graph models; (a) E(R) against p; (b) E(T)
against 1. There are m vertices and n lines.

5. Simulation. Simulations of the models (2.1) can be useful for a number of
purposes, such as
(a) In Monte Carlo studies of the properties of estimators and test statistics.
(b) To give direct estimates of model parameters for empirical data.
(¢) In Monte Carlo approximations to quantities such as Z, for comparision with
analytic approximations.
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Most practicable simulation methods for potential models are based on the
Metropolis method (e.g. Hammersley and Handscomb (1964)). This generates a Markov
chain on £ whose equilibrium probabilities are of the required form (2.1). The ap-
proach has been developed in the statistical mechanics literature and has not been
applied to systems such as graphs. For a review of the extensive applications to spatial
and lattice schemes, see the articles in Berne (1977). In this section, we state a sim-
plified version of the method and adapt it for the Markov graph models.

Take the state space @ to be finite. For each S;€Q define a set @' of neighbors of
S;, with Q'C @ and S;¢ Q'. It is often convenient to set || equal to a constant, N say,
for all i. Write P; for exp{—U(S,)}/Z; note that P,/P; is known even if Z is not.
Consider the Markov chain with transition probabilities

P/(NP) if P/P<land je@,

(5.1) p= 1/N if P,/P,;>1and jEQ,
¢ if j=i,
0 otherwise

where ¢ is chosen so that X p,;=1. It is known that provided that the chain is
irreducible and aperiodic it has an equilibrium distribution with probabilities P,.
We now apply this to the Markov graph model (3.10). Suppose that there are m
vertices and a fixed number n of edges (or occupied sites). We identify a realization S
of the graph with its n edges. Choose any graph S; and generate a sequence S, S,, - - -
inductively as follows.
(1) Atstep k (21), pick at random an edge I € S, and another edge J & S,. The
graph S'=S,~—I+/J is a neighbor of S,, obtained by changing one edge of
Sy, and S, S’ play the role of i,j in (5.1).

(2) Compute AR=R(S,)—R(S’), where R is defined in (3.10).

(3) If pAR<0 set S;,;=S". If pAR>0, set S;,;=S’ with probability exp
(—pAR); otherwise set S, ;=S,.

(4) Replace k by k+1 and return to (1).

The resulting Markov chain may be seen to have transition probabilities (5.1), with
N=n{(5)—n}. Further, it is irreducible and aperiodic. It follows that it has the
required equilibrium distribution (3.10).

This method was used to obtain the curves in Fig. 1(a). The procedure was

(a) Pick a value of p.

(b) Generate an initial configuration whose energy pR is near the minimum.

(c) Perform a large number of steps of the simulation.

(d) Average the values of R after discarding the first few hundred (this seems

sufficient to avoid the effect of the initial configuration).

(e) Repeat for other values of p and fit a smooth curve.

Simulation of other models in the class (3.9) is entirely analogous to the above.

The procedures may seem somewhat elaborate, but workable alternative methods
are not apparent. We note that these random graph simulations are much easier to
implement than, for example, Metropolis simulations for spatial models. Most of the
technical problems associated with the latter (Berne (1977)) do not arise. An exception
is the estimation of Z: in both cases a simple unbiased estimator for Z! is

1 k
D_n']; gexp{U(S,.)},
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where the S; are realizations from the Markov chain in equilibrium, but such estimators
are known to converge very slowly (Wood (1968)).

We conclude by illustrating how these simulations can be used to examine the
properties of estimators. For the model (3.10) the maximum likelihood estimator of p
satisfies

d o 0x
"= K(p)
where r is the observed value of R and K(*) is its cumulant generating function when

p=0. Write the null cumulants as «,, k,,--- as usual. If p is sufficiently small, we
obtain a linear approximation to p

(52) p=

The expected bias of the estimator can be shown graphically as in Fig. 2. The curve
is the plot of E(R) against p with m=19 and n =25, from Fig. 1(a). The oblique line is
the tangent to the curve at p=0. It can be seen that the expected proportional bias
E(p—p)/p is given by the ratio AB: BC. Evidently p is seriously biased except when p
is small.

We note that p could alternatively be used as a test statistic for the null hypothesis
of randomness (p = 0).

6. Series expansions for the normalizing constant.

6.1. General considerations. It is usually necessary to know the constant Z in
(2.2), at least approximately, to estimate model parameters or to compare the fit of
different models. The constant can always be estimated by Monte Carlo simulation, but
this may be cumbersome for practical applications. An alternative is to develop a power
series for Z or In Z, the latter generally being the more convenient. The expansion may
be in powers of any sufficiently small model parameter. There is an extensive literature
on applications to statistical mechanics (a major reference being the volumes edited by
Domb and Green (1974)), but the methods developed there have yet to be explored in
other fields.

E(R)

F1G. 2. Bias of an estimator for the p-model. For each p the expected proportional bias in AB: BC.
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We indicate two general types of expansion.

(a) Low intensity expansion. In many applications the potential function has a
natural scaling factor specifying intensity of interaction. In (3.3) this is the parameter v.
Since Z is proportional to the expectation with respect to p of exp(— U') the expansion
of InZ in powers of v is just the null cumulant expansion of U with argument —v.
This approach has been used by Strauss (1975), (1977); it leads to “truncated” estima-
tors such as p in (5.2).

(b) Low density expansions. As an example, consider the square lattice model (3.8)
with n sites occupied, V' —n empty, and N occupied nearest neighbor pairs:

(6.1) P(S)=exp(na+NB)/Z(a,B).

If a is large and negative the density n/V will be small. Set y=e* and x=e 2%, It can
be shown that, as V' — 00, (1/V)In Z tends to

(62) ~3h()+ Ty (x)

where the g, are polynomials, the first 18 of which are tabulated by Domb (1974).
Approximate maximum likelihood estimators for «,8 may readily be obtained from
(6.1) and (6.2) and could, for example, be compared with those from the coding
methods of Besag (1974).

We note that when a=0 the limit of ¥ ~'InZ is known in closed form: this is the
classic Onsager solution (Baxter (1982, p. 110)), one of the few cases where Z is known
explicitly.

6.2. A spatial model for colored points under “sparseness.” We conclude by apply-
ing a low density expansion to obtain results for the colored spatial model with
square-well potential (3.3). We begin with the one-color case. Let there be n points in a
space of volume V. If n, V= oo such that ¢=n/V is constant, it is known that

(6.3) lllfToo nan E k+1¢

where the v, are irreducible cluster integrals (Domb (1974)). Equation (6.3) is a cluster
or virial expansion. Kubo (1962) gives a relatively short derivation. For a stable
potential such as the square-well it is known that (6.3) has a positive radius of
convergence.

The sparseness condition introduced by Saunders and Funk (1977) requires that
A=n%/V remains constant as n, V— co and that boundary effects are asymptotically
negligible. This implies that we may neglect all powers beyond the first in (6.3). Thus
we have

1
The first cluster integral v, is
fD[exp{—u(ru)}—l]drn.

For the square-well potential in two dimensions this is

n=a(e = 1)(R-#).
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It can be shown that in the case of colored points there is a modified virial expansion in
which vy, is replaced by its expectation over the coloring distribution prescribed by p.
We take p such that for each n the numbers of points of color ¢ are multinomially
distributed with parameters n and {6,: c€ C}. Let the pair-potential for colors ¢,d be

o0 if0zr<e,,
(6‘4) ucd(r)= —vcd if ecdéréRcd’
0 otherwise

with ¢.,> 0. For any configuration S, write

Yc(dn)= Yc(;)(sn) =XI [Ecdér‘ ‘<Rcd] >

1=

the sum being over pairs (i,j) with colors c,d. Thus YP is the number of interacting
pairs of color ¢,d. To indicate dependence on n and v={v} in (6.4), we write the
partition function as Z*(n,v). The joint cumulant generating function for the Y can
be expressed as

K™ (t)=InZ*(n,t+v)—InZ*(n,v)

where ¢ denotes {7, }. Hence K () converges to

Ky (6) = AE [(ex0(0,4+ 1.4) ~exp(0,0) ) (R2y—€24)]

where E indicates expectation with respect to colorings. Thus

1
(6.5) Ky(t)=§}‘" > 68,expu (expt ,— 1)(Rid_ 83d)~
c,deC
Equation (6.5) asserts that as n— oo the YV converge to independent Poisson variables
with means m ,,exp(v,,) where

1
2

is the mean of Y, in the null case. Thus the only effect of the interaction on the counts Y,
is to inflate the means of their null (Poisson) distribution independently by factors
exp(v,,)- It can also be seen that the sufficient statistics for the triples (¢4, R4, 0.,) are
independent, so that inference for each color pair may be performed independently.
Thus if the sparseness condition holds, estimation and hypothesis testing for the
clustering parameters becomes straightforward.

This rather simple derivation illustrates the power of the cluster expansion. For
example, in the one color case and in the absence of all interactions, the result reduces
to Theorem 1 of Saunders and Funk (1977), and their Theorem 2 can be rapidly
obtained if (6.4) is replaced by a suitable step function. The original proofs were
lengthy.

Am66, ( Rid_ 83:1)

m. ;=
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