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A principled approach to characterize the hidden structure of networks is to formulate generative models and
then infer their parameters from data. When the desired structure is composed of modules or “communities,” a
suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the
placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method
to infer the modular structure of empirical networks, including the number of modules and their hierarchical
organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard
constraints, i.e., the generated networks are not allowed to violate the patterns imposed by the model. We show
how this simple model variation allows simultaneously for two important improvements over more traditional
inference approaches: (1) deeper Bayesian hierarchies, with noninformative priors replaced by sequences of
priors and hyperpriors, which not only remove limitations that seriously degrade the inference on large networks
but also reveal structures at multiple scales; (2) a very efficient inference algorithm that scales well not only
for networks with a large number of nodes and edges but also with an unlimited number of modules. We show
also how this approach can be used to sample modular hierarchies from the posterior distribution, as well as to
perform model selection. We discuss and analyze the differences between sampling from the posterior and simply
finding the single parameter estimate that maximizes it. Furthermore, we expose a direct equivalence between
our microcanonical approach and alternative derivations based on the canonical SBM.
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I. INTRODUCTION

One of the most basic goals in the study of social,
biological, and technological networks is the characterization
of their structural patterns. As these systems become large,
this quickly becomes a nontrivial problem, as naive methods of
inspection are no longer useful, and simple statistics often hide
crucial information. A popular approach to this problem is the
development of methods that divide the network by grouping
together nodes that share similar features, thereby reducing it
to a more manageable size, and in the process revealing any
latent modular organization. This is the core idea behind a very
large number of heuristic methods proposed in the last decade
and a half [1,2], which despite sharing the same motivation
differ substantially from each other, due mainly to the various
ways this intuitive idea can be implemented concretely. Over
time it has become clear that most of these methods are marred
by serious limitations, such as the incapacity of distinguishing
structure from noise [3] and to find small structures in large
systems [4], as well as the fact that the same method often
yields multiple diverging results for the same network [5], and
that the outcomes of most methods agree neither with each
other [2] nor with known node annotations [6].

Like some more recent works in this area, here we follow
a different and arguably more principled path, designed to
overcome some of these limitations. Namely, instead of formu-
lating heuristics, we construct probabilistic generative models
of networks that include the aforementioned idea of modular
structure as parameters to the model. The modular organization
is then determined by inferring these parameters from data,
using well-founded methods from Bayesian inference and
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statistical physics. In this context, the problem of separating
structure from noise is dealt with by employing nonparametric
inference, where generative processes for the model parame-
ters are also formulated via prior probabilities. Additionally,
the comparison of different modular partitions—obtained
either from the same or from different models incorporating
potentially different ideas about modular organization—can
be performed probabilistically, and amount to a comparison
of alternative generative hypotheses according to statistical
evidence.

In this work, we focus on a specific family of generative
models based on the stochastic block model (SBM) [7],
where nodes are divided into groups, and the edges are
placed randomly between nodes, with probabilities that depend
on their group memberships. In particular, we consider a
microcanonical variation of this family, where the structural
constraints are imposed strictly across the ensemble, as
opposed to only on average, as is more typically done. We
show how this approach makes it easier to incorporate more
elaborate generative models, where parameters are sampled
from conditioned prior probabilities, which themselves are
sampled from hyperprior distributions. This yields a more
powerful method that reveals the hierarchical organization
of networks in multiple scales and has a much increased
capacity of finding statistically significant structures in large
data. Furthermore, we show how this particular formulation
allows for a very efficient inference algorithm that scales well
not only for networks with a large number of nodes and edges,
but also with an unlimited number of modules—in contrast
to the majority of other similar inference algorithms that
become increasingly slower as the number of groups becomes
large.

The approach taken here builds upon ideas from previous
work [8–10], but here we focus on obtaining hierarchical
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network partitions that are sampled from the posterior distri-
bution, instead of finding only the most likely partition, which
requires a different ansatz. We also show how model selection
can be used to choose between different model variants
according to the statistical evidence available in the data and
how the method fares for a variety of empirical networks.
Furthermore, we show that the microcanonical formulation
used here is—in its most basic form—equivalent to a specific
Bayesian formulation of the “canonical” SBM, and thus we
establish a bridge between both approaches.

The paper is organized as follows. We begin in Sec. II with
the microcanonical SBM, and follow in Sec. III with the outline
of the nonparametric inference approach, by describing in turn
the priors and hyperpriors of the different set of parameters.
In Sec. IV we show how the microcanonical formulation is
related to the more usual canonical approach, and in Sec. V we
analyze the limitations of the inference procedure and show
how the hierarchical approach is capable of finding a much
larger number of groups in large networks. In Sec. VI we
present an efficient MCMC algorithm to sample hierarchical
partitions from the posterior distribution. In Sec. VII we
show how different model variations can be compared, and
in Sec. VIII we show how the same variations behave for
empirical networks. We finalize in Sec. IX with a discussion.

II. THE MICROCANONICAL DEGREE-CORRECTED SBM

We begin with a “degree-corrected” version of the
SBM [11] (DC-SBM), where in addition to the modular
structure, the networks generated possess a prescribed degree
sequence. However, differently from its original definition,
here we assume that the degree sequence is fixed exactly,
instead of only in expectation. We will see later that the
non-degree-corrected version of the model (NDC-SBM) can
be obtained from this more general formulation as a special
case.

The parameters of the model are the partition b = {bi}
of N nodes into B groups, where bi ∈ [1,B] is the group
membership of node i, the degree sequence k = {ki}, and the
matrix of edge counts between groups e = {ers}, where ers is
the number of edges between groups r and s (for convenience
of notation, err is twice the number of edges inside group r).
Given these parameters, networks are generated like in the
configuration model [12,13]: to each vertex i is attributed
ki half-edges (or “stubs”), which are paired randomly to
each other—allowing for multiple pairings between the same
two nodes as well as self-loops—respecting the constraint
that between groups r and s there are exactly ers pairings.
Assuming momentarily that the half-edges are distinguishable,
the number of possible pairings that satisfy this constraint is
given by

�(e) =
∏

r er !∏
r<s ers!

∏
r err !!

, (1)

where er = ∑
s ers and (2m)!! = 2mm!. However, many differ-

ent pairings correspond to the same graph. Given an adjacency
matrix A, the number of different half-edge pairings to which

it corresponds is analogously given by

�(A) =
∏

i ki!∏
i<j Aij !

∏
i Aii!!

. (2)

Hence, the probability of observing a particular network given
the model parameters is simply the ratio between these two
numbers,

P (A|k,e,b) = �(A)

�(e)
. (3)

(Naturally, the above likelihood only holds if the network A
matches exactly the hard constraints imposed by the parame-
ters, i.e., ers = ∑

ij Aij δbi ,r δbj ,s and ki = ∑
j Aij , otherwise

the likelihood is zero. In order to leave the expressions
uncluttered, we will always implicitly assume that the hard
constraints must hold for the likelihoods to be nonzero.)

The model above generates graphs with multiple edges
between nodes, which may not be strictly appropriate for many
types of networks where this cannot occur. However—as is
true with the traditional configuration model—the probability
of multiple edges will decrease with 1/N for sparse networks
with E ∝ N edges, and hence their occurrence can be
neglected as N becomes large.

III. NONPARAMETRIC BAYESIAN INFERENCE

Although one could find the best divisions of the network
by maximizing, or sampling from Eq. (3) directly, this requires
the number of groups B to be known in advance, i.e., it is a
parametric inference procedure that requires certain properties
of the model to be determined a priori. Instead, here we wish
to formulate a nonparametric framework, where the number
of groups as well as any other model parameter is determined
from the data itself. In order to do this, we need to write the
full joint distribution for the data and the parameters,

P (A,k,e,b) = P (A|k,e,b)P (k|e,b)P (e|b)P (b), (4)

where P (k|e,b), P (e|b), and P (b) are prior probabilities. The
above defines a complete generative model for the data and
parameters, as illustrated in Fig. 1.

Based on this, we can obtain the posterior distribution of
network partitions,

P (b|A) = P (A,b)

P (A)
, (5)

where the normalization constant,

P (A) =
∑

b

P (A,b), (6)

is called the model evidence, and P (A,b) is the marginal
distribution corresponding to the joint probability summed
over the remaining parameters,

P (A,b) =
∑
k,e

P (A,k,e,b) (7)

= P (A,ê(A,b),k̂(A),b), (8)

where ê and k̂ above are the only parameter choices that fulfill
the model constraints compatible with the particular instance
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FIG. 1. Illustration of the complete nonparametric generative
process for the DC-SBM considered in this work. First the partition
of the nodes is sampled (a), followed by the edge counts between
groups (b), the degrees of the nodes (c), and finally the network
itself (d).

of the network A and the partition b, i.e.,

êrs(A,b) =
∑
ij

Aij δbi ,r δbj ,s , (9)

k̂i(A) =
∑

j

Aij . (10)

In other words, any other choice k �= k̂ or e �= ê inserted in
Eq. (3) will result in networks that are invariably different from
the particular value of A used in Eqs. (4) to (10), and thus the
corresponding joint probability in Eq. (7) will be zero. From
this, we already observe a useful property of the microcanon-
ical formulation: because of the hard constraints, there is no
difference between the joint and marginal probabilities. This
means that we encounter no additional computational difficulty
in obtaining the marginal probability after we have determined
our priors. This is, in general, different from “canonical”
model formulations with continuous parameters, where the
marginal likelihood needs to be obtained via integration, which
sometimes cannot be done exactly, even if the choice of prior
happens to be well motivated. In the particular case of the
SBM, there are in fact typical canonical formulations where
the marginal likelihood can be computed exactly [10,14–17],
but this has been done only for simple noninformative or
conjugate priors, which leads to serious problems for large
networks, as we discuss further in Sec. V. Here, instead,
we can focus on priors that are chosen according to more
fundamental principles, without having to worry about the
computation of the marginal likelihood, provided the priors
themselves can be computed. As we will show below, this

will allow deeper Bayesian hierarchies to be developed, which
make fewer assumptions about the data generating process,
and lifts important practical limitations present in shallower
approaches.

A. Sampling versus optimization and the minimum description
length principle (MDL)

The Bayesian formulation outlined above has an
alternative—but entirely equivalent—information-theoretic
interpretation. We can rewrite the joint probability of Eq. (4)
as

P (A,k,e,b) = 2−�, (11)

where

� = − log2 P (A,k,e,b) = S + L (12)

is called the description length of the data [18,19], with

S = − log2 P (A|k,e,b) (13)

being the number of bits necessary to precisely describe the
network, if the model parameters are known, and

L = − log2 P (k,e,b) (14)

being the number of bits necessary to describe the model
parameters. Hence, if we find the network partition that
maximizes the posterior of Eq. (5), we are automatically
finding the choice of parameters that most compresses the data,
i.e., yields the shortest description length. This equivalence
between Bayesian inference and MDL holds much more
generally [19], but with the microcanonical formulation used
here it is more directly evident.

The MDL interpretation also provides an intuitive expla-
nation to why this nonparametric approach is robust against
overfitting: If the number of groups becomes large, it will
decrease S but increase L, with the latter functioning as
a “penalty” that disfavors overly complex models. For the
same reason, the description length can also be used as an
application-independent criterion to select between models of
different classes, i.e., with a different internal structure and set
of parameters. This type of comparison amounts to a formal
implementation of Occam’s razor, where the simplest model
that can explain the data according to its statistical significance
should be selected (see also Sec. VII).

This equivalence means that other Bayesian approaches
such as Refs. [14–17,20–22], and those based on MDL, e.g.,
Refs. [8,10,23], correspond in fact to the same underlying
criterion. The main differences between those lie only in
the actual models used, the choice of priors, as well as
more practical aspects such as algorithmic complexity and
approximations used.

However, it is important to emphasize that using either
the Bayesian or the MDL interpretation, we need to be open to
the possibility that different models—or different parametriza-
tions of the same model—may yield the same or very similar
values for the description length or posterior probability. In
such situations, we should accept these alternative explana-
tions for the data on equal footing. The Bayesian interpretation
offers a more natural approach in these circumstances, where
instead of attempting to find the maximum of the posterior
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distribution, we consider all possibilities, weighted according
to their posterior probability. This can be achieved by sampling
from the posterior distribution using Monte Carlo techniques,
as explained in Sec. VI.

When deciding which route to take—to maximize or sample
from the posterior—we need to acknowledge that therein
lies the typical trade-off between bias and variance: when
maximizing the posterior, we make a very specific statement
about the data-generating process, but which can include
errors from many sources, such as lack of sufficient statistics,
degeneracy in the parameters, or model misspecification. On
the other hand, when sampling from the posterior, we obtain
results that tend to be, on average, less susceptible to those
errors, but which to the same degree are also more uncertain.
Thus, we lose the ability to make more specific assertions.
Due to its nature, the latter approach tends to incorporate more
noise, and so the individual samples run the risk of overfitting
the data. Conversely, the maximization approach tends to yield
more conservative results, and thus runs the risk of underfitting
the data, by omitting meaningful features. Although in the
ideal scenario where the model is well specified and the data is
plentiful both approaches must yield the same result, in more
realistic settings one source of error can only be reduced at
the expense of increasing the other. Hence, the final decision
must involve the ultimate objective of the inference task. In
general, we should expect sampling to be more suitable when
the goal is to generalize from the observed data and make
predictions about new measurements, whereas maximization
tends to produce more accurate representations of the observed
data.

In Secs. VII and VIII we compare results obtained via strict
MDL (i.e., maximization) and the Bayesian (i.e., sampling)
approaches on empirical data. In the following, we proceed
with defining the prior probabilities for the model parameters.
When discussing various possibilities, we will make use of
the MDL interpretation to decide which alternative yields
the shortest description for data that is more likely to be
encountered.

B. Prior for the node partition

We begin with the prior for the partitions. Here we outline
two general approaches that will also be used for the remaining
parameters. First, the simplest choice we could make is to be
completely agnostic about the partitions and choose among all
of them with equal probability,

P (b|B) = B−N . (15)

However, this is not a good choice. The reason for this is that it
inherently assumes that the group sizes will be approximately
the same, since this is a typical property of completely random
partitions. Not only is this unrealistic, but from a MDL
perspective, whenever this is not the case, we would miss
an opportunity to further compress the data. Therefore, we are
better off instead replacing this by a parametric distribution
that is conditioned on the group sizes n = {nr}, where nr is
the number of nodes in group r ,

P (b|n) =
∏

r nr !

N !
, (16)

which is a maximum entropy distribution (all allowed configu-
rations are equally likely), constrained on the fixed group sizes.
In order to remain nonparametric, we need a noninformative
hyperprior on the node counts,

P (n|B) =
((

B

N

))−1

, (17)

where (( n

m
)) = (

n+m−1
m

)
counts the number of m combinations

from a set of size n, or equivalently, the number of possible
histograms with n bins with counts that sum to m. One may
argue, however, that the same principle should be applied
again, with the noninformative hyperprior above replaced by
a parametric distribution, with parameters sampled from a
hyper-hyperprior, and so on, indefinitely. However, proceeding
like this yields increasingly diminishing returns, and as we now
show, there are good reasons to stop at this point. If we take the
logarithm of the joint probability P (b,n|B) = P (b|n)P (n|B)
and assume that the groups are sufficiently large so that
Stirling’s factorial approximation can be used, as well as
B � N , we obtain

ln P (b,n|B) ≈ −NH (n) − B ln N, (18)

where H (n) = −∑
r (nr/N) ln(nr/N ) is the entropy of the

group-size distribution. The first term in the equation above
represents an optimal limit, i.e., for sufficient data the negative
log-probability (the description length) approaches the entropy
of the generating distribution. Hence, if we were to replace
the noninformative hyperprior of Eq. (17) with an even
deeper Bayesian hierarchy, we would gain at most a fairly
marginal improvement proportional to ln N , which is unlikely
to significantly alter the inference outcome.

The joint probability P (b,n|B) above has been used in
Refs. [16,17,20,24], but in some of these works it was equiv-
alently derived as the marginal distribution of the canonical
model,

P (b|B) =
∫

P (b| p)P ( p|B) d p, (19)

with

P (b| p) =
∏

i

pbi
=

∏
r

pnr

r , (20)

where pr is the probability of a node belonging to group r , and

P ( p|B) = (B − 1)! δ(1 − ∑
r pr ) (21)

is a uniform prior. Computing Eq. (19) yields an expres-
sion identical to P (b|B) = P (b,n|B) = P (b|n)P (n|B) using
Eqs. (16) and (17) above. However, there is an apparently
small detail that needs to be addressed. Namely, the maximum
entropy model of Eq. (17) also generates groups with size
zero. This means that if we use it, we need to consider in our
posterior distributions partitions of the network that contain
empty groups, which would force us to treat the number of
groups as a free variable that is not necessarily equal to the
number of observed (nonempty) groups [25]. As shown in
Ref. [17] this requires a further complication of the inference
algorithm, where the number of groups is incorporated as a
state variable. However, empty groups possess no real value
when interpreting the network structure: saying that a network
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has five communities, but one of which is empty, is the same
as saying it has four communities, just in a more roundabout
and potentially misleading way. Hence, in order to avoid
dealing with such empty groups, and solving both of the above
problems at once, we simply exclude them from our prior
distribution by using instead

P (n|B) =
(

N − 1

B − 1

)−1

, (22)

which is a uniform distribution over all histograms with B bins
and counts that sum to N , where no bin is allowed to be empty.
With this simple modification, the number of groups becomes
a hard constraint as well, and is always tied to the partition,
thus obviating the need to treat it as a free variable, and hence
simplifying the inference procedure. We note that while this
modification is easy in the microcanonical model, it is not as
straightforward in the canonical model of Eq. (19), since for
every value of pr < 1, the probability that group r will end up
empty is strictly nonzero.

Last, we need a prior for the number of nonempty
groups itself, which we can choose as P (B) = 1/N , for
B ∈ [1,N ]. (We could argue that, since this amounts to a trivial
multiplicative constant to the overall probability, we could
omit it completely. However, as it will be seen further below,
this term will not be a constant once we consider hierarchical
partitions.) With this, we have a nonparametric prior for the
partition that reads

P (b) = P (b|n)P (n|B)P (B) =
∏

r nr !

N !

(
N − 1

B − 1

)−1 1

N
.

(23)

Since we are forbidding empty groups a priori, from this point
onward the value of B will refer strictly to the number of
nonempty groups.

C. Prior for the degrees

1. Non-degree-corrected model (NDC-SBM)

We can recover a non-degree-corrected version of the
microcanonical SBM as a special case of the model above, by
assuming that the half-edges are randomly distributed among
nodes of the same group, which yields a particular probability
for the degree sequence.

If at first we assume that all er = ∑
s ers half-edges incident

on group r are distinguishable, they can be distributed among
nr nodes in �r = ner

r different ways. A particular degree
sequence inside group r corresponds to exactly �r (k) =
er !/

∏
i∈r ki! such combinations, where the numerator ac-

counts for the number of permutations of half-edges, while
the denominator discounts the fraction of such permutations
involving half-edges that are incident on the same node, and
hence amount to the same half-edge partition. The probability
of a particular degree sequence inside group r is given by
the ratio �r (k)/�r , and thus the overall degree sequence
probability becomes

P (k|e,b) =
∏

r

er !

n
er
r

∏
i∈r ki!

, (24)

which multiplied with Eq. (3) yields the model likelihood

P (A|e,b) =
∏

r<s ers!
∏

r err !!∏
r n

er
r

× 1∏
i<j Aij !

∏
i Aii!!

, (25)

which no longer depends explicitly on the degree sequence.
Like its canonical counterpart [11], the NDC-SBM will

generate networks where nodes that belong to the same group
will have similar degrees, with a degree distribution inside
each group approaching asymptotically a Poisson. This means
that the standard deviation of the degrees inside group r will be
σk = √〈k〉r , with 〈k〉r = er/nr being the average degree. As
argued in Ref. [11], this is an unrealistic assumption for many
empirical networks, most of which possess very heterogeneous
degree distributions. As a result, attempts to infer the SBM on
such networks can amount largely to a division of the nodes
into degree classes. It is therefore useful to postulate prior
probabilities that can account for arbitrary degree sequences,
as we do in the following.

2. Arbitrary degree sequences

Similar to the partition of the nodes, the simplest choice we
can make is to sample the degrees inside each group from a
uniform distribution,

P (k|e,b) =
∏

r

((
nr

er

))−1

, (26)

where (( nr

er
)) counts the number of possible degree sequences

on nr nodes, constrained such that their total sum equals er .
But again, such a uniform assumption is not the best choice:
If we sample from this prior, we still obtain degree sequences
where most nodes have very similar degrees. Indeed, if the
number of nodes is sufficiently large, it can be shown that
the expected degree distribution inside each group with the
above prior will approach an exponential pk = p(1 − p)k ,
with an average 〈k〉 = (1 − p)/p (see Appendix A). The
expected standard deviation is therefore σk = √

1 − p/p =
O(〈k〉), which, although larger than what is obtained with
the NDC-SBM, is still significantly smaller than expected for
many empirical networks [26].

In view of this, and following the same logic employed for
the node partition, a better prior for k should be conditioned
on an arbitrary degree distribution η = {ηr

k}, with ηr
k being the

number of nodes with degree k that belong to group r ,

P (k|e,b) = P (k|η)P (η|e,b), (27)

and where

P (k|η) =
∏

r

∏
k ηr

k!

nr !
(28)

is a uniform distribution of degree sequences constrained by
the overall degree counts, and

P (η|e,b) =
∏

r

q(er ,nr )−1 (29)

is the distribution of the overall degree counts. The quantity
q(m,n) is the number of different degree counts with the
sum of degrees being exactly m and that have at most n

nonzero counts. This is also known as the number of restricted
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partitions of the integer m into at most n parts [27]. The
function q(m,n) can be computed exactly via the recurrence

q(m,n) = q(m,n − 1) + q(m − n,n), (30)

and the boundary conditions q(m,1) = 1 for m > 0, and
q(m,n) = 0 for m � 0 or n � 0. With this, the full table of
values for m � M and n � m can be computed in time O(M2).
Hence, if the number of edges and nodes is not too large, we can
precompute these values as a setup to the inference procedure.
However, this can still become computationally expensive for
very large systems. Unfortunately, no closed-form expression
for q(m,n) is known which would allow us to compute it
in constant time. Fortunately, however, accurate asymptotic
expressions are known, which permit efficient computation
for large arguments. Namely, for large values of m the
number of partitions approaches asymptotically the following
value [28–30]

q(m,n) ≈ f (u)

m
exp[

√
mg(u)], (31)

where u = n/
√

m and the functions f (u) and g(u) are given
by

f (u) = v(u)

23/2πu
[1 − (1 + u2/2)e−v(u)]−1/2, (32)

g(u) = 2v(u)

u
− u ln(1 − e−v(u)), (33)

and v(u) is given implicitly by solving

v = u
√

−v2/2 − Li2(1 − ev), (34)

where Li2(z) = − ∫ z

0 [ln(1 − t)/t]dt is the dilogarithm func-
tion. [Equation (34) can be easily solved numerically via
Newton’s method, or simply via repeated iteration, which
converges within machine precision usually after only very
few steps.] This approximation holds for values of n � m1/6.
For smaller values n � m1/3 we have instead [31]

q(m,n) ≈
(
m−1
n−1

)
m!

. (35)

With Eqs. (31) to (35) we have an approximation for q(m,n)
for the entire range of parameters m and n that is remarkably
accurate, as shown in Fig. 2: for arguments of the order
103, the largest log ratio between the approximate and exact
values is only around 0.1, which has a negligible effect on
the outcome of hypothesis testing, and is below the accuracy
usually required for MCMC sampling. In our implementation,
we precompute q(m,n) using the exact Eq. (30) for m < 104,
and resort to Eqs. (31)–(35) only for larger arguments, thus
guaranteeing a computation of q(m,n) in time O(1), and
hence incurring a negligible impact in the overall algorithmic
complexity of the inference procedure.

As seen in Fig. 3, the expected degree distribution sampled
from Eq. (29) is typically significantly broader than the
exponential distribution obtained with Eq. (26). As shown in
Appendix A, this will approach a Bose-Einstein distribution,
with a variance σ 2

k ∝ √
N that will diverge for a large

system size. In particular, the distribution will asymptotically
approach a scale-free form pk ∼ 1/k for k � √

E, followed
by an exponential decay for larger arguments.

FIG. 2. Comparisons between the exact and approximated values
of the number of restricted partitions q(m,n), using Eqs. (30)
and (31)–(35). The top panel shows both values computed for
different values of m and n, and the bottom panel shows the absolute
difference of their logarithms, with the inset displaying a zoom into
the large m region.

Although this prior assumption clearly favors broader
degree distributions, it could be argued that it still does
not properly capture the structure of real networks, most of
which also do not possess a Bose-Einstein degree distribution.
Indeed, it may seem that by changing between the priors
considered above, we have simply switched between Poisson,
geometric and Bose-Einstein distributions, which are just three
of an infinite range of possibilities. However, in reality, the
conditioned prior of Eq. (27) will not concentrate as strongly
on the expected distribution as the other two, and thus will not
significantly penalize distributions that deviate from it, even if
the deviation is very large, as will now be shown.

In order to assess the improvement brought on by the
conditioned prior, it is instructive to obtain the asymptotic
behavior of q(m,n) in the limit of “sufficient data” with m � 1
and n � 1, which is given by [31]

q(m,n) ≈ p(m) exp

(
−

√
6m

π
e−πn/

√
6m

)
, (36)
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FIG. 3. Expected degree distributions for the three different priors
considered in the text for the degree sequence inside each group—the
NDC-SBM, the uniform prior of Eq. (26) and the prior of Eq. (29)
conditioned on a degree distribution sampled randomly—for N =
104 nodes and average degree 〈k〉 = 10. In all cases, the distributions
were sampled from their respective microcanonical distributions
using rejection sampling. The dashed line shows the Bose-Einstein
distribution of Eq. (A13).

as long as n � √
m and where p(m) = q(m,m) is the number

of unconstrained partitions of m, which itself is given exactly
by the recursion

p(m) =
∑
k>0

(−1)k−1p(m − k(3k − 1)/2), (37)

and for large values of m by the Hardy-Ramanujan for-
mula [32,33]

p(m) ≈ 1

4
√

3m
exp(π

√
2m/3). (38)

With these results, we see immediately that for “sparse” groups
with er ∝ nr and nr � 1 we have ln q(er ,nr ) ∼ O(

√
nr ), and

hence

ln P (k|e,b) ≈ −
∑

r

nrH (ηr ) + O(
√

nr ), (39)

where H (ηr ) = −∑
k(ηr

k/nr ) ln(ηr
k/nr ) is the entropy of the

empirical degree distribution in group r . Therefore, for
sufficiently many nodes in each group, the hyperprior of
Eq. (29) will “wash out” and the probability of Eq. (27) will
approach that of the the actual degree sequence, whatever
its form may be, even if it deviates from the typical form of
Fig. 3. This is not the case of the uniform prior of Eq. (26),
which is not able to “learn” the underlying distribution in the
same manner. Equation (39) also means that an exact prior
knowledge of the true degree distribution in each group would
improve the log-probability (and the description length) only
by a factor O(

√
nr ), which will be dwarfed asymptotically by

the remaining terms that scale linearly as O(nr ). Therefore,
any further improvement in the choice of prior for the degree
sequence is confined to a relatively narrow range, similarly to
what happens with the prior for the partition of the nodes into
groups.

D. Prior for the edge counts and nested SBM hierarchies

The remaining piece is the prior for the edge counts between
groups, e. We can start again with a uniform prior

P (e) =
⎛
⎝
⎛
⎝

((
B

2

))
E

⎞
⎠
⎞
⎠

−1

, (40)

where (( (( B

2 ))
E

)) counts the number of symmetric ers matrices
with a constrained sum

∑
rs ers = 2E.

Perhaps unsurprisingly at this point, this is also not a good
choice. This time, however, the negative effects are somewhat
more dramatic than the previous choices of uniform priors.
Namely, this assumption will limit our capacity to detect small
groups in very large networks: It introduces a “resolution
limit,” where the largest number of groups that can be inferred
scales as Bmax ∼ √

N [8], similar to what is observed with the
modularity maximization heuristic [4]. We revisit this issue in
more detail in Sec. V.

As was shown in Ref. [10], this problem can be solved again
by deepening the Bayesian hierarchy. It is useful now to notice
that the matrix e can be interpreted as the adjacency matrix of
a multigraph with B nodes and E edges. Hence, an appropriate
choice seems to be to use the SBM again to generate it, where
each group r belongs to one of another set of groups, and so
on recursively, a L number of times,

P ({el}|{bl}) =
L∏

l=1

P (el|el+1,bl), (41)

where bl is the partition of the groups in level l, el is the
(weighted) adjacency matrix at level l, and we enforce always
that BL = 1. Note that since the number of edges is the
same in all levels while the number of nodes decreases, the
multigraphs become increasingly denser at the upper levels,
and the occurrence of parallel edges becomes predominant,
even if the graph at the lowest level is sparse and simple.
Although the likelihood of Eq. (3) that was used at the bottom
level also admits arbitrarily dense multigraphs, it will not
generate them uniformly within the SBM constraints, since it
is based on an uniform generation of configurations. Because
of this, it is not a good idea to use the exact same model as the
priors in the upper layers, which will introduce a significant
bias as the multigraphs become dense. Indeed, simply inserting
Eq. (3) into Eq. (41) makes all successive levels cancel out in
the likelihood, yielding a trivial model where only the first
and last levels have any contribution. A much better approach,
which is unbiased and maximally noninformative within the
imposed constraints, is to use a uniform NDC-SBM for
multigraphs directly, where all allowed multigraphs (not their
corresponding configurations) occur with the same probability.
The likelihood can be obtained via basic enumeration [34] and
is given by

P (el|el+1,bl) =
∏
r<s

((
nl

rn
l
s

el+1
rs

))−1 ∏
r

((
nl

r (nl
r + 1)/2

el+1
rr /2

))−1

.

(42)

Note that if we make L = 1, we recover the uniform prior of
Eq. (40), making it a special case. To complete the model, we
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need also the prior for the partitions in all levels,

P ({bl}) =
L∏

l=1

P (bl), (43)

where for each level we use again Eq. (23), but replacing
B → Bl and N → Bl−1, with the boundary condition B0 = N .

The depth L of the hierarchy itself is something that we want
to infer from the data as well. One approach, for instance, is
to put a noninformative prior on it P (L) = 1/Lmax, with some

maximum possible value Lmax that is sufficiently large, e.g.,
Lmax = N . But since this contributes to nothing but an overall
multiplicative constant in the distribution, it can be omitted
altogether.

E. Model summary

Putting together the model likelihood with all the priors, we
have a joint distribution for the hierarchical microcanonical
DC-SBM that reads

P (A,k,{el},{bl}) = P (A|k,e,b1) × P (k|e1,b1) × P ({el}) × P ({bl}) (44)

=
∏

i ki!
∏

r<s ers!
∏

r err !!∏
r er !

∏
i<j Aij !

∏
i Aii!!

∏
r

∏
k ηr

k!

nr !
q(er ,nr )−1

×
L∏

l=1

∏
r<s

((
nl

rn
l
s

el+1
rs

))−1 ∏
r

((
nl

r (nl
r + 1)/2

el+1
rr /2

))−1

×
∏

r nl
r !

Bl−1!

(
Bl−1 − 1

Bl − 1

)−1 1

Bl−1
. (45)

It is important to emphasize that this likelihood has the
following useful property: When considering the difference in
the log-likelihood after moving a single node i from a group
to another, it is necessary only to consider a number of terms
that is proportional to the number of groups that are involved
in the change, i.e., those of the node that is being moved and
its neighbors. Therefore, in the worse case, we need to update
O(ki) terms, a number that is independent of the total number
of groups in the bottom of the hierarchy, B1. This contrasts with
other formulations that require the computation of a number of
terms that is linearly proportional to the total number of groups
(e.g., Refs. [14–17]), or even quadratic (e.g., Ref. [35]). This
property will permit the inference on large networks, for which
the appropriate number of groups is likely to be large as well,
as we describe in Sec. VI.

In addition to this model, the NDC-SBM and the alternative
version of the DC-SBM with uniform priors on the degrees can
be obtained simply by replacing the prior P (k|e,b0) in Eq. (44)
with the appropriate one. This does not change the efficiency
of the likelihood computation described above. Furthermore,
as mentioned previously, the nonhierarchical version of each
model can be recovered by simply enforcing a hierarchy with
just one level; i.e., L = 1.

IV. ENSEMBLE EQUIVALENCE

The microcanonical model above differs from the most
common “canonical” formulation of the SBM, where the
modular network structure is imposed via “soft” constraints,
which are obeyed only on average. For example, the original
canonical Poisson formulation of the DC-SBM [11] is

P (A|λ,θ ) =
∏
i<j

(θiθjλbibj
)Aij e

−θi θj λbi bj

Aij !

×
∏

i

(
θ2
i λbibi

/
2
)Aij /2

e−θ2
i λbi bi

/2

(Aii/2)!

=
∏
r<s

λers

rs e−λrs θ̂r θ̂s

∏
r

λerr /2
rr e−λrr θ̂

2
r /2

×
∏

i θ
ki

i∏
i<j Aij !

∏
i Aii/2!

, (46)

where θi determines the propensity of node i to receive edges,
whereas λrs controls the distribution of edges between groups
and with

θ̂r =
∑

i

θiδbi ,r . (47)

In this model, the degrees of the nodes and the number of edges
between groups are fixed only in expectation but otherwise can
fluctuate between samples. If one applies Stirling’s factorial
approximation ln m! ≈ m ln m − m to the terms of Eqs. (1)
and (2), which depend on ers and ki , it is easily seen that
the microcanonical likelihood of Eq. (3) approaches Eq. (46),
which means both models generate the same networks with
the same probability asymptotically, if the parameters are
chosen in a compatible manner, e.g., θi = ki/ebi

and λrs = ers .
However, this only holds if the edge counts between groups
as well as the degrees of the nodes become sufficiently
large. For smaller or sparser networks, on the other hand, the
differences can be important, and it is well understood that the
microcanonical and canonical ensembles are not equivalent
in these cases [34,36–38]. However, an exact equivalence
between these ensembles can in fact be obtained in a Bayesian
setting, via the computation of the marginal likelihood that
involves integrating over the canonical parameters, θ and λ,
weighted with a prior probability, as will now be shown.

Before we can proceed with the computation of the marginal
likelihood, we must notice that the model parameters are
determined only up to an arbitrary multiplicative constant,
since the likelihood of Eq. (46) depends only on their products
θiθjλbibj

. Although their absolute values are in principle
arbitrary, the exact parametrization we choose will affect the
choice of priors we can make and ultimately the marginal
likelihood. Here we will contrast two possible choices. We
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begin with the assumption made in Refs. [17,22],

θ̂r = nr . (48)

If we make this choice, the value of λrs corresponds to the
average probability of two nodes in groups r and s being
connected. We can then choose a noninformative prior for
λ, conditioned only on the expected density of the network,
p = 2E/N2,

P (λrs) = e−λrs/p/p. (49)

For θ , we use also a noninformative distribution,

P (θ |b) =
∏

r

(nr − 1)!

n
nr
r

δ(θ̂r − nr ), (50)

subject only to the scaled simplex constraint of Eq. (48). As
computed in Ref. [17], the marginal likelihood is, therefore,

P1(A|b) =
∫

P (A|λ,θ )P (λ)P (θ |b) dλ dθ

= pE
∏
r<s

ers!

(pnrns + 1)ers+1

∏
r

(err/2)!

(pn2
r /2 + 1)ers/2+1

×
∏

r

ner
r (nr − 1)!

(er + nr − 1)!

∏
i ki!∏

i<j Aij !
∏

i Aii/2!
. (51)

This marginal likelihood is not equivalent to the microcanon-
ical model presented previously, and hence corresponds to
a different overall generative process. However, things are
different if we assume another parametrization, namely

θ̂r = 1. (52)

In this case, the value of λrs represents the average number of
edges between groups r and s (or twice that for r = s). Similar
to the previous case, we can choose a noninformative prior for
λ, conditioned only on the expected total number of edges,

P (λrs) =
{

e−λrs/λ̄/λ̄ if r �= s,

e−λrs/2λ̄/2λ̄ if r = s,
(53)

with λ̄ = 2E/B(B + 1). Like before, for θ we use noninfor-
mative distribution,

P (θ |b) =
∏

r

(nr − 1)! δ(θ̂r − 1), (54)

but subject now to the simplex constraint of Eq. (52) instead.
Performing the same integral, the marginal likelihood then
becomes

P2(A|b) = λ̄E

(λ̄ + 1)E+B(B+1)/2
×

∏
r<s ers!

∏
r err !!∏

i<j Aij !
∏

i Aii!!

×
∏

r

(nr − 1)!

(er + nr − 1)!

∏
i

ki!, (55)

from which we can immediately recognize the microcanonical
model by rewriting the likelihood as

P2(A|b) = P (A|k,e,b)P (k|e,b)P (e), (56)

where P (A|k,e,b) is the microcanonical likelihood of Eq. (3),
P (k|e,b) is the noninformative degree-sequence probability
of Eq. (26), and P (e) is the probability of the degree

counts as B(B + 1)/2 independent exponential variables with
average λ̄,

P (e) =
∏
r<s

(1 − μ)ers μ
∏

r

(1 − μ)err /2μ (57)

= λ̄E/(λ̄ + 1)E+B(B+1)/2, (58)

where μ = 1/(λ̄ + 1). This last prior P (e) is different from
the microcanonical one used in Eq. (40), simply in that
here the total number of edges is allowed to fluctuate, being
constrained only in expectation. Otherwise, the likelihoods
of the canonical and microcanonical models are identical.
This means that although both formulations involve distinct
generative processes, these are not in fact distinguishable from
data. This is fortunate, since it eliminates at least one arbitrary
choice we have to make prior to inferring the modular structure
of networks and shows that the choice of ensemble can be
largely subjective.

However, we are still left with a seemingly arbitrary choice
of parametrization, having to decide between Eq. (48) (option
1) and Eq. (52) (option 2). As the results above show,
these choices correspond to different assumptions about the
data-generating process. In the first case, the expected number
of edges between groups r and s (according to the prior for
λ) is assumed to depend on the sizes of the groups, i.e.,
〈ers〉 = nrnsp. This is the same expected value for the same
partition of a completely random network with density p. In the
second case, however, this value is independent of the group
sizes, 〈ers〉 = λ̄, and deviates from the expected fully random
value whenever the groups sizes are not the same. Hence,
the ensembles generated in each case are indeed different,
and to decide which one should be used is a model selection
problem. As will be discussed in more detail in Sec. VII, this
can be performed by inspecting the marginal likelihood ratio
between both models, assuming the same node partition,

� = P2(A|b)

P1(A|b)
, (59)

where P1(A|b) and P2(A|b) correspond to Eqs. (51) and (55),
respectively. If we assume N � B2, this ratio amounts to a
simple expression,

ln � ≈
∑
r�s

[
ers

pnrns

− ln
(1 + δrs)N2

B(B + 1)nrns

− 1

]
. (60)

From this, and if we further assume groups of equal sizes nr =
N/B as well as B � 1, we see that as the network approaches
a fully random structure with ers = pnrns , we have ln � →
−B ln 2 and hence a situation that favors option 1. However,
as the data become more structured, this is more often not the
case. This is better seen by considering a special case known as
the planted partition model [39], composed of B equal-sized
groups and edge counts given by

ers = 2E

[
c

B
δrs + (1 − c)

B(B − 1)
(1 − δrs)

]
, (61)

with c ∈ [0,1] controlling the degree of assortativity. Substi-
tuting this in the above, we have

ln � ≈ B2(c + 1)

2
− B(B + 1)

2
ln

(
eB

B + 1

)
− B ln 2, (62)
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which is independent of the size of the network, and grows
only with the number of groups and assortativity. For B � 1,
we have ln � > 0 if c > (2 ln 2)/B ≈ 1.4/B. The ensemble
is equivalent to a fully random network at a slightly smaller
value c = 1/B (but is already undetectable at c = 1/B ± (B −
1)/(B

√〈k〉) [40]). Hence, as the number of groups increases,
for the vast majority of parameter choices c ∈ [(2 ln 2)/B,1]
we have that option 2 is favored with a confidence that grows
as ln � = O(B2).

Beside these arguments, there are other more important
reasons to prefer option 2. If we adopt its microcanonical
interpretation, we can address the issues with the noninfor-
mative priors discussed in the previous sections, and replace
both P (k|e,b) and P (e) by distributions conditioned on
hyperparameters. Furthermore, as already mentioned, changes
to the likelihood of Eq. (55) can be computed more efficiently
than Eq. (51): if we move a node i to a new group, we need
to update O(B) terms in Eq. (51), whereas in Eq. (55) at most
only O(ki) terms need to be recomputed (independent of B).
This leads to a substantial improvement in the performance of
inference algorithms, as discussed further in Sec. VI.

V. HOW MANY GROUPS CAN BE INFERRED?

One of the main strengths of the nonparametric approach
presented here is that it can be used to determine the number
of groups B, in addition to the other model parameters. One
natural question that arises is whether there are intrinsic
limitations associated with the inference of this parameter.
In particular, here we are interested in the situation where
the inferred number of groups B∗ is smaller than the true
value B used to generated the network, such that parts of the
modular structure are not resolved by inference. As shown
in Ref. [8] with a simplified version of the model presented
here, if the size and density of the network are kept fixed, and
the planted value exceeds a threshold B > Bmax, we have that
B∗ = Bmax and the planted modular structure cannot be fully
resolved. In particular, the choice of a noninformative prior
for the edge counts P (e) leads to a limitation where at most
only Bmax = O(

√
N ) groups can be identified. Replacing this

noninformative prior by a series of nested SBMs was shown
in Ref. [10] to significantly alleviate this limitation, increasing
the maximum number of groups to Bmax = O(N/ ln N ). Here
we revisit this issue, considering the more elaborate models
presented in this work.

We perform our analysis on a degree-corrected planted
partition model, with B planted groups of equal size, each con-
taining exactly E/B edges connecting their nodes randomly,
and no connections at all between nodes of different groups,
i.e., ers = 2Eδrs/B. The likelihood of any particular network
sampled from this model is

P (A|k,e,b) = (2E/B)!!B

(2E/B)!B
×

∏
i ki!∏

i<j Aij !
∏

i Aii!!
, (63)

and with prior probabilities

P (b) = (N/B)!B

N !
×

(
N − 1

B − 1

)−1 1

N
, (64)

FIG. 4. Planted partition of B = 6 equal-sized groups (node
colors), being wrongly fitted as a B∗ = 3 model (shaded region).
In the fitted model, the two groups inside each shaded region are not
properly identified. This problem happens whenever B > Bmax for
Bmax = O(

√
N ) using noninformative priors for the edge counts, but

only for Bmax = O(N/ ln N ) when the hierarchical priors are used
instead.

P (e|b) =
((

B(B + 1)/2

E

))
, (65)

P (k|e,b) =
((

N/B

2E/B

))−B

, (66)

where we have used the noninformative priors for the edge
counts and degrees.

We now pretend we have observed a network realization
A sampled from this ensemble, and compare the likelihood
of the true partition into B groups with a wrong partition
with B∗ < B groups. We will not consider all possible wrong
partitions; instead we will consider only those where the
correct planted groups were merged together into bigger
groups of equal size, as illustrated in Fig. 4. The reason for
this specific construction is twofold: (1) If we show that this
alternative partition has a higher likelihood than the plated one,
this would be sufficient to prove that the planted one will not
be detected by maximum likelihood; (2) The wrong fit induced
by this alternative partition corresponds to the original planted
partition model that is only “rescaled” by replacing the planted
value with the inferred one, B → B∗, in Eqs. (63)–(66). This
leaves us with a single parameter to vary, allowing us to
proceed with the analysis rather easily. The inferred number
of groups will be given simply by maximizing the posterior
likelihood,

B∗ = argmax
q

P (A,k,e,b(q))

P (A)
, (67)

where b(q) = {�biq/B�} is the re-scaled partition according
to parameter q ∈ [1,B]. Because of point 2 above, and as long
as B∗ � B, this amounts to maximizing the joint likelihood
given by Eqs. (63)–(66), with respect to the number of groups
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B replaced by q. If we assume that N � 1, E ∝ N , B � 1,
as well as N � B (although we make no assumption between
B2 and N ), and discard terms that do not depend on B, as long
as q � B we have

ln P (A,k,e,b(q))

≈ (E − N ) ln q − (E + q2/2)h

(
E

E + q2/2

)
, (68)

where h(x) = −x ln x − (1 − x) ln(1 − x). If we maximize
the above equation with respect to q, we obtain

Bmax = x(〈k〉)
√

N, (69)

with x(〈k〉) being the solution of

〈k〉 − 2 = 2x2f ′(1 + x2/〈k〉), (70)

with f (x) = xh(1/x) and 〈k〉 = 2E/N . Since the rescaling
of the likelihood is only valid for B∗ � B, we have that for
any planted partition with B groups the actual inferred value
will be B∗ = min(B,Bmax). Hence, we obtain the same result
of Ref. [8] that the maximum number of groups scales as
Bmax ∝ √

N . This property is robust with respect to details of
the model and is simply a direct result of a noninformative prior
used for P (e), which is responsible for the dependence on q2

in the last term of Eq. (68): A lack of prior information on the
large-scale structure incurs a cost in the description length that
scales roughly as − ln P (e) ∼ (B2/2) ln E (for B2 � E). This
means that we obtain very similar results when considering
the other model variants considered in this work. In particular,
using either Eq. (51) or (55) we obtain asymptotic expressions
for the joint distribution that are very similar to Eq. (68) and
yield only a slightly worse scaling for the maximum number of
groups, Bmax ∝ √

N/ ln N , with the
√

ln N difference due to
the priors of Eqs. (49) and (53), which allow the total number
of edges to fluctuate. Using the uniform hyperpriors for the
degree sequences also has no effect on this limitation.

On the other hand, as shown in Ref. [10], this issue is
significantly improved by using the hierarchical prior for e.
Here we show this by considering a uniform hierarchical
division where at each level the number of groups decrease
by a factor σ , Bl = B/σ l . Using Eq. (43), we have

P (e) =
logσ B∏
l=1

((
σ (σ + 1)/2

2Eσ l/B

))−B/σ l

× σ !B/σ l

(B/σ l−1)!

(
B/σ l−1 − 1

B/σ l − 1

)−1

. (71)

Assuming B � σ , and keeping only the leading terms, we
have ln P (e) ≈ −[Bσ (σ + 1) ln E]/[2(σ − 1)], and hence

ln P (A,k,e,b(q)) ≈ (E − N ) ln q − σ (σ + 1)

2(σ − 1)
q ln E, (72)

from which we obtain the upper bound,

Bmax = (σ − 1)(〈k〉 − 2)

σ (σ + 1)
× N

ln N
. (73)

Hence, this choice of priors enables the identification of a
number of groups that is far larger than what is possible with
the noninformative choice. This comes with no drawbacks,

since this prior includes the noninformative one as a special
case, and we are still protected against overfitting; becoming
only less susceptible to the underfitting that happens when
B > Bmax.

VI. INFERENCE ALGORITHM

The inference task we have is to sample from (or maximize)
the posterior distribution of the hierarchical partition,

P ({bl}|A) = P (A,{bl})
P (A)

. (74)

The approach we will take is based on a Markov chain
Monte Carlo importance sampling for the partitions at all
hierarchy levels. The algorithm will revolve around moving
the membership of nodes in different hierarchical levels at
random, and accepting or rejecting those moves, so that after a
sufficiently long equilibration time, the hierarchical partitions
are sampled according to Eq. (74). We note that this posterior
can be factorized as

P ({bl}|A) =
∏

l P (el−1,bl|el)

P (A)

=
∏

l

P (bl|el−1,el), (75)

with per-level posteriors,

P (bl|el ,el+1) = P (el|el+1,bl)P (bl)

P (el|el+1)
, (76)

where we assume e0 = A and P (el|el+1) is a normalization
constant.

Therefore, a workable approach is to separately sample
partitions at each level according to its individual posterior,
conditioned on the remaining levels, which are kept unchanged
for the time being. If we sample from each level in this manner
we can guarantee ergodicity, and if the moves at the individual
levels are reversible, the overall distribution will correspond
to the desired full posterior of Eq. (74). Since the hierarchical
levels are coupled, when moving a node at level l, we must
ensure that this does not invalidate the partition at level l + 1.
Hence, we must forbid node moves between groups that are
themselves at different groups in the next level. (This constraint
does not break ergodicity, since all partitions in the upper levels
will be allowed to change at some point.)

In more detail, we proceed as follows. At each individual
level l, we perform a move proposal of node i from its current
group r to a new group s, according to a probability P (b(l)

i =
r → s) that we will specify shortly. We compute the difference
in the log-likelihood � ln Pl at that level, and we accept the
move according to the Metropolis-Hastings criterion [41,42],
i.e., with a probability

a = min

{
1,e� ln Pl

P (b(l)
i = s → r)

P (b(l)
i = r → s)

}
, (77)

where P (b(l)
i = s → r) is the probability of the reverse move

being proposed. The log-likelihood difference is computed as

� ln Pl = ln
P

(
b

(l)
i = s,bl \ b

(l)
i

∣∣el ,el+1
)

P
(
b

(l)
i = r,bl \ b

(l)
i

∣∣el ,el+1
) , (78)
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where bl \ b
(l)
i means the partition of the remaining nodes

excluding node i. Note that in computing Eq. (78), we do not
need to determine the normalization constant in Eq. (76), and
the remaining relevant terms correspond only to a subset of
the full joint distribution of Eq. (45). Typically, the number
of groups in the upper levels decreases exponentially, and
hence the algorithmic complexity is dominated by the bottom
level l = 0. As mentioned previously, the number of terms of
the joint distribution that are necessary to compute � ln P0 is
proportional only to the degree ki of node i, and is independent
of B1, and hence can be computed quickly. Therefore, if we
attempt one move for each node in the network, such a “sweep”
can be completed in time O(E), independent on the total
number of groups.

An important element of this algorithm is the move pro-
posal probability P (b(l)

i = r → s). Any choice with nonzero
probability for all values of s will preserve ergodicity, and—
coupled with the Metropolis-Hastings criterion—also detailed
balance. These two ingredients are sufficient to guarantee that
hierarchical partitions are eventually sampled from the correct
posterior distribution. However, in practice, the equilibration
time will depend strongly on the move proposals, and will
become shorter if they are close to the actual posterior. The
simplest choice we could make is to select from all groups
with equal probability,

P
(
b

(l)
i = r → s

) = 1

Bl + 1
, (79)

where we also account for the occupation of a new group,
which if the move is accepted will increase Bl by one (provided
the node i is not the last one in its current group). Since
this probability is always nonzero, it fulfills our requirements.
However, it will lead to very large equilibration times, in
particular for large values of Bl . This is because the actual
posterior distribution for node i is likely to be concentrated
only in a small subset of all possible groups, and hence
most such fully random proposals will simply be rejected.
A better approach was developed in Ref. [9], and it consists
in inspecting the current parameters of the model to provide
a better guess of the posterior. It amounts to making move
proposals according to

P
(
b

(l)
i = r → s

) =
∑

t

P (t |i,l) el
ts + ε

el
t + ε(Bl + 1)

, (80)

where P (t |i,l) = ∑
j A

(l)
ij δ(b(l)

j ,t)/k
(l)
i is the fraction of neigh-

bors of node i in level l that belong to group t , and ε > 0
is an arbitrary parameter that enforces ergodicity, but with
no other significant impact in the algorithm, provided it
is sufficiently small. It is worthwhile to emphasize that
these move proposals do not bias the partitions toward any
particular mixing pattern. For example, they do not prefer
assortative versus nonassortative partitions, since they inspect
the neighbors of a node only to access with other groups their
kinds are typically connected—which can be different from
the the group assignment of the original node. Furthermore,
these proposals can be generated efficiently, simply by

(1) sampling a random neighbor j of node i, and inspecting
its group membership t = bj , and then

(2) with probability ε(Bl + 1)/[et + ε(Bl + 1)] sampling
a fully random group s (which can be a new group),

(3) or otherwise, sampling a group label s with a proba-
bility proportional to the number of edges leading to it from
group t , ets .

The above can be done in time O(ki), again independently
of Bl , as long as a continuous bookkeeping is made of the
edges that are incident to each group, and therefore it does
not affect the overall O(E) time complexity. As reported in
Ref. [9], these move proposals tend to significantly improve
the mixing times and remove an explicit dependency on the
number of groups, which would otherwise be present with the
fully random moves.

This approach is also more efficient than the rejection-free
“heat-bath” algorithm used in Ref. [17], since the latter re-
quires all possible moves to be probed, incurring an additional
time complexity that grows linearly with the number of groups.

In addition to the move proposals, another crucial aspect
of the algorithm’s efficiency is the choice of the starting state.
A simple approach such as starting from a random partition
can lead to metastable states, from which it takes a long
time to escape. Instead, here we adopt the agglomerative
initialization approach presented in Ref. [9], which amounts to
putting each node in their own group, and then progressively
merging groups, while alternatingly allowing for individual
node moves. This can be done for each hierarchical level
iteratively, as described in detail in Ref. [10]. As reported
in Ref. [9], this approach greatly reduces the tendency to get
trapped in a metastable state and serves as an initialization
protocol that further reduces the overall mixing time of the
MCMC.

While the above algorithm serves to sample from the
posterior distribution of Eq. (74), it can be easily modified
to find its maximum by introducing an “inverse-temperature”
parameter β in Eq. (77) via the replacement � ln Pl →
β� ln Pl . By making β → ∞ the algorithm is turned into a
greedy heuristic that, if repeated many times, yields a reliable
estimate of the maximum.

The lack of an explicit dependence on the number of groups
of the algorithm above is atypical, since most other proposed
Bayesian (or semi-Bayesian) algorithms have either quadratic
O(EB2) [15–17,35] or linear O(EB) [14,43] dependencies,
which means that those can be applied to large networks only if
the number of groups is kept small. Furthermore, the increased
efficiency obtained here does not rely on any approximations
made to the likelihood.

A reference implementation of the algorithm is freely
available as part of the graph-tool library [44,45].

VII. MODEL COMPARISON

With the three different model flavors available (NDC-
SBM, DC-SBM with uniform degree prior or uniform hyper-
prior) we are left with the problem of deciding which offers
the best description of a given network. This problem can be
formulated in at least two ways, depending on whether we
want to compare individual partitions or entire model classes,
which we describe now detail.

If we wish to compare two individual partitions, obtained
from the posterior distribution of two different models, we
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need to consider the joint posterior probability P ({bl},H|A),
where H is the model class being used. For example, when
comparing results from the DC-SBM and NDC-SBM, we can
compute the ratio,

�1 = P ({bl},HNDC|A)

P ({bl}′,HDC|A)

= P (A,{bl}|HNDC)

P (A,{bl}′|HDC)
× P (HNDC)

P (HDC)

= 2−��, (81)

where in the last equation �� = �NDC − �DC is the differ-
ence in the description length, and we have assumed that
both model classes are equally likely a priori, P (HNDC) =
P (HDC). If �1 < 1, we have that the data favors the particular
hierarchical partition {bl}′ together with the degree-corrected
model variant, or if �1 > 1 we have the opposite case.
Choosing a model according to �1 is identical to employing
the MDL criterion, but its value can be used to quantify the
degree of confidence. For example, a value �1 = 1/2 indicates
a very modest evidence supporting the DC-SBM that cannot
be reliably distinguished from pure chance, whereas a value
of �1 = 1/105 would clearly indicate that it is a much better
model than the NDC-SBM.

The criterion above should not be confused with the
“frequentist” approach of computing the parametric likelihood
ratio between both models, as was done in Ref. [46]. In the
latter case, which does not involve any prior probabilities, the
ratio needs to be compared to the distribution obtained with the
null model, which is more cumbersome to obtain. However,
as is understood in general (and can also be shown for the
particular case of the SBM [22]), this frequentist criterion
should coincide asymptotically with the Bayesian criterion
above as long as uniform priors are used. On the other hand,
since here we use deeper Bayesian hierarchies, and hence
nonuniform priors, these amount to different tests, with �1

being more sensitive to regularities in the data, since it uses
properties of the parameters themselves in the decision.

The comparison above using �1 is easy to perform,
since it requires one to simply inspect the result of the
inference procedure. However, it may be possible that the
same network admits many alternative fits with very similar
posterior probabilities. A more strict Bayesian stance would
require us to treat those on an equal footing, and any statement
about the generative model behind the data should be averaged
over all possible fits, weighted according to the respective
posterior probability. Hence, in this scenario we may be
interested instead in comparing the entire model classes to each
other, which involves evaluating the so-called model evidence
by summing over all hierarchical partitions,

P (A|H) =
∑
{bl}

P (A,{bl}). (82)

With this, we can again compute the posterior odds ratio, e.g.,

�2 = P (HNDC|A)

P (HDC|A)
= P (A|HNDC)

P (A|HDC)
× P (HNDC)

P (HDC)
. (83)

If we have no prior preference towards either model,
P (HNDC) = P (HDC), the value of �2 is known as the Bayes

factor [47], and like �1 can be used to establish a degree of
confidence in the outcome.

Unfortunately, the exact computation of the sum in Eq. (82)
is intractable. We therefore resort to a variational approach,
first by writing

ln P (A|H) = ln
∑
{bl}

P (A,{bl}) (84)

=
∑
{bl}

q({bl}) ln P (A,{bl}) (85)

−
∑
{bl}

q({bl}) ln q({bl}), (86)

with

q({bl}) = P (A,{bl})
P (A)

(87)

being precisely the posterior distribution of for the hierarchical
partition that we obtain from with the MCMC algorithm used
above. (Note that so far we have not made any approximations,
with the identities above holding exactly.) The first term in
Eq. (85) is easy to compute, as it amounts to the average log-
likelihood (or minus the description length) of the partitions
we obtain with the MCMC above,

〈ln P (A,{bl})〉 =
∑
{bl}

q({bl}) ln P (A,{bl}). (88)

On the other hand, the second term in Eq. (86) amounts to the
entropy of the posterior distribution,

H ({bl}) = −
∑
{bl}

q({bl}) ln q({bl}), (89)

and measures how strongly it is concentrated. For example,
in the extreme (and unrealistic) case where for each model
being compared only one partition occurs with probability
q({bl}) = 1, the entropy will be zero, and we have that �1 =
�2. Otherwise, the entropy H ({bl}) will effectively measure
how many partitions contribute to the average log-likelihood,
so that a model class with a larger entropy will be preferred over
another with less variance, even if their posterior probabilities
are on average the same. Unfortunately, the entropy H ({bl}) is
notoriously difficult to compute exactly, even asymptotically
via MCMC algorithms, and encapsulates the difficulty of
computing Eq. (82) directly. A brute force approach simply
does not work, since it would require keeping track of all
visited hierarchical partitions, which grow combinatorially in
number with system size. Other approaches such as thermo-
dynamic integration [48], annealed importance sampling [49],
and flat-histogram methods [50] are also possible, but tend
to be significantly inefficient in comparison. Instead, here we
make a so-called “mean-field” assumption on the shape of
q({bl}), which assumes that it factorizes over all levels,

q({bl}) ≈ q1
i (b1)

∏
l>1

∏
i

ql
i

(
bl

i

)
. (90)

For the first level we use the so-called “Bethe approxima-
tion” [51], which takes into account the correlation between
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adjacent nodes in the network,

q1(b1) ≈
∏
i<j

[
q1

ij

(
b1

i ,b
1
j

)]Aij
∏

i

[
q1

i

(
b1

i

)]1−ki
, (91)

with q1
i (r) and q1

ij (r,s) obtained from the posterior node and
edge marginals,

ql
i (r) = P

(
bl

i = r
∣∣A

) =
∑

{bl}\bl
i

P
(
bl

i = r,{bl} \ bl
i

∣∣A
)
, (92)

q1
ij (r,s) = P

(
b1

i = r,b1
j = s

∣∣A
)

=
∑

{bl}\{b1
i ,b

1
j }

P
(
b1

i = r,b1
j = s,{bl} \ {

b1
i ,b

1
j

}∣∣A
)
,

(93)

estimated with the MCMC algorithm above. For the upper
levels l > 1 we cannot use the same approximation since
the adjacency matrices will be in general multigraphs that
will keep changing throughout the algorithm. Therefore, we
used above a mean-field approximation where the posterior
factorizes over all nodes. With this we can finally write Eq. (84)
as

ln P (A) ≈ 〈ln P (A,{bl})〉 +
∑

l

Hl, (94)

where

H1 = −
∑
i<j

Aij

∑
rs

q1
ij (r,s) ln q1

ij (r,s)

−
∑

i

(1 − ki)
∑

r

q1
i (r) ln q1

i (r) (95)

is the entropy of the first level and

Hl = −
∑

i

∑
r

ql
i (r) ln ql

i (r) (96)

is the entropy of the remaining hierarchy levels l > 1. Thus,
Eq. (94) can be computed simply by equilibrating the MCMC,
obtaining the average log-likelihood and the node and edge
posterior marginal distribution, ql

i (r) and q1
ij (r,s).

VIII. RESULTS FOR EMPIRICAL NETWORKS

We demonstrate the use of our approach on empirical
networks (summarized in Table I), which we also use to
compare different model variations. We begin with a network
of political blogs compiled by Adamic and Glance [52] during
the 2004 general election in the USA. In this network nodes
are blogs, and an edge exists between two nodes if one blog
cites the other (hence, the network is directed, and therefore
the directed versions of the SBM were used; see Appendix B).
This network was used in Ref. [11] as an example where the
DC-SBM yielded more meaningful results, since it preferred
a partition of the nodes that was largely compatible with
the original categorization done in Ref. [52], based on the
content of the blogs, into “liberal” and “conservative” sites.
The NDC-SBM, on the other hand, preferred to divide the
nodes only according to degree. However, in that analysis the
number of groups was fixed at B = 2. Using the nonparametric
approach described here, where the number of groups is

TABLE I. Empirical networks used in this work, with their
number of nodes N , average degree 〈k〉 = 2E/N , number of groups
at the lowest hierarchical level B1 according to the MDL criterion,
and the same value averaged from the posterior distribution 〈B1〉, as
well as standard deviation of the distribution, σB1 .

Dataset N 〈k〉 B1 〈B1〉 σB1

Southern women interactions [55] 32 5.6 2 2.4 0.9
Zachary’s karate club [56] 34 4.6 2 2.2 0.5
Dolphin social network [57] 62 5.1 2 2.9 0.5
Characters in Les Misérables [58] 77 6.6 8 8.6 0.7
American college football [59] 115 10.7 10 10.1 0.3
Florida food web (wet) [60] 128 32.9 14 14.2 0.4
Residence hall friendships [61] 217 24.6 20 20 0
C. elegans neural network [62] 297 15.9 20 13.5 0.5
Scientific coauthorships [63] 379 4.8 28 29.6 1.6
Country-language network [64] 868 2.9 4 10.1 1.9
Malaria gene similarity [65] 1104 5.4 56 55.8 1.9
E-mail [66] 1133 9.6 28 26.9 0.3
Political blogs [52] 1222 31.2 15 15 0
Scientific coauthorships [63] 1589 3.5 48 67.3 3.4
Protein iteractions (I) [67] 1706 7.3 26 40.2 0.6
Bible names co-ocurrence [64] 1773 10.3 63 79.1 5.3
Global airport network [10] 3286 41.6 268 264.6 6.1
Western states power grid [68] 4941 2.7 38 37.3 1
Protein iteractions (II) [69] 6327 46.6 419 406.4 18.6
Internet AS [70] 6474 4.3 40 50 7.2
Advogato user trust [71] 6541 15.6 174 80.7 0.6
Chess games [64] 7301 17.8 79 79 0
Dictionary entries [72] 13 356 18 1378 1378.9 2.3
Cora citations [73] 23 166 7.9 575 575 0.2
Google+ social network [74] 23 628 3.3 46 41.3 2.4
arXiv hep-th citations [70] 27 770 25.4 1211 1207.1 4
Linux source dependency [64] 30 837 13.9 448 384.7 3.1
PGP web of trust [75] 39 796 15.2 1350 1323.2 26.4
Facebook wall posts [76] 46 952 37.4 6930 6794.9 129.9
Brightkite social network [77] 58 228 7.4 171 177.4 3.8
Gnutella hosts [78] 62 586 4.7 24 24 0
Youtube group memberships [79] 124 325 4.7 273 266.7 4.7

determined from data itself, the results show a less extreme
amount of discrepancy, as seen in Fig. 5, which shows the
most likely partition according to each model flavor. In all
cases, the division of the nodes is largely compatible with the
accepted one: The hierarchy branches at the top into the two
political factions and then proceeds into further subdivisions
inside each group. However, when inspecting the lower levels
of the hierarchy, we see that the different variants yield
distinct subdivisions inside the two main groups. The non-
degree-corrected version yields the largest number of groups,
followed by the degree corrected one with uniform degree
priors, and finally the version with uniform degree hyperpriors
with the smallest number of groups. In this particular case, the
models with smaller number of groups have also the smallest
description length, which seems to indicate that the division
into a larger number of groups are necessary for the models
that are unable to otherwise properly explain the heterogeneity
in the degree sequence. Thus, despite their uniform agreement
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FIG. 5. Most likely hierarchical partitions of a network of political blogs [52], according to the three model variants considered, as well as
the number of groups B1 at the bottom of the hierarchy, and the description length �: (a) NDC-SBM, B1 = 42, � ≈ 89938 bits; (b) DC-SBM,
uniform prior, B1 = 23, � ≈ 87162 bits; (c) DC-SBM, uniform hyperprior, B1 = 20, � ≈ 84890 bits. The nodes circled in blue were classified
as “liberals” and the remaining ones as “conservatives” in Ref. [52] based on the blog contents. Note that in all cases this division in two groups
is correctly identified at the topmost level of the hierarchy. However, the lower levels yield significantly different subdivisions depending on
which model type is used. The layout is obtained with an algorithm by Holten [53].

with the accepted division, the MDL criterion still confirms
the DC-SBM as a better model for this network.

We now move to a social network between scientists, where
an edge exists if two scientists collaborated on a paper [54].
Here, we compare the results obtained by employing MDL
(i.e., finding the most likely partition) and sampling many
partitions from the posterior distribution, as shown in Fig. 6.

We observe that while the sampled partitions share close
similarities to the MDL result, there is a noticeable variance
among the individual samples. Figure 6 also shows the
marginal distribution for the number of groups at the first three
hierarchical levels. For all three model variants, the typical
number of groups is significantly higher that what is obtained
for the optimal partition (due to the low degree variability in
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FIG. 6. Hierarchical partitions of a network of collaboration between scientists [54]. (a) Most likely hierarchical partition according to
the DC-SBM with a uniform hyperprior. (b) Uncorrelated samples from the posterior distribution. (c) Marginal posterior distribution of the
number of groups at the first three hierarchical levels, according to the model variants described in the legend. The vertical lines mark the value
obtained for the most likely partition.
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FIG. 7. Marginal posterior distribution of the number of groups at the first three hierarchical levels, according to the model variants
described in the legend, for some of the empirical networks listed in Table I: (a) dolphin social network; (b) characters in Les Misérables; (c)
American college football; (d) Southern women interactions; (e) malaria gene similarity; (f) protein interactions (II); (g) global airport network;
(h) dictionary entries. The vertical lines mark the value obtained for the most likely partition (the MDL criterion).

this particular network, it is one of the few that are better
modelled by the NDC-SBM, as seen in Fig. 8). This can be
understood as an entropic effect, where the existence of a
much larger number of more complex models with smaller

yet comparable likelihood pushes the posterior distribution
towards them. This is a good example of the bias-variance
trade-off mentioned in Sec. III A, where we see that the
MDL results in a more conservative partition, whereas the full
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FIG. 8. Posterior odds ratio relative to the best model, according to (a) the MDL criterion, �1 [Eq. (81)] and (b) full posterior probability,
�2 [Eq. (83)] for the empirical networks listed in Table I. The ratio is computed so that the preferred model has �1/2 = 1 and thus appears on
the top of the figures. The remaining points for each dataset correspond to the odds ratio of the remaining models relative to the winning one.
The solid lines mark a � = 10−2 confidence threshold. The networks are ordered by increasing number of nodes (see Table I).

posterior deposits more collective weight on larger models that
are also more numerous. This seems to indicate that no single
partition (and its associated model) serves as a overwhelmingly
better explanation among those considered—a symptom that
no specific model variant can perfectly accommodate the
network structure, and thus that the SBM is possibly not a
suitable generative model for this data.

This disagreement between MDL and posterior sampling is
not universal, and depends strongly on the network structure.
In Fig. 7 we show further results for other networks, that show
a fair amount of diversity in this respect. In many cases the
MDL estimate lies close to the mode of the posterior, indicating
a fair amount of agreement (at least as far as the number of
groups is concerned).

If we compare the different model flavors as outlined in
Sec. VII, we obtain that most typically the DC-SBM with
uniform degree hyperpriors provides the smallest description

length for a large variety of networks, as shown in Fig. 8(a).
As expected, the margin by which the best model is selected
increases with the size of the network, as larger networks
typically contain more data. If we compare instead the whole
model class, by summing over all partitions, we obtain largely
consistent (though not identical) outcomes, as seen in Fig. 8(b).
Exceptions to this include networks where there is no signifi-
cant statistical evidence to support the most complex models—
either due to their small size or narrow degree distributions
(e.g., scientific coauthorships, malaria gene similarity, and
western states power grid)—and often the simpler NDC-SBM
is preferred, as well as some networks for which the DC-SBM
with uniform degree priors is preferred instead (E-mail, arXiv
hep-th citations). A closer inspection of these networks reveal
that their global degree distribution is fairly narrow, well
approximated by an exponential distribution, as shown in
Fig. 9. Since this is what is precisely assumed by the uniform
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FIG. 9. Degree histograms for the Email (left) and arXiv hep-
th citations (right) networks. In both cases the solid lines show a
geometric distribution Nk = Np(1 − p)k−1, with p = 1/〈k〉.

degree prior, this model variation has the advantage in this
case. It is worthwhile to observe that according to both criteria,
the preference toward the DC-SBM over the NDC-SBM is
sometimes only attained with the uniform degree hyperprior. In
many cases the NDC-SBM yields a smaller description length
or larger evidence than the degree-corrected variant with a
uniform prior. This means that correcting for arbitrary degree
frequencies—as opposed to simply the degrees but assuming
uniform frequencies—can reveal important information on the
structure of the network that would otherwise remain obscured.
Nevertheless, our results seem to validate the intuition behind
the DC-SBM as argued in Ref. [11], that most networks are
better modeled as mixtures of groups with heterogeneous
degrees, as opposed to groups with the homogeneous degrees
that are generated by the NDC-SBM. Importantly, we reach
this conclusion aware that the NDC-SBM is a larger model
class with more parameters, since this fact is fully incorporated
in our comparison.

IX. DISCUSSION

The microcanonical approach to the inference of large-
scale network structures offers an opportunity to encode
deeper Bayesian hierarchies into the generative models, which
alleviates the underfitting problems present otherwise, while
at the same time enabling the implementation of efficient
inference algorithms with a complexity that is not explicitly
dependent on the number of groups being inferred.

We showed how the degree-corrected SBM can be formu-
lated in a Bayesian way, via the incorporation of priors for the
degree sequence that depend on the degree distribution, and
hence are more capable of decoupling modular organization
from degree regularities. We have again visited the issue
of the maximum number of groups that can be inferred,
and determined that the hierarchical version of the model is
significantly less susceptible to underfitting, by being able to
uncover small groups in very large networks.

We also showed that the microcanonical model is identical
to a Bayesian version of the typical canonical formulation, if
we consider only its shallower version with uniform priors.
Hence, the main strength of the approach presented here lies
not in details of the model specification, but rather in the
ease with which higher order Bayesian considerations can be
incorporated.

Throughout the work we have contrasted two approaches
to Bayesian inference, one where we search for the single

best network parametrization (the MDL criterion), and the
other where parametrizations are sampled according to their
posterior probability. We showed that the bias-variance trade-
off that these two options represent can manifest itself in
practice, where a lack of quality of fit yields a disagreement
between both approaches. By performing a systematic analysis
of various empirical networks, we observed that the degree of
discrepancy is varied, and itself serves as an indication of the
suitability of the SBM in capturing the network structure.

We argue that the methods proposed here can be useful in
the principled detection of large-scale network structures and
in their interpretation. In particular we believe it can be used
as a basis for a further understanding of the quality of the SBM
family of models in capturing the properties of real networks.

APPENDIX A: ASYMPTOTIC DEGREE DISTRIBUTIONS
SAMPLED FROM UNIFORM PRIORS AND HYPERPRIORS

We can easily obtain the expected degree distribution when
using the uniform prior for the degree sequence in Eq. (26)
if we relax the ensemble to allow the total number of edges
to fluctuate, with the global constraint being enforced only on
average. If we focus on only one group with N nodes and E half
edges on average, a degree sequence k will be sampled with a
probability that maximizes the ensemble entropy constrained
by the average number of edges, obtained via the Lagrangian

F = −
∑

k

P (k) ln P (k) − λ

(∑
k

P (k)
∑

i

ki − E

)
, (A1)

where λ is a Lagrange multiplier that enforces the con-
straint. Obtaining the saddle point {∂F/∂P (k) = 0,∂F/∂λ =
0} yields the usual canonical ensemble

P (k) = e−λ
∑

i ki

Z
. (A2)

The normalization constant is called the partition function and
is given by

Z =
∑

k

e−λ
∑

i ki = (1 − e−λ)−N, (A3)

with λ = ln(1 + N/E) obtained by enforcing the constraint
E = ∑

i ki = −∂ ln Z/∂λ. From the above, we obtain imme-
diately that the probability of a given node i having a degree
k is

P (ki = k) = e−λk e−λ
∑

j �=i kj

Z
= (1 − e−λ)e−λk. (A4)

This is a geometric distribution, more commonly parametrized
as

P (k) = (1 − p)pk, (A5)

with an average 〈k〉 = (1 − p)/p = E/N . This canonical
ensemble is not identical to the microcanonical one used
in the main text, but will approach it asymptotically in the
thermodynamic limit, i.e., when the number of nodes and edges
become sufficiently large.

We can use the same approach to obtain the expected
degree distribution generated from the uniform hyperprior of
Eq. (29), which is somewhat more involved, but it is still quite
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feasible. We want to consider the ensemble of nonnegative
integer counts {nk}, subject to a normalization constraint∑∞

k=0 nk = N and a fixed average
∑∞

k=0 knk = E. Following
the same maximum-entropy ansatz as above yields a partition
function for this ensemble given by

Z =
∑
{nk}

e−λ
∑

k nk−μ
∑

k knk =
∏
k

Zk, (A6)

where λ and μ are Lagrange multipliers that keep the
constraints in place and with

Zk = 1

1 − exp(−λ − μk)
. (A7)

The expected degree counts are given by

〈nk〉 = −∂ ln Zk

∂λ
= 1

exp(λ + μk) − 1
, (A8)

which is the Bose-Einstein distribution. The parameters λ and
μ are determined via the imposed constraints,

∞∑
k=0

1

exp(λ + μk) − 1
= N, (A9)

∞∑
k=0

k

exp(λ + μk) − 1
= E. (A10)

For sufficiently large E and N , the sums may be approximated
by integrals, and using the polylogarithm function, Lis(z) =
�(s)−1

∫ ∞
0 [t s−1/(et/z − 1)]dt , we have∫ ∞

0

dk

exp(λ + μk) − 1
= Li1(e−λ)

μ
= N, (A11)

∫ ∞

0

k dk

exp(λ + μk) − 1
= Li2(e−λ)

μ2
= E. (A12)

Eq. (A11) can be solved for λ as e−λ = 1 − exp(−N/μ),
but the same cannot be done for Eq. (A12) in closed
form. However, for N � μ, we have λ → 0, and hence
μ ≈ √

Li2(1)/E = √
ζ (2)/E, with ζ (s) being the Riemann

ζ function. This yields the asymptotic distribution,

〈nk〉 ≈ 1

exp(k
√

ζ (2)/E) − 1
. (A13)

Its variance can be obtained from the second moment,

N〈k2〉 =
∫ ∞

0

k2 dk

exp(λ + μk) − 1
= Li3(e−λ)

2μ3
, (A14)

which leads to

〈k2〉 = ζ (3)

2

( 〈k〉
ζ (2)

)3/2√
N, (A15)

which diverges in the limit N � 1. For degrees k � √
E,

we have exp(k
√

ζ (2)/E) ≈ 1 + k
√

ζ (2)/E, and hence the
expected distribution of Eq. (A13) will follow a power law
1/k for small arguments, with an exponential cut-off for larger
arguments,

〈nk〉 ≈
{√

E/ζ (2)/k for k � √
E,

exp(−k
√

ζ (2)/E) for k � √
E.

(A16)

Distributions of the form 1/k are often attributed to nonequi-
librium processes or critical behavior, but as the above shows,
they can also come from maximum-entropy ensembles with
simple constraints. This is tantamount to saying that most
discrete distributions with a fixed average tend to have the
above asymptotic form, and therefore no mechanism other
than randomly choosing between them is necessary to explain
this property.

APPENDIX B: DIRECTED NETWORKS

Although in the main text we focused on undirected
networks, directed model variants are easy to obtain, as we
summarize here. For the directed DC-SBM we have the model
likelihood,

P (A|k,e,b) =
∏

i k
+
i !k−

i !
∏

rs ers!∏
r e+

r !e−
r !

∏
ij Aij !

, (B1)

with k+
i = ∑

j Aji , k
−
i = ∑

j Aij , e+
r = ∑

s esr , e−
r = ∑

s ers .
For the hierarchical prior of edge counts, we have to treat the
multigraphs as directed,

P (el|el+1,bl) =
∏
rs

((
nl

rn
l
s

el+1
rs

))−1

. (B2)

The uniform degree prior is the product of two priors, for the
in- and out-degree sequences,

P (k|e,b) =
∏

r

((
nr

e+
r

))−1((
nr

e−
r

))−1

. (B3)

Analogously for the conditioned degree prior we need to
account for the joint (in, out)-degree distribution,

P (k|η) =
∏

r

∏
k+,k− ηr

k+,k−!

nr !
, (B4)

and a uniform hyperprior,

P (η|e,b) =
∏

r

q(e+
r ,nr )−1q(e−

r ,nr )−1. (B5)

The NDC-SBM is also entirely analogous, corresponding to a
degree probability

P (k|e,b) =
∏

r

e+
r !

n
er+
r

∏
i∈r k+

i !

∏
r

e−
r !

n
er−
r

∏
i∈r k−

i !
, (B6)

which yields the model likelihood

P (A|e,b) =
∏

rs ers!∏
r n

e+
r

r n
e−
r

r

× 1∏
ij Aij !

. (B7)
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