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A Method for Comparing Two
Hierarchical Clusterings

E. B. FOWLKES and C. L. MALLOWS*

2. DERIVATION OF e,

Monte Carlo sampling, and section 5 describes some uses
of the measure, Bi, for a set of real data.

B; is calculated for every value of k, and a portrayal of
the similarity of the two clusterings may be given by plot­
ting B k versus k. We have 0 :s B; -s 1 for each k. B; =
1 when M has exactly k nonempty cells, which happens
when the k clusters in each clustering correspond com-

(2.2)

(2.4)

(2.3)

(2.8)

(2.7)
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P k = L m.? - n,
i=1
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Qk = L m} - n.
)=1

k

m; L m.],
)=1

k k

m.. = n = L L m.],
i=J)= I

k

m., = L m.], (2.5)
i=1

where

Suppose that we have two hierarchical clusterings of
the same number of objects, n, which we may label AI
and A 2 • The hierarchical trees representing A I and A 2 are
then cut to produce k = 2, ... , n - 1 clusters for each
tree. The cutting of a hierarchical tree simply corresponds
to setting a value of height or cluster strength and deter­
mining the cluster assignments of the tree at that strength.
For each value of k we may label the clusters for A I and
A 2 arbitrarily from one to k and form the matrix

M = [mij] (i = 1, ... , k;j = 1, ... ,k). (2.1)

where the quantity m., is the number of objects in com­
mon between the ith cluster of A J and the jth cluster of
A2 • Our measure of association is then defined to be

1. INTRODUCTION

In carrying out a cluster analysis of a set p-dimensional
multivariate data, one may wish to compare two or more
hierarchical clusterings of the same set of objects. For
example, one may wish to study the effect of using dif­
ferent metrics, or different clustering algorithms, or data
from two different sources. Informally, one can inspect
the clusterings to determine the important clusters, and
the composition of the clusters from one tree can be com­
pared with the composition of the clusters from a second
tree. Matches indicate similarity between the two trees.
This method of comparison of two clusterings can be ex­
tremely laborious and time-consuming and affords no
measurement of strength of the comparisons. In this ar­
ticle we propose a method of comparing two hierarchical
clusterings that gives a numerical measure for the degree
of similarity. Not only does the method provide a com­
parison between two clusterings, it also is useful as a tool
for studying hierarchical clustering in general. See Har­
tigan (1975) for a description of hierarchical clustering
algorithms.

The article has five sections. Section 2 derives the
measure of comparison, Bi, and establishes certain sta­
tistical properties. Section 3 discusses alternative meth­
ods of comparison developed by Baker (1974) and Rand
(1971). Section 4 studies various properties of B k via

This article concerns the derivation and use of a measure
of similarity between two hierarchical clusterings. The
measure, Bi, is derived from the matching matrix, [miJ,
formed by cutting the two hierarchical trees and counting
the number of matching entries in the k clusters in each
tree. The mean and variance of Bk are determined under
the assumption that the margins of [mIJ-J are fixed. Thus,
B k represents a collection of measures for k = 2, ... ,
n - 1. (k, Bk ) plots are found to be useful in portraying
the similarity of two clusterings. B; is compared to other
measures of similarity proposed respectively by Baker
(1974) and Rand (1971). The use of(k, Bi) plots for study­
ing clustering methods is explored by a series of Monte
Carlo sampling experiments. An example of the use of
(k, Bd on real data is given.

KEY WORDS: Clustering; Measures of similarity; Sta­
tistical graphics.
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(2.10)

(2.11)

(2.12)

(2.13)

k

"L m; tm; - 1)(mi' - 2),
i=1

k

Qk' = "L m.;(m.) - 1)(m.) - 2).
)=1

Plots of B k versus k can be enhanced by the addition of
E(Bk), and the limits E(Bk) ± 2 (var(Bk» 1/2. If B; falls
outside the limits in a systematic fashion, similarity of the
two clusters may be significant. We feel that the as­
sumptions used to derive E(Bk ) are reasonable since val­
ues of B k calculated for unrelated pairs of bivariate nor­
mal random samples of a moderate size (n = 100) nearly
always fell within the above limits. This result can be seen
in Section 4. Since successive values of Bk are correlated
and the distribution of B k is not normal, the defined limits
give only an approximate indication of the significance
of the similarity between two hierarchical clusterings.

In general, a measure of similarity between two hier­
archical clusterings could depend on three things: the
topologies of the two trees that represent the clusterings,
the assignment of labels to the terminal nodes of these
trees, and the heights (or "weights") of the internal
nodes. Our measure B; ignores the third of these com­
ponents; indeed it is difficult to see how to use this in­
formation when the two clusterings are based on different
metrics or different algorithms. However, our measure
does depend on the first two components. Notice that the
two trees in Figure 1 have identical topologies. Therefore
B k depends not only on the similarity of the topologies
of the trees but also on the labeling of the nodes or objects
in the trees. Figure 2(a) shows that with appropriate re­
labeling of the nodes in both trees, B k = 1.0 for all values
of k. Figure 2(b) gives a relabeling of the nodes for AI
(Figure 2(a», which increases B2 in Figure 1 from .25 to
.50. This poses an interesting question. Can B k be de­
composed into two parts, one measuring the similarity of
the tree topologies, and one measuring the similarity of
the node labeling given the topology? Clearly we can
write B« = B k'B k", where B k' is the maximum value of
B« over all possible relabelings of the two trees, holding
their topologies fixed, and B k" is BklBk'. Unfortunately,
for large trees computation of B k' does not appear to be
feasible, and we have not developed this idea.

where

each other. The Appendix derives the results

2 4Pk'Qk'
var(Bk ) = ( + --:------:-:-~"'-=----

n n - 1) n(n 1)(n - 2)P kQk

+ (Pk - 2 - 4Pk'IPk)(Qk - 2 - 4 Qk' IQk)
n(n - 1)(n - 2)(n - 3)

PkQk
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Figure 1. Dendrograms for two hierarchical clusterings of five
objects and the formation of the [mil] matrix for k = 2.

pletely. Also B k = 0 when each mij is 0 or 1, so that every
pair of objects that appear in the same cluster in A I are
assigned to different clusters in A 2 • When k = n, M is a
permutation matrix, and B» is indeterminate. Figure 1
shows two hierarchical trees that have each been cut to
produce 2 clusters and the corresponding matrix m.., 'J'
resulting from the cuts; B; for k = 2 is .25.

B; is also related in the following way to the sum over
all pairs of objects of those pairs that have matching clus­
ter assignments. For a given value of k, let aI/V = I if
objects u and v are in the same cluster in both trees, and
auv = 0 otherwise. Then

2u.~s auv = 2 i~Ij~1 (~ij) = i~I)~1 m;/ - n, (2.9)

where S is the set of all pairs of objects. The last quantity
in the expression is the numerator of Bi; Rand (1971)
and Hartigan (1975) also considered similarity measures
calculated from the matching matrix, [mi;J. Rand's mea­
sure is considered in Sections 3 and 4. Hartigan proposed
measures based on [mij] but does not establish their prop­
erties or use them on real data.

Another interpretation of B k is as a version of Daniels's
generalized correlation coefficient (Daniels 1944). For ob­
jects u, v let auv = sgn(u - v) if u, v are in the same
cluster in A I, and aU V = 0 if not; similarly b.; = sgn(u
- v) if u, v are in the same cluster in A 2 , and b.; = 0 if
not. Then s, = "Lal/vbuvl("Lal/} "Lbl/})1/2, where all
sums are over all u, v.

In defining B k we have chosen to cut each tree to pro­
duce the same number of clusters, k, If there are exact
ties in cluster strengths, one of the subtrees is selected
at random for cutting in order to produce k clusters. Al­
ternatively, we could have cut one tree to produce k clus­
ters and the other to produce I clusters. The matrix [mij]
would then be k by I, and one could define a similarity
measure Bu- We have not considered B k l in this article.

The mean and variance of B; can be derived under the
assumption that conditional on the margins of the matrix,
[mij], namely tm; m.;) being fixed, there is random al­
location of the objects to the cells. This assumption is
valid, for example, if the two clusterings are unrelated to
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(3.1)

and 0 ~ R k -s 1. The statistics B; and R; may be thought
of as resulting from two different methods of scaling T;
(see (2.3)) to lie in the unit interval. Rand did numerous
Monte Carlo sampling experiments to determine prop­
erties of R; and its utility in studying clustering methods.
However, he derived few formal properties of Ri, Using
the results (2.10) and (2.11) we may derive moments of
R; under the assumption of fixed margins, mi. and m.],
and random allocation of matching counts of objects to
[muJ. Thus the mean and variance of R; can be shown
to be

be interpreted as the probability that two objects are
treated alike in both clusterings. Furthermore, R; can be
shown to be

o 22

2.5!
2.001.5
1.0 3

n5 4 5
0.0 1 2

2.5!2.0

\.5
10 3~.~0

2 ALL Bk =1.0
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2 2 1 3
2 35

Figure 2. Dendrograms of two hierarchical clusterings of five ob­
jects showing the effect on Bk of relabeling of the objects.

E(R k) 1 - (P; + Qd/«n(n - 1))

+ (2P kQk)/(n 2(n - If),

var(R k) = (4P kQk)/(n 2(n - 1)2) var(Bk) ,

(3.2)

(3.3)

3. OTHER MEASURES OF SIMILARITY

Several statistics have been developed to measure the
similarity between hierarchical clusterings. Johnson
(1968), Rand (1971), Anderberg (1973), and Hubert and
Levin (1976) all proposed measures that are functions of
the matrix, [miJ. Arabie and Boorman (1973) used mul­
tidimensional scaling to study the similarity between the
measures themselves. They studied 12 measures, of
which some were based on [mij] while others used ideas
from information theory (see Jardine and Sibson 1971 for
example). Baker (1974) proposed a measure that uses
rank correlation methods.

These measures have been used in a very different fash­
ion from the use we propose for Bi, Either they use one
number to summarize the similarity between two hier­
archical clusterings or they compare the clusterings for
some fixed number of partitions. None propose the use
of a sequence of measures as the basis for a plotting pro­
cedure of the form that we have proposed for Bi: Never­
theless, we have chosen the measures of Rand (1971) and
Baker (1974) for comparisons with Bi, These measures
are presented and discussed in the following paragraphs.
Certain comparisons of the Rand and Baker measures
with B k are given in Section 4 on Monte Carlo sampling
experiments.

Rand's measure (which we henceforth refer to as R k )

is similar in construction to B k since it is based on the
matrix, [miJ. R k may be defined as follows. Let n be the
total number of objects to be clustered. Then, for a given
number of clusters, k, R; is defined as the ratio of the
sum of the number of pairs of objects that cluster together
in the two clusterings under comparison and the number
of pairs of objects that fall in different clusters in both
clusterings to the total number of pairs, m. Thus, R; can

where var(B k ) is defined by (2.7), (2.8), and (2.11), re­
spectively.

It is easy to see that E[R k ] ~ 1.0 as k~ n. In practice,
as we show in Section 4, we have found that this limit is
approached relatively quickly as k increases. This prop­
erty is not seen in Rand's paper since he never chooses
k to be large in relation to n (he has k < 10 for n = 30
for example). Also var(R k ) ~ 0 as k~ n, and in practice
we have found that the possible range of R; is quite nar­
row for all values of k. The statistic B; on the other hand
can vary in a much wider range. (It should be pointed
out, however, that neither R; nor B; can be zero for small
values of k.)

For these reasons we feel that R« is somewhat inap­
propriate for use in a plotting procedure analogous to that
for Bi; In Section 4 (k, B k ) plots are shown to have in­
teresting configurations for both null and nonnull cases
of clustering. The configurations of (k, R k ) plots are
largely dominated by the rapid approach of R; to 1 and
the narrow range of variation so that these configurations
are masked.

To establish some formal properties of Ri, Rand de­
rived results concerning clusters of a special type. Spe­
cifically, Rand derived values for comparing R k for an
original clustering (which had k clusters each with n
points) with various simple and major modifications of
this clustering. For example, one modification was to
move one point from one cluster to another. Rand also
determined the limiting behavior of R; when either the
number of clusters, k, or the number of observations, n,
becomes infinite. We have reproduced Rand's results
along with side-by-side comparisons of R k with B k in
Table 1.

A third plotting procedure would use a centralized and
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556 Joumal of the American Statistical Association, September 1983

Table 1. Comparisons of Expressions for the Measures Ble and Rle Between Two Similar Clusterings, Given
an Initial Clustering, Y, Which Has k Clusters of n Points Each

Modification of Y
I/mRk

n --> "", k filled
I/mRk

n --> "", k = xn
11m Bk lim Bk

n --> "', k filled n --> "", k = xn

a. Bk and Rk Applied to the Clusterings Y and Y'. Where Y' is a Simple Modification of an Original Clustering. Y

Two Clusters (J(2 - 2)n - Ie J(2 - 2 ( Ie (n - 1) )"2 (_Ie)"2
Joined J(2n - Ie ----;r Ie(n - 1) + 2n Ie + 1

One Cluster Split (2J(2 - 1)n - 21e 2J(2 - 1 (lie - i)n - Ie)'" (Ie ~ i)'"Into Two Equal 2J(2n - 2k 2k2 k(n - 1)
Parts (n even)

One Cluster Split (J(2 - 1)n - Ie + 1 J(2 - 1 (lie ~ 1)) "' (Ie ~ 1)'"Into Single J(2n - Ie ----;r
Point Clusters

One Point Taken len" - 3n - Ie + 3 (n - 2) (n - 1)"'
From Each len" - n (nUn - 1~ - n + Ie
Cluster to
Form a New
Cluster of k
Points

b. B. and R. Applied to Clusterings Y' and Y·. Which are Similar Modifications of an Original Clustering. Y

Movement of a J(2n - k - 4 kn' - len - 2n + 2 n - 1
Point to J(2n - Ie len' - n + 2 n
Different
Clusters

Different Clusters (J(2 - 1)n - k J(2 - 1 len - n - k Ie - 1
Split Into Two J(2n - Ie ----;r n 1
Equal Parts len-Ie k-

2 2

Different Pairs of (J(2 - 4)n - Ie J(2 - 4 Ie(n - 1) Ie
Clusters Joined J(2n - Ie ----;r len + 2n - Ie 1e+2

c. B. and R. Applied to Clusterings Yand y', Where Y' is a Major Modification of an Original Clustering. Y

All Clusters
Joined Into
One Large
Cluster

All Clusters Split
Into Single
Point Clusters

n Clusters are
Formed With Ie
Points in Each,
One Point
From Each
Original
Cluster

n - 1

len - 1

(Ie - 1)n

len - 1

(Ie - 1)(n - 1)

len - 1

1

k

Ie - 1

Ie

Ie - 1

Ie

o

n - 1

n

(~)"2
len - 1

o

o

o

o

o

o

o

standardizedversion of Tk (see (2.3», namely,

(k, (Tk - E(Tk » /(var( h » 1/2). (3.4)

to mask certain comparisons between clusterings since it
does summarize similarity by one number.

We have chosen not to do this since it conceals changes
in E(Tk ) as k varies, that can give useful information con­
cerning the margins mi. and m.].

Baker (1974) has derived a method of comparing two
hierarchical trees that uses the gamma index, 'Y, of Good­
man and Kruskal (1974), which is a measure of rank cor­
relation. The measure is defined as the rank correlation
between stages at which pairs of objects combine in the
trees. Even though Baker's measure performed quite well
in the studies reported in Section 4, we feel that it tends

4. MONTE CARLO SAMPLING EXPERIMENTS

In this section we report on our study of various prop­
erties of B; by means of a series of Monte Carlo exper­
iments. First, we wished to determine the behavior of B k

for the null case where the clusterings being compared
were unrelated. Second, we studied the effect of small
perturbations of the coordinates of the objects being clus­
tered; we calculated B k between the original clustering
and the perturbed clustering. We also studied one aspect
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(4.1)

Fowlkes and Mallows: Comparing Two Hierarchical Clusterlngs

of the choice of metric, by examining the effect of scale
changes of the coordinates, the effect of outliers, and the
addition of variables containing no cluster structure to a
set of variables having pronounced cluster structure.
Last, we studied the sampling distribution of Bi: There
are of course other questions one might raise, but we felt
that these were crucial and interesting ones and that an­
swering them would give us a deeper understanding of
exactly what B; was measuring.

We attempted to investigate these issues by generating
bivariate normal samples of various types and calculating
B k for pairs of clusterings of these samples. The bivariate
normal samples were generated in the following fashion.
First, a pair of pseudorandom numbers VI and V 2 dis­
tributed uniformly on the interval (0, 1) were generated
according to the method of Coveyou and MacPherson
(1967). This method is congruential with modulus (235

)

and multiplier 273673163155 (base 8). VI and V 2 were
transformed into pseudorandom unit normal deviates, ZI
and Z2, according to the method of Marsaglia (1962) via
the "box-wedge-tail" algorithm. The deviates, ZI and Z2,

were transformed into a bivariate normal observation (YI,
Y2) with the covariance matrix

V = [IT1
2

PITI~2J
pITIIT2 IT2

using the following transformation

4.1 Null Case

For the null case we generated 20 pairs of bivariate
normal samples of size n = 100 and

[ j.L IJ = [O'OJ ; [ITIJ = [I.0J ; P = .5. (4.3)j.L2 0.0 IT2 1.0

We then performed hierarchical clusterings for each pair
using the complete linkage method and Euclidean dis­
tance. In the complete linkage method, the distance be­
tween two clusters is the maximum of the distances be­
tween pairs of points, one in each cluster. B; was
calculated from the hierarchical trees for each pair. There
was no reason to believe that the members of a pair
would be related in any way. Figure 3(a) shows (k, B k )

plots for 2 of the 20 pairs. On each plot are superimposed
E(Bk ) and E(Bk ) ± 2 (var(B k»112 . Notice that in general
B; falls inside the limits as one might expect for pairs of
samples that are unrelated. (We shall soon see that the
distribution of B; is quite asymmetric for k ;::: 60.) Figure
3(b) shows (k, R k ) plots for the same 2 samples that were
considered in Figure 3(a). On each plot are superimposed
E(R k ) ± 2(var(R k » II2 . The plots show a general config­
uration that was anticipated by remarks in Section 3. The
value of Rk rapidly approaches 1.0 for k > 30. We do not
feel that this property is reasonable for samples that are

557

unrelated. We shall see that when the two clusterings are
related, our statistic B; takes values that are usefully
spread out over the interval (0, 1); in such cases the cor­
responding R; values would be concentrated very near
to 1. Notice that the 2 IT limits are very narrow indeed
and that R; agrees well with its expectation.

We were also interested in what the Baker measure,
'Y, would be for these 20 pairs of unrelated bivariate nor­
mal samples and how it would compare with Bi, To in­
vestigate this we made box plots of B k for certain selected
values of k and for 'Y. Box plots (Tukey 1977) are a tool
for summarizing the distribution of a sample. The center
line of the box is the sample median and the lower and
upper extremities of the box are respectively the 25th and
75th percentiles. A line is drawn from the extremities of
the box to the minimum and maximum of the sample re­
spectively. Figure 4, shows box plots for B k and 'Y when
k = 2, 10, 20, 30, 40, 50, 60, 70, 80, 90. The box plot for
'Y shows that the median 'Y for the 20 samples is approx­
imately zero. The distribution of v is also shown to be
quite symmetric with very small standard deviation (the
interquartile range is about .001). Baker's 'Y, thus, per­
forms quite well in the null case, where the clusters being
compared are unrelated. We see that B; has a very
skewed distribution for k ;::: 60 in this case.

4.2 Perturbation Experiments

4.2.1 Single Cluster Experiments. Figures 5 and 6 show
comparisons using (k, B k ) plots for clusterings of original
and perturbed data sets. Specifically, 20 samples of size
100were generated from the bivariate normal distribution
with parameters as in (4.3). For each sample, the coor­
dinates (Xi, Yi), (i = 1, ... , n) were perturbed by adding
a pair of small random deviates EI and E2, where (EI' E2)
were normal with mean zero and standard deviation, ITE •

Gnanadesikan, Kettenring, and Landwehr (1977) used a
similar method of perturb or "shake" (in their terminol­
ogy) a set of data. They studied the stability of a given
clustering in the presence of perturbation. The (k, Bk )

plots would thus be of use in studying the stability. Three
sets of 20 original and perturbed samples were generated
by taking ITE = .03, .06, .09. Hierarchical clusterings of
each sample were carried out using the complete linkage
method and Euclidean distance. Since the original and
perturbed data were not very different, one would expect
that their clusterings would have marked similarity. Fig­
ure 5 shows (k, B k ) plots with lines for E(Bk ) and E(B k )

± 2 (var(B k»)1/2 superimposed for 2 individual samples
for each of the cases ITE = .03, .06, .09. Each plot shows
significant similarity between the original and perturbed
data sets since the points generally lie well beyond the
limit, E(Bk ) + 2 (var(Bk»1/2. The plots show also a de­
creasing similarity with increases in ITE • There appears
also to be a tendency for B; to remain relatively constant
over long stretches of k, with a precipitous falloff at the
very highest values of k. These patterns may be seen more
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Figure 3. (k, Bk ) and (k, Rk ) plots for four pairs of unrelated bivariate samples, n = 100, ,",,1 = .0, ,",,2 = .0, (71 = 1.0, (72 = 1.0, p = .5.

clearly if an average configuration is calculated. across
the 20 samples for each value of (fE' Figure 6 shows (k,
ih) plots as well as (k, Sk) plots for rr, = .03, .06, .09,
where ih is the .05 trimmed mean and Skis the .05
trimmed standard deviation of the 20 values of Bi; Lines
for E(B k ) and ± 2 (var(B k ) ) 112 for the first of the 20 sam­
ples are included for reference. This practice is repeated
in Figures 8 and 9. Figure 5 shows some very interesting
effects. The tendency of B k to remain relatively constant
for long stretches may be seen more clearly here than in
the individual plots of Figure 5. Notice, however, that

these stretches grow shorter as rr, increases or, in other
words, that B» approaches zero faster as k approaches
n - 1. The drop in level of B k as (fE increases may also
be seen. For (fE = .03, B k -s .8 for 5 -s k < 90, for (fE =
.06, B; :0:;; .65 for 5 :s k < 70, and for (fE = .09, B; -s .575
for 5 -s k < 50. Figures 5 and 6 exhibit a very desirable
property of Bi; Perturbation affects B k least for small
values of k and greatest for large values of k. One certainly
would not want B k for small values of k to be drastically
affected by small perturbations in the data.

The (k, Sk) plots in Figure 6 also show an extremely
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4.2.2 Multiple Cluster Experiments. Perturbationexper­
iments were also carried out on bivariate normal data that
had more than one cluster. Two experiments were run,
one with two clusters and one with five. For the former
case samples were generated in the following fashion.
First, one sample of size 15 was generated from the bi­
variate normal distribution with parameters as in (4.3) .
Next, a sample of size 15 was generated from a bivariate
normal distribution with the same parameters except that

4.1. The distribution of values of 'Y indicates significant
similarity between the c1usterings before and after per­
turbation. The median value of 'Y across the 20 sample
values was approximately .60. The location of the dis­
tribution of'Y is thus intermediate to the locations for the
distributions of B 2 and BIQ. The variance of the distri­
bution of 'Y as estimated by the interquartile range ap­
pears, however, to be somewhat larger than the variances
of either B 2 or BIQ. The results are thus a bit mixed. That
the median 'Y is somewhat high in the presence of a small
perturbation of the sample is reasonable and desirable,
but the large variance of the distribution of v is cause for
concern.

interesting configuration. The values of Sk remain some­
what constant at about .1 for most of the range of k. There
is, however, a sharp increase in Sk if k > 90. Since 0 <
B; < 1, one would certainly not expect B; to be approx­
imately normally distributed. Nevertheless, normal quan­
tile-quantile plots of the B k were made for the 20 sample
values for each k. The extreme values of k show the most
systematic departures from normality. There appears to
be systematic curvature in the configurations for 2 < k
< 10 and pronounced discreteness in the distributions of
B; for 92 < k < 98. The latter pattern is certainly not
surprising since the matrix, M, for k in this range is quite
sparse with a large number of its nonzero elements equal
to one. The normal quantile plots for 10 < k < 90 were
remarkably straight. Thus, over wide ranges of k the dis­
tribution of B k is approximately normal with somewhat
constant mean and variance.

Both the Rand, Ri, and the Baker-Goodman-Kruskal,
'Y, similarity measures were calculated for each of the
three sets of data referred to previously ((1. = .03, .06,
.09). The value of R; quickly approached one regardless
of the magnitude of the perturbation; this property was
anticipated by remarks in Section 3. Figure 7, shows box
plots of the 20 sample values of v for (1. = .09along with
box plots of B; for the same 10 k values used in Section [ IJ. IJ = [2.5J .

1J.2 2.5
(4.4)

0."-

1.0,.-------------------------,

COMPARISON OF BK VERSUS TAU
Then the two samples were combined to form an original
sample of size 30, and the coordinates of each observation
were perturbed in the same fashion used earlier in this
section to produce a perturbed sample of size 30. Twenty
such samples were generated for each of the perturbation
standard deviations, (1. = .10, .20, .30, .40. The similarity
measure, B k , was calculated between the cluster trees for
each original and perturbed sample, and Figure 8 shows
(k, ih) plot for all 4 (1.'s, where ih is again the .05trimmed
mean of the 20 sample values of B«. The plots exhibit
similar configurations to those in Figure 5 for one bivar­
iate sample. The plots show significant similarity between
the clusterings of the original and perturbed samples since
most of the values of B k lie beyond the limit E(Bk) + 2
(var(B k » J/2 . Also the plots show that values of B k de­
crease with k more rapidly as (1. increases. For (1. = .10,
there is the tendency for B; to remain relatively constant
across wide ranges of k. One would expect that since
there are in fact two distinct clusters in the data, B k would
be large for k = 2, and indeed B 2 is greater than .80 in
all panels of Figure 8; the perturbation does not thwart
the recovery of the strong clustering in the data.

The five-cluster perturbation experiment was similar in
design to that for two clusters. Each cluster was a sample
of size 15 from a bivariate normal probability distribution
with (1J = (12 = 1.0 and p = .5. The mean vectors for
the five clusters were

,

t

0.2f-

0.0 f-

-0.2 Hl H1D HolD tUD tl4D H)U 66u HIU Hau a'lg uA""A

Figure 4. Box plots of Bk and 'Y for 20 samples of size n = 100
from each of two unrelated bivariate normal distributions, 11-1 = .0,
11-2 = .0, (11 = 1.0. (12 = 1.0, p = .5 (k = 2, 10,20,30. 40, 50, 70,80,
gO).

[~:~ J ' [l~OOJ ' [;:~J ' [lOO~OJ ' D~:~J. (4.5)

Twenty samples were generated according to this scheme
and were perturbed using (1. = .10, .20, .40. This yielded
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Figure 5. (k. Bk ) plots for two particular bivariate normal samples of size n = 100 and their perturbations; 1l-1 = .0. 1l-2 = .0. lJ1 = 1.0.
lJ2 = 1.0. p = .5.
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Figure 6. (k, Bk ) and (k, Sk) plots for 20 bivariate normal samples of size n = 100 and their perturbations; ILl = .0, IL2 = .0, (J"l = 1.0,
(J"2 = 1.0, p = .5.
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1.0C-~-------------------'

COMPARISON OF BK VERSUS TAU

Figure 7. Box plots of B« and"y for 20 bivariate normal samples
of size n = 100 and their perturbations; ILl = .0, 1L2 = .0,112 = 1.0,
112 = 1.0, p = .5; k = 2, 10, 30, 40, 50. 60, 70,80, 90; 11. = .09.

4.3 other Experiments

In this section we summarize the findings of three other
experiments. In the first we used the 20 bivariate samples
of size 100described in Section 4.2.1. The first coordinate
of each sample was multiplied by 2 and 4 (km = 2, 4),
respectively, to generate two groups of 20 pairs of sam­
ples. Plots of (k, B k ) for each group showed that the
changes of scale have large effects on the similarities be­
tween clusterings of the original sample and that of the
sample whose first coordinate had been rescaled. For km
= 2, B k dropped to about .58 for k = 5 followed by a
gradual increase to about .80 for k = 90. A similar con-

Notice that the plot for the complete linkage method
reaches a sharp maximum for k = 5 while the maximum
Bk for the single linkage method is not sharp and does
not occur at k = 5. This appears to indicate that the com­
plete linkage method is doing rather better in recovering
the structure of the master sample. Notice, however, that
the (k, Bk ) plot for the complete linkage method falls off
much more rapidly than that for the single linkage
method. To ascertain the reason for such behavior, we
selected one of the 20 samples whose (k, B k ) configura­
tion most nearly matched the (k, Bk ) for both the complete
linkage and the single linkage methods. Next, the four
trees for the master and perturbed samples for both the
complete linkage and the single linkage methods were cut
at k = 10, where there was a large discrepancy between
the B; values (Euclidean distance was used in the clus­
tering). Figure 11 shows scatter plots for the four cases
with the points identified by cluster number (l to 10).
Notice that for the master sample the complete linkage
method divides the (0., 0.), (l0., 0.), (0., 10.), and (10.,
10.) clusters roughly into two equal parts, while it trims
one point (cluster number 10) from the (5., 5.) cluster.
The single linkage method trims one point from the (5.,
5.) cluster and divides the (10., 0.) and (10., 10.) clusters
into three parts, but the (0.,0.) and (0., 10.) clusters are
retrieved exactly. For the perturbed sample the complete
linkage method still tends to split up each cluster (except
the (0., 10.) cluster) into 2 roughly equally-sized groups,
but the groups have quite different content than those for
the master sample. It is easy to see that the similarity
between the clusterings of the master and perturbed sam­
ples would be quite low in this case.

In contrast, the single-linkage method retrieves much
of the same structure that it saw in the master sample. It
trims the same point from the (5., 5.) cluster, recovers
the (0., 10.) cluster exactly, and trims two points from
the (0., 0.) cluster. These similarities alone account for a
larger value of B; for the single linkage method.

This experiment was repeated .for a different master
sample anddifferent perturbed samples. Figure 12shows
(k, Bk ) plots for the single linkage and complete linkage
methods. The complete linkage method retrieves the 5
clusters better than the single linkage method does, but
the latter again performs better for larger values of k.

~:
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] I
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ORIGINAL VERSUS PERTURBED SAMPLE

,
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, -
I T I .or

~BQ8
, ,, ,

0.2

O.A

O.b

D••

20pairs of original and perturbed samples. Figure 9 shows
(k, ih) plots for the three values of (fE' As we would
expect, B k is large for k = 5 (actually B k > .95 for all
three cases), and the recovery of five clusters is not
harmed by the perturbation. There is also the tendency
for the configuration to drop off more quickly as rr in­
creases.

A variation of the five-cluster perturbation experiment
provided an interesting insight and showed how (k, B k )

plots may be used profitably to study clustering methods.
First, a master sample of size 75 from the same mixture
of 5 bivariate normals was generated. The 20 perturba­
tions on this master sample were generated with (fE =

.80. Next (k, B k ) and (k, Bk ) plots (B k calculated across
the 20 samples) were constructed for the comparison of
the master sample and each of the 20 perturbed samples
using both the complete linkage and the single linkage
methods of hierarchical clustering. We have defined com­
plete linkage previously, in the single linkage method the
distance between two clusters is the minimum distance
across all pairs of points, one in each cluster. Of interest
was whether the (k, Bk), (k, Bk) plots could be used to
see how each of the methods recovered the master struc­
ture. Figure 10 shows (k, Bk ) plots for the two methods.
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Figure 8. (k, Sk) plots for 20 samples of size n = 30 from the mixture of two bivariate normals with mixing proportion .5, and their
perturbations; 1L1 = (0., 0.), 1L2 = (2.5,2.5); 0"1 = 0"2 = 1.0, P1 = P2 = .5 for each component of the mixture.

figuration was seen for km = 4, with a drop in Bk to about
.47 for k = 5 with a gradual increase to about .65 for k
= 90.

In the outlier experiments the 20 bivariate normal sam­
ples of size 100 were altered by adding + 10 to both x
and y coordinates of a randomly selected observation
from the 100. A plot of (k, B k ) was calculated across the
20 pairs of clusterings of original and altered samples.
The plot showed a pronounced drop in similarity for small
k and very high similarity for large k. For example, B;
fell to about.77 for k = 2 and was greater than .95 for k
> 20.

For the noise variable experiments, independent uni­
variate normal random variables whose variances were
equal to the average of the observed variances for the
individual coordinates were added as coordinates to the
data from Section 4.2.2 containing five clusters (n = 75).
Plots of (k, B k ) when three noise variables had been
added, for example, showed a dramatic decrease in sim­
ilarity between the clusterings for the original sample and
the sample including the noise variables. For example,
B k was equal to what might be expected by chance alone
for 2 ::5 k ::5 7, and only about .20 for 8 ::5 k ::5 70 for most
of the 20 pairs of samples. This demonstrates how greatly
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the recovery of cluster structure can be affected when
only a subset of the variables contain the structure, and
some of the variables contribute only noise.

Figure 10. (k, Bk ) plots for a master sample of size n = 75 and
20 perturbations from the mixture of five bivariate normals with
mixing proportions, .2; fL1 = (0.0), fL2 = (10, 10) fL1 = (0.0), fL2 =
(10,0), fL3 = (5,5), fL4 = (0, 10), fL5 = (10, 10), (11 = ... = (15 = 1.0,
P1 = ... = P5 = .5; (1. = .80.
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Figure 9. (k, Bk) plots for 20 samples of size n = 75 from the
mixture of five bivariate normals wIth mixing proportions, .2, and
their perturbations; fL1 = (0, 0), fL2 = (10, 0), fL3 = (5, 5), fL4 = (0,
10), fL5 = (10, 10), (11 = ... (15 = 1.0, P1 = ... = P5 = .5.

4.4 Data Example

In this section we present an example of the use of the
B; statistic on real data. In the example B; was used as
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Fowlkes and Mallows: Comparing Two Hierarchical Clusterlngs 565

one of a battery of techniques for uncovering patterns
and structure in the data.

The example concerned the authorship of 12 writings.
The data were taken from a feasibility study by W.A.
Larsen and R. McGill (1982) on the identification of au­
thors using letter frequencies. Specifically, the frequency
of each letter of the alphabet in selected passages of ap-

proximately 7,000 letters was recorded for two writings
by each of the following six authors: Pearl Buck; James
Michener; Arthur C. Clarke; Ernest Hemingway; William
Faulkner; and Victoria Holt. Unusual words and proper
nouns were excluded from the passages, since these
would tend to be specific to individual texts and are not
necessarily characteristic of the whole body of work of
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Figure 11. Scatter plots of master sample of size 75 and one perturbed sample from the mixture of f(ve bivariate normals with mixing

proportions, .2; f.L1 = (0, 0), f.L2(10, 0), f.L3 = (5, 5), f.L4 = (0, 10), f.Ls = (10, 10), IT1 = ,.. = ITs = 1.0; P1 = ... = PS = .5; IT. = .80.
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Figure 13. (k, Bk) plots for Larsen and McGill (1982) authorship
data using scaled and unsealed variables.

passage are given in Table 3. Hierarchical clustering was
carried out for the 12 observations using the complete
linkage method with Manhattan and Euclidean distance
and either scaled or unsealed variables. Manhattan dis­
tance is just the sum of the absolute differences for the
coordinate values of a pair of objects. There are a number
of choices for scaling the data. For example, proportions
of letters across books could be used to estimate the ap­
propriate binomial standard deviation. An estimate of a
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Figure 14. Dendrograms for hierarchical clustering (complete
linkage method) of Larsen and McGill (1982) authorship data.

ii) Single-Linkage Method
Figure 12. (k, 13k ) plots for a master sample of size n = 75

and 20 perturbations from the mixture of five bivariate normals
with mixing proportions, .2;!J.1 = (0.0), !J.2 = (10, a), !J.3 = (5, 5),
!J.4 = (a, 10). !J.5 = (10. 10), lJ1 = ... = lJ5 = 1.0; P1 = ... = P5 = .5;
lJ." = .80.

an author. The specific list of writings is given in Table
2. The identifying numbers of the books are used as iden­
tifiers in the dendrograms shown in Figure 14.

The data thus comprised 26 variables on each of 12
observations. Before any analyses were carried out, the
letter frequencies were converted to proportions by di­
viding by the passage lengths, also shown in Table 2. The
letter frequencies and the total number of letters in each

e-,..
01

..

.,;
iii) Euclidean Distance - Unsealed iv) Euclidean Distance - Scaled
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Table 2. Titles, Authors, and Total Letter iance stabilizing transformation like the arcsine-square
Frequencies Used in Larsen and McGill Authorship root or even a logit transformation. Regardless of the

Study choice of standardization procedure, it is an interesting
question whether such standardization should be carried

Total out at all since on the resulting scale, low frequency var-
Letter iables like x and z would have equal weight with highTitle Author Frequency

frequency variables like a and e. At any rate, in this ex-
1. The Three Daughters Pearl Buck 7144 ample we simply want to illustrate how B k can be used

of Madame Liang to study the effect of standardization or lack thereof.2. The Drifters James Michener 6669
3. The lost Worlds of Authur C. Clarke 7100 The similarity between the hierarchical c1usterings for

2001 the scaled and unsealed variables was calculated for both
4. East Wind, West Pearl Buck 7479 Manhattan and Euclidean distance. (k, B k ) plots for theseWind
5. A Farewell to Arms Ernest Hemingway 6877 two distances are shown respectively in Figure 13. The
6. The Sound and the William Faulkner 6885 corresponding hierarchical c1usterings are given in Figure

Fury (Part 1) 14. The (k, B k ) plot for Manhattan distance shows exact7. The Sound and the William Faulkner 6971
Fury (Part 2) agreement in the clusterings for k = 2, 3, 4, 5, II. It is

8. Profiles of the Authur C. Clarke 7505 interesting to note that the topologies for the two trees
Future

9. Islands In The Ernest Hemingway 6924 are, aside from height (or weight of the internal nodes)
Stream and labeling, identical. The same property is not true for

10. Bride of Pendorric Victoria Holt 6650 the trees using Euclidean distance. This is reflected also
(Part 1)

in the fact that the (k, B k ) plot for Euclidean distance has11. The Voice of Asia James Michener 6510
12. Bride of Pendorric Victoria Holt 6933 as small or smaller values of B; than the corresponding

(Part 2) values for Manhattan distance. This also shows that the
c1usterings are much more affected by use of standard-

binomial standard deviation appropriate for each author ization for Euclidean distance than for Manhattan dis-
could also be derived. For this example we chose instead tance.
to use the sample standard deviation of the proportions The flavor of the preceding discussion might imply that
for each letter as the appropriate scale factor. A com- Manhattan distance is to be recommended for use with
pletely different approach would have been to use a var- these data. Such is not really the case. It appears that the

Table 3. Data From Larsen and McGill (1982) Authorship Study

Passage
Letter

Frequency 2 3 4 5 6 7 8 9 10 11 12

A 550 515 590 557 589 541 517 592 576 557 554 541
B 116 109 112 129 72 109 96 151 120 97 108 93
C 147 172 181 128 129 136 127 251 136 145 206 149
D 374 311 265 343 339 228 356 238 404 354 243 390
E 1015 827 940 996 866 763 771 985 873 909 797 887
F 131 167 137 158 108 126 115 168 122 97 164 133
G 131 136 119 129 159 129 189 152 156 121 100 154
H 493 376 419 571 449 401 478 381 593 479 328 463
I 442 432 514 555 472 520 558 544 406 431 471 518

J 2 8 6 4 7 5 6 7 3 10 4 4
K 52 61 46 76 59 72 80 39 90 94 34 65
l 302 280 335 291 264 280 322 416 281 240 293 265
M 159 146 176 247 158 209 163 236 142 154 149 194
N 534 470 403 479 504 471 483 526 516 417 482 484
0 516 561 505 509 542 589 617 524 488 477 532 545
P 115 140 147 92 95 84 82 107 91 100 145 70
a 4 4 8 3 0 2 8 9 3 3 8 4
R 409 368 395 413 416 324 294 418 339 305 361 299

S 467 387 464 533 314 454 358 508 349 415 402 423
T 632 632 670 632 691 672 685 655 640 597 630 644
U 174 195 224 181 197 247 225 226 194 237 196 193
V 66 60 113 68 64 71 37 89 40 64 66 66
W 155 156 146 187 225 160 216 106 250 194 149 218
X 5 14 13 10 1 11 12 15 3 9 2 2
Y 150 137 162 184 155 280 171 142 104 140 80 127
Z 3 5 10 4 2 1 5 20 5 4 6 2

Total 7144 6669 7100 7479 6877 6885 6971 7505 6924 6650 6510 6933
Frequency
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use of Euclidean distance on the unsealed data reveals
the most interesting structure of the four clusterings car­
ried out. Notice, for this case, pairs of authors combine
before combining with other authors and that the women
authors (Buck and Holt) combine before combining with
any of the men. Also the women are more similar than
are any of the men. It is interesting too that Hemingway
is closer to the women than to any of the men. All of
these tidbits are not preserved for the Euclidean-scaled
case or for either of the Manhattan distance cases. For
each of these cases there is some confusion in the linking
together of the two women and Hemingway. The authors
Faulkner, Michener, and Clarke are always paired first
in each of the four trees.

5. CONCLUSION

The main insight we have obtained from thinking about
B k and other measures of similarity of two clusterings is
that similarity is not a one-dimensional concept. Clearly
our plots can be helpful in selecting an appropriate num­
ber of clusters. They also show that two hierarchical clus­
terings can exhibit different degrees of similarity at dif­
ferent levels of cut.

ferent types of terms shown as follows:

Tk2 = LL(miP»2 + LLL miP)miP(2)
iii J'

i7'i'

+ LLL m;}2)miP) + LLLL miP)mi'p(2).
i i' j i i' j j'
i=#:i' i::#=i' I#:-j'

Now, (m(2»2 = m 2(m - I? = m(4) + 4m(3) + 2m(2) so
that

a ·(4)b .<2)b .,(2) a.(2)a. (2)b.<4)
+ LLL I J (4) J + LLL I '~4) J

iii' n i i' i n
i7'P i7'i

a .(2) a . (2)b.<2)b. (2)
+ LLLL' "(4~ J'

i t: j j' n
i7'i' i7'P

Collecting terms, this reduces to

2 2 4 P'Q'E(h) = (2) PkQk + m k k
n n

APPENDIX: DERIVATION OF THE MEAN AND
VARIANCE OF s,

First, we write a(p) = a(a - 1) ... (a - p + 1). Then,
since

e, = Tkl(P kQk)I/2, where i, = L L m;}2)
i

where P k' and Qk' are defined by (2.12) and (2.13). The
value of var(B k ) follows immediately on subtracting
(PkQkln(2»2 and dividing by PkQk. Similarly the mean
and variance of the Rand measure, Re, may be deter­
mined using E(Tk ) and E(Tk

2
) .

In evaluating E(Tk
2

) , we have to keep track of four dif-
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DAVID L. WALLACE*

1. INTRODUCTION

Useful and interpretable methods for exploring and
comparing the results of clustering algorithms are few,
and developing inferential methods has proved difficult.
Fowlkes and Mallows's contribution is most welcome.
Their new measure, B k , of association between two par­
titions of n objects into k clusters and the plots they pro­
pose for its examination can be readily computed and
displayed and promote the exploration of clustering re­
sults.
- The history of statistics is replete with measures of as­

sociation and correlation. Just because a measure has
plausibility at face value, ranges from 1 down to 0, and
has a known sampling distribution under an extreme null
hypothesis of total randomness is no guarantee of its use­
fulness or interpretability. What does .50 mean? And does
.70 in one set of data really indicate greater association
than .60 in another? For cross-classified data, the se­
quence of papers by Goodman and Kruskal (1954,1963)
provided a model for the careful study of measures. They
stressed the value of an interpretation of the measure for
the population sampled or for the data generating process.

The multiple correlation coefficient illustrates how
even when a clear meaning can be attached to a value­
for example, the fraction of variance explained-that
meaning may be misleading when compared across ex­
periments. Mallows's Cp statistic has been valuable in
part because it is cast as a measure for internal technical
use and not as a test statistic or as a general measure of
fit.

Topics such as clustering are tougher than two-way
contingency tables or multiple regression. Even imper­
fect measures can be helpful when used with caution, and
some starts must be made where few inferential concepts
and tools are available. We want measures whose mean­
ing and value are stable over unimportant changes in the
situation and structure, while being sensitive to changes
that do matter. With this background in mind, I consider

* David L. Wallace is Professor of Statistics, Department of Statis­
tics, University of Chicago, Chicago, IL 60637.
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Comment

the B k measure and plots introduced by Fowlkes and Mal­
lows (or FM, as I shall henceforth refer to them).

The two B; plots in FM's Figure 12 illustrate the type
of usage that can be made, and despite any warnings by
the authors, will be made. Here each plot is a comparison
of a clustering from one set of data with the clustering of
a perturbed version of the data (strictly, the plots are
averages of the measures for 20 perturbations). The two
plots correspond to the same comparison based on two
clustering algorithms. The comparisons within each such
plot or between plots might be based on different distance
measures entering a single algorithm, or for clusterings
based on two sets of variables or two sets of objects, or
whatever.

In each of the plots in Figure 12, B k increases sharply
and steadily as k, the number of clusters, decreases until
k is very small. Furthermore, except when k is 5 or 6,
the value of B k is higher for the single linkage plot than
for the complete linkage plot. The superficial conclusions
are evident-the effect of perturbations on the clustering
is greater for large k than for small k, and for any k, the
effect is less for single linkage than for complete linkage.
Are these conclusions valid, or could some or all of the
increase be an artifact of the measure? What does B;
measure, and how stable is the meaning under incidental
changes in the situation?

FM do not answer these questions, nor will I, but I
hope to shed some light on them by examining the struc­
ture of Bi, I use their Larsen-McGill data on letter free
quencies in 12 texts by 6 authors. This example is small
and thereby not fully satisfactory, but real examples are
a foil for judgments, comparisons, and conclusions that
simulations and artificial examples cannot match.

2. CLUSTERING TREES AND PARTITIONS

FM have chosen to present their methodology under
two unnecessary limitations. Removing these extends ap-
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