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Active Discovery of Network Roles for Predicting the Classes of Network Nodes
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Nodes in real world networks often have class labels, or underlying attributes, that are related to
the way in which they connect to other nodes. Sometimes this relationship is simple, for instance
nodes of the same class are may be more likely to be connected. In other cases, however, this is not
true, and the way that nodes link in a network exhibits a different, more complex relationship to
their attributes. Here, we consider networks in which we know how the nodes are connected, but
we do not know the class labels of the nodes or how class labels relate to the network links. We
wish to identify the best subset of nodes to label in order to learn this relationship between node
attributes and network links. We can then use this discovered relationship to accurately predict the
class labels of the rest of the network nodes.

We present a model that identifies groups of nodes with similar link patterns, which we call network
roles, using a generative blockmodel. The model then predicts labels by learning the mapping from
network roles to class labels using a maximum margin classifier. We choose a subset of nodes to
label according to an iterative margin-based active learning strategy. By integrating the discovery
of network roles with the classifier optimisation, the active learning process can adapt the network
roles to better represent the network for node classification. We demonstrate the model by exploring
a selection of real world networks, including a marine food web and a network of English words. We
show that, in contrast to other network classifiers, this model achieves good classification accuracy

for a range of networks with different relationships between class labels and network links.

I. INTRODUCTION

Many naturally occurring networks can be decomposed
into sets of nodes that link to the rest of the network in
similar ways. These sets of equivalent nodes not only
share link structure but often share common attributes.
For example, assortative communities in online bidding
networks correspond to the main user groups according
to common interest [27], in blog networks blogs tend to
link to others of the same political view [I], and in biolog-
ical networks proteins tend to link to others that perform
similar functions [9]. In addition, there are types of dis-
assortative link patterns where nodes that are dissimilar
prefer to link to each other. For example, in a network
of sexual relationships linked entities tend to be of the
opposite gender [5], species in a food web tend to eat or-
ganisms of a different species [2], and in an adjacency net-
work of English words adjectives tend to precede nouns.

When we encounter a new network, we may not ini-
tially know how link patterns relate to the attributes of
nodes. The network could contain relations that are as-
sortative, disassortative or a mixture therein. If we wish
to perform learning tasks such as classification, it is im-
portant to understand the relationship between network
links and node attributes.

One way we can analyse the link patterns in networks
is to identify groups of nodes that link in equivalent ways.
We call these groups of nodes with similar link patterns
network roles. By analysing the pattern of links within
and between network roles we can understand the overall
network structure.
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Class labels, on the other hand, represent attributes or
descriptions of the nodes. Consider the aforementioned
word network, in which a link indicates that words are
adjacent in text and the direction of the link indicates the
word order. Let each of the words be assigned one of two
possible class labels, “noun” or “adjective”. Words la-
belled adjective are descriptive words and words labelled
noun are naming words. Here the class label tells us
something about the word, but without prior knowledge
of the language, it does not tell us how it links with other
words.

Therefore, class labels tell us something about the
nodes and network roles tell us about how nodes link
to each other. Our goal is to identify the relationship
between the two.

In English we can use network roles to describe the
link pattern that nouns follow adjectives. However, in
the French language adjectives may come before or after
a noun so while they have the same class labels, they
are described by a different set of roles. Furthermore, in
French certain types of adjectives such as grand, beau and
bon come before the noun while others such as américain,
noir, rond usually come after the noun. In this case,
nodes of the same class display heterogeneity as they do
not all link to the network in the same way, therefore we
can use multiple roles to represent the heterogeneous link
patterns of this class.

A graphical representation of some possible role and
class combinations are shown in Figure Each node
has a discrete class attribute (indicated by colour). The
difference between the networks is how the nodes link to
the rest of the network. Nodes of the same role (i.e. have
similar link patterns) are enclosed in a box. The top
left network illustrates assortative homogeneous classes,
while the network in the bottom left shows disassortative
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FIG. 1: Four examples of classes and roles in networks.
Node colour indicates class label. Nodes of that have similar
link patterns are enclosed in a box; we call these network
roles. A homogeneous class is made up of a single role while
a heterogeneous one contains multiple roles.

classes. Both of these cases are homogeneous because the
links of each class is described by a single role. In con-
trast, the link structure of a heterogeneous class cannot
be adequately represented by a single role and instead
multiple roles are required to describe the link patterns
of each class (right).

In this work we consider the scenario where networks
links are known but the node class labels are not. Al-
though the labels of the network nodes are not immedi-
ately available, we can query the network for more in-
formation (e.g. by conducting field work or lab experi-
ments etc.). The task is to query a subset of the labels
to discover network roles, which can not only be used to
understand the relationship between classes, but can also
be used to predict missing class labels.

Our approach uses only the link information and is ap-
plicable to a range of assortative and disassortative struc-
tures with no a priori assumptions about the structure
type. We also do not assume that all nodes of a par-
ticular class link to the rest of the network in the same
way. We achieve this by using a variant of the stochastic
blockmodel [14], 24] to model the probabilities of observ-
ing links between a pair of roles. The use of a blockmodel
gives us the flexibility to model a wide range of network
structures, e.g. assortative, disassortative or a mixture of
the two. It also allows for directed relations.

The particular blockmodel variant we use allows for
individual nodes to have mixed role memberships. This
means that a class contain multiple roles, and also that
roles can be shared across classes. For example, consider
a predator-prey network where nodes represent species
and directed links represent who-eats-whom, we may be
able to label nodes as carnivores, omnivores, herbivores
and plants. While the carnivore and herbivore classes
could be represented by the distinct roles {eats-animals,
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FIG. 2: A comparison of an iid classification process with
dimensionality reduction (top) and the network classification
process of our model (bottom). In the iid case the rows of
the input feature matrix, X, are independent while the
adjacency matrix, A, of the network is not.

eats-plants}, a node labelled as omnivore would take on
a mixture of these roles.

To learn the relationship between network roles and
class labels, we require some alignment of the classes and
roles, i.e. so we can identify a mapping from roles to
classes. We achieve this with a blockmodel that incorpo-
rates a maximum margin classifier (e.g. Support Vector
Machine [I1I]). This new model allows us to use known
node labels to influence the discovery of roles to improve
their alignment to the class labels. Therefore acquiring
more node labels improves the correspondence between
roles and classes. To determine which nodes to acquire
to efficiently discover network roles, we employ a margin-
based active learning strategy.

Once we have trained our model, we can use the net-
work roles we have discovered to make predictions about
the node labels we do not know. This classification pro-
cess is somewhat analogous to performing dimensional-
ity reduction (e.g. Principal Component Analysis) on iid
data before performing classification. By representing
the network with roles, we achieve similar goals to the
iid case, i.e. reduce dimensions, remove linear correla-
tions. However, we also gain an additional benefit of
conditional independence, since although the nodes in
the network are by nature dependent on each other, once
we condition on the network roles the class labels become
conditionally independent of each other.

We test our method on a selection of real world net-
works and show that, in contrast to previous work, it



performs well for a range of network structures and even
when nodes with the same class label connect to the rest
of the network in different ways.

II. RELATED WORK

In this work we examine the problem of how to explore
a network in order to discover the relationship between
node labels and network links. Related to this problem
are the tasks of collective classification and active learn-
ing in networks. These methods make predictions about
node labels, but unlike our work, they do not explicitly
try to identify the type of relationship between links and
labels.

The problem of classifying nodes in networks (referred
to as collective classification) has received a lot of at-
tention in recent years (e.g. [8, M5HIT, 9] 29] B3] B39]).
These methods consider the hard problem of making a
joint, or collective, prediction about the class labels of
nodes. This is hard because for N nodes with C' pos-
sible class labels, there are CN different ways to label
the nodes collectively. In the active learning setting, the
task is to select a good subset of nodes to label in order
to best predict the remaining nodes. Of these collective
classification methods, the relevant ones are those that
are applicable to the univariate setting, i.e. they do not
use attributes of the nodes as features for classification.

Most collective classifiers make assumptions, either ex-
plicitly or implicitly, that do not necessarily hold for all
networks. The most significant one being assortativity
(homophily), the is the assumption that linked nodes are
more likely to be of the same class. This assumption
does not hold in all cases as not all class labels are re-
lated to the network structure in this way. The Markov
assumption that node labels are conditionally indepen-
dent given the labels of its neighbours (e.g. [T, 20] 22]),
is also frequently used. This assumption allows one com-
binatorially hard collective problem to be broken into
many easier related problems that can be solved locally
at the node level in conjunction with iterative algorithms
to propagate these predictions around the network. We
make a similar, but less restrictive assumption that the
labels of all nodes are conditionally independent of each
other, given a set of unobserved latent variables that we
infer from the network structure.

III. ROLE DISCOVERY IN NETWORKS

We present a model for discovering network roles
(groups of nodes with similar link patterns) to help us
understand the relationship between the class labels of
nodes and the network links. Blockmodels are a type of
probabilistic generative network model and are a natural
choice for this task since they can model a wide range of
network structure types, e.g. assortative, bipartite, core-
periphery, hierarchical.

Our model is based on a mixed membership block-
model [25] and therefore assumes that each node a be-
longs to a distribution over roles. The nodes’ distribution
over roles determines the probability of a link existing
between any pair of nodes. This assumption allows us
to treat the links in the network as being conditionally
independent of each other given the network roles.

Since the blockmodel is a type of probabilistic gener-
ative model, we can specify it according to the assumed
data generating process:

1. For a given network draw a distribution over
the possible K2 network role interactiondl] 7 ~
Dirichlet(«)

2. For each role k € {1,2,..., K}:

e Draw a distribution over

Dirichlet(5)

nodes ¢ ~

3. For each interaction ¢ € {1,2,...,}:

e Draw a role-role interaction pair z; = (zs, 2, )4,
z; ~ Categorical(7)

e Draw a sender node s; ~ Categorical(¢,,)

e Draw a receiver node r; ~ Categorical(¢., )

For a given network, G = (V, £), this blockmodel de-
fines a likelihood function over the N = |V| nodes and
M = |&] links or interactions. The model assigns each
link, {s;,r;}, in the network a latent variable z; represent-
ing a distribution over possible role pairs. Each node’s
distribution over roles, z,, is then given by a normalised
sum over the indicator vectors of length K describing the
network role of the sender (zs,) and receiver (z,,) nodes:

Z”:nlv<225i+zz’“i>' (1)
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Exact evaluation of the blockmodel likelihood,
p({s,r}|a, B), is intractable since it requires a sum over
all possible combinations of the latent variables, z. Using
a distribution ¢ and Jensen’s inequality, we approximate

1 Conceptually, we can think of 7 as a matrix with dimensions
K x K such that each element 7y, ., represents the probability
of observing a link from role k1 to role ka.



the log likelihood with a more tractable lower bound?}

log p({s,r}a, B)

:10g//2p(7r,¢,z, {s,7}|er, B) dmr dop
1og//zp ™, ¢,2 {s r}a, B)d(r, ¢, 2)

q(m, ¢,2)
. p(m, @, 2z, {s, 7}, 5)

= Egllog p(7, ¢, 2, {s,r}|a, B)] — Egllog q(m, ¢, z)],
(2)

dr dé

where Ej is the expectation under the ¢ distribution.
Since the Dirichlet and Categorical distributions are con-
jugate, we can solve the integration analytically to give
us a tighter bound on the log likelihood [32]:

L(g; o, B) £ Eqllog p(z, {s,r}a, B)] —
> Egllog p(m, ¢,z,{s,}a, B)] —

[10g(J( )
Egllog g(m, ¢,2)].

IV. SUPERVISED ROLE DISCOVERY

Our goal is to better understand the relationship be-
tween network link structure and the node class labels. In
the previous section we discussed how a blockmodel can
be used to identify network roles and that network roles
can be used to describe how the network links. Therefore
to achieve our goal we need to find a mapping between the
network roles and the class labels. To find this mapping
we use a maximum margin classifier, e.g. support vec-
tor machine (SVM) [11]). We choose maximum margin
classifiers because along with their strong generalisation
guarantees [36], they have also demonstrated empirical
success on a broad range of iid tasks. Additionally, they
have been effective when used in conjunction with prob-
abilistic models to solve problems including optical char-
acter recognition [3I] and document classification [38§].
Effective methods for margin-based active learning in iid
data have also been established [13] 28] [34].

A classifier is a function F': X — Y that maps a fea-
ture vector x € X to alabel y € ). Since the blockmodel
assigns each node, v, a vector, Z,, representing its distri-
bution over roles, we can use Z, as a the input feature
vector. The classifier can then learn the relationship be-
tween roles and class labels. In this work we restrict F
to be a function of the form:

(4)

_ _ T—
F(zy,m) = arg max 1, Zy,

2 This is true for any choice of distribution, g, and is an equality
when ¢ is equal to the posterior distribution.

corresponding to a linear classifier in which 7 is a ma-
trix of coefficients with dimensions K x C and C' = |}
is the number of different class labels. A classifier with
good generalisation properties is one that maximises the
margin, i.e. the distance between the training points and
the separating linear decision boundary [36]. In the case
when C = 2 the support vector machine provides an ef-
fective method for learning a binary maximum margin
classifier. Solving the multi-class (C' > 2) case corre-
sponds to the following constrained optimisation [10]:

N
1., D
wip g+ 2 &
Tz _pTz >1-6,, —
V'U,y s.t.: nyvz’u ny Zu - Y:Yv é-'U (5)
& >0,

where D is a positive regularisation constant, 6, 4 is the
Kronecker delta and 1 — d,,, represents our loss func-
tion, which equals 0 for the correct prediction and 1 for
any other prediction. The slack variables, {&,} are used
for classes that cannot be separated by a linear classifier
by allowing some misclassification in the training data.
Since we minimize over the &,’s, when the classes are
linearly separable then &, = 0 Vv. The regularisation pa-
rameter, D, controls the scale of the training misclassifi-
cation penalty and can be set by using cross-validation.
Here, the multiclass margin, by which the true class y,
is favoured over another class y, is given by:

(6)

The constraints in Eq. ensure that all training in-
stances lie on the correct side of the decision boundary, if
possible, and a &, > 0 indicates that training instance v
is misclassified. Solving Eq.E| requires the introduction
of Lagrange multipliers, [i, and solving the Lagrangian:

T - T
Ny, %o — Ty Z

1 D&
Lin &) =2l + 23"
N v=1
+ N gz =y e+ 1= 6y, — &
v=1yey
Yo,y st > 0. (7)

Within this framework the simplest approach would
then be: first, infer the node roles using the blockmodel,
and second, train the SVM classifier using the known
class labels and the inferred roles. However, the likeli-
hood function of blockmodels often contains a large num-
ber of local optima pertaining to good but distinct solu-
tions [12]. As a result, optimising Eq.(3)) might not result

3 In practice this involves solving an equivalent dual formulation,
which we omit for brevity.



ALGORITHM 1: Inference algorithm for Maximum-Margin
Blockmodel

Initialise A, n randomly.
Initialise &t = 0.
while relative improvement in £ > 107% do
for i =1to €| do
update \; using Eq..
end for
update fi,n by optimising Eq.(g).
end while
Predict unknown labels 7, using Eq.

in the discovery of roles that relate to the class labelsﬂ
Instead, we introduce the maximum-margin blockmodel
(MaxBM), that treats the training of the classifier and
the inference of the roles as a joint optimisation problem
given by:

1 D&

min - —L(q;a, B) + = |nl>+ =) &

min (@0, 8) + 5lnll" + ;5
E,nT z, —nTz] >1- _

Yu,y s.t.: ’J[nyvz" Ty 2 O0y,y, — &v ®)
v >0,

The first part of the optimisation corresponds to the
negative lower bound on the likelihood of the blockmodel
(Eq.(3)), while the second part corresponds to the mar-
gin based classifier (Eq.(5)). Formulating the problem
like this means that the model will avoid locally optimal
solutions (i.e. network roles) if they do not help with the
classification task.

As with other blockmodels, the MaxBM treats the
presence or absence of each link as being conditionally in-
dependent given the latent role assignment. Additionally,
the model assumes that given the role assignment, the
class labels are conditionally independent of each other
and the network structure.

V. INFERENCE

We fit the MaxBM model to the observed network us-
ing an expectation-maximisation (EM) style procedure
(see Algorithm . In the expectation step, we infer the
latent variables (i.e. the network roles z), and in the max-
imisation step, we learn the model parameters (i.e. the
classification coefficients n). Once the algorithm has con-
verged, we can use the inferred model to make predictions
about the unknown node labels.

4 In the worst case the inferred roles could be orthogonal to the
class labels.

A. Inferring the network roles

We infer the network roles, z, using variational
Bayesian (VB) inference. VB inference [4] has the ad-
vantage over sampling-based methods due to convergence
that is faster and easier to diagnose. In VB, a varia-
tional posterior distribution is used to lower bound the
log likelihood (see Eq.(2)). This variational distribution
is restricted to a set of tractable distributions to approx-
imate the true posterior distribution. Most frequently
this restriction is that the distribution is fully factorised,
known as a mean-field approximation.

As we have integrated out the parameters m and ¢,
our variational posterior distribution, ¢, is over the latent
roles, z, only. This distribution takes the form:

q(z) = HQ(ZiP\i)a 9)

where each ); is a |[K x K|-dimensional variational pa-
rameter for a categorical distribution over pairs of roles
for link 4.

We optimise over ¢(z) by optimising ¢({z;}) for each
edge in the network until convergence. Since our model is
composed of probability distributions from the conjugate
exponential family the updates take a particular general
form [30]:

q(z:) o< exp(Eny, [log p(Y; Z)]) (10)

where Y represents the observed data and E.4, is the
expectation under all ¢,, for all 7’ # 7. Exact calculation
of the expectation in is computationally expensive
and therefore we use a first order Taylor expansion to
approximate the update equations [3, 30]. The network
roles are therefore updated according to:

(n'y, +B) (g, +6)

-1
Ai,kl,kz X (dkl,k2 + ak17k2)

N,

1
s o ( S Bl s —
Yy

1

n,

+ ZM%E[%W% - ny,b]) (11)

where dj, i, is the count of links from role k; to role
ko, and n,  is the number of times node v interacts as
role k. The first line of relates to the unsupervised
part of the update. This part of the update is used to
fit a blockmodel without the use of class labels and can
be used as an alternative to the Gibbs sampling method
used in [25]. The last two terms are due to the max-
margin formulation of Eq. and are non-zero for the
nodes that lie on the decision boundary, i.e. the support
vectors. These create a bias in the model that encour-
ages it to discover network roles that make more accurate
predictions on these difficult examples.

(nﬁ,ltcl + Nﬁ)(nj;@ + NB+ 5’@1,162)



B. Learning the classification coefficients

As a consequence of the conditional independence of
the class labels given the network roles, it is possible
to use standard SVM optimisation algorithm such as
[35], to obtain the optimal p and 1. However, different
to the standard SVM case the classifier inputs (network
roles) are not observed fixed values, but are instead la-
tent variables represented by our posterior distribution.
We represent our current approximation to the posterior
distribution with a series of expectations, specifically:

E,[zi] = A, (12)

SR DRED SR

1:8; =V 1T =0

where n, is the degree of node v and )\, is a K-length
vector representing the marginal probability of sender or
receiver positions, i.e.:

T
As; = [Z )\i’l’kmz Ai2kas ’Z Ai7K7k2‘| ’
ko ko k2
T
Ar, = [Z Niki1s D Niky20° ,Z)\z’,kl,Kl - (14)
k1 k1 k1

C. Predicting class labels

Once the inference algorithm has converged and we
have an estimate of the network roles and classifier coef-
ficients, we can then perform classification on the unla-
belled nodes in the network according to:

Yy = arg max nyTZv. (15)

VI. ACTIVE LEARNING

In many practical scenarios, the labels of the network
nodes may not be immediately available at training time.
Acquisition of these labels involves some cost; either the
cost of consulting an expert, conducting an investigation
or carrying out laboratory experiments. In order to min-
imise the cost incurred, we wish to select the most in-
formative examples. This is done using active learning.
Active learning is a form of supervised learning that in-
volves interactively selecting the nodes to label as part of
the learning process. In this setting, network nodes start
off unlabelled and the active learning algorithm aims to

5 We use a modified version of SVMulticlass: http://svmlight.
joachims.org/svm_multiclass.html

choose the best subset of nodes to label in order to im-
prove the classification of the remaining nodes. This is
undertaken in a greedy manner. At each stage of the
algorithm a single unlabelled node is selected to explore
and is added to the training set. This selection occurs
based on the output of the classifier and an active learn-
ing criterion.

As our method incorporates a maximum margin clas-
sifier it is possible to take advantage of active learning
criteria developed for support vector machines. This
involves querying a sample in relation to the decision
boundary. We employ a simple strategy that chooses
nodes that have the smallest margin [34] as intuitively
these represent the examples where the classifier is most
uncertain. We use the multiclass margin [28] as the query
function:

. T - T -
Omulticlass = arg 1nin g, %o — T, 2v- (16)

ve{l,...,N}

where 7, represents the predicted class for node v, as
given in , and y, = argmaxyzy 775 Zy is the second
most likely class label. The query function therefore
selects the node that has the smallest margin between
the top two competing class labels.

VII. EXPERIMENTAL RESULTS

Four real world networks were used to test our Max-
BM approach to learning the relationship between net-
work links and node classesﬁ a social network, a word
network, a marine food web, and a citation network.

The first dataset is Zachary’s Karate Club [37], a social
network of friendships between 34 members of a karate
club. The club split into two factions, one led by the
instructor and the other by the club president. The class
labels correspond to the faction each node belonged to
after the split.

The second network is comprised of 112 frequently oc-
curring nouns and adjectives in the novel David Copper-
field by Charles Dickens [23]. It is a directed network
where the links indicate adjacent words and the order
they appear in the text.

The third network is a food web of consumer-resource
interactions between 488 species in the Weddell Sea [7].
The directed edges link each predator to its prey. We
perform two classification tasks on this dataset, accord-
ing to the attributes feeding type and habitat; these at-
tributes partition the network in different ways. Feeding
type takes one of C' = 6 classes: primary producer, car-
nivorous, carnivorous/necrovorous, detrivorous, herbivo-
rous/detrivorous and omnivorous. Habitat has C = 5

6 A Python implementation of the Max-BM model along with the
datasets used are available at http://gdriv.es/letopeel/code.
html
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FIG. 3: Left: The karate club network. The node colour reflects the class label, i.e. which faction the node belongs to, while
the link colour reflects the assignment of roles. Middle: A visual representation of the distribution of inferred roles (columns)
for each node (rows) in the network. Right: The role interaction matrix. The diagonal blocks indicate that the network is
assortative.

classes, namely benthic, benthopelagic, demersal, land-
based, and pelagic.

Finally, the fourth network is the much studied Cora
citation network [29] containing 2708 machine learning
papers with directed links indicating citations, and C = 7
class labels indicating one of 7 subject areas.

For each network the algorithm was initialised by ac-
quiring the label of one randomly chosen node from each
class. It would be possible to learn the number of classes
as the network is explored by adding a new class when-
ever a new label was encountered. It would also be possi-
ble to optimise the number of network roles using cross-
validation at each stage. In this work, however, the num-
ber of roles was fixed, since we found in practise that as
long as we had a sufficient number of roles, the exact
setting of this parameter did not have a substantial ef-
fect on the results. The reason for this is that the model
only uses the roles it needs to represent the link patterns
that correspond to classes (see Sec. [VIIB1). We there-
fore set the number of network roles to twice the number
of classes, i.e. K = 2C.

Each stage of the learning process consisted of carrying
out the inference procedure in Section [V]to convergence,
followed by the selection of a new node to be labelled. At
each stage the margin cost parameter D was optimised
using cross-validation. The reported results are averaged
over 50 random initialisations.

In the following, we examine the network roles discov-
ered and the performance of the algorithm in discovering
these roles.

A. Role Discovery

When confronted with a new network dataset it is im-
portant to understand the patterns of complex interac-
tions between the nodes. This is useful to further our
understanding of how a system works, and also to better
understand the data so that we can build better algo-
rithms for prediction. In this section we examine the
network roles found using the MaxBM model and how
they can be used to understand the structure of the net-
work in relation to the attributes of nodes.

First, we consider the karate club network. This is a
well-studied network, largely due to its simple structure
and small size. Figure[3] (left) shows a visualisation of the
network. The node colours indicate the factions (which
we use as class labels) to which the nodes belong to after
the split. Node 1 and node 34 represent the Instructor
and club President respectively. In Figure [3| (right) we
see a visualisation of the logarithm of the number of links
that occurs between the roles. All the links occur on
the diagonal so this tells us that the network links are
assortative.

Figure [3| (middle) shows the node memberships to
roles. In this visualisation, the rows correspond to nodes
in the network and the columns correspond to the K = 4
roles. The rows in the top half are the nodes in the Presi-
dent’s faction, while the rows in the bottom belong to the
Instructor’s faction. Notice that the fourth column does
not contain any membership. Although the model had
4 roles available, it determined that three were sufficient
to represent the network structure. This visualisation
shows the relationship between roles and classes. We can
also interpret the roles in terms of the link patterns they
represent. Role 1 and Role 3 represent interaction within
the Instructor and President factions respectively, while



Role 2 represent interactions across factions.

The second network is the word network of adjectives
and nouns. Figure[d]shows the inferred role memberships
(left) and role interactions (right). This is a network that
has been previously described as being approximately bi-
partite [21] 23] due to the tendency for adjectives to pre-
cede nouns in the English language. We observe this
relationship in Roles 1 and 4, which account for the ma-
jority of the nouns and adjectives respectively. Roles 2
and 3 are therefore used by the model to account for the
words that do not follow this simple rule.

The third network is the food web of consumer-
resource interactions (i.e. who-eats-whom) and is shown
in Figure f] As there are two classification tasks we
choose to examine the network roles in relation to the
feeding type class label. This is because it is the easier
of the two to interpret without the use of more detailed
domain specific knowledge. We see in Fig. right) that
the majority of the interactions lie on the off-diagonal,
indicating that the network is disassortative. This seems
reasonable as it tells us that in general, species of one
type tend to eat species of a different type. Looking
closer at the role memberships (Fig. [5fleft)), we see how
the class labels relate to network roles. We see that Role
1 is exclusively composed of primary producers. Roles
2 to 5 (green overlay) correspond to herbivore species
and Roles 6 to 12 (blue overlay) correspond to carnivore
species. We might therefore think of these roles as being
eats-plants and eats-animals respectively and the indi-
vidual roles being another level of organisation within
these roles. The omnivore species are distributed across
all of these roles, since we know that omnivores eat both
plants and animals.

B. Classification Performance

We showed in the previous section that the MaxBM
can be used to discover the pattern between network links
and node attributes. Now we examine the performance
of the model in discovering this pattern as we go through
the process of acquiring labels. Each time we acquire
the label for a new node, we quantify the performance
according to the accuracy of the model predictions on
the rest of the network.

We compare our algorithm (MaxBM+Margin) with
two baseline strategies: random, where nodes were
queried in a random order, and degree, where nodes where
queried in order of largest degree. We also compare
against three other blockmodel approaches: a standard
blockmodel using mutual information strategy(Moore et
al.(MI)) as described in [2I], the blockmodel of [26]
using entropy (Peel (Entropy)), and a SVM using the
roles discovered using an unsupervised blockmodel [25]
(BM+SVM (Entropy)).

In addition, we also compare against a selection of uni-
variate collective classification and network based active
learning methods from the literature. A summary of
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FIG. 4: Left: The distribution of inferred roles (columns) for
the nodes (rows) in the word network. Right: The role
interaction matrix.
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FIG. 5: Left: The distribution of inferred roles (columns) for
the nodes (rows) in the food web network. Right: The role
interaction matrix.

these classification and active learning selection strate-
gies is given below['}

e Macskassy € Provost (Entropy): The weighted
vote relational neighbour classifier [19] and select-
ing the node that has the highest entropy predic-
tion.

e Lu & Getoor (Entropy): The network-only version
of the count-link logistic regression classifier [I7]
used with the above entropy method.

e Bilgic & Getoor (Entropy): The naive Bayes clas-
sifier and selecting the node with the highest sum
of entropy over its neighbours and itself [6].

o Zhu et al. (ERM): The Gaussian harmonic clas-
sifier using empirical risk minimisation (ERM) to
select the next node [39)].

e Macskassy (ERM): The same as above but using
heuristics to select a subset of nodes to evaluate
using the ERM method [18].

7 We use the netkit [20] implementations available at http://
netkit-srl.sourceforge.net/
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1. Karate club network

Figures |§| and m(outer left) show the performance of
the different algorithms on the karate club network. It
can be seen that although our margin-based approach
initially performs worse than random, after exploring
about 10 nodes it has almost perfect classification ac-
curacy. However, we see that a number of the other ap-
proaches out-perform our method, particularly the Mac-
skassy € Provost(Entropy) and Macskassy (ERM) ap-
proaches. The reason for this being that these models
have strong assortativity assumptions and, as we showed
in the previous section, this is an assortative network.
While our approach needs to learn the structure of the
network, these collective classifiers only require a good
choice of nodes to make accurate predictions.

2. Word network

Figures |§| and centre left) show, at each stage, the
proportion of unexplored nodes in the word network that
are labelled correctly by each of the methods. Here
it can be seen that the accuracy of the MazBM (Mar-
gin) method quickly rises to 90% and after querying just

20 nodes is close to 100% accurate. To start with, the
blockmodel method, Peel (Entropy), performs almost as
well as the margin approach, but the performance drops
slightly after exploring about half of the network. We
can also see that the MaxBM method performs better
than all the other approaches, since those that achieve
100% accuracy, require the labels of at least half of the
network before they do.

In [21] they observe that, because adjectives in the
English language tend to precede nouns, nodes with high
out-degree can be classified as adjectives and nodes with
high in-degree as nouns. Consequently they find that
their mutual information approach, Moore et al. (MI),
tends to query nodes with almost equal in- and out- de-
gree first; these represent node labels about which the
model is most uncertain.

We performed a similar analysis using our MaxBM ap-
proach. We found that the MaxBM quickly discovered
the main roles representing the nouns that followed ad-
jectives, i.e. Roles 1 and 4 in Fig.[4} these nodes tended to
be queried last. With Roles 1 and 4 in place, the model
chooses nodes that don’t fit this pattern to determine
how to best assign the remaining roles.

To understand why the algorithm chose this ordering,
we considered the degree of each node not only in terms



of its in- and out- degree, but in terms of its in- and
out- degree to each class. We found that the majority
of the adjectives in the network not only had a higher
out-degree than in-degree, but also a higher out-degree
to nouns than out-degree to adjectives. That is to say,
these adjectives preceded nouns more than they preceded
other adjectives. These nodes tended to be queried last.
In contrast, adjectives that did not link to the rest of the
network in this way were queried earlier since the model
was more uncertain about their classification. A similar
analysis of the nouns shows that the subset of nouns ex-
plored last never follow nouns and have a relatively high
in-degree.

8. Food web

In the food web network we have two classification
tasks. The feeding type task is shown in Figures [6| and

centre right) and the habitat task is in Figures [6| and

outer right). We did not run the Zhu et al. (ERM)
method on this network due to the long running time.
For both tasks the margin strategy with the MaxBM
model and the Peel (Entropy) methods outperform the
other algorithms.

Again, we examine the query order under the MazBM
(Margin) for both classification tasks. For the classifica-
tion of feeding type, the algorithm tends to query primary
producers last and the omnivores early on. As we saw in
Fig[p] the primary producer is a homogeneous class and is
represented as a role defined as having no outgoing links
(Role 1). Omnivores, on the other hand, are the hardest
to distinguish from the rest of the network as they have
the greatest variation in link patterns.

For the habitat classification task, the last half of the
network nodes to be explored tend to be of the benthic
and pelagic classes. In [21I] it was suggested that the
diversity of the species contributed to the misclassifica-
tion of more than half of the benthic species. In con-
trast to previous work, the evidence suggests that our
approach performs well even when the diversity is large.
The MaxBM model can capture this diversity because it
allows for class heterogeneity, i.e. the model can use mul-
tiple roles to model the variety of link patterns within a
class. Furthermore, the fact that the benthic nodes are
queried later on suggests that not only does this model
predict the benthic class labels more accurately, but it
does so with greater confidence.

4. Cora citation network

We do not run the Moore et al.(MI) or the Zhu et
al. (ERM) learning algorithms as they do not scale well
to networks of this size. Figure [§ shows the accuracy
of predicting the unlabelled nodes as the network is ex-
plored. Unlike for the other networks, we do not explore
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FIG. 8: Performance of labelling nodes within the Cora
citation network.

the entire network and instead terminate the learning
process once half of the nodes have been queried.

We see that the Peel (Entropy) method performs by
far the worst. It can be seen that the MaxBM (Mar-
gin) method performs better, but it is the Macskassy &
Provost(Entropy) and Macskassy (ERM) methods that
perform best. By the time half of the network has been
explored all of the methods except Peel (Entropy) and
Lu & Getoor (Entropy) reach 90% accuracy. This is a
similar pattern to that observed in the karate club net-
work. Both the karate club social network and the Cora
citation network are assortative and homogeneous [26].

Benefit of supervised role discovery

Finally, we make a general comment on the benefit
gained by allowing the class labels to influence the role
discovery process. The BM+SVM method is similar to
our MaxBM method, except that it performs the role
discovery and classifier training as separate steps and the
role discovery does not use the known class label informa-
tion. In all five of the classification tasks we see that the
BM+SVM method performed worse than the MaxBM
model. This shows that the network roles are adapting
as a result of the acquisition of class labels during the ac-
tive learning process and that there is measurable benefit
to incorporating labels into the inference process.

VIII. DISCUSSION

In this work we have considered the problem of identi-
fying the best subset of nodes to label, in order to discover
network roles that describe the relationship between net-
work links and node labels. We constructed an inter-
pretable and flexible model based on blockmodels and
margin-based classification. We assessed its performance
at discovering roles by its ability to accurately predict
the labels across the rest of the network.

We build on previous work based on generative block-
models and active learning to explore an unlabelled net-
work. In contrast to previous work, we do not assume
that nodes with the same label all connect to the rest of



the network in the same way. By allowing for heterogene-
ity within classes we can model a wider range of network
structures, while still attaining good classification accu-
racy on networks with simple class structures.

We have compared our model, based on classification
accuracy, to the related class of models known as collec-
tive classifiers. We see that for simple assortative net-
works, some of these algorithms outperform ours. If we
know a priori how classes in a network are distributed
relative to their link structure and we know that this
relationship is assortative, then our method is not the
method to use. However, if the relationship between class
labels is yet to be discovered then, as we have demon-
strated, our MaxBM model provides a good approach to
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explore the network. Furthermore, if the link patterns
are not assortative, then our method gives better classi-
fication performance than previous methods.
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