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Over the last decade considerable research effort has been invested in an attempt to understand the
dynamics of viruses as they spread through complex networks, be they the networks in human
population, computers or otherwise. The efforts have contributed to an understanding of epidemic
behavior in random networks, but were generally unable to accommodate specific nonrandom features
of the network’s actual topology. Recently, though still in the context of the mean field theory,
Chakrabarti et al. (2008) proposed a model that intended to take into account the graph’s specific
topology and solve a longstanding problem regarding epidemic thresholds in both random and
nonrandom networks. Here we review previous theoretical work dealing with this problem (usually
based on mean field approximations) and show with several relevant and concrete counter examples
that results to date breakdown for nonrandom topologies.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Under what conditions will a virus or other infectious agent
spread in a complex population network? This question has vexed
epidemiologists, mathematicians and computer scientists alike
for many decades (Anderson and May, 1991; May and Lloyd,
2001; Pastor-Satorras and Vespignani, 2001; Madar et al., 2004;
Aparacio and Pascual, 2007; Berchenko et al., 2009). An early
result arising from epidemic modeling is based on the so-called
reproductive number R,, the number of secondary infections a
typical infected individual is able to generate (Anderson and May,
1991). If a typical infected individual is able to infect on average
more than one other member of the population then Ry > 1. In
that case the virus is able to reproduce itself and trigger an
epidemic in the population, allowing it to persist in time for an
extensive period. In contrast, if the reproductive number is below
unity then Ryp< 1, and the disease will rapidly die out in the
population and an infection free equilibrium will be reached. This
threshold result assumes that the population is homogeneous and
randomly mixing, whereby an infected individual is equally likely
to come into contact and infect any susceptible present, an
assumption that has many limitations.

This result has been generalized to heterogeneous populations
in which some individuals have more contacts than others.
Historically, most notable are the studies of Dietz (1980) and
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May and Anderson (1988, 1984). For heterogeneous networks, the
relative fraction of nodes having different degrees is referred to as
the degree distribution. It is just the probability P, that a
randomly chosen node in the network has degree k, i.e, P, =
prob(deg(node i) = k). The mean degree of the network is (k) =>"
kP and variance of the degree distribution is var(k) = 62 = (k* ) —
(k>2. Consider a large population and let d; be the number of
individuals in the population that have k contacts, with >, d, = L.
Then (d/L) estimates the degree-distribution Py.

The degree of heterogeneity in the population’s contact struc-
ture may be gauged by the Coefficient of Variation CV = (o/<k)).
Equivalently one can write CV2 =((k?>/{k>%)—1. The popula-
tion is assumed to be randomly mixed subjected to the constraint
so that the degree-distribution is always preserved. For such a
heterogeneous population, it has been shown that (Anderson and
May, 1991; Dietz, 1980; May and Anderson, 1988; May and
Anderson, 1984):

Ro =R(1+CV?) (M

where R is the reproductive number for the equivalent homo-
geneous population where all individuals have (k> contacts and
thus CV=0.

Eq. (1) will be referred to as the Dietz-May formula since both
authors (May and Anderson, 1988; May and Anderson, 1984) were
responsible for developing the formulation and applying it in
practice. As before Rop>1 implies that an epidemic will ensue,
while Ry < 1 implies that the virus rapidly dies out and an infection
free equilibrium is attained. These concepts have proved useful for
studying contact networks with power-law distributions that
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might typify computer networks and in some cases be appropriate
for studying the transmission of sexually distributed diseases
(Pastor-Satorras and Vespignani, 2001; Lloyd and May, 2001).
Measuring Rg is often quite complicated, especially in complex
networks as Aparacio and Pascual (2007) have discussed. Newman,
2002 and Cohen et al. (2002) have shown how percolation ideas
and generating function methods can be used to provide exact
solutions of epidemic models on simple networks and on bi-partite
graphs. Their key epidemic threshold result is nevertheless the
same as Eq. (1) obtained by the different methods.

Considerable work has been invested in exploring these issues
in the biology, physics and mathematics literature. Concepts
taken from the percolation theory continue to play a major role
in current epidemic network research (Madar et al., 2004; Cohen
et al.,, 2002; Kenah and Robins, 2007; Parshani et al., 2010).
Moreover, there are many challenging open problems (see the
interesting inaugural article of Durrett, 2010).

In recent years, there has been considerable interest in under-
standing the way in which the detailed network structure of the
population, or its “topology,” might affect the persistence thresh-
old. That is, does the exact network structure, not just its degree
distribution, give extra information from which it is possible to
learn more about the spread of an epidemic? Since many real
networks are non-random and sometimes highly clustered, the
motivation to explore beyond random models is quite justified.

Chakrabarti, Wang, Faloutsos (Chakrabarti et al., 2008) intro-
duced a new model, referred to here as the CWF model, which
intended to identify exactly how a population’s network structure
controls the epidemic threshold. A very general epidemic threshold
condition for any arbitrary network was derived. This condition is
based on the network’s topology as a mean field approximation
will be elaborated shortly.

In this paper we show that many of the previous studies
contribute to our understanding of epidemic thresholds for random
networks, however for nonrandom network topologies (even
regular graphs) accurate predictions of the epidemic threshold
are hard to come by. We explore the mean field approximation
formulated by CWF and show that its predictions often break down
for nonrandom networks. This is because mean-field approxima-
tions fail to take into account the correlations in the state of
indirect neighbors. Moreover, by mapping one model to another,
we are able to retrieve known theoretical literature results (based
on percolation theory) that contradict the CWF general threshold
condition.

2. The CWF model

CWF (Chakrabarti et al., 2008) assume that the population is
divided into two classes: individuals that are Susceptible (S) and
individuals that are Infected (I). The model has the classical SIS
structure whereby susceptible individuals may become infected
upon contact with an infected individual. After contracting the
disease an individual recovers after some fixed time period and
becomes susceptible once again, thereby closing the SIS loop.

As each individual can be in one of the two states, for a
complex network of N individuals, there are 2N possible different
states the population may be found in. It is appropriate to
formulate the model in terms of a Markov chain, but this requires
information specifying the probabilities between each of the
possible states. In this formulation states correspond to particular
configurations of the population network, with the configuration
at each time step dependent on the former time step only.
However, it is not a simple matter to determine the probabilities
of the 2N x 2N transition matrix, which in any case is impractical
to work with even when N is modestly large, let alone of the order

of millions of individuals as is appropriate for large cities. As
such, CWF developed a method to approximate the Markov
chain model.

In more detail they consider a population network, and define
an individual’s neighbors as all members of the population he or
she can directly contact and transmit the disease. Set f§ as the
probability that an infected individual/node will infect a suscep-
tible neighboring node in the network, and let the probability that
node-i is infected at time t be given by p;,. Over one time-step, the
probability that node-i will not receive any infections from its
neighbors is, according to CWF, given by

Lo~ [T 1A=Ppie1+A=pjel= [[ [1-Bpje1] ()
JjeM; jeM;

where M,; is the set of all neighbors of node-i. Note Eq. (2) is exact
only when it is assumed that the nodes p;;_; are independent of
each other. This “independence assumption” is of great impor-
tance and will be dealt with in detail in what follows. Thus,
according to Chakrabarti et al. (2008) the probability that node-i
is healthy at time ¢ is given by

1=pie = (=P -1t +0Pic-1Cie 3

where ¢ is the probability that an infected node will recover at
time-step t. Note that since recovery is geometrically distributed,
the mean infection time is 1/4. This last equation states that node-
i is healthy at time t if it did not receive infections from its
neighbors at t and either node-i was uninfected at time step t—1,
or was infected at t—1 but was cured at t (Chakrabarti et al.,
2008). (This last term in Eq. (3), which appears in the CWF model
(Chakrabarti et al., 2008), is problematical as we explain in the
discussion. It can however be dropped without affecting the
results of the following stability analysis.) Combining Eqs.
(2) and (3) yields the CWF model

Pic=1-[1+G=Dp;c—1] [ [ A=Bpje-1) “)
jeM;

It is clear that the model has an infection free equilibrium in
which p*=0Vi. (Here, the star notation indicates a state of
equilibrium.) We now proceed to examine this equilibrium’s local
stability. Using vector notation, close to the equilibrium, Eq. (4)
may be approximated as

Pi=(1-OI+PA P 4 (5)

where, I is the identity matrix and A is the adjacency matrix of
binary entries 1,0 representing the connectivity between the
nodes. Thus, the infection free equilibrium (p} =0 Vi) is locally
stable only if

(1-0)+pp <1 (6)

where p is the spectral radius of the matrix A. This is because the
Perron-Frobenius theorem ensures that if A is a nonnegative,
irreducible matrix then one of its eigenvalues is real, positive and
greater than or equals to (in absolute value) all other eigenvalues
(Horn and Johnson, 1985). This eigenvalue is the spectral radius p.

In terms of the reproductive number, the infection free
equilibrium is locally stable if

Ro= gp <1 )

The reproductive number Ry, has a simple interpretation.
Returning to Eq. (6) we see that if FO is an eigenvector
corresponding to eigenvalue p of A, the expected number of
newly infected individuals in the next generation ?1 is given by
PBp, while the expected number of recovered individuals is . Since
the mean infectivity time is 1/9, then (f3/)p should be interpreted
as the total number of new infections generated in a single time
step multiplied by the actual infectivity period of the disease.
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Hence Ry is simply the mean number of secondary infections over
the infectious period of the disease.

This conforms closely with the conventional view of Ry as the
number of secondary cases that one infected case can produce
when placed in a wholly susceptible population. If it can infect
more than one individual on average (Ro> 1) an epidemic will
ensue otherwise the infection will rapidly die out as the infection
free equilibrium is reached. In what follows, (9) will be referred as
the CWF threshold criterion, since stability of the infection free
equilibrium depends on whether Rg is greater or less than unity.
In this way Rg, as given by Eq. (9), may be used as a reference
frame for testing the CWF threshold

It should be pointed out that the above analysis concerns the
underlying deterministic mean-field model presented by CWF,
and this raises two issues. First, for the full stochastic model, in
which the mean-field is supposed to mimic, one has to take into
account the stochastic effects. In particular, if Ry > 1 then demo-
graphic stochasticity at the initiation of an epidemic when
infectives are in small numbers, can prevent the epidemic from
triggering. This is the “stochastic epidemic theorem” (Renshaw,
1991): even though Ry >1 there is a finite probability that the
epidemic will not trigger. However, if Rgp<1 a major epidemic
cannot occur.

3. Known epidemic thresholds for random networks

We first consider random networks making use of the results
from Furedi and Komlos (1981). The latter authors studied
random, symmetric, N x N matrices in which the elements a;
are identically distributed having the same mean u and variance
2. For such matrices the largest eigenvalue may be approximated
by

>ij%j | o2
) = + —
=Nty

1
o — 10
() (10
Consider then Erdos Renyi networks, which comprise N nodes
with a probability p, of having an edge between any pair of nodes.
Thus, <a;>=pu=p and var(a;)= 62=p(1—p). Therefore Eq. (10)
may be rewritten as

>ijdij | o2
P==N +7

1 p(1-p)

+O<—>%N + =(N-Dp+1=<k)+1-
IN p D ( p <k p
for large N.

Hence, for an Erdos Renyi network, the CFW threshold is based
on Ro=(f/)(<k>+1—p). This coincides with the work of Dietz
and May who, as we saw, argue that
Np(l—p)> B

N2—132 = ((N—l)p+l):§(<k>+1—p)

RozR(HCVZ):ﬁ—’\.'p(H =5

0

It is of interest to examine regular random graphs in which
each node has the same fixed number of edges k, but the edges
are connected randomly between nodes. A simple calculation
shows that the spectral radius of the adjacency matrix associated
with any regular graph random or otherwise, must be p=k
(Restrepo et al., 2007). Thus the CWF threshold for a regular
random network occurs at the point where Ryo=(f3/d)k is unity.
This threshold is in agreement with Dietz-May formula (taking
CV=0) and deduced also by Kephart and White (1991).

Results are also available for the more general case of random
networks having arbitrary degree distribution d;. Chung et al.
(2003) have shown that the spectral radius of the adjacency
matrix associated with these networks is given by

(kS
<k

= (k>(1+CV?)

Thus the threshold condition for local stability as given by Eq.
(9) becomes

R1+CV?) <1
which is the Dietz-May formula given in Eq. (1).

4. Simulations of random networks:

We tested the above theoretical results by numerically simu-
lating the spread of epidemics on Erdos Renyi networks
(N=50,000) and Regular Random graphs (N=100,000). For each
network studied, 1% of the nodes were randomly chosen and
initially infected. Simulation then proceeded in steps of unit time
increments. During each time step, an infected node was able to
infect each of its neighbors with probability f. In addition, every
infected node recovered with probability J. In the case of 6=1,
infected nodes recovered in exactly one time-step. An infection
attempt on an already infected node had no effect; however if a
node recovers, it can be infected by its neighbors within the same
time step (as simulated by CWF in Chakrabarti et al., 2008 and
will be further discussed in the discussion).

Simulations were run for 50,000 time steps and were repeated
100 times with different initial conditions, for different values of
Ro=(p/0)p.

Fig. 1 plots the proportion of infected nodes (i.e., the number of
nodes infected divided by the total population N) at equilibrium
as a function of Ry. One sees the presence of an epidemic
threshold at Ry=0.99, while the CWF prediction is Ry=1 (see
Eq. (9) above). The figure makes clear that the CWF threshold
formula holds for both random networks and regular random
networks, although the result has been known for decades in this
context as given by the Dietz-May formula. We thus understand
that the true importance of the CWF threshold formula concerns
nonrandom graphs as treated in detail below.

5. Nonrandom graphs
5.1. One-dimensional chain

Consider regular graphs in which each node has exactly two
neighbors. This forms a topology often referred to as a “one-
dimensional chain” whereby each node-i is connected to node
i—1 on the left and node i+1 on the right, for i=1...N (Fig. 2a).

For the particular case of a one-dimensional chain we show
that it is possible to theoretically determine the threshold via the
percolation theory. To achieve this we first have to show that the
propagation of a virus in an infinite one-dimensional chain, where
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Fig. 1. (a) Random ER graph with average connectivity degree {d) =4. (b) Regular
random graph with fixed connectivity degree {d» =6. The proportion of infected
nodes at equilibrium is plotted for various values of Ry = (f/d)p where 6=1 is
fixed and Ry is determined by /3. The CWF threshold prediction for the topology of
the graph is simply Ro=1 in each figure. The simulated thresholds are in good
agreement with the predictions.
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Fig. 2. (a) One-dimensional chain. (b) 2D directed lattice. (c) Percolation on
directed lattice. (d) The proportion of infected nodes after 50,000 time steps
plotted versus Ry = (f8/9)p. Simulations were checked for both 6=1 and =0.8 and
the value of Ry is determined by f. Graph size is N=15,000. The CWF threshold
prediction for the topology of the graph is Ry=1. The simulated threshold is
Ro =~ 1.29 for 6=1, as predicted in text.

the probability to recover in a time step is =1, is analogous to
directed bond percolation in an infinite 2D directed square lattice
(Domany and Kinzel, 1981; Durrett, 1984). A directed square
lattice is similar to a square lattice but differs in the fact that
edges (bonds) always point in the positive direction of the axes as
shown in Fig. 2b.

Our simulations for the 1D chain epidemic model assume 6=1
and any infected node will recover after one time step. If we begin
simulation by infecting the node O at the origin, then in the next
time step the virus can exist only at the origin’s neighbors. There
is no possibility for the virus to exist at node O in the next time
step. Observing Fig. 2b and c, one can define a time axis by
t=(eq +e2/\/§) where e; and e, are unit vectors pointing in the
positive directions on the axes of the lattice. Moreover, a hor-
izontal line can be defined by the coordinates mie;+m,e, where
m;+my=M, M being the line index. Each horizontal line will
differ from its neighbors by integer units of ¢, i.e., assigned to a
new time step. Notice that at t=0 only the origin exists while at
t=1 only its neighbors exist and the coordinate of the origin node
is vacant. Thus, one can deduce that the structure of the directed
2D lattice is adequate to describe the virus migration in a 1D
chain for §=1. We now show that the behavior of the epidemic on
a 1D chain with 6=1 and a given f are analogous to a specific
bond percolation on a 2D directed lattice.

In general, in bond percolation on a graph, all the bonds in the
graph are processed in the following way. A bond will be removed
with probability p or will be kept with probability 1—p. Fig. 2c
shows a directed square lattice after bond percolation. In the
directed bond percolation model, a typical site O on a square
lattice is chosen to be the origin of percolation, from which
percolation can extend in a directed manner. If the base of the
directed pyramid space can be reached from the origin following
the bonds in a directed manner, percolation is said to occur.

In Fig. 2c the bond connecting origin O and node A was
removed while the bond connecting the origin with node B was
retained. This procedure is analogous to an infected origin that in
the next time step will infect one neighbor and not the other.
Indeed, when we set p to have the value of f the analogy is
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Fig. 3. (a) Regular graph N=8, d=4. The nodes are marked by black circles. (b) The
proportion of infected nodes is plotted for various values of Ry = (f/d)p where
0=1 is fixed and Ry is determined by . The CWF threshold prediction for the
topology of the graph is Ry=1. The simulated threshold is Ro=1.23.

complete and the question whether a percolation exists is
analogous to the question whether the epidemic is still alive. At
a critical threshold p., long-range connectivity first appears and
referred to as the percolation threshold as demonstrated in
Fig. 2c. Here the base of the directed pyramid space can be
reached from the origin following directed bonds, indicating that
a chain of infection has percolated through the whole network.

The known threshold for 2D directed bond percolation is
pc=0.6447 (Essam et al., 1986; Jensen, 1996). Moreover, the
spectral radius of the adjacency matrix of a one-dimensional
chain is p=2 (since it is a regular graph where every node has
2 neighbors), Therefore we conclude that the epidemic threshold
is f.=0.6447 and Ry =2(f}/0) =2 x 0.6447 ~1.29. This known
result from the literature is confirmed by the simulation results
in Fig. 2d.

Since the epidemic threshold for the CWF model is Ry =2
(B/d) =1, Fig. 2d shows that the simulation results are in contra-
diction with the CWF prediction with some 29-34% deviation.
Hence we show both theoretically (6=1) and via simulations
(0=0.8 and 1) that the mean field based CWF threshold is not
appropriate for the 1-D chain. To show that the problem exists for
other values of §, and not just for the special case of =1, Fig. 2d
gives simulation results for 6=0.8 that also contradict the CWF
prediction.

5.2. Regular graphs(d > 2):

Examine now regular graphs, where it is assumed that each
node in the graph has the same degree k (k > 2). Here we consider
regular graphs where each node is connected to its nearest
neighbor and should thus be considered highly clustered regular
lattices rather than random networks. We simulated the spread of
a disease for regular graphs having degree k=6, and N=15,000
nodes for periods of 50,000 time steps. As shown in Fig. 3b the
infection free equilibrium threshold was found at Rp=1.23 and
deviated from the CWF predicted threshold (Ry=1) by some 23%.
Hence again, the CWF prediction does not match the results
obtained for simple regular graphs.

6. Star graphs

Another informative, yet simple example, is the star graph. It is
defined as a central hub that connects to its N neighbors, but the
neighbors are not connected to one another (see Fig. 4a). The hub
is infected. Neglecting fluctuations and the discreteness of the
system, the probability that the hub infects a neighbor, which
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Fig. 4. (a) Star graph, N=14 neighbors and one hub. (b) The expected time steps a
disease survives in a star graph according to Eq. (12). 100 simulations were
executed for each Ry = (f#/9)p, with the value of Ry determined by f. Simulations
were checked for both 6=1 and 6=0.8.

subsequently reinfects the hub, is 2. Thus the mean number of
secondary infections for an infected hub and a fixed 6=1 is
Ro=Np2. The threshold based on R, is therefore calculated as
Ro=NpZ=1, since the spectral radius p of the star graph is v/N.
The CWF threshold is thus Ry =+/Nf =1, and is identical to the
one calculated before. However, we will show that for fixed 6=1,
not only is this threshold inaccurate, it does not exist.

We proceed by making an exact derivation of the disease
average life time. Suppose the central hub is infected at time step
t=0. The probability that the center node will not become
infected by its neighbor node-i at time step t=2 is (1— f?). Thus
the probability that the hub will not become infected from any of
its neighbors at time step t=2 is (1 —ﬁz)N and the probability that
it will be infected at time step t=2 is (1—(1 —ﬂz)N). Therefore the
probability Ly; that the disease will survive to the 2jth time step is

Lyj=(1-1-p)VY (11)

Appendix A shows that the probability Sy, 1 that the disease
will survive to the (2j+1)th time steps but will not survive to the
2(j+1)th time step is

Saks1 = Lo(1=PN(A+ PN 1]

and therefore the expected time steps a disease will survive in a
star graph is (shown in Appendix A)

2 1 1
aA-pH"  a+p"

Our simulations of virus spread in N=1000 nodes star graph
for different f values (represented in Fig. 4b), agree with Eq. (12).
Eq. (12) shows that the star graph lacks an epidemic threshold for
the special case of =1 and f <1, since there are no phase
transitions in the Equation. Thus, it appears that epidemic
dynamics for the star graph lacks a threshold for f <1 and 6=1.

In the absence of a more general analysis, it is difficult to
conjecture about the star threshold, or its absence, for values of ¢
other than =1. Instead, Fig. 4b provides a simulation for the case
0=0.8 and it can be discerned that the scaling is indeed similar to
the known threshold free case of =1, notably without signs of a
phase transition.

gy = 12)

6.1. The independence assumption

The so-called independence assumption is a critical assump-
tion used in deriving the CWF model. It assumes that the
probabilities of the ith node.

Pjt—1 (j=1..N neighbors of node i) in Eq. (2) are independent of
each other. The accurate way to formulate the disease dynamics is
by examining all possible states. If the system has N nodes, each
with a possible value of 1 (for infected) or O (for healthy), then the
system has 2V possible states. The probability of the system to be
in state-k at time ¢ is given by Py,. In general, P, has its dynamics
in time as a function of § and o.

The exact derivation of the probability that a node-i will not
receive infections from its neighbors in the next time step should
take into account the probability to be in that state and therefore
Eq. (2) is more exactly written as

2N
L= ( 11 (1_ﬁnj,k)> Pyeq (13)

k jeM;

where Py._1 is the probability of the system to be at state-k at
time step t—1, and M; is the set of all neighbors of node-i. nj is
the value (one or zero) of node-j at state-k.

As shown in Appendix B, CWF’s model (Eq. (2)) is based on the
mean field approximation

<Hnj> ~ I <> (14
t

JeM; jeM;

The brackets represent an averaging over all the 2V possible
states of the graph at time step t. In fact by application of this last
approximation, Eq. (13) reduces directly to Eq. (2).

However, correlations between the neighbors may be signifi-
cant for the propagation of infections through certain networks
such as nonrandom regular graphs. In order to better understand
the impact of correlations we examine two arbitrary nodes, say
the first and second, and evaluate the term <{n{n,», which is the
product of the node values at the fixed time t averaged over
many runs.

If there are no correlations we would expect {niny>,=<{n; >,
{ny>. As an example we show in Fig. 5a and b the difference
between the products {nyn,»; and {n;»:{ny >, in a 5000 nodes
regular nonrandom graph (as depicted in Fig. 3a) and a regular
random graph with connectivity degree k=6, f=0.21 and
0=1.5000 simulations was made, which represent a sample of
the 2N possible states.

While for the regular random graph we find only 1% difference
on average between the two sides of Eq. (14), the regular
nonrandom graph yields a difference of 56%. Thus the indepen-
dence assumption holds for random but not nonrandom regular
graphs.
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Fig. 5. Joint infectivity products {n;n,»and {n; ) {n,) calculated for nodes 1 and
2 are plotted versus time for (a) regular random graph and (b) regular nonrandom
graph. The differences were measured after the system equilibrates.
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7. Discussion

The dynamics of viruses as they spread through complex
networks is a multidisciplinary research field that is currently
receiving great attention (Pastor-Satorras and Vespignani, 2001;
Madar et al., 2004; Berchenko et al., 2009; Lloyd and May, 2001).
A general methodology that is often adopted to address the problem
is to consider a simple parallel procedure that follows all newly
infected nodes generated at each time step. This is the framework
also adopted by Chakrabarti et al. (2008) when they proposed a
general model and an epidemic threshold prediction applicable for
complex network topologies. Unlike previous mean field models,
CWF argue that their model gives correct threshold predictions for
any arbitrary topology. In this article we have examined this claim
in detail and presented various counter examples. Our examples
range from modified random graphs to regular nonrandom graphs.
In the case of the one-dimensional chain, it was possible to map the
problem to an already existing and well-studied phenomenon: that
of directed percolation in 2D. Known results from that field
corroborate our simulations showing that the true threshold differs
significantly from the CWF prediction. For the case of the star graph
topology it was possible to show analytically that a threshold does
not exist for fixed 6=1. After a close investigation of the CWF
model, a comparison with the exact Markov chain model made it
possible to pinpoint exactly the mean-field approximation used by
Chakrabarti et al. (2008) and deduce when this approximation is
valid and when it fails. This relates closely to our section discussing
the “independence assumption”.

The analysis we report here is specifically relevant for the
discrete time approach used in many network epidemic models
including the work of CWEF, but it is nevertheless worthwhile
clarifying the underlying differences with continuous time
approaches, which have received interest in recent years (Ganesh
et al., 2005; Van Mieghem et al., 2009; Peyrard et al., 2008; Peyrard
and Fran, 2005). For the discrete case, when modeling the spread of
an epidemic through a network we may begin by making hypoth-
eses about certain attributes of the nodes dynamics within a finite
time interval. One can then attempt to write down the difference
equations that realistically represent the dynamics of the system
using a mean field approximation and probabilities. To achieve
this, each node requires its own specific difference equation with
time-step At=1 built in a manner that allows for the probability of
multiple events to occur during that time interval. It may be easier
to obtain analytic results by transforming the difference equations
into more approachable differential equations. However, this needs
careful treatment. Merely exchanging dt for At and rewriting the
difference equation can be problematical. Transforming a differ-
ence equation into a differential one is a nontrivial problem. The
analytic solution of a differential equation is not always represen-
tative of the “equivalent” difference equation.

Another possibility is to stay with the same features of the
system but to let At— 0. In this case several considerations need
to be taken into account.

First, we do not deal with probabilities any more but with
rates, i.e., single events have probability to happen within dt
proportional to dt. One cannot just exchange the probabilities for
rates of the same values.

Second, one should assess the logic of the model and equations
as At— 0. This requires making sure that multiple events cannot
occur within infinitesimal dt so the difference equation is essen-
tially linear in dt. In a correctly posed model, two events should
not occur within the same infinitesimal dt otherwise we cannot
appeal to the Poisson assumption implicit in the epidemic
modeling approach.

Third, when simulating the epidemic dynamics on graph
realizations, since At—0, the dynamics of an epidemic on a

network is a Poisson process. Correct simulation of the system
dynamics should make use of the Gillespie algorithm (Gillespie,
1977) that mimics the Poisson process. It is well known that the
Gillespie algorithm may exhibit different results than an algo-
rithm, which computes the changes of all of the nodes in parallel
at each time step.

With these points in mind, let us return to the CWF model.
In Eq. (3), which represents the CWF model, multiple events
happen in the same dt, i.e., a node can recover and get infected
once again within the same dt (last term RHS). Of course this is
plausible only for a finite At but should not occur if At—0 since
the underlying Poisson formulation only allows for one event per
time step.

Similarly Eq. (2), which is also a key ingredient of the CWF
model, explicitly defines (;; as the probability that a node-i will
not receive any infection in the next time step. As can be seen in
Eq. (2), the probability for this event is expressed as multi-
plication of probabilities of events, namely, that node-i does not
get infected from all of its k-neighbors. Thus the formulation
implicitly takes into account the likely possibility that node-i
could be infected by more than one of its neighbors in the same
time-unit At. This is precisely the reason one goes to the trouble
of forming this product of probabilities of no event occurring.
Hence Eq. (2) allows for the fact that multiple events may occur
within the same time step, which can only have meaning when
the time step is a finite At. Such a situation should not happen
if At—0.

CWEF claim that their analysis is valid when At—0 in Eq. (3),
implying that it also holds for the continuous time case. Yet their
difference equation takes into account the probability of multiple
events within the same time interval. This prevents the develop-
ment of a differential equation representing the system as At— 0.
Moreover, CWF simulate a parallel algorithm that follows the fate
of all of the infected nodes at each iteration rather than an
algorithm that mimics a Poisson process (e.g. the Gillespie algo-
rithm, Gillespie, 1977) as should be applied when At—0.

Some work concerning the continuous time case has already
appeared in the literature (Ganesh et al.,, 2005; Van Mieghem
et al., 2009; Peyrard et al.,, 2008; Peyrard and Franc, 2005).
However, the results of these modeling approaches are not
directly equivalent to those found in the parallel discrete time
procedure discussed here. For example, if f and ¢ are not small
then fAt, 4t <1 does not hold for At~ 1, as required in a
Poisson formulation, and the analogy between the rate equations
and probability equations breaks down.

Finally we note that in Appendix C we explore the implications of
the CWF scheme when used to make predictions about appropriate
vaccinations and containment strategies in the event of an epidemic.
In such cases, the CWF scheme yields misleading predictions.
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Appendix A: star network

The probability the disease will survive to the 2jth time step is
Ly; = P(time steps = 2j) = (1-(1— )Ny (A1)

The probability the disease will survive to the 2jth time steps
but will not survive to the (2j+1)th time step

Syj = Lyj(1—-B)N (A2)
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and the probability the disease will survive to the (2j+1)th time
steps but will not survive to the 2(j+1)th time step is

Sojs1 =Ly(B APV + N T A-pA-PHV T+ -

+ (T)ﬁ‘(l—ﬁ)””(l—ﬁf) =L1-pN ;N: (2’) prAN-k

k=1
= L(1-BN(A+HV-1] (A3)
and hence the expected time steps the disease will survive are
<ky =" 2kSy+ > (2Kk+T1)Sp1 (A
k=0 k=0

By assigning the expressions of S, 1 and Sy, (A.4) turn to

<ky =1-pN {Z Ly + [+ /=11 (2k+ 1)@)}
k=0 k=0

=1-p"

204+ > KLy +((A+HN-1) > Lz,(} (A.5)
k=0

k=0

Since >"1°_ o Ly is a geometric series

Slu= Y A--pHN =
k=0 k=0
and

i KLy = i k(1—(1—- 2Nk = 1 2 [i
k=0 k=0 k

= In[1-(-p"] 2 [{=%

1 1
1-1+-pHY  a-pH)"

(1 _a _ﬂZ)N)“k:|

a=1

B 1 K 1
== a2

(-0-7) ()
= o2 = 2N
(1-(1-p)" 1-p2
[-(-0-7)7,., )
Now, (A.5) can be written as
W N (==Y Noqy ]
<k == |21+ B) (1—[32)2N +((A+p) D(l—ﬁz)"’
Gy =—2 ! (A6)

S
aA-pHN  a+pN

Ap=-0.0153

Ap =-0.0155

Appendix B: the independence assumption

The exact derivation of the probability that a node-i will not
receive infections from its neighbors in the next time step is

2N
L= ( 11 (1—ﬁnj,k)) Pyeq (B.1)
j

k jeM;

Eq. (B.1) can be revised into

Ge=> (1 - nj+ B ST mnge—-- + DM T nj,k) Prea

k JjeM; JaeMij+#q jeM;

:17ﬁ2<”1>f71+/32 Z <njnq>t717"'+(7l)MﬁM _Hnj>
-1

jeM; JqeMij#q e M;

(82)

where M= |M;| is the size of the neighbors set.
Using the approximation

<Hnj> ~ T <ni>e (B.3)
t

JeM; jeM;

where the product can be over a subset of the neighbors or all
of them.
Eq. (B.2) turns into
(ir ™ 1—ﬂz [QUDTS 'f',B2 Z Ny 1 {Ngyeq—--- +(—1)M,BM H MY
jeM; JgeMij+#q jeM;

(B84

The average value of {n;);_; is the probability of node-j to be
infected at time t—1, which is equivalent to the CWFp;,_; and
therefore (;, is approximated to

Ger [ A-Ppic—1) (2)
jeM;
Thus we understand that the mean field approximation
suggested by Chakrabarti et al. was to approximate each averaged
product into a product of averages (as seen in Eq. (B.3)).

Appendix C: vaccination strategy

One of the conclusions Chakrabarti et al. (2008) draw from the
CWF model is that the most efficient way to immunize a network,
is to vaccinate the nodes (i.e. subtract the nodes and their links
from the graph) that will cause the most significant decrease in
the spectral radius p of the adjacency matrix A. It is interesting to
examine this proposition closer using their example as shown
in Fig. 6.

Fig. 6. The “bar-bell” graph discussed by Chakrabarti et al. (2008). Vaccinating any one of the nodes A, A’, B and C results in the change of the spectral radius p by Ap
demarcated. Since vaccination of node C is associated with largest Ap= —0.0315, the CWF method would suggest this to be the most effective strategy when only one node

can be vaccinated.
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N

~ Ap=-0.0575

Fig. 7. Modification of the “bar-bell” graph. Node D is added to the right cluster. The effect of vaccination on p is noted next to nodes C and D.

In the case of a budget limited to the cost of the vaccination of
only one node, arguments have been made in the past (Pastor-
Satorras and Vespignani, 2002; Cohen et al., 2003) for vaccinating
the node with the highest connectivity (several nodes are appro-
priate for this strategy in this example among them node A’).
However, according to the CFW model the most efficient strategy
would be to vaccinate node C since it achieves the maximum
decrease of p (Ap=—0.0315).

Nevertheless there is a need to treat this conclusion with
caution as the following example shows. Suppose a small change
is made in the graph presented in Fig. 6, by adding a single node D
to one of the clusters (Fig. 7).

This minor modification should, on the face of things, not
change the fact that vaccinating node C is the most efficient
strategy. But, at the same time, vaccinating the marginal node D,
results in the enhanced reduction of p (Ap=—0.0575) in com-
parison to vaccinating node C (Ap= —0.0183). It is highly unlikely
that this small network perturbation should change the vaccina-
tion policy to this degree, Thus, in our opinion, it is still an open
question as to whether vaccinating nodes that cause the max-
imum reduction of p is in fact the most efficient one.
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