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Inferring properties of the interaction matrix that characterizes how nodes in a

networked system directly interact with each other is a well-known network

reconstruction problem. Despite a decade of extensive studies, network recon-

struction remains an outstanding challenge. The fundamental limitations

governing which properties of the interaction matrix (e.g. adjacency pattern,

sign pattern or degree sequence) can be inferred from given temporal data

of individual nodes remain unknown. Here, we rigorously derive the necess-

ary conditions to reconstruct any property of the interaction matrix.

Counterintuitively, we find that reconstructing any property of the interaction

matrix is generically as difficult as reconstructing the interaction matrix itself,

requiring equally informative temporal data. Revealing these fundamental

limitations sheds light on the design of better network reconstruction

algorithms that offer practical improvements over existing methods.
1. Introduction
Networks are central to the functionality of complex systems in physics, engin-

eering, biology and medicine [1–3], often serving as a conduit to the system

dynamics and fundamentally affecting their dynamic behaviour [4–10].

Network reconstruction (NR)—recovering properties of the underlying inter-

connection network of the system from temporal data of its nodes—thus

provides a first step to understand, diagnose and control the dynamics of

diverse networked systems [11–17]. Let xiðtÞ [ R be the activity of node

i—representing the concentration of a certain biomolecule, or the abundance

of a certain species, etc.—in a networked system of n nodes. Assume that the

system dynamics is dominated by pairwise interaction and can be described

by a set of ordinary differential equations (ODEs)

_xiðtÞ ¼
Xn

j¼1

aijfijðxiðtÞ, xjðtÞÞ þ uiðtÞ; i ¼ 1, . . . ; n, ð1:1Þ

where the coupling functions fij : R� R! R specify how two nodes interact,

and uiðtÞ [ R represents some known signals. The interaction matrix
A ¼ ðaijÞ [ Rn�n captures direct interactions between nodes, defining the inter-

connection network of the system by associating aij to the directed edge j! i.
By appropriately choosing the coupling functions, equation (1.1) models a

broad class of networked systems [18].

Given some function P of the interaction matrix—which we call a property—

NR aims to recover PðAÞ from given temporal data fxiðtÞ, uiðtÞgn
i¼1, 8t [ ½t0,t1�,

and given knowledge of the coupling functions. Reconstructing the identity prop-

erty (i.e. A itself ) is equivalent to the classical parameter (PI) problem [19,20]. But
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we can also reconstruct other properties of A, such as its sign
pattern S ¼ ½sij� ¼ ½signðaijÞ� [ f�1,0,1gn�n, connectivity pattern
C ¼ ½cij� ¼ ½jsijj� [ f0,1gn�n, adjacency pattern
K ¼ ½kij� ¼ ½cijð1� dijÞ� [ f0,1gn�n (dij is the Kronecker delta)

or in-degree sequence d ¼ ½di� ¼ ½
P

j cij� [ Zn. Note the adja-

cency pattern is obtained from the connectivity pattern by

ignoring self-loops. Many characteristics of networked

systems such as sign stability [21], robustness [22], controllabil-

ity [8,9,23], observability [10] and epidemic thresholds [24] can

be determined from the above properties without knowing

A. In general, PðAÞ cannot be reconstructed from correlation

or association analysis, but requires more sophisticated NR

algorithms [11–17,25,26]; see also electronic supplementary

material 1 for a summary of existing NR algorithms. However,

after a decade of extensive studies, some core problems in NR

remain open [27–33]. In particular, we still lack an identifiabil-

ity analysis characterizing the conditions on the temporal data

and knowledge of the coupling functions that are necessary to

reconstruct a desired property PðAÞ [34,35].

Our main contribution here is to derive such necessary

conditions in the ideal case (i.e. all state variables are

measured without any measurement noise), rendering funda-

mental limitations of NR in the sense that those conditions

are necessary regardless of which NR algorithm is used. By

checking these conditions, we can decide if an NR algorithm

failing to recover PðAÞ is due to some design flaws, or due to

limitations intrinsic to the available temporal data and/or our

knowledge about the coupling functions. The relevance of

our analysis is that we are able to establish, for the first

time, if NR problems can be solved with less informative

data than that required for solving the classical PI problem,

which is one of the major motivations for using NR instead

of PI algorithms. Indeed, our intuition suggests that this

should be possible because we are recovering less infor-

mation (e.g. K instead of A). But, is this true?

A propertyPðAÞ can be reconstructed if and only if (iff ) any

two interaction matrices A1, A2 [ Rn�n with different proper-

ties PðA1Þ= PðA2Þ produce different node trajectories

fxiðtÞgn
i¼1, t [ ½t0,t1�, a notion of identifiability or distinguisha-

bility [19]. Note that in case all state variables are measured

(i.e. if the so-called ‘observation function’ satisfies y ¼ x), an

ODE model with parameters A is called structurally identifiable
if any two distinct parameters A1 = A2 produce different

right-hand sides of the ODEs [36]. Structural identifiability is

a property of the considered model only, independent of the

measured temporal data. Hence, the lack of structural identifia-

bility can only be solved by modifying the model itself (e.g. by

decreasing the number of unknown parameters). This is not the

focus of our work, as we are concerned with the fundamental

limitations governing which properties of the interaction

matrix can be inferred from given temporal data. To make

sure the system (1.1) is structurally identifiable, here we intro-

duce a mild assumption that @fijðxi,xjÞ=@xj � 0 for any j. Note

that structural identifiability does not necessarily lead to iden-

tifiability, because indistinguishability may arise for particular

temporal data.

Define the interconnection vector ai ¼ ðai1, . . . ,ainÞT [ Rn

and regressor vector f iðxÞ ¼ ðf i1ðxi; x1Þ; . . . ; f inðxi; xnÞÞT of

node i. Then, equation (1.1) can be rewritten as

_xiðtÞ ¼ fi
TðxðtÞÞai þ uiðtÞ, ð1:2Þ

with xðtÞ ¼ ðx1ðtÞ, . . . ,xnðtÞÞT [ Rn the state vector.
Distinguishing PðAÞ is then equivalent to the distinguishabil-

ity of PðaiÞ for i ¼ 1, . . . ,n.

Often, the true coupling functions are unknown to us and

we only know a family of regressors f�f ig to which the true

regressor fi belongs. Such uncertainty inevitably produces

indistinguishability of the interconnection vector, because the

parameters aij in (1.1) are not uniquely determined. We

model the members of f�f ig as deformations �f iðxÞ ¼ giðf iðxÞÞ of

the true regressor f iðxÞ obtained by applying some transform-

ation gi : Rn ! Rn. Thus, f�f ig is characterized by the group G�i
of admissible transformations for node i. We consider that G�i is

the group of continuous functions that preserves pairwise

interactions in (1.1). Characterizing the uncertainty of the coup-

ling functions in this way provides us with a geometric

interpretation of the fundamental limitations of NR. Let G�i,lin
be the subgroup of admissible linear transformations (associ-

ated with non-singular matrices GT
i [ Rn�n with non-zero

entries only in its diagonal and i-th column; figure 1a; electronic

supplementary material 2). Let Gi,lin denote the transpose of

G�i,lin, i.e. Gi [ Gi,lin if and only if GT
i [ G�i,lin. Hereafter, we

use the following observation: because G�i,lin , G�i , a necessary
condition to reconstruct a property when gi [ G�i is that it

can be reconstructed when gi [ G�i,lin. Consequently, in order

to characterize the fundamental limitations of network

reconstruction, we focus on linear transformations only.

Two candidate interconnection vectors v1, v2 [ Rn are

indistinguishable if

f T
i ðxðtÞÞv1 ¼ f T

i ðxðtÞÞGiv2, 8t [ ½t0,t1�, ð1:3Þ

for some matrix Gi [ Gi,lin. Multiplying this equation by

f iðxðtÞÞ from the left and integrating over ½t0,t1�, we obtain

Miðt0,t1Þðv1 � Giv2Þ ¼ 0, ð1:4Þ

where Miðt0,t1Þ ¼
Ð t1

t0
f iðxðtÞÞf

T
i ðxðtÞÞ dt is a constant n�n

matrix. Condition (1.3) obviously implies (1.4), but the con-

verse is not so obvious (proposition 1 of electronic

supplementary material 3). Hereafter, we write Mi instead of

Miðt0,t1Þ, unless the specific time interval is important for the

discussion. From (1.4), the set of all pairs of indistinguishable

interconnection vectors for node i is

Vi ¼ fðv1,v2Þ [ Rn � Rnj9 Gi

[ Gi,lin such that ðv1 � Giv2Þ [ ker Mig: ð1:5Þ

The above analysis reveals two classes of fundamental

limitations of NR (figure 1). First, unknown coupling func-

tions cause two vectors to be indistinguishable if they can

be transformed to each other via some Gi [ Gi,lin. This set

of indistinguishable vectors is the partition Oi of Rn by the

orbits of the group Gi,lin (figure 2a; electronic supplementary

material 2). An orbit is considered to be low dimensional if

its dimension is less than n (e.g. the purple, blue, green and

brown orbits in figure 2a). The orbits in figure 2a show we

can only distinguish the adjacency pattern (i.e. if _xi depends

on xj for j = i, see proposition 2a and example 1 in electronic

supplementary material 5). Other properties such as edge

weights, connectivity pattern or degree sequence are indistin-

guishable and cannot be reconstructed (proposition 2b in

electronic supplementary material 5). This is a consequence

of the assumed prior knowledge of the coupling functions,

because only the adjacency pattern is invariant to the trans-

formations in G�i , but other properties of A are not. Second,

even if the coupling functions are exactly known,
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Figure 1. Two sources of indistinguishability. (a) The same dynamics can be characterized by two regressors with different coupling functions (purple and
green), yielding indistinguishable networks that differ in their edge weights, sign patterns, connectivity patterns and degree sequences. (b) With the
classical population dynamics described by the generalized Lotka – Volterra (GLV) model _xi ¼ ri xi þ

P
j aijxi xj , the two different networks shown in the top panel

produce identical node trajectories x(t) (bottom panel). Here, the growth rate vector is r ¼ ð0,� 0:5,0:5,� 0:5,0ÞT and initial abundance
xð0Þ ¼ ð0:895349, 0:72093, 0:255814, 1:82558, 1:82558ÞT. (Online version in colour.)
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indistinguishability will appear if the temporal data are not

informative enough in the sense that different interaction

matrices produce the same node trajectories (figure 2b); see,

for example, [37,38] and references therein. Equation (1.4)

shows that indistinguishability due to uninformative data

appears when v1 � v2 [ ker Mi and ker Mi contains a sub-

space different from 0. In other words, when the endpoints

of v1 and v2 can be joined by a hyperplane parallel to

ker Mi. Such hyperplanes are called fibres of the quotient

space Rn= ker Mi.

Combining these two sources of indistinguishability, v1 is

indistinguishable from v2 if it is possible to transform v2 using

an element of Gi;lin in a way that the hyperplane passing

through v1 and Gi;linv2 is a fibre (figure 2c). As orbits of Gi;lin

intersected by a fibre of Rn= ker Mi become indistinguishable,

we can ‘glue’ them together to form a partition Oker Mi
i of Rn

into sets of indistinguishable interconnection vectors (figure

2c). Consequently, P : Rn ! Y can be reconstructed only if all

two sets in the collection CP ¼ fP�1ðyÞ # Rnjy [ Yg belong

to different orbits Oker Mi
i . If ker Mi is contained in low-dimen-

sional orbits, then we can reconstruct the adjacency pattern of

the interaction matrix (right panel of figure 2c). Otherwise

Oker Mi
i ¼ Rn and all interconnection vectors are indistin-

guishable (left panel of figure 2c). Furthermore, once

indistinguishability appears, there will always be indistinguish-

able interconnection vectors that are arbitrarily far from each

other. Consequently, the reconstruction error of the edge

weights and other properties such as sign pattern and

adjacency pattern can always be maximal.

The matrix Mi in (1.4) is unknown when the true regressor

fi is unknown. Indeed, choosing any �f i ¼ GT
i f i, Gi [ Gi;lin,

gives

�Miðt0,t1Þ ¼
ðt1

t0

�f iðxðtÞÞ �f
T

i ðxðtÞÞ dt ¼ GT
i Miðt0,t1ÞGi:

Thus, Gi,lin transforms ker �Mi into ker Mi (and vice versa), and
we can only know the orbit Gi;linðker MiÞ corresponding to

this subspace. For example, the condition ker �Mi ¼ f0g for

some Gi [ Gi;lin implies that

kerMi ¼ f0g; ð1:6Þ

because Gi;linð0Þ ¼ 0 (i.e. 0 ¼ Gi0 for any Gi). We can then tell

if Mi is non-singular using any �Mi. Condition (1.6) is known

as persistent excitation (PE) in the literature and it is necessary

and sufficient to solve the PI problem [19,20]. In general,

we can prove that Oker �Mi
i ¼ Oker Mi

i (lemma 1, electronic

supplementary material 6), so we can build the partition of

indistinguishable vectors using any �Mi .

The above analysis only depends on the group property

of the transformations, hence it can be straightforwardly

extended to any other linear group Gi, allowing us to

shrink or enlarge Gi;lin according to our uncertainty about

the coupling functions. Thus, in order to reconstruct some

property of the interaction matrix, it is necessary that (i)

our uncertainty about the coupling functions is small

enough (i.e. any two sets in CP belong to different orbits of

Gi); and (ii) the measured temporal data are informative

enough (i.e. hyperplanes parallel to Giðker MiÞ do not glue

orbits together). As an obvious example, in order to recon-

struct the edge weights, it is necessary to know the

coupling functions exactly (i.e. Gi ¼ fIg) because only then

do any two vectors belong to different orbits.

It is possible to reduce Gi to fIg when we know the

appropriate coupling functions to use (e.g. the generalized

Lotka–Volterra equations for ecological systems, or linear

functions if the system remains close to its steady state

[18]). In this case indistinguishability emerges from uninfor-

mative data only. Consequently, a property PðaiÞ can be

reconstructed iff all two sets in the collection CP can be separ-
ated by a fibre (electronic supplementary material, figure S1).

A fibre is a hyperplane and thus partitions Rn in two regions;

we say it separates Py1
from Py2

if Py1
belongs to one region
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adjacency of the interconnection vector (i.e. whether aij is zero or not for j= i). Nevertheless, as v1 and v3 belong to the same orbit and hence are indistinguishable, but
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i ¼ R2 and all vectors
become indistinguishable (e.g. v1 is indistinguishable from v3). In the right panel, ker Mi is contained in low-dimensional orbits. We can then distinguish between v2 and
v3 and hence reconstruct the adjacency pattern of the interaction matrix. (Online version in colour.)
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and Py2
belongs to the other region or the fibre (figure 2b). By

specifying the coupling functions we can reconstruct more

information such as the interaction matrix itself, if the PE con-

dition (1.6) holds. Without PE it is still possible to distinguish,

for example, the adjacency pattern of the interconnection

vector when ker Mi is exactly ‘horizontally’ oriented. In fact,

from the right panel of figure 2c, we can separate the sets

Py of vectors with different adjacency patterns (orange and

red regions) using the same red region as the separating

fibre. However, such a situation is non-generic (i.e. pathologi-

cal) in the sense that an infinitesimal change in the fibre’s

orientation will eliminate the distinguishability. Note also

that other properties such as sign pattern, connectivity pat-

tern or degree sequence are indistinguishable. Indeed, we

can prove that there are only two generic cases (electronic

supplementary material 7): (i) ker Mi ¼ f0g and indistin-

guishable vectors emerge only due to uncertain coupling

functions (i.e. Oker Mi
i ¼ Oi); and (ii) ker Mi is non-trivial and

is contained in the n-dimensional orbit, so all interconnection

vectors become indistinguishable (i.e. Oker Mi
i ¼ Rn). This

implies that, even if the coupling functions are well known,

the PE condition (1.6) is generically necessary to reconstruct

any property.

Next, we show that prior information of A is the only way to

relax the PE condition. Consider, for the sake of clarity, that the

coupling functions are exactly known. Prior information

shrinks the domain of the property P from Rn to V, i.e.

P : V # Rn ! Y. Two typical cases are: (i) aij takes a finite

number of values (e.g. binary interactions [25]) so V ¼ <yPy

is a discrete set as each Py is a point (electronic supplementary

material, figure S4a); and (ii) aij are bounded as

aij [ ½�amax,� amin�< ½�e,e�< ½amin, amax� for some known

constants 0 � e < amin < amax. In this case V ¼ <yPy, where

P0 is an e neighbourhood of zero and each of the 3n21 remain-

ing sets lies in a different orthant of Rn (associated with distinct

sign patterns; see electronic supplementary material,
figure S4b). In case (i), A itself can be reconstructed without

PE if we can separate each point composing V with a fibre. If

dimðker MiÞ < n, this is generically possible because an infini-

tesimal deformation will change any ‘pathological’

orientation that contains two points. In case (ii), the sign or con-

nectivity pattern can be reconstructed without PE if there is a

gap between the sets Py such that a fibre can separate them

(electronic supplementary material, figure S4b), but A itself

cannot be reconstructed because it is impossible to separate

two points inside one Py. In electronic supplementary material

10, we illustrate our results in a basic NR problem using steady-

state data, and in electronic supplementary material 4 we show

how to use our analysis to build an NR method that correctly

reconstructs the sign pattern of the interaction matrix. Note

also that, if dim ker Mi ¼ di, providing the value of PðaijÞ for

di entries of ai as prior information guarantees a correct recon-

struction of PðaiÞ. Sparsity of the interaction matrix can be

equally effective prior information (electronic supplementary

material 9).

Our analysis lays a firm theoretical basis to some funda-

mental limitations of network reconstruction that have been

observed before via computer simulations—such as the role

of the informativeness of the temporal data [34] and the

fact that different networks may produce exactly the same

temporal response [35]. A particular instance of our analysis

is when different networks, such as those obtained from

chemical reactions, produce the same dynamical model (i.e.

they are structurally unidentifiable [37,39,40]) and hence

they are indistinguishable for all temporal data. Indeed,

despite the fact that the identifiability of the identity property

has been studied in different disciplines including statistics

and system identification [19,20,25,37,38], a similar analysis

for all the other properties we can reconstruct using NR

was lacking. The impact of uncertain coupling functions on

the properties that can be reconstructed was unknown

too. Our analysis can be straightforwardly extended to
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higher-order interactions (e.g. xixjxk) and some nonlinear

parametrizations, e.g. xi=ðaij þ xjÞ (see electronic supplemen-

tary material 12). Note that, by contrast to the case of

structural identifiability [40], nonlinearities in the coupling

functions do not always enhance the distinguishability of a

property for given temporal data (electronic supplementary

material 14). We can also analyse the effect of noise and

more general uncertainty of the coupling functions at the

cost of less constructive results [41]. In such a case, the par-

tition of indistinguishable interconnection vectors is given

by a general equivalence relation; this makes it harder to

characterize the fundamental limitations of NR, as the role

of the uncertainty about the coupling functions and the infor-

mativeness of the temporal data cannot be disentangled

anymore. The derived fundamental limitations for NR also

apply in the case of noisy measurements, in the sense that

the distinguishability of a property with noiseless data is a

necessary condition for its distinguishability under noise. A

more detailed analysis in the spirit of practical identifiability
[42] would characterize the parameters aij and their proper-

ties that are more sensitive to noise. We note that the

necessity of measuring all time-varying nodes in the network

leads to another fundamental limitation in NR [43]; see also
electronic supplementary material 11. Our results indicate

that, as in the case of PI [39], a better knowledge of the sys-

tem’s coupling functions and prior information of the

interaction matrix are extremely useful for NR (even when

some algorithms explicitly ignore all knowledge of the

system [31,32]). Furthermore, the generic necessity of PE

means it can also be a guideline to informative enough exper-

iments for general NR problems, letting us take advantage of

the existing theory for optimal experiment design [44–46].

This calls for the design of better algorithms that incorporate

such information and provide a guarantee of correct NR

under PE (electronic supplementary material 4).
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43. Gonçalves J, Warnick S. 2008 Necessary and
sufficient conditions for dynamical structure
reconstruction of LTI networks. IEEE Trans. Automat.
Contr. 53, 1670 – 1674. (doi:10.1109/TAC.2008.
928114)

44. Pukelsheim F. 1993 Optimal design of experiments,
vol. 50. Philadelphia, PA: SIAM.

45. Pronzato L. 2008 Optimal experimental design and
some related control problems. Automatica 44,
303 – 325. (doi:10.1016/j.automatica.2007.05.016)
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