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Abstract: In recent years there has been an increased interest in statistical analysis of data
with multiple types of relations among a set of entities, mainly driven by applications in biol-
ogy, social sciences, e-commerce and marketing. Such multi-relational data can be represented
as multi-layer graphs where multiple types of edges represent the relations and the set of ver-
tices/nodes represents the entities. An important learning goal in such networks is to detect
an underlying set of communities leveraging information from all the layers. For community
detection in multi-layer graphs, we consider a random graph model, multi-layer stochastic
blockmodel (MLSBM), which is an extension of the stochastic block model. In this connection
we also propose a model with a restricted parameter space, restricted multi-layer stochastic
blockmodel (RMLSBM), for applications where either the network layers are sparse or the
number of communities is large or both. We derive consistency results for community assign-
ments through both methods where MLSBM is assumed to be the true model, and either the
number of nodes or the number of types of edges or both grow. We compare the two meth-
ods both in terms of performance in simulation and asymptotic performance under different
asymptotic setups. We establish the advantage of RMLSBM over MLSBM when either the
growth rate of the number of communities is high or the growth rate of the average degree
of the component graphs in the multi-graph is low. To solve the computationally challenging
problem of community assignment through maximum likelihood estimation, we derive a vari-
ational EM algorithm. The simulation studies and real data applications confirm the superior
performance of the multi-layer approaches in comparison to independent modeling of the layers
or majority voting.

Keywords and phrases: Consistency, community detection, multi-layer networks, maximum
likelihood inference, restricted maximum likelihood inference, stochastic blockmodel.

1. Introduction

Over the last decade, relational data has become ubiquitous in all forms of human activities. In many
applications of statistics and machine learning, one encounters relational data where the entities are
represented as nodes or vertices and the relations or interactions between the entities as edges of
a graph. Applications of such graphs or networks include many information systems such as social
networks, World Wide Web, user information databases in e-commerce, metabolic networks, gene
regulatory networks, protein-protein interaction networks and food web.

In majority of the cases dealt with in the literature, the relations are assumed to be of the same
type such as web page linkage, friendship, co-authorship and protein-protein interaction. However
in modern complex relational databases and networks, we often have information regarding rela-
tionships of multiple types among the nodes. For example, in the context of internet services a set
of users may be connected through email, messaging, social media, etc., each one of them creating
one layer or type of the user-user interaction network ([26]). Similarly, users in a social network
can have “friendship”, “mentions”, “following”, etc. ([12]) or researchers in academia may have co-
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authorship, citations, title/abstract similarity, etc., as different types of relations among themselves.
In genomics data, cellular components can have different aspects of interactions among them, e.g.,
protein-protein physical interactions and gene co-expressions ([22]). Such multi-relational data can
be represented as multi-layer graphs where multiple types of edges represent the relations and the
set of vertices/nodes represents the entities ([17]).

One of the most important and widely investigated learning goals in an information network is
clustering the entities on the basis of the relationships between them into densely connected subsets
called “communities”. In contrast to the idealistic random graph model proposed in [10], where edges
between nodes are formed completely at random and with equal probability, real world networks
exhibit many interesting properties like community structure, degree heterogeneity, etc. From a
probabilistic point of view, communities can be thought of as groups of vertices which are more
likely to be connected to each other compared to the rest of the graph, i.e., the probability of having
an edge between two vertices belonging to the same group is higher than that of having an edge
between vertices belonging to different communities. Consequently we would observe the number of
intra community edges to be higher than inter community edges.

Many researchers have proposed methods and algorithms for community detection in networks.
Such methods can broadly be divided into three categories: methods based on probabilistic models,
methods based on the maximization of a global objective function and those based on spectral or
matrix factorization of the adjacency matrix or the Laplacian matrix. The stochastic blockmodel
([16], [25]) is a statistical model for random graphs with a natural community structure. It is one
of a large class of statistical models described in the literature for community detection in complex
networks, which includes the latent variable ([14]) and latent space models ([15]), the degree corrected
blockmodel ([18], [33]) and the mixed membership blockmodel ([1]). Various likelihood maximization
based inference strategies have been proposed in the literature to simultaneously infer the block
assignments and the parameters in the stochastic blockmodel, e.g., profile likelihood maximization
([2]), maximizing the conditional likelihood ([6]), and variational EM under mixture model settings
([8]). Other strategies involve Bayesian inference using Gibbs sampling or variational methods ([20])
and optimizing a modularity function over all possible partitions of the graph ([23]). See [11] for a
detailed review of statistical inference in networks.

Several authors have also studied the conditions required on the growth of the number of com-
munities and the degree density of networks for the estimation strategies to be consistent. Bickel
and Chen [2] and Zhao et al. [33] studied the conditions for community detection through modular-
ity maximization under the stochastic blockmodel and the degree corrected stochastic blockmodel
respectively. Choi et al. [6] laid down the conditions necessary for the consistency of maximum likeli-
hood estimation under the stochastic blockmodel. This work was extended by Rohe et al. [28] with a
regularized estimator to high dimensional settings where the number of communities grows roughly
as fast as the number of nodes. Celisse et al. [5] derived consistency and Bickel et al. [3] derived
asymptotic normality of the maximum likelihood estimators and their variational approximations in
the mixture model settings.

In this paper our primary focus is on the problem of detecting an underlying community structure
in multi-layer networks. We assume that such networks have an implicit community structure and
different observed layers manifest that underlying structure with varying amount of information and
noise. As an example of a network, where such an assumption is reasonable, we analyze a twitter
network of British MPs where the underlying communities are based on their party memberships and
the three observed layers, “mentions", “follows" and “’re-tweets" manifest that structure in varying
proportions. In such cases the multi-layer graph is a more accurate representation of the underlying
similarity of the objects and each layer can provide only a “partial" information about the data ([27]).
The goal in such cases would be to correctly identify the underlying set of communities combining



information from all three layers.
Earlier approaches towards multi-relational data or multi-layer graph clustering suffer from the

deficiency that they either cluster each graph independently and combine the results, or aggregate the
graphs and cluster the aggregated graph. These approaches fail to take into account the dependency
among the different layers, in particular the correlation among different types of edges that share the
same pair of nodes. Moreover, the multiple network layers can have different characteristics in terms
of sparsity and noise. Some layers may be dense but may carry little worthwhile information, whereas
some layers may be extremely sparse but may carry valuable information. The aggregation process
of graphs could lose the intrinsic heterogeneity of the network layers. Here we attempt to address the
problem of how to efficiently cluster the nodes or entities in a network taking into account all types
of layers or relations among them. Several approaches have been recently proposed in the literature
for this purpose. Among them are approaches based on collective or joint matrix factorization ([24],
[31], [27]), non-parametric Bayesian models and latent factor models ([17]), extensions of spectral
clustering ([9]) and modularity ([21]) to multi-layer graphs. However there is a lack of statistical
analysis of the properties of those methods.

(a) Mention

(b) Follows (c) Re-tweets

Fig 1: A 3-layer twitter network of British MPs. The nodes are colored according to an underlying
community structure: the party memberships.

For community detection in multi-layer networks, we consider a natural extension of the standard
stochastic blockmodel to multi-layer settings that we will call “multi-layer stochastic blockmodel”
(MLSBM). This model, also considered in [13] as “multi-graph SBM", is in the spirit of multi-
relational models described in [16], [32] and [19]. The authors in [13] prove the consistency of the
maximum likelihood estimates in this model when the number of relations grows. They keep the
number of nodes ( and hence the number of communities) fixed. However, as we will see later in both
the asymptotic analysis and simulation studies that this model does not perform very well when
either the number of communities grows fast or the network layers are sparse on average. Hence,
we propose a restricted version of this model through restrictions on the parameter space which is
capable of handling networks with a large number of communities. We call this model “restricted
multi-layer stochastic blockmodel” (RMLSBM). We derive conditions on the growth of the number
of communities and the average edge density of the networks under which the maximum likelihood
estimate of the class assignment vector is consistent (in the sense that the proportion of misclassified
nodes tends to 0 as the number of nodes, and possibly the number of relations as well, grows). To



compute the unknown class assignments and block model parameters simultaneously, we follow [8]
and propose a variational estimation strategy.

The rest of the paper is organized as follows. Section 2 extends the stochastic blockmodel to multi-
layer settings and defines the two models, MLSBM and RMLSBM. Section 3 settles the consistency
of the community assignments through maximum likelihood estimation in the two models when
the true data generating model is MLSBM. Section 4 describes two estimation strategies for the
two models. Section 5 describes the results of a simulation study to validate the theoretical results.
Section 6 presents the application of the methods to the Twitter UK politics data set. Section 7
gives concluding remarks.

2. Extension of blockmodels to multi-layer settings

We consider an undirected multi-layer graph G = {V,E}, where the vertex set V consists of N
vertices and the edge set E consists of edges of M different types representing different relations.
We can view the multi-graph as a graph with vector valued edge information, i.e., the adjacency
matrix A consists of elements Aij , who are themselves M dimensional vectors: Aij = {A(1)

ij , A
(2)
ij ,

. . . , A
(M)
ij }. An alternative way to approach the problem is to view the multi-graph as a collection

of M , N ×N adjacency matrices {A(1), A(2), . . . , A(M)}, each corresponding to one particular type
of relation. The rest of the set up is similar to the regular stochastic block model for one-layer case
with K blocks ([25]). We assume the number of communities K is known. Let z = {z1, z2, . . . , zN}
be the community indicator vector for the N nodes, such that each zi takes exactly one value from
the set {1, . . . ,K} and zi = q if and only if node i belongs to community q. Conditional on the
community indicator vector z, the edges are formed independently as Bernoulli random variables
with probabilities depending only on the community assignments and the type of edges.

We expect the random variables representing the different types of edges between a pair of nodes
to be correlated, and our aim here is to take that correlation into account while clustering the nodes.
However we do not explicitly model this correlation among the edges of different types between nodes,
i.e., conditional on the community assignments we still assume them to be independent random
variables. Instead we induce dependence among the edges of different types through the latent
variables so that unconditionally the edges are dependent. In particular, we model the probability
of an edge as dependent on both the community to which its nodes belong as well as what type of
edge it is. For this purpose, in what follows we describe the two extensions of the standard stochastic
block model to multi-layer settings.

Each node i of the network is independently assigned a cluster/community denoted by its latent
variable zi, with zi = q for exactly one q ∈ {1, . . . ,K}. Except for the estimation algorithm, the model
is always represented as a conditional block model and z is assumed to be a fixed unknown parameter
of the model and need to be estimated from data. Conditioned on the community assignments of
the nodes zi and zj , the edges are formed independently following Bernoulli distribution

A
(m)
ij |(zi = q, zj = l) ∼ Bernoulli(P (m)

ql ).

The first model assigns a separate probability for the mth type of edge between nodes belonging
to the qth and the lth community independent of all other edges. We call this model the “multi-layer
stochastic blockmodel” (MLSBM). The probability of an mth type of edge between nodes i and j
belonging to communities q and l respectively can be written as

P
(m)
ij = π(m)

zizj = π
(m)
ql , i, j ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, q, l ∈ {1, . . . ,K}.



The set of parameters for the model, π = {π(m)
ql ; q ≤ l, q, l ∈ {1, . . . ,K}, m ∈ {1, . . . ,M}} has

K(K + 1)M/2 elements. This model is “saturated” in the sense that we have a different parameter
for each of the different types of edges between nodes belonging to different communities. Denote the
range of this parameter set or array as Π = {π ∈ [0, 1]K(K+1)M/2}. When K grows with N and/or
M , the number of parameters to be estimated in this model grows linearly both with N and M
and quickly becomes large. Hence the MLE performs poorly especially when the individual network
layers are spare. This problem does not arise in the asymptotic settings where only M grows and K
remains fixed. However, it has been empirically shown that in most real world networks the average
cluster size does not grow with the size of the network and consequently, K grows with N . Hence this
settings is rather unrealistic. This motivates us to propose the second related model whose number
of parameters grows much slowly compared to MLSBM.

The second model assumes the probability of the mth type of edge appearing between nodes i and
j is governed by two factors: the first one being the community assignment of the two nodes and the
second one being the type of edge. Hence the model has two sets of parameters: a K×K parameter
matrix πK×K corresponding to the community structure, and an M ×1 vector βM×1 which contains
the parameters for different types of edges. We call this model the restricted multi-layer stochastic
blockmodel (RMLSBM).

Notice that in the second model, if the edges were all of the same type, we would just have
βm = β for all m ∈ {1, . . . ,M} and then we will recover the standard stochastic blockmodel, with
probabilities of edges determined solely by the community assignments. On the other hand, if we
did not have a community structure, but M types of edges, then πql would be identical for all
communities q, l and the probability of an edge between nodes i and j will solely be determined
by the type of edge. This model can retrieve information from sparse but highly informative edge
types as the sparsity of the network layers will be captured in the βm parameters. Hence, although
we assume the edges to be conditionally independent, this model induces two types of correlations
unconditionally — among the edges of the same type and among the edges that share nodes of the
same community.

The probability P (m)
ij in RMLSBM , which denotes the probability of anmth type of edge between

nodes i and j belonging to communities q and l respectively, can be modeled in the following way
with the logit link function

logit(P (m)
ij ) = πql + βm, i, j ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, q, l ∈ {1, . . . ,K}.

This model has K(K + 1)/2 + M parameters for an undirected graph. Hence, when both K2 and
M grows, the growth rate in the number of parameters for this model is same as the maximum
of the growth rates. In comparison, the number of parameters in MLSBM would grow linearly
with both K2 and M . This makes the maximum likelihood estimator in RMLSBM a regularized
estimator. However, for the model to be identifiable, we require the parameters βm to satisfy the
condition

∑
m βm = 0. Hence we have one less free parameter. Denote the set of parameters for

RMLSBM as πR = {(πql, βm) : q ≤ l, q, l ∈ {1, . . . ,K}, m ∈ {1, . . . ,M}} and its range as ΠR =
{πR ∈ RK(K+1)/2+M ,

∑
m βm = 0}. To prove the consistency of maximum likelihood estimation

under MLSBM, we assume πql, βm ∈ (−C log(MN2), C log(MN2)) for some constant C > 0. This
condition ensures that πql and βm are bounded away from ±∞.

3. Consistency

In this section, we discuss the consistency of maximum likelihood estimation of the proposed models
under three asymptotic regimes with varying conditions imposed on the growth of the number of



communities (K) and the expected total number of edges of the multi-layer graph (L). We first
define a one to one transformation of the parameters of RMLSBM as

φ
(m)
ql = logit−1(πql + βm) =

exp(πql + βm)

1 + exp(πql + βm)
. (3.1)

Now we assume that the data are generated from the more general model MLSBM and view
RMLSBM as an MLSBM with the following restrictions on the parameters:

Φ = {φ ∈ [0, 1]K(K+1)M/2 : φ
(m)
ql = logit−1(πql + βm), (3.2)

πql, βm ∈ (−C log(MN2), C log(MN2))}.

This way the maximum likelihood estimate (MLE) in RMLSBM can be thought of as a restricted
maximum likelihood estimate (RMLE) of MLSBM.

Our aim is to investigate the consistency of both the MLE and the RMLE under three asymptotic
regimes where we let either the number of nodes (N) or the number of types of edges (M) or
both to grow. This setup is quite appropriate for modern day multi-layer networks, where data
collection increases both in terms of new entities as well as new features or layers getting added to
the database. Consequently methods are being sought which would be consistent in such situations.
Although some results for the MLE were obtained in [13] under the settings when M grows, but N
and consequently K remains fixed, we still include it in our asymptotic analysis since we need results
for the growing N and K case for asymptotic comparison with regularized estimator. The different
asymptotic setups we consider under the three regimes of growth in N and M are described below.

1. As both M and N grow, let K = O(N1/2) and L = ω(MN(logN)3+δ) for some δ > 0 for the
MLE, while K = O((MN)1/2−ε) and L = ω(MN(logN)3+δ) with ε, δ > 0 for the RMLE. For
the RMLE, we further require that M = O(N) so that K does not exceed N .

2. As N grows, M either is fixed or grows slower than N , i.e., either M is o(1), or M →∞ and
M = o(N). In this regime, let K = O(N1/2), L = ω(N(logN)3+δ) for some δ > 0 for the
RMLE.

3. As both N →∞ and M →∞ with M growing faster than N , i.e., M = ω(N), for RMLE we
consider two related setups: (a)K = O( N

logM logN ), L = ω(MN(logN)1+δ) for some δ > 0; and
(b)K = O(N1/2), L is either ω(M(logM)2+δ(logN)1+δ) for some δ > 0 if (logM)2+δ = O(N),
or ω(MN(logN)1+δ) for some δ > 0 otherwise. In setting (a), we further require logM to grow
slower than N for the growth of K to be meaningful. Also, in that setup if logM grows at the
same rate as (logN)β for some β > 0, the number of communities grows almost as fast as the
number of nodes except for the log terms and is “highest dimensional” in the sense of [28].

Note that the first regime assumes no relation between the growth rates of N and M , while the
next two regimes assume certain relations between the two growth rates. So the last two regimes can
be thought of as special cases of the first one in terms of the growth rates of N andM . Naturally we
expect some relaxation in the required growth conditions on K and L in the last two regimes. The
asymptotic setups described above reflect this relaxation for the RMLE. However no such relaxation
is possible for the MLE. Hence we will prove that MLE in MLSBM is consistent under the first
asymptotic regime, whereas MLE in RMLSBM (i.e., the RMLE of MLSBM under the restrictions
defined by Equation (3.2)) is consistent under all three asymptotic regimes. The MLSBM, despite
being intuitively the simplest extension, does not perform as well as the RMLSBM for community
detection in multi-relational networks if the networks are sparse at an average or contain a large
number of communities.



3.1. Preliminaries

Since in this paper our primary interest is in modeling multi-layer networks where layers are sparse
on an average, we require the true MLSBM model probabilities π(m)

ql to satisfy certain sparsity con-
ditions. As [33] pointed out, if the block model probabilities remain fixed as N increases, then the
network will be unrealistically dense. In this connection it is worth noting that [30] let the proba-
bilities remain fixed and as a result the networks considered there have linearly increasing average
degree, while both [2] and [6] considered networks with poly-logarithmically increasing average de-
gree and hence gradually decaying probabilities. Here to keep the network sparse, we scale down the
block model probabilities accordingly as N increases.

We introduce a new notation L′ to denote the quantity inside the asymptotic notation ω in the
growth rate of L under different asymptotic setups. As an example, consider the case when L =
ω(MN(logN)3+δ), then L′ = MN(logN)3+δ. Hence L′ can be viewed as the minimum rate at which
L is required to grow under a particular asymptotic setup. The blockmodel parameters are restricted
to have an upper bound that decreases with increasing N except for a small finite set indexed by
the triplet Q = {q, l,m} such that the expected number of edges in the set |EQ| = o

(
L′

log(MN2)

)
. For

the set Q we can have 1
MN2 ≤ π

(m)
ql ≤ 1− 1

MN2 . For all {q, l,m} /∈ Q, the parameters are restricted
in the following way

π
(m)
ql ∈

(
1

MN2
, C

L′

MN2(logM logN)2+δ

)
, (3.3)

for some δ > 0 and some constant C, so that the upper bound is determined by the expected density
of the network. The exact upper bound is determined by L′ and consequently, by the growth rate
of L and varies under the different asymptotic assumptions.

For any arbitrary partition z of the entities in the graph, the log likelihood of the set of M
adjacency matrices A = {A(1), . . . , A(M)} under the MLSBM with parameters π = {π(m)

ql } is

l(A; z, π) =

M∑
m=1

∑
i<j

{A(m)
ij log π(m)

zizj + (1−A(m)
ij )log (1− π(m)

zizj )}. (3.4)

Note that for an undirected graph with no self-loops, both A(m) and π(m), m = 1, . . . ,M , are
symmetric matrices in {0, 1}N×N and [0, 1]K×K respectively. The Bernoulli parameters π(m)

zizj depend
both on the class assignment z and the type of relation m. For a fixed class assignment z, let Nq

denote the number of nodes assigned to class q, and nql denote the maximum number of possible

edges between classes q and l. So we have nql = NqNl and nqq =

(
Nq

2

)
. For an arbitrary partition

z, the MLE of π(z) is

π̂
(m)
(z)ql =

1

nql

∑
i<j

A
(m)
ij 1{zi = q, zj = l}, m = 1, . . . ,M, q, l = 1, . . . ,K, (3.5)

where 1{·} is the indicator function. Note that for a fixed partition z, the denominator nql in the
MLE π̂

(m)
(z)ql is the same for all edge types m.

Now we define the expectation of π̂(z) as π̄(z) and that of l(A; z, π) as l̄P (z, π) under the indepen-
dent Bernoulli(P (m)

ij ) model. Then we have

π̄
(m)
(z)ql =

1

nql

∑
i<j

P
(m)
ij 1{zi = q, zj = l}, m = 1, . . . ,M, q, l = 1, . . . ,K, (3.6)



l̄P (z, π) =

M∑
m=1

∑
i<j

{P (m)
ij log π(m)

zizj + (1− P (m)
ij )log (1− π(m)

zizj )}. (3.7)

Clearly for a given z, π̂(z) and π̄(z) are the maximizers of the functions l(A; z, π) and l̄P (z, π)
respectively, and we let l(A; z) and l̄P (z) denote the corresponding maximum values.

We extend Lemma 1 of [6] to multi-layer settings as follows:

l(A; z)− l̄P (z) =
∑
m

∑
i<j

{
A

(m)
ij log

(
π̂

(m)
zizj

π̄
(m)
zizj

)
+ (1−A(m)

ij ) log

(
1− π̂(m)

zizj

1− π̄(m)
zizj

)}
+X − E(X)

=
∑
m

∑
q≤l

nqlD(π̂
(m)
(z)ql||π̄

(m)
(z)ql) +X − E(X), (3.8)

where

X =

M∑
m=1

∑
i<j

A
(m)
ij log

(
π̄

(m)
zizj

1− π̄(m)
zizj

)
. (3.9)

Here D(a||b) is the Kullback-Liebler divergence between two Bernoulli random variables with param-
eters a and b respectively. This equation decomposes the difference between the maximized likelihood
and its expected value in terms of π̂(z) and π̄(z) for a given class assignment vector z.

Next we turn our attention to RMLSBM. As mentioned before, we consider RMLSBM as a
restricted version of MLSBM, and the MLE of RMLSBM can be viewed as a RMLE of MLSBM under
the restrictions. Given a class assignment z, the RMLE π̂

(m)R
zizj = {π̂(z)ql, β̂(z)m} is the maximizer

of lR(A; z, πR), the multi-layer block model log likelihood within the restricted parameter space.
Substituting the estimated parameters in the likelihood function gives lR(A; z), the maximum of the
likelihood function within the restricted parameter space. However, no closed form solution exists
for the RMLE. Instead we have the following M +K(K + 1)/2 estimating equations:

∂

∂βm
:=
∑
i<j

(
A

(m)
ij −

exp(π̂zizj + β̂m)

1 + exp(π̂zizj + β̂m)

)
, (3.10)

∂

∂πzizj
:=
∑
i<j

∑
m

(
A

(m)
ij −

exp(π̂zizj + β̂m)

1 + exp(π̂zizj + β̂m)

)
. (3.11)

One of the equations is redundant since if we add the equations in (3.10), the resulting equation is
identical to the sum of the equations in (3.11).

Now we use the transformation defined by φ in Equation (3.1). The likelihood with respect to the
new parameters can be represented as

lR(A; z, φ) =
M∑
m=1

∑
i<j

{A(m)
ij log φ(m)

zizj + (1−A(m)
ij )log (1− φ(m)

zizj )}, (3.12)

and the estimating equations in (3.10) and (3.11) can be written as

1

N(N + 1)/2

∑
q≤l

nqlφ̂
(m)
(z)ql =

1

N(N + 1)/2

∑
q≤l

∑
i<j

A
(m)
ij 1{zi = q, zj = l}

=
1

N(N + 1)/2

∑
i<j

A
(m)
ij , m = 1, . . . ,M, (3.13)



1

M

∑
m

φ̂
(m)
(z)ql =

1

Mnql

∑
m

∑
i<j

A
(m)
ij 1{zi = q, zj = l}, q ≤ l ∈ {1, . . . ,K}. (3.14)

Together the right hand sides of these equations are the complete and sufficient statistics for the
model. Hence we have K(K + 1)/2 + M − 1 independent equations which will together determine
the MLE of K(K + 1)/2 + M − 1 free parameters in the set πR(z). Here it is understood that the
estimation procedure ensures that the finiteness condition of πql and βm are respected possibly by
restricting πql, βm ∈ (−C log(MN2), C log(MN2)). By the functional invariance property of the

MLE, φ̂(m)
(z)ql =

exp(π̂ql+β̂m)

1+exp(π̂ql+β̂m)
is the MLE of φ(m)

(z)ql. Note that the minimum value any φ̂(m)
(z)ql can take

due to the imposed boundedness constraint is 1/MN2. This value is sufficiently small so that none
of the partial sums in the left hand side of Equations (3.13) and (3.14) exceeds 1.

As before we define expectations of φ̂z as φ̄z and that of lR(A; z, φ) as l̄RP (z, φ) under the inde-
pendent Bernoulli(P (m)

ij ) model. Then,

l̄RP (z, φ) =
M∑
m=1

∑
i<j

{P (m)
ij log(φ̄(m)

zizj ) + (1− P (m)
ij ) log(1− φ̄(m)

zizj )}. (3.15)

For a given class assignment z, φ̂z and φ̄z are the maximizers of the functions lR(A; z, φ) and l̄RP (z, φ)
respectively, and we let lR(A; z) and l̄RP (z) denote the corresponding maximum values. The difference
between the maximized values of the observed and expected likelihood can be decomposed in two
parts similar to Equation (3.8) as follows

lR(A; z)− l̄RP (z)

=
∑
m

∑
i<j

{
A

(m)
ij log

(
φ̂

(m)
zizj

φ̄
(m)
zizj

)
+ (1−A(m)

ij ) log

(
1− φ̂(m)

zizj

1− φ̄(m)
zizj

)}
+X − E(X)

=
∑
m

∑
i<j

{
A

(m)
ij (π̂ql + β̂m − π̄ql − β̄m)− log

(
1 + exp(π̂ql + β̂m

1 + exp(π̄ql + β̄m)

)}
+X − E(X)

=
∑
q≤l

(π̂ql − π̄ql)
∑
m

∑
i<j

A
(m)
ij 1{zi = q, zj = l}+

∑
m

(β̂m − β̄m)
∑
i<j

A
(m)
ij

−
∑
m

∑
q≤l

nql log

(
1 + exp(π̂ql + β̂m

1 + exp(π̄ql + β̄m)

)
+X − E(X)

=
∑
q≤l

(π̂ql − π̄ql)nql
∑
m

φ̂
(m)
(z)ql +

∑
m

(β̂m − β̄m)
∑
q≤l

nqlφ̂
(m)
(z)ql

−
∑
m

∑
q≤l

nql log

(
1 + exp(π̂ql + β̂m)

1 + exp(π̄ql + β̄m)

)
+X − E(X)

=
∑
m

∑
q≤l

nql

{
φ̂

(m)
(z)ql log

 φ̂(m)
(z)ql

φ̄
(m)
(z)ql

+ (1− φ̂m(z)ql) log

1− φ̂(m)
(z)ql

1− φ̄(m)
(z)ql

}+X − E(X)

=
∑
m

∑
q≤l

nqlD
(
φ̂

(m)
(z)ql || φ̄

(m)
(z)ql

)
+X − E(X), (3.16)



where as before,

X =

M∑
m=1

∑
i<j

A
(m)
ij log

(
φ̄

(m)
zizj

1− φ̄(m)
zizj

)
. (3.17)

Since the maximum of unrestricted likelihood would be at least as large as the maximum of
restricted likelihood, we have l(A; z) ≥ lR(A; z) and l̄P (z) ≥ l̄RP (z) for all z.

Now let z̄ denote the true partition. Further let ẑ and ẑR denote the maximum likelihood estimates
of z̄ under the two models MLSBM and RMLSBM respectively, i.e.,

ẑ = arg max
z
l(A, z). (3.18)

ẑR = arg max
z
lR(A, z). (3.19)

3.2. Main results

We give several theorems in this subsection as we develop towards our main result. These theorems
provide insights into the conditions required under the three asymptotic regimes discussed in the
beginning of Section 3, which in turn provide comparison between the asymptotic behavior of the
two models MLSBM and RMLSBM. Before we state the theorems, we need the following lemma that
bounds the size of the set of possible estimated values of the parameters of MLSBM and RMLSBM.
All the proofs are given in the Appendix A.

Lemma 1. For a fixed z, let π̂(z) = {π̂(m)
(z)ql; q, l ∈ {1, . . . ,K}, m ∈ {1, . . . ,M}} denote the MLE of

the parameters of MLSBM, and let π̂R(z) = {(π̂(z)ql, β̂(z)m); q ≤ l, q, l ∈ {1, . . . ,K}, m ∈ {1, . . . ,M}}
be the MLE of the parameters of RMLSBM. Then for any z, we have the size of the set of all possible
values that π̂(z) can take as

|Π̂(z)| ≤
(
N

K
+ 1

)MK(K+1)

,

and that π̂R(z) can take as

|Π̂R
(z)| ≤

(
M1/2

(
N

K
+ 1

))K2+K (N(N + 1)

2
+ 1

)M
,

where Π̂(z) and Π̂R
(z) denote the range of π̂(z) and π̂R(z) respectively for a fixed z.

The next three theorems bound the difference in the maximized log likelihood and its expected
value for both MLSBM and RMLSBM as defined in Equations (3.8) and (3.16).

Theorem 1. Suppose a MLSBM and a RMLSBM, both with K classes and M layers, are fitted to
the graph with adjacency matrix {Aij}i<j = {A(1)

ij , . . . , A
(M)
ij }i<j , i, j = 1, . . . , N , where A(m)

ij are

independent Bernoulli(P (m)
ij ) trials. For any class assignment z, suppose the estimate π̂(z) maximizes

the multi-layer block model likelihood l(A; z, π) and the estimate φ̂(z) maximizes the likelihood from the
restricted model, i.e., the multi-layer block model likelihood lR(A; z, φ) under the restricted parameter
space defined by ΠR. Then for any ε > 0,

P

max
z

∑
q≤l

nql
∑
m

D
(
π̂

(m)
(z)ql || π̄

(m)
(z)ql

)
≥ ε

 (3.20)

≤ exp

(
N logK +M(K2 +K) log

(
N

K
+ 1

)
− ε
)
,



P

(
max
z

{∑
m

N(N + 1)

2
D

∑q≤l nqlφ̂
(m)
(z)ql

N(N + 1)/2

∣∣∣∣∣∣ ∑q≤l nqlφ̄
(m)
(z)ql

N(N + 1)/2

} ≥ ε) (3.21)

≤ exp

(
N logK + (K2 +K) log

(
NM1/2

K
+ 1

)
+M log

(
N(N + 1)

2
+ 1

)
− ε

)
,

P

(
max
z

{∑
q≤l

MnqlD

(
1

M

∑
m

φ̂
(m)
ql

∣∣∣∣∣∣ 1

M

∑
m

φ̄
(m)
ql

)}
≥ ε

)
(3.22)

≤ exp

(
N logK + (K2 +K) log

(
NM1/2

K
+ 1

)
+M log

(
N(N + 1)

2
+ 1

)
− ε

)
.

The first result (3.20) provides a bound for the first part of the right hand side of Equation (3.8)
for MLSBM. The results (3.21) and (3.22) provide a bound that will be used in Theorem 3 to bound
the first part of the corresponding likelihood decomposition for RMLSBM in Equation (3.16). In the
proofs of the next two theorems, we first bound the second part of Equations (3.8) and (3.16), and
then combine the results to provide a bound for the difference between the log likelihood and its
expected value under any arbitrary partition z for MLSBM and RMLSBM respectively.

Theorem 2. Suppose a MLSBM with K classes and M layers is fitted to the graph whose edges
A

(m)
ij are independent Bernoulli(P (m)

ij ) trials. If we further assume that (i) 1
MN2 ≤ P

(m)
ij ≤ 1− 1

MN2

for all i < j, (ii) K = O(N1/2), and (iii) the total expected number of edges of the entire multi-layer
graph L =

∑
m

∑
i<j
E(A

(m)
ij ) is ω(MN(logN)3+δ) for some δ > 0 as both M and N grow, then

max
z
|l(A; z)− l̄P (z)| = oP (L).

The result of this theorem holds under the given conditions irrespective of the relationship between
the growth rates of M and N . We state the result under the first asymptotic regime mentioned at
the beginning of Section 3 since we do not get any relaxation in the assumption regarding the total
expected number of edges if we assume certain relations between the growth rates of M and N .

The next theorem states that the restricted likelihood in RMLSBM is also asymptotically well
behaved under five independent sets of conditions corresponding to the three asymptotic regimes
discussed at the beginning of Section 3. The first two sets of conditions correspond to regime 1, the
third set of conditions corresponds to regime 2, and the last two sets of conditions correspond to
regime 3.

Theorem 3. Assume that a RMLSBM with K classes and M layers is fitted to the graph whose
edges A(m)

ij are independent Bernoulli(P (m)
ij ) trials. If we further assume any of the following five

sets of conditions with respect to the growth of the properties of the model under different asymptotic
settings:

(i) both M and N grow, K = O(N1/2), 1
MN2 ≤ P

(m)
ij ≤ C logN

N(logM)2+δ
for all i < j, where C is a

constant, and the total expected number of edges of the entire multi-layer graph L = ω(MN(logN)3+δ)
for some δ > 0;

(ii) both M and N grow but M = O(N), K = O((MN)1/2−ε) for some ε > 0, 1
MN2 ≤ P

(m)
ij ≤

C logN
N(logM)2+δ

for all i < j, where C is a constant, and the total expected number of edges of the entire
multi-layer graph L = ω(MN(logN)3+δ) for some δ > 0;



(iii) M is either a constant or grows slower than N , i.e., M = o(N), K = O(N1/2), 1
MN2 ≤

P
(m)
ij ≤ C logN

MN(logM)2+δ
for all i < j, where C is a constant, and the total expected number of edges

of the entire multi-layer graph L is ω(N(logN)3+δ) for some δ > 0;
(iv) M grows and N is either a constant or grows slower than M , i.e., M = ω(N), K =

O( N
logN logM ), 1

MN2 ≤ P
(m)
ij ≤ C 1

N logN(logM)2+δ
for all i < j, where C is a constant, and the total

expected number of edges of the entire multi-layer graph L = ω(MN(logN)1+δ) for some δ > 0;
(v) M grows and N is either a constant or grows slower than M , i.e., M = ω(N), K = O(N1/2),

1
MN2 ≤ P

(m)
ij ≤ min

(
C 1
N2 logN

, C 1
N logN(logM)2+δ

)
for all i < j, where C is a constant, and the

total expected number of edges of the entire multi-layer graph L is larger than the the smaller of
M(logM)2+δ(logN)1+δ and MN(logN)1+δ for some δ > 0;
then,

max
z
|lR(A; z)− l̄RP (z)| = oP (L).

It is clear from Theorem 2 and Theorem 3 that in RMLSBM, the bound on the likelihood can
be established both for relatively milder conditions on the expected total number of edges and
relatively faster growth conditions on the number of communities. As we will see in Theorem 5 and
the discussion following it, this enables RMLSBM to be a more attractive model for community
detection either when the number of communities is large or when we have relatively sparser graphs.

Now we are ready to state our main results which show that when the true data generating process
is a K-class MLSBM, the fraction of nodes misclustered by the maximum likelihood estimates and
the restricted maximum likelihood estimates converge to zero under different asymptotic regimes.
We define the number of “misclustered” nodes Ne(ẑ) as the number of incorrect class assignments
under ẑ, counted for every node whose true class under z̄ is not in the majority within its estimated
class under ẑ ([6]).

The previous results (Theorems 1, 2, 3) hold for any P (m)
ij whenever they are bounded as described

in the theorems. Now we assume further structure on the probabilities, namely a MLSBM. Denote
the true partition as z̄, and under the true partition, let the true block model parameter array be
π̄. Hence, under MLSBM we have

P
(m)
ij = π̄

(m)
z̄iz̄j .

Consequently, l̄P (z̄, π) from Equation (3.7) is maximized by the true model parameter π̄, and we
have the maximized expected likelihood as

l̄P (z̄) =
M∑
m=1

∑
q≤l

nql{π̄
(m)
ql log π̄

(m)
ql + (1− π̄(m)

ql ) log(1− π̄(m)
ql )}. (3.23)

On the other hand, the expected restricted likelihood is maximized by the parameter array π̄R

under the restricted parameter space of RMLSBM. Note that this is different from the true model
parameter array π̄ due to the restrictions imposed on the parameter space. Using the transformation



introduced in Equation (3.1), the maximized expected restricted likelihood is

l̄RP (z̄) =

M∑
m=1

∑
i<j

{P (m)
ij log φ̄

(m)
z̄iz̄j + (1− P (m)

ij ) log(1− φ̄(m)
z̄iz̄j )}

=
M∑
m=1

∑
i<j

{π̄(m)
z̄iz̄j log φ̄

(m)
z̄iz̄j + (1− π̄(m)

z̄iz̄j ) log(1− φ̄(m)
z̄iz̄j )}

=

M∑
m=1

∑
q≤l

nql{π̄
(m)
ql log φ̄

(m)
ql + (1− π̄(m)

ql ) log(1− φ̄(m)
ql )}. (3.24)

For MLSBM, if the conclusion max
z
|l(A; z) − l̄P (z)| = oP (L) of Theorem 2 holds, the data are

generated according to a K-class blockmodel with membership vector z̄ and probability matrix π̄,
and the maximum-likelihood K-class blockmodel class assignment estimator is ẑ, then it is easy to
see

l̄P (z̄)− l̄P (ẑ) ≤ l̄P (z̄)− l̄P (ẑ) + l(A, ẑ)− l(A, z̄) (3.25)
≤ |l̄P (z̄)− l(A, z̄)|+ |l̄P (ẑ)− l(A, ẑ)| = oP (L).

Note that the terms l̄P (z̄)− l̄P (ẑ) and l(A, ẑ)− l(A, z̄) are positive quantities as mentioned earlier.
The next theorem relates Equation (3.25) with the fraction of misclustered nodes Ne(ẑ) and the
expected total number of edges L to establish a bound for the misclustering rate.

Theorem 4. Suppose the data are generated according to a K-class MLSBM with membership
vector z̄ and parameter array π̄, the conclusion of Theorem 2 holds, and the following conditions
hold with respect to the model sequence: for all blockmodel classes q = 1, . . . ,K, class size Nq grows
as s = min

q
{Nq} = Ω(N/K), and over all distinct class pairs (q, l) and all classes c 6= {q, l},

min
q,l

min
m

max
c

{
D

(
π̄(m)
qc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)
+D

(
π̄

(m)
lc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)}

= Ω

(
LK

MN2

)
, (3.26)

then
Ne(ẑ) = oP (N). (3.27)

Note that condition (3.26) is very similar to condition (ii) of Theorem 3 in [6] with the total
number of edges for the single layer case being replaced by the average number of edges L/M
in each layer for the multi-graph. This ensures that any two rows in any of the layer matrices
π̄(m) of π̄ differ in at least one entry by at least a constant times LK

MN2 . Also, when we take into
account the asymptotic conditions required on the growth of K and L for the result of Theorem 2
to hold, i.e., K = O(N1/2) and L = ω(MN(logN)3+δ) with M and N both growing, then we have
LK
MN2 = ω

(
(logN)3+δ

N1/2

)
. As argued in [6], if L is close to its least possible rate of growth, LK

MN2 goes to

0 for large N and the condition is not too prohibitive. For example, if L = MN(logN)β with β > 4,
then (logN)β = o(N1/2), so LK

MN2 goes to 0 and the condition is not overly restrictive.
We state the corresponding conclusion for the restricted likelihood estimation (for RMLSBM)

over two lemmas and one theorem. The first lemma bounds the difference between the maximized
expected likelihoods from the unrestricted and the restricted models under the true partition. The



second lemma uses this result along with the result of Theorem 3 to bound the difference between
the maximized expected likelihood for the restricted model under the RMLE and the maximized
expected likelihood for the unrestricted model under the true partition.

Lemma 2. Under the true partition z̄, if any of the five sets of conditions in Theorem 3 on the
growth of multi-layer blockmodel parameters holds, then l̄P (z̄) − l̄RP (z̄) = oP (L), where L is the
expected number of edges in the multi-layer graph under the corresponding set of conditions.

Lemma 3. Under the true partition z̄ and the RMLE of the partition ẑR (i.e., the MLE in the
restricted model RMLSBM), we have l̄P (z̄) − l̄RP (ẑR) = oP (L) whenever the conclusion of Theorem
3 holds.

Now we are ready to show that the class membership assignment vector estimated through the
maximum likelihood estimation in the restricted model RMLSBM is consistent under data generated
from the MLSBM.

Theorem 5. Suppose the data are generated according to a K-class MLSBM with membership
vector z̄ and parameter array π̄, the conclusion of Lemma 3 holds, and the following conditions hold
with respect to the model sequence: for all blockmodel classes q = 1, . . . ,K, class size Nq grows as
s = min

q
{Nq} = Ω(N/K), and over all distinct class pairs (q, l) and all classes c 6= {q, l},

min
q,l

min
m

max
c

{
D

(
π̄(m)
qc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)
+D

(
π̄

(m)
lc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)}
= Ω(g), (3.28)

then under any of the five sets of growth conditions in Theorem 3, we have

Ne(ẑ
R) = oP (h). (3.29)

Here g in condition (3.28) and the growth rate h depend on the asymptotic conditions imposed on K
and L. The growth rate h can be determined from g by the relationship h = KL

MNg . In particular, (i)
when K = O(N1/2), L = ω(MN(logN)3+δ) with M and N both growing arbitrarily, then we have
g = LK

MN2 = ω
(

(logN)3+δ

N1/2

)
and h = N ; (ii) when K = O((MN)1/2−ε), L = ω(MN(logN)3+δ) with

M and N both growing so that M = O(N), then we have g = LK
MN2 = ω

(
(MN )1/2

)
and h = N ; (iii)

when K = O(N1/2), L = ω(N(logN)3+δ) and M = o(N), then we have g = LK
N2 = ω

(
(logN)3+δ

N1/2

)
and h = N/M ; (iv) when K = O(N1−ε/ logM), L = ω(MN(logN)1+δ and M = ω(N), then
we have g = LK

MN2 = ω
(

1
logM

)
and h = N ; (v) when K = O(N1/2), L is ω(MN(logN)1+δ) if

N < (logM)2+δ or ω(M(logM)2+δ(logN)1+δ) if N > (logM)2+δ and M = ω(N), then we have
g = LK

MN2 = ω
(

(logN)1+δ

N1/2

)
or g = LK

MN2 = ω
(

(logM)2+δ(logN)1+δ

N3/2

)
and h = N .

Note that in Theorem 5, we have used generic notations g and h to denote functions of the
network properties such as N , K and L. The functions g and h vary across asymptotic setups as
well as across the models. This is so because the regularity condition (3.28) on the difference among
the elements of block model probability matrices should be as less prohibitive as possible. Note that
in our results, we have chosen g in such a way that if L is close to its least possible rate of growth, then
g asymptotically decays to 0 under the assumed asymptotic setup. This ensures that our condition
(3.28) is not overly restrictive. It also enables us to understand and contrast the asymptotic behavior
of the models from a unified point of view.



3.3. Sparse networks

The results of all previous theorems imply that for sparse multi-layer networks, consistency can
be achieved with a large number of relatively sparser graphs as long as they together satisfy the
edge density requirement. In the case when M grows slower than N , in MLSBM we do not get any
relaxation in the required growth condition on the total expected number of edges from all the graph
layers combined, and it remains ω(MN(logN)3+δ) for K = O(N1/2). However in RMLSBM we only
require the total expected number of edges from all layers to be ω(N(logN)3+δ) for K = O(N1/2)
(Condition (iii) of Theorem 3). This implies that we only require the expected number of edges per
layer to be ω(N(logN)3+δ/M) on average. For perspective, if M grows faster than (logN)3+δ, then
the average number of edges per layer needs to grow only at O(N), which is the sparse bounded
degree regime. This case is extremely challenging for single layer networks. In comparison, the
consistency of the MLE in MLSBM requires the average expected number of edges per layer to
be ω(N(logN)3+δ) ([6]) and hence the average degree per layer must grow atleast as (logN)3+δ .
Thus consistency can be achieved with a large number of relatively sparse layers. This is particularly
important as most modern applications of community detection in multi-layer graph fall under this
asymptotic scenario.

3.4. A Large number of communities

Under MLSBM, consistent community detection is possible when the number of communities grows
as K = O(N1/2) and the total expected number of edges is ω(MN(logN)3+δ) as both M and N
grow. However, if we assume K = O((MN)1/2−ε) for some ε > 0, then we require the total expected
number of edges to be ω(M2N(logN)3+δ) which is unrealistically dense. On the other hand, under
RMLSBM consistent estimation is possible with comparable edge density even when the number of
communities grows faster, either as K = O((MN)1/2−ε) when both M and N grow but M = O(N),
or asK = O( N

logM logN ) when N grows slower thanM (Conditions (ii) and (iv) of Theorem 3). Hence
the restricted model is advantageous for community detection in networks with a large number of
communities.

4. Estimation using mixture model approach

Simultaneous maximum likelihood estimation of parameters and class assignments in the stochastic
blockmodel is a difficult problem ([25], [6], [28]). The same difficulties remain in the MLSBM and
its restricted version. Consequently, to obtain an estimation algorithm here, we view the MLSBM
as a mixture model with discrete latent variables Z. In this case, Zi is a missing random variable
that follows a multinomial distribution with K parameters: Zi ∼ Mult(1, α = (α1, α2, . . . , αK)).
We follow the framework laid out by [8] to simultaneously estimate the conditional blockmodel
parameters and the class assignments with variational EM technique. The derivations for MLSBM
are straightforward extensions of the corresponding formula in [8] and are omitted in this paper
while the update rules for RMLSBM have been derived in the Appendix B. The update steps for
MLSBM and RMLSBM are also provided in the Appendix B under Algorithm 1 and Algorithm 2
respectively.

5. Simulation results

In this section we numerically test the asymptotic results and compare the performance of the models
through a small simulation study. We generate data from the more general model, MLSBM. We then
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Fig 2: Comparison of the performance of various methods for three simulation settings in terms of
CCR and NMI: (a) fixed K = 10 and M = 5 while N increases from 100 to 500; (b) fixed N = 400
and M = 6 while K increases from 20 to 40; (c) fixed N = 200 and K = 15 while M increases from
2 to 18. All CCR and NMI values are averaged over 50 simulations.



compare the relative performance of the two multi-layer methods between themselves as well as with
single layer methods and baseline methods such as majority voting. The comparison is done under
various settings on the number of nodes N , the number of communities K, the number of types of
relationsM , and the expected total number of edges L. For computing the majority voting solution,
the cluster labels of different single layer algorithms are aligned with each other by solving the Linear
Sum Assignment Problem.

Since the true class labels of the nodes are known in simulated data, we compare the class as-
signments from different methods with the true labels. We use correct clustering rate (CCR) and
normalized mutual information (NMI) as measures of similarity between partitions. The CCR counts
the fraction of nodes whose cluster assignment matches the true class label (as determined by the
true class label of the majority of nodes in that cluster). The higher the CCR, the better the perfor-
mance of the clustering method. However note that this definition of “correct clustering" does not
involve optimal assignment of the cluster labels to class labels and hence is different from the usual
correct classification rate used in supervised learning. On the other hand, the NMI is an information
theoretic measure of the mutual dependence or similarity of two random variables. The NMI takes
values in the range of 0 to 1, with 0 indicating random cluster assignment with respect to the true
class labels, and 1 indicating perfect match between the true and assigned clusters. If NMI is 0, it
means even though the cluster assignment was not completely random and done according to some
algorithm, the solution presents no information regarding the true class labels.

In all the simulation studies we repeat the experiments 50 times and take the average of our mea-
sures across them. We first generate the node labels independently from a multinomial distribution
with probabilities P (Zi = k) = αk. Then we generate the data using the node labels and M con-
nectivity matrices, all of which give larger probability to connections within groups in comparison
to the connections between groups. The general structure of the connectivity matrix is

PK×K = λIK + ε1K×K − εIK , (5.1)

so that all the diagonal elements are λ and all the off diagonal elements are ε. The parameters λ
and ε differ among simulation studies as well as among layers in a particular simulation.

5.1. Fixed K and M while N increases

In this simulation, we takeM = 5 types of edges or network layers, each with a separate connectivity
matrix inducing a different network. We keep the number of communities K fixed at 10 and vary
the number of nodes N from 100 to 500. The aim of this study is to compare the two multi-layer
methods with the single layer methods and baseline methods in terms of the number of nodes
required to achieve a consistent estimation of community assignment with moderately low number
of communities. The values of the parameters of the connectivity matrix, λ and ε, were chosen
with the aim of having some variation among the layers in terms of edge density while keeping the
ratio between λ and ε at roughly 4 : 1. Figure 2(a) displays the results from this study. Clearly
the two multi-layer methods reach CCR and NMI of close to 1 faster than the single layer ones
as the number of nodes increases. The accuracy of majority voting behaves similarly to the single
layer ones. Moreover, for a small number of nodes, the RMLSBM performs better than all the other
methods considered.

5.2. Fixed N and M while K increases

In this simulation, we test the performance of the two multi-layer methods against the single layer
and baseline methods with increasing number of communities. We fix the number of nodes N and



the number of layers M at 400 and 6 respectively, while we let K increase from 20 to 40 in steps
of 5. The results from this simulation study are displayed in Figure 2(b). Whereas the accuracy of
community detection in all the single-layer methods and the baseline method decreases rapidly with
increasing number of communities, the multi-layer methods explored here, especially the RMLSBM,
perform well even with a large number of communities. Between RMLSBM and MLSBM, RMLSBM
clearly outperforms MLSBM as the number of communities grows. In terms of NMI, while the score
for MLSBM, majority voting and the single layer SBMs reduce below 0.5, it settles to a value close
to 0.9 for RMLSBM as the number of communities increases to 40. Similarly, the CCR for RMLSBM
settles around 0.7 while for all other methods described here it decreases below 0.4.

5.3. Fixed N and K while M increases

In this simulation, we keep the number of nodes N and the number of communities K fixed at 200
and 15 respectively, while we increase the number of layers M gradually from 2 to 20. Each layer of
the multi-layer network was generated from a K-class stochastic block model with the connectivity
matrix given in Equation (5.1) with parameters ε = 0.15±U(−0.04, 0.04) and λ = 3ε. Here U(a, b)
is a random number from the uniform distribution between a and b. We compare the performance
of MLSBM and RMLSBM with majority voting in terms of the accuracy of community detection.
The curves for majority votes in Figure 2(c) remain almost flat with increasing number of layers,
indicating that the accuracy of community detection does not improve with more layers. For MLSBM,
the accuracy increases initially, however the improvement quickly stops being significant and both the
curves flatten with increasing layers. For RMLSBM, however, the accuracy of community detection
increases with the number of layers and its CCR and NMI values are much higher than the other
two methods.

The three studies clearly point out the advantages of the multi-layer methods over the single layer
ones and the baseline one, as well as the relative advantage of RMLSBM over MLSBM within the
scope of the simulations.

6. Twitter UK politics dataset

In this section we test our method on a real dataset on interactions between British Members of
Parliament (MPs) in the social networking site Twitter curated by [12]. Although the original dataset
consists of 419 nodes we only considered the largest subset that is connected across all layers for
our analysis. Hence our multi-layer network consisted of 381 nodes. The different layers of network
we have correspond to three direct relations: “mentions”, “follows” and “retweets”, and three derived
relations, “mentioned by the same person (co-mentions)”, “followed by the same person (co-follow)”,
and “retweeted by the same person (co-retweets)”. All relations are assumed to be binary by assigning
one if the relation is true for at least one case (e.g., if at least one person follows both MP i and MP
j, then the relation “co-follow” between the two MPs is true). All the relations individually can be
represented as graphs. For the graphs with direct relations, “mentions”, “follows”, and “retweets”, a
directed edge from node i to node j implies that MP i mentioned, followed or retweeted respectively
MP j at least once in his/her tweets. We converted all directed edges into undirected edges for this
analysis. Average degrees of nodes in different network layers are presented in Table 1. Note that
among the direct layers, “follows” is relatively dense compared to “mentions” and “retweets”, while
the derived networks are overall much denser compared to the direct ones.

The goal here is to cluster the MPs into communities based on the information about their
twitter activities. The ground truth communities are known to be consisting of five communities
corresponding to the political affiliations of the MPs: Conservatives, Labour, Liberal Democrats,



Table 1
Average degrees of nodes in different network layers for Twitter UK politics dataset

Mentions Follows Retweets Co-mention Co-follow Co-retweet
58.48 98.34 31.88 361.51 297.21 147.56

Table 2
Ground truth community sizes

Conservative Labour Liberal Democrat SNP other
152 178 39 5 7

SNP and Other, and the sizes of the five communities are given in Table 2. The clustering quality is
assessed through NMI and CCR as before. As the optimization methods used here are sensitive to
the starting values, we use several starting values and report the result corresponding to the highest
score of the objective function.

Part (a) of Table 3 reports the performance of the algorithm for the six individual layers considered.
Note that the performance of the derived networks is worse compared to the direct ones despite being
denser. Clearly the signal in favor of the ground truth is stronger in the “direct networks” compared
to the “derived networks”. The performance of majority vote, MLSBM and RMLSBM on multi-layer
networks constructed from the three direct layers and all layers together are given in part (b) of
Table 3. In both cases the multi-layer methods outperform majority voting, and between the two
multi-layer methods, RMLSBM outperforms MLSBM. From the results for direct networks, we note
that the performance of multi-layer models is not affected by inclusion of relatively sparse networks
(“mentions", “retweets") and multi-layer models perform better than the densest layer (“follows"),
as long as all the signal strength is high. However the performance deteriorates as the signal quality
becomes bad with the inclusion of poor performing derived networks. RMLSBM is more robust
towards such layers with poor signal compared to MLSBM.

Table 3
The NMI and CCR for Twitter UK politics data

Measure Mentions Follows Retweets Co-mentions Co-follows Co-retweets
NMI 0.4522 0.5992 0.4610 0.3449 0.2520 0.4009
CCR 0.8182 0.9022 0.7926 0.7565 0.7053 0.8136

(a) Individual network layers

NMI CCR
Majority MLSBM RMLSBM Majority MLSBM RMLSBM

Direct networks 0.5213 0.6764 0.6821 0.8477 0.9527 0.9553
All networks 0.3825 0.5428 0.6250 0.7217 0.8393 0.9107

(b) Combined network layers

7. Discussions

In this paper we extended the stochastic block model to the multi-layer settings with two related
models, MLSBM and its restricted version RMLSBM. We used these models for community detection
in multi-layer networks through maximum likelihood estimation. We solved the challenging problem
of simultaneous inference of model parameters and latent community assignments with variational
EM algorithm combined with gradient descent. The maximum likelihood estimates of both models
are consistent under data generated from the more general model MLSBM with suitable conditions
on the growth rate of the number of communities, the number of types of edges/layers, and the total
number of edges of the entire multi-layer graph.



Extensive simulation studies confirmed the superiority of the proposed methods over the baseline
methods (majority voting) and methods for single-layer networks. In the simulation studies, the
RMLSBM almost always outperforms the single-layer methods as well as the majority voting and
MLSBM, when either the number of communities is large or the graph layers are relatively sparse.
This includes the case when the individual layers have bounded average degree, which is an extremely
challenging case for single layer networks. We would like to emphasize that handling the bounded
degree case would not be possible with the usual MLSBM extension. The observations of this paper
are in line with previous work on regularization, especially in regression models where a parsimonious
model with similar accuracy is preferred over a model with a large number of parameters. The
RMLSBM approximates the MLSBM quite well with fewer parameters for most multi-layer networks
with a large number of communities. Hence in small networks or relatively sparse ones the RMLSBM
outperforms the MLSBM.

APPENDIX A

For brevity of notation henceforth in the Appendix, we remove the subscript (z) from π(z), πR(z)
and φ(z), denoting the set of parameters of MLSBM, RMLSBM and the transformation of the set of
parameters of RMLSBM respectively for a fixed z. We also remove the subscript (z) from Π̂(z) and
Π̂R

(z).

Proof of Lemma 1

We first determine the size of the set of all possible values that the MLE of the parameter array
π can take in the MLSBM. Notice that from Equation (3.5) the estimate π̂(m) of the parameter
matrix for any layer m can take any of the

∏
q≤l(nql + 1) values, since its K(K + 1)/2 upper

diagonal components (π̂(m)
ql , q ≤ l, q, l ∈ {1, . . . ,K}) can take any of the nql + 1 values in the set

{0, 1/nql, . . . , 1} independently. Hence, |Π̂| =
∏
m

∏
q≤l

(nql+1). However this is subject to the constraint

that
∑
q≤l
nql =

(
N
2

)
. This implies that |Π̂| is a product of

(
K + 1

2

)
positive terms whose sum is

fixed. So |Π̂| is maximized when the terms are all equal, i.e., nql =

(
N
2

)/(K + 1
2

)
uniformly

across all m. Hence we have the following inequality

|Π̂| ≤
((

N
2

)/(K + 1
2

)
+ 1

)MK(K+1)/2

<

(
N2

K2
+ 1

)MK(K+1)/2

<

(
N

K
+ 1

)MK(K+1)

.

Now we turn our attention to the set of values the MLE of the parameter array in RMLSBM can
take. Note that Equations (3.13) and (3.14) together represent K(K + 1)/2+M equations involving
partial sums of the MLEs of the K(K + 1)/2 + M elements in the parameter array πR (although
the equations are written in terms of the transformation φ for convenience, they actually represent
the same equations as Equations (3.10) and (3.11). The right hand side of the equations together
are the sufficient statistics under the RMLSBM. Note that due to the identifiablility constraint, we
have only K(K + 1)/2 +M − 1 free parameters. On the other hand, one of the equations in the set
of equations is also redundant, since adding together the first M equations represented by Equation
(3.13) and adding the remaining K(K + 1)/2 equations represented by Equation (3.14) yield the



same equation and hence there is one linear dependence. This set of equations determines the MLE
of πR. Hence the size of the set of all distinct solutions π̂R is at most the number of possible sets of
system of equations. To determine the later, we notice that the right hand side of each of the first
set of M equations can take N(N + 1)/2 + 1 values from the set {0, 2/[N(N + 1)], . . . , 1}, while the
right hand side of each of the next set of K(K + 1)/2 equations can take Mnql + 1 values from the
set {0, 1/(Mnql), . . . , 1}. So the size of the set of possible values the estimated parameter array π̂R

can take is

|Π̂R| ≤
∏
q≤l

(Mnql + 1)
M∏
m=1

(
N(N + 1)

2
+ 1

)
.

The first term is maximized as before when all the nql’s are equal, i.e., nql =

(
N
2

)/(K + 1
2

)
. The

second term is a fixed quantity. So we have

|Π̂R| ≤
(
M

(
N
2

)/(K + 1
2

)
+ 1

)K(K+1)/2(
N(N + 1)

2
+ 1

)M
≤
(
M
N2

K2
+ 1

)K(K+1)/2(
N(N + 1)

2
+ 1

)M
≤
(
M1/2N

K
+ 1

)K(K+1)(N(N + 1)

2
+ 1

)M
.

Lastly notice that the transformation defined by Equation (3.1) is an onto function but not neces-
sarily one-to-one, so one or more parameter arrays πR map to one φ. Hence for every estimate φ̂
there exists a corresponding estimate array π̂R. Therefore we have

|Φ̂| ≤ |Π̂R| ≤
(
M1/2N

K
+ 1

)K(K+1)(N(N + 1)

2
+ 1

)M
.

Proof of Theorem 1

The proof closely follows the proof of Theorem 1 in [6]. Following the arguments in [6], we first notice
that for a fixed z, each estimate π̂(m)

ql is a sum of nql independent Bernoulli random variables with

mean π̄(m)
ql . Hence the probability that π̂(m)

ql = ν, where ν ∈ {0, 1/nql, . . . , 1} can be bounded as

P (π̂
(m)
ql = ν) ≤ exp

(
−nqlD(ν || π̄(m)

ql )
)
,

and by the independence of A(m)
ij , the bound on the probability of any realization π̂ is

P (π̂) ≤ exp

−∑
q≤l

nql
∑
m

D(π̂
(m)
ql || π̄

(m)
ql )

 .

Recall Π̂ denotes the set of values the estimate array π̂ can take for a fixed class assignment z.
In Lemma 1, we have bounded the size of this set as |Π̂| ≤

(
N
K + 1

)MK(K+1). Now we consider the
event that

∑
q≤l nql

∑
mD(π̂

(m)
ql || π̄(m)

ql ) is at least as large as some ε > 0, and derive an upper



bound for its probability of occurrence:

P (Π̂ε) = P

π̂ ∈ Π̂;
∑
q≤l

nql
∑
m

D(π̂
(m)
ql || π̄

(m)
ql ) ≥ ε

 =
∑
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≤
∑
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exp

−∑
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∑
m

D(π̂
(m)
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(m)
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exp(−ε)

= |Π̂ε| exp(−ε) ≤ |Π̂| exp(−ε) ≤
(
N

K
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)MK(K+1)

exp(−ε)

Hence for all ε > 0, we have over all KN possible class assignments z ,

P
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≤ KN exp

(
MK(K + 1) log

(
N

K
+ 1

)
− ε
)
≤ exp

(
N logK +M(K2 +K) log

(
N

K
+ 1

)
− ε
)
.

The proof for the restricted case, although follows the same structure as before, is more involved
as we need to deal with estimating equations instead of closed form solutions. Note that for a fixed
z, the left hand side of each of theM estimating equations in (3.13) is 1

N(N+1)/2

∑
q≤l nqlφ̂

(m)
ql , which

is a sum of N(N + 1)/2 independent Bernoulli random variables with mean 1
N(N+1)/2

∑
q≤l nqlφ̄

(m)
ql

respectively. Hence the probability that
1

N(N+1)/2

∑
q≤l nqlφ̂

(m)
ql = νm, where νm ∈ {0, 2/[N(N + 1)], . . . , 1} can be bounded as

P
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ql
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 ≤ exp
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2
D
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(m)
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 ,

for m ∈ {1, . . . ,M}.
Similarly the left hand side of each of theK(K + 1)/2 estimating equations in (3.14) is 1

M

∑
m φ̂

(m)
ql ,

which is a sum of Mnql independent Bernoulli random variables with mean 1
M

∑
m φ̄

(m)
ql . Hence the

probability that
1
M

∑
m φ̂

(m)
ql = νql, where νql ∈ {0, 1/(Mnql), . . . , 1} can be bounded as

P

(
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)
≤ exp

(
−MnqlD

(
νql
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M

∑
m

φ̄
(m)
ql
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,

for q ≤ l, q, l ∈ {1, . . . ,K}.
Now since these K(K + 1)/2 + M estimating equations together determine the MLE π̂R of

RMLSBM, the probability of any realization of π̂R is bounded by the joint probability of the occur-
rence of the estimating equations. Note that although the equations within the two sets ((3.13) and
(3.14)) are independent of each other, the two sets of equations are not independent of each other.



Hence because of the inequalities that P (A ∩B) ≤ P (A) and P (A ∩B) ≤ P (B), we have

P (π̂R) ≤
∏
m

P

 1

N(N + 1)/2
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nqlφ̂
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ql

 (7.1)
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and
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For brevity, we call the right hand sides of Equations (7.1) and (7.2) as exp(−E1) and exp(−E2)
respectively. From Lemma 1, we have the size of set of all possible values π̂R can take

|Π̂R| ≤
(
M1/2N

K
+ 1

)K(K+1)(N(N + 1)

2
+ 1

)M
.

Now we consider the event that Ei is at least as large as some ε > 0 for i = 1, 2 respectively.

P (Π̂R
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Hence for all ε > 0, we have over all KN possible class assignments z,
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Proof of Theorem 2

First we note that X, as defined in Equation (3.9), is a sum of bounded independent random
variables, because each element X(m)

ij in the sum is bounded by C = 2 log(
√
MN) in absolute value.



So we can use a Bernstein type inequality for sums of bounded independent random variables ([7])
to obtain

P (|X − E(X)| > ε) ≤ exp

− ε2

2
∑
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since
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with the result in Theorem 1, we have over all possible KN class assignments z,
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which goes to zero asymptotically as N grows under the growth conditions mentioned on K and L.
So we have

max
z
|l(A; z)− l̄P (z)| = oP (L).

Proof of Theorem 3

The proof for the RMLSBM will be a slight modification of the earlier proof for MLSBM. As before
we need to bound the two terms in the decomposition of the difference between maximized likelihood
and its expected value defined in Equation (3.16). For that we write the first part in the right hand
side of (3.16), which we call E3 here for brevity, in terms of the quantities we have already bounded
in Theorem 1. We begin by noticing that, since the Kullback-Liebler divergence D(a||b) is convex,
we can use a reverse of Jensen’s inequality ([29], [4]) to write
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To derive the inequality, we used − log(φ̂
(m)
ql /φ̄

(m)
ql ) as our convex function of φ̂(m)

ql /φ̄
(m)
ql on the

interval [1/(MN2), 1− 1/(MN2)] to obtain a reverse of the “log-sum inequality". Summing the two
inequalities over m and q, l respectively, we have
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and
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Hence E3 is bounded by the minimum of the above two upper bounds. Since the first part in the
right hand side of the above two inequalities is bounded by the same quantity, we will take the
inequality for which the second part is smaller. Under the conditions on the growth of L in the
theorem, the minimum of the two second parts is o(L). Consequently,
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so under the growth conditions mentioned under different asymptotic settings,

max
z
|lR(A; z)− l̄RP (z)| = oP (L).

Proof of Lemma 2

For large N , subtracting Equation (3.24) from Equation (3.23) we have

l̄P (z̄)− l̄RP (z̄)

=
∑
q≤l

nql
∑
m

D(π̄
(m)
ql ||φ̄

(m)
ql )

≤|EQ| log(MN2) +

(
MN(N + 1)

2
− |EQ|

)
C1

L′

MN2(logM)1+δ(logN)2+δ

log

(
C1L

′/(MN2(logM)1+δ(logN)2+δ)

1/MN2

)

=oP (L′) +
C1L

′

(logM)1+δ(logN)2+δ
log

(
C1L

′

(logM)1+δ(logN)2+δ

)
=oP (L′) + oP (L′) log

(
C1L

′

(logM)1+δ(logN)2+δ

)/
[(logM)1+δ(logN)1+δ]

=oP (L′) + oP (L′)R

=oP (L),

where C1 is a constant and R = log
(

C1L′

(logM)1+δ(logN)2+δ

)/
[(logM logN)1+δ]. The inequality in step

2 comes from the upper bound on D(p||q) which can be derived as follows. Without loss of generality,
we can assume that p > q and D(p||q) ≤ p log p

q ≤ pmax log pmax

qmin
. Next we replace pmax and qmin by

the assumption on the lower and upper bounds of the restricted block model probabilities given in
Equation (3.3).

Now to complete the proof, we only need to verify that under the five sets of conditions in
Theorem 3, the term R in the right hand side of the above derivation is o(1). Under the first two



sets of conditions, L′ = MN(logN)3+δ and consequently R = log(MN logN/(logM)1+δ)
(logM logN)1+δ

= o(1). Under

the third set of conditions, L′ = N(logN)3+δ and hence R = log(N logN/(logM)1+δ)
(logM logN)1+δ

= o(1). Finally

under the last two sets of conditions, if L′ = MN(logN)1+δ then R = log(MN/(logM)1+δ)
(logM logN)1+δ

= o(1), and

if L′ = M(logM)2+δ(logN)1+δ then R = log(M(logM)1+δ)
(logM logN)1+δ

= o(1).

Proof of Lemma 3

Note that l̄P (ẑR) ≥ l̄RP (ẑR) since the maximum of the unrestricted likelihood l̄P (z) is uniformly larger
than or equal to the maximum of the restricted likelihood l̄RP (z) for all z. Moreover, z̄ maximizes
l̄P (·) and hence l̄P (z̄) − l̄RP (ẑR) ≥ 0. Notice that lR(A, ẑR) − lR(A, z̄) is positive since the observed
restricted likelihood is maximized at ẑR. So we have

l̄P (z̄)− l̄RP (ẑR) ≤ l̄P (z̄)− l̄RP (ẑR) + lR(A, ẑR)− lR(A, z̄)

≤ |l̄P (z̄)− lR(A, z̄)|+ |l̄RP (ẑR)− lR(A, ẑR)|
≤ |l̄P (z̄)− l̄RP (z̄)|+ |l̄RP (z̄)− lR(A, z̄)|+ |l̄RP (ẑR)− lR(A; ẑR)|
= oP (L),

by Lemma 2 and Theorem 3.

Proof of Theorem 4

The proof requires the concepts of partition and refinement as laid out in [6]. We briefly review the
concepts here and apply them to the MLE of MLSBM and its regularized version in RMLSBM. Let
[N ] denote the set of integers {1, 2, . . . , N}. Any multi-layer blockmodel induces a partition of the
M upper triangular probability matrices. Formally we define a partition of {P (m)

ij }i<j into U subsets
{S1, . . . , SU} by the following mapping

Θ : (i, j)i∈[N ], j∈[N ], i<j → [U ].

Note that the partitions induced on all M probability matrices are the same, since the partition is a
function only of the indices and not of the type of edges. There exists a bijection between the set [U ]
and the upper triangular part of the parameter matrices of MLSBM, so we can write πΘ(i,j) = πzizj .

In MLSBM, for a general partition, we define Su = {(i, j) : Θ(i, j) = u, i < j} and π̄u =

|Su|−1
∑
m

∑
Θ(i,j)=u,i<j

P
(m)
ij , so that we can define the log likelihood under this partition as

l̄∗P (Θ) =

M∑
m=1

∑
i<j

{P (m)
ij log π̄(m)

Θ(i,j) + (1− P (m)
ij )log (1− π̄(m)

Θ(i,j))}.

It is easy to see that l̄∗P (Θz) = l̄P (z), where Θz is the partition corresponding to block model
assignment z. A refinement Θ′ of partition Θ further subdivides the partitions in Θ into subgroups
or sub-partitions so that Θ

′
(i1, j1)i1<j1 = Θ

′
(i2, j2)i2<j2 ⇒ Θ(i1, j1)i1<j1 = Θ(i2, j2)i2<j2 . From

Lemma A2 of [6], it can be easily obtained

l̄∗P (Θ) ≤ l̄∗P (Θ′).



One such refinement is constructed in the following way ([6]). We consider a K class MLSBM
with membership vector z̄ and let Θz denote a partition of {P (m)

ij }i<j for any z. Now, for a given
membership class under z, partition the corresponding set of nodes into subclasses according to the
true class assignment z̄ of each node. Then remove one node from each of the two largest subclasses
so obtained, and group them together as a pair; continue this pairing process until no more than
one nonempty subclass remains. If pair (i, j) is chosen from the above procedure, then zi = zj and
z̄i 6= z̄j . Define C1 as the number of (i, j) pairs selected by the above method. Since at least one of
i or j is misclustered, we have Ne(z)/2 ≤ C1 ≤ Ne(z).

Next, for each C1 pairs find all other distinct indices k for which condition (3.26) of the theorem
is satisfied. Let C2 denote the total number of distinct triples that can be formed in this manner.
For each of the C2 such triples (i, j, k), we remove Pik and Pjk from their previous subset assignment
under Θz and place them in a new distinct two element subset. This partition so created is a
refinement of the original partition Θz, and we call this refined partition Θ

′z. The condition (3.26)
of the theorem implies that for each pair of classes (q, l), there exists at least one class c that satisfies,

D

(
π̄(m)
qc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)
+D

(
π̄

(m)
lc

∣∣∣∣∣∣ π̄(m)
qc + π̄

(m)
lc

2

)
≥ LK

MN2
. (7.3)

Consequently for any of the C1 pairs of nodes under the true partition, we obtain triples at least as
large as the cardinality of the smallest class. Hence C2 is at least as large as C1s, where s the size
of the smallest class. Now as per assumption, s = Ω(N/K). Hence we can bound the difference in
the likelihood:

l̄P (z̄)− l̄∗P (Θ
′z) =

∑
m

∑
i<j

D
(
P

(m)
ij || π(m)

Θ′z(i,j)

)
= C2MΩ

(
LK

MN2

)

= C1MΩ

(
N

K

LK

MN2

)
=
Ne(z)

2
Ω(L)

MNKL

KLMN2
=
Ne(z)

N
Ω(L).

Since the above procedure is valid for any class assignment vector z, we can apply it for the
maximum likelihood estimate ẑ as well. Note that ẑ induces partition Θẑ of the probability matrices
{P (m)

ij }i<j, m={1,...,M} and its refinement Θ
′ẑ increases the likelihood, i.e., l̄∗P (Θẑ) ≤ l̄∗P (Θ

′ẑ). Also we
have l̄∗P (Θẑ) = l̄P (ẑ). Consequently we have,

l̄P (z̄)− l̄P (ẑ) ≥ l̄P (z̄)− l̄∗P (Θ
′ẑ) =

Ne(ẑ)

N
Ω(L).

Combining this with the result from Equation (3.25), we have

Ne(ẑ) = oP (N).

Proof of Theorem 5

To prove the corresponding result for RMLSBM, we define regularized partition ΘR of the matrices
of probabilities between nodes P (m)

ij , computed according to the restricted model RMLSBM and its
refinement Θ

′R in exactly the same way. We further define the corresponding restricted log likelihood
associated with this partition ΘR as l̄∗RP (ΘR). For convenience we again resort to the transformation
defined by Equation (3.1)

l̄∗RP (ΘR) =
M∑
m=1

∑
i<j

{P (m)
ij log φ̄

(m)

ΘR(i,j)
+ (1− P (m)

ij ) log(1− φ̄(m)

ΘR(i,j)
)}.



For any membership assignment zR from the RMLSBM, let l̄∗RP (ΘR
zR

) be the corresponding partition
of P (m)

ij . It follows from this definition that l̄∗RP (ΘR
zR

) = l̄RP (zR). Hence we have

l̄P (z̄)− l̄∗RP (ΘR
zR) =

∑
m

∑
i<j

D

(
P

(m)
ij || φ̄(m)

Θ
′R
zR

(i,j)

)
= C2MΩ(g) = C1MΩ

(
N

K
g

)

=
Ne(z

R)

2
Ω(L)

MN

KL
g =

Ne(z
R)

h
Ω(L).

Now we specialize to ẑR. Since Θ
′R is a refinement of ΘR, it increases the restricted likelihood, i.e.,

l̄∗RP (Θ
′R
ẑR

) ≥ l̄∗RP (ΘR
ẑR

). Using this and the fact that l̄∗RP (ΘR
ẑR

) = l̄RP (ẑR), we have

l̄P (z̄)− l̄RP (ẑR) ≥ l̄P (z̄)− l̄∗RP (Θ
′R
ẑR) =

Ne(ẑ
R)

h
Ω(L).

The left hand side is o(L) by Lemma 3, and hence,

Ne(ẑ
R) = oP (h).

APPENDIX B

Derivation of variational inference for RMLSBM

We derive the update rules for RMLSBM. Note that for the restricted model, the complete data log
likelihood is given by

l(A,Z) = l(A|Z) + l(Z)

=
∑
i

∑
q

Ziqαq +
1

2

∑
i 6=j

∑
q,l

∑
m

ZiqZjl{A
(m)
ij (π̂ql + β̂m)

− log(1 + exp(π̂ql + β̂m)}.

The likelihood of the observed data can be obtained by summing the complete data likelihood over all
possible values of the unobserved missing class assignment labels Z. However, note that the number
of all possible assignments grows exponentially asKN , and the sum quickly becomes computationally
intractable even for moderate N . Hence instead we use the EM algorithm for mixture models, where
the unobserved class assignments are treated as missing values. However one needs to compute the
conditional distribution of the missing values (class assignments here) given the observed data, i.e.,
P (Z|A). Unfortunately, as argued by [8], P (Z|A) is itself intractable, since the probability of the
latent class assignments of a node depends not only on the observed edges connected to that node,
but also on the connectivity pattern of the whole network.

The variational approximation concentrates the search for optimal class assignments to a smaller
set by assuming that the class assignments follow a multinomial distribution with parameters known
as variational parameters. It aims at maximizing an expression containing the log likelihood and the
negative of the Kullback-Liebler (KL) divergence between the true probability distribution of P (Z|A)
and its variational approximation RA(·). If the approximation to the distribution coincides with the
distribution, then the KL divergence is zero and the variational approximation is the same as the
regular EM. So the new objective function to be optimized as a lower bound of l(A) is

J(RA) = log l(A)−KL[RA(·), P (·|A)].



Algorithm 1: Variational EM algorithm for MLSBM
while either convergence criterion on parameters not met or t < tmax do

// E-step: Compute variational estimates τ = {τiq}
while either convergence criteria on τ are not met or s < smax do

for i← {1, 2, . . . , N} do
for q ← {1, 2, . . . ,K} do

τ̂
(s+1)
iq = exp[α̂

(t)
q

∑
i<j

∑
l

∑
m

τ̂
(s)
jl {A

(m)
ij π̂

(t)
qlm + (1−A(m)

ij )(1− π̂(t)
qlm)}]

s = s+ 1
end

end
end

τ̂
(t+1)
iq = τ̂

(t+1)
iq /

K∑
q=1

τ̂
(t+1)
iq

// M-step: Estimate the parameters
for q ← 1 to K do

α̂
(t+1)
q = 1

N

N∑
i=1

τ̂
(t+1)
iq

for m← 1 to M do
for l← 1 to K do

π̂
(t+1)
qlm =

∑
i<j

τ̂
(t+1)
iq τ̂

(t+1)
jl

A
(m)
ij∑

i<j
τ̂
(t+1)
iq τ̂

(t+1)
jl

end
end

end
t = t+ 1

end

Algorithm 2: Variational EM algorithm for RMLSBM
while either convergence criteria on parameters are not met or t < tmax do

// E-Step: Compute variational estimates τ = {τiq}
while either convergence criteria on τ are not met or s < smax do

for i← {1, 2, . . . , N} do
for q ← {1, 2, . . . ,K} do

τ̂
(s+1)
iq = exp[α̂

(t)
q

∑
i<j

∑
l

∑
m

τ̂
(s)
jl {A

(m)
ij (π̂

(t)
ql + β̂

(t)
m )− log(1 + exp(π̂

(t)
ql + β̂

(t)
m ))}]

s = s+ 1
end

end
end
// Normalize the variational estimates so that they sum to 1 for each i

τ̂
(t+1)
iq = τ̂

(t+1)
iq /

K∑
q=1

τ̂
(t+1)
iq

// M-step: Estimate the parameters
for q ← 1 to K do

α̂
(t+1)
q = 1

N

N∑
i=1

τ̂
(t+1)
iq

end
// Use BFGS optimization method to find the parameters
(π̂(t+1), β̂(t+1)) = argmax

π,β
J(π, β)

t = t+ 1
end



Here we constraint RA to have the following form of the product of multinomial densities

RA(Z) =
∏
i

∏
q

τ
Ziq
iq .

The variational distribution RA(Z) has the interpretation of being an approximation of P (Z|A).
In the E step of the following variational EM algorithm, we compute the variational approximation

estimates of the probabilities of class assignments for each node. Given the model parameters α, π,
β, the variational parameters τ can be computed by minimizing the function

J(RA) =
∑
i

∑
q

τiq log(αq) +
1

2

∑
i 6=j

∑
q,l

∑
m

ZiqZjl{A
(m)
ij (π̂ql + β̂m) (7.4)

− log(1 + exp(π̂ql + β̂m)} −
∑
i

∑
q

τiq log(τiq)

with the constraint that
∑

q τiq = 1 for all i. The solution for the (t+ 1)th EM step can be readily
obtained as

τ̂
(t+1)
iq = exp

[
α̂(t)
q

∑
i<j

∑
l

∑
m

τ̂
(t)
jl {A

(m)
ij (π̂

(t)
ql + β̂(t)

m ) log(1 + exp(π̂
(t)
ql + β̂(t)

m ))}
]
.

In the M step we estimate the parameters of the model by maximizing the approximate likelihood.
Since we do not have a closed form solution for the parameters π and β, we use a gradient descent
algorithm (BFGS optimization algorithm) to simultaneously optimize the objective function with
respect to all the parameters. The gradients of the objective function with respect to π and β are

∂

∂β
(t)
m

:=
∑
i 6=j

∑
q,l

τ̂
(t)
iq τ̂

(t)
jl

A(m)
ij −

exp(π̂
(t)
ql + β̂

(t)
m )

1 + exp(π̂
(t)
ql + β̂

(t)
m )

 , (7.5)

∂

∂π
(t)
ql

:=
∑
i 6=j

∑
m

τ̂
(t)
iq τ̂

(t)
jl

A(m)
ij −

exp(π̂
(t)
ql + β̂

(t)
m )

1 + exp(π̂
(t)
ql + β̂

(t)
m )

 . (7.6)

The two algorithms corresponding to the two models are described in Algorithm 1 and Algorithm 2
respectively.
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