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We give an exact solution for the complete distribution of component sizes in random networks with
arbitrary degree distributions. The solution tells us the probability that a randomly chosen node belongs to a
component of size s for any s. We apply our results to networks with the three most commonly studied degree
distributions—Poisson, exponential, and power-law—as well as to the calculation of cluster sizes for bond
percolation on networks, which correspond to the sizes of outbreaks of epidemic processes on the same
networks. For the particular case of the power-law degree distribution, we show that the component size
distribution itself follows a power law everywhere below the phase transition at which a giant component
forms, but takes an exponential form when a giant component is present.
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Methods from physics, and particularly from statistical
physics, have proved invaluable for understanding the struc-
ture and behavior of networked systems such as the Internet,
the world wide web, metabolic networks, protein interaction
networks, and social networks of interactions between
people �1,2�. In particular, by creating simple �and some-
times not-so-simple� models of network structure and forma-
tion, researchers have gained insight into the way networks
behave as a function of the basic parameters governing their
topology.

One of the most fundamental parameters of a network is
its degree distribution. The degree of a node or vertex in a
network is the number of edges connected to that vertex, and
the frequency distribution of the degrees of vertices has been
shown to have a profound influence on almost every aspect
of network structure and function, including path lengths,
clustering, robustness, centrality indices, spreading pro-
cesses, and many others. Various network models have been
used to illuminate the effects of the degree distribution, but
perhaps the most widely studied, and certainly one of the
simplest, is the so-called configuration model.

In the configuration model only the degrees of vertices are
specified and nothing else; except for the constraint imposed
by the degrees, connections between vertices are random.
Equivalently, configuration model networks can be thought
of as networks drawn uniformly at random from the set of all
possible networks whose vertices have the specified degrees.
Many properties of the configuration model can be calcu-
lated exactly in the limit of large system size, and for this
reason the model has become one of the fundamental tools
for the quantitative understanding and study of networks.
Exact formulas are known for the number of vertices a given
distance from a randomly chosen vertex, the existence and
expected size of the giant component, the average path
length in the giant component, and many other quantities
�3,4�.

One fundamental result that has been missing, however, is
an expression for the sizes of components in the model other
than the giant component. More specifically, if we choose a
vertex at random from the network, what is the probability
that it belongs to a component of a given size? As well as
being a central structural property of the network, this distri-

bution is directly related to important practical issues such as
the distribution of the sizes of disease outbreaks for diseases
spreading over contact networks �5,6�.

At first sight, calculation of the component sizes appears
difficult. One can derive equations that must be satisfied by
the generating function for the distribution of component
sizes �4�, but usually these equations cannot be solved. Here
we show, however, that it is nonetheless possible to derive an
explicit expression for the complete distribution of compo-
nent sizes in the configuration model for a general degree
distribution. In particular, we show that it is possible to de-
rive closed-form expressions for component sizes for the
three most commonly studied degree distributions: the Pois-
son, exponential, and power-law distributions. We also show
that the same techniques can be used to calculate the sizes of
percolation clusters for percolation models on networks of
arbitrary degree distribution, a development of some interest
because of the close connection between percolation and epi-
demic processes. We explore this connection in the last part
of the paper.

Let pk be the degree distribution of our network—i.e., the
probability that a randomly chosen vertex has degree k. If
rather than a vertex we choose an edge and follow it to the
vertex at one of its ends, then the number of other edges
emerging from that vertex follows a different distribution,
the so-called excess degree distribution:

qk =
�k + 1�pk+1

�k�
, �1�

as shown in, for example, Ref. �4�. Here �k�=�kkpk is the
average degree in the network.

It will be convenient to introduce the probability generat-
ing functions for the two distributions pk and qk, thus

g0�z� = �
k=0

�

pkz
k, g1�z� = �

k=0

�

qkz
k. �2�

Many of our results are more easily expressed in terms of
these generating functions than directly in terms of the de-
gree distributions. It will also be convenient to note that
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�k� = g0��1�, g1�z� =
g0��z�
g0��1�

, �3�

where we have made use of Eq. �1� in the second equality.
Now let us consider the distribution of the sizes of com-

ponents in our network. Every vertex belongs to a compo-
nent of size at least 1 �the vertex itself�, and every edge
connected to the vertex adds at least one more vertex to the
component, and possibly many, if there are lots of other ver-
tices that are reachable via that edge. Let us denote by t the
total number of vertices reachable via a particular edge, let
the probability distribution of t be �t, and let the generating
function for this distribution be h1�z�=�t�tz

t.
The probability that a vertex of degree k belongs to a

component of size s is the probability that the numbers of
vertices reachable along each of its k edges sum to s−1. This
probability, which we will denote P�s �k�, is given by

P�s�k� = �
t1=1

�

¯ �
tk=1

�

�	s − 1, �
m=1

k

tm
�
m=1

k

�tm
, �4�

where ��i , j� is the Kronecker delta symbol. Then the prob-
ability �s of a randomly chosen vertex belonging to a com-
ponent of size s is �s=�k=0

� pkP�s �k� and the corresponding
generating function is

h0�z� = �
s=1

�

�sz
s = �

s=1

�

�
k=0

�

pkP�s�k�zs

= �
k=0

�

pk�
s=1

�

zs�
t1=1

�

¯ �
tk=1

�

�	s − 1, �
m=1

k

tm
�
m=1

k

�tm

= z�
k=0

�

pk�
t1=1

�

¯ �
tk=1

�

z�mtm �
m=1

k

�tm
= z�

k=0

�

pk��
t=1

�

�tz
t
k

= z�
k=0

�

pk�h1�z��k. �5�

But the final sum is simply the generating function g0�z�, Eq.
�2�, evaluated at h1�z�, and hence

h0�z� = zg0„h1�z�… . �6�

By a similar argument the generating function h1�z� can be
shown to satisfy

h1�z� = zg1„h1�z�… . �7�

Between them, Eqs. �6� and �7� allow us, in principle, to
calculate the entire distribution of cluster sizes in our net-
work given the degree distribution pk. Unfortunately, the
self-consistent relation for h1�z�, Eq. �7�, is in most cases not
solvable and hence we cannot calculate the value of the gen-
erating function. Surprisingly, however, we can still calculate
the probabilities �s.

Since every component is of size at least 1, the generating
function h0�z� for the component sizes is of leading order z
�or higher� and hence contains an overall factor of z. Divid-
ing out this factor and differentiating, we can write the prob-
ability of belonging to a cluster of size s as

�s =
1

�s − 1�!� ds−1

dzs−1	h0�z�
z




z=0

. �8�

Using Eq. �6�, this can also be written

�s =
1

�s − 1�!� ds−1

dzs−1g0„h1�z�…

z=0

=
1

�s − 1�!� ds−2

dzs−2 �g0�„h1�z�…h1��z��

z=0

. �9�

This expression can be rewritten using Cauchy’s formula
for the nth derivative of a function,

�dnf

dzn�
z=z0

=
n!

2�i
� f�z�

�z − z0�n+1dz , �10�

where the integral is around a contour that encloses z0 in the
complex plane but encloses no poles in f�z�. Applying this
formula to Eq. �9� with z0=0 we get

�s =
1

2�i�s − 1� � g0�„h1�z�…
zs−1

dh1

dz
dz �11a�

=
�k�

2�i�s − 1� � g1�h1�
zs−1 dh1, �11b�

where we have used Eq. �3� to eliminate g0� in favor of g1. In
Eq. �11a� we choose the contour to be an infinitesimal loop
around the origin and, since h1�z� goes to zero as z→0, the
contour in Eq. �11b� is then also an infinitesimal loop around
the origin.

Now regarding z as a function of h1, rather than the other
way around, we make use of Eq. �7� to eliminate z and write

�s =
�k�

2�i�s − 1� � �g1�h1��s

h1
s−1 dh1. �12�

Applying Eq. �10� again we then find that

�s =
�k�

�s − 1�!� ds−2

dzs−2 �g1�z��s

z=0

. �13�

�An alternative and equivalent way to derive this formula—
although a less transparent one—would be to rearrange Eq.
�7� to give z as a function of h1 and then apply the Lagrange
inversion theorem �7� to derive the Taylor expansion of h1 or
h0. Indeed, Eqs. �8�–�13� are essentially a proof of a special
case of the inversion theorem, as applied to the problem in
hand.�

The only exception to Eq. �13� is for the case s=1, for
which Eq. �11� gives 0/0 and is therefore clearly incorrect.
However, since the only way to belong to a component of
size 1 is to have no connections to any other vertices, the
probability �1 is trivially equal to the probability of having
degree zero:

�1 = p0. �14�

Between them, Eqs. �13� and �14� give the entire distribu-
tion of component sizes in terms of the degree distribution.
They tell us explicitly the probability that a randomly chosen
vertex belongs to a component of any given size s. For any
specific choice of degree distribution, the application of Eq.
�13� still requires us to perform the derivatives. Any finite
number of derivatives can always be carried out exactly to
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give expressions for �s to finite order. It is also possible in
some cases to find a general formula for any derivative and
so derive a closed-form expression for �s for general s. In
particular, it turns out to be possible, as we now show, to find
such closed-form expressions for the three distributions most
commonly studied in the literature: the Poisson, exponential,
and power-law distributions.

A network in which edges are placed between vertices
uniformly at random has a Poisson degree distribution

pk = e−c ck

k!
, �15�

where c is the distribution mean. Such networks have been
studied widely for some decades, most famously by Erdős
and Rényi �8�. Given Eq. �15�, it is straightforward to show
that g0�z�=g1�z�=ec�z−1� and the derivatives in Eq. �13� can
be performed to give

�s =
e−cs�cs�s−1

s!
. �16�

�The same expression also works for the special case s=1.�
This expression for the component size distribution of the
Poisson random graph has been derived in the past by a
number of other methods—see, for instance, �9� and refer-
ences therein—but it is a useful check on our methods to see
it appear here as a special case of the more general formula-
tion.

Few real-world networks, however, have Poisson degree
distributions. Most have highly right-skewed distributions in
which most vertices have low degree and a small number of
“hubs” have higher degree. A number of networks, for ex-
ample, are observed to have exponential degree distributions
or distributions with an exponential tail. Examples include
food webs, power grids, and some social networks �10,11�.
Consider the exponential distribution pk=C e−�k, where C is
the appropriate normalizing constant. The generating func-
tions in this case are

g0�z� =
e� − 1

e� − z
, g1�z� = � e� − 1

e� − z

2

. �17�

Again the derivatives are straightforward to carry out and we
find that

dn

dzn �g1�z��s =
�2s − 1 + n�!

�2s − 1�!
�g1�z��s

�e� − z�n , �18�

and hence

�s =
�3s − 3�!

�s − 1�!�2s − 1�!
e−��s−1��1 − e−��2s−1. �19�

Applying Stirling’s approximation for large s we can show
that this distribution behaves asymptotically as �s�s e−�s,
where �=2 ln� 3

2 �1−e−���−�. Thus the component size dis-
tribution approximately follows an exponential law itself, al-
though with an extra leading factor of s and a different ex-
ponential constant.

However, perhaps the greatest amount of attention in re-
cent years has been focused on networks that have power-
law degree distributions of the form pk�k−� for some con-
stant exponent � �12,13�. A number of networks appear to

follow this pattern, at least approximately, including the
world wide web, the Internet, citation networks, and some
social and biological networks �1�. The observed value of the
exponent typically lies in the range 2	�	3. Equivalently,
we could say that the excess degree distribution qk—which
appears in the fundamental formula �13� via its generating
function—follows a power law with exponent �−1.

In fact, in essentially all cases, the observed power law
holds only in the tail of the distribution; the distribution fol-
lows some other law for small degrees. This leaves us con-
siderable latitude about the distribution we use in our calcu-
lations. Here we use a so-called Yule distribution for qk, with
a typical real-world value of �=2.5 for the exponent:

qk = C

�k + 1

2 �

�k + 2�

, �20�

where 
�x� is the standard gamma function and C is again a
normalizing constant. It is straightforward to show �by
Stirling’s approximation� that this distribution asymptotically
follows a power law qk�k−3/2, which corresponds to a raw
degree distribution pk�k−5/2. The Yule distribution appears
in a number of contexts in the study of networks, particularly
in the solutions of preferential attachment models that may
explain the origin of power laws in some networks �14,15�,
and is considered by some to be the most natural choice of
power-law form for discrete distributions. Employing this
particular choice for our configuration model gives

g1�z� =
1

1 + �1 − z
, �21�

which in turn gives

� dn

dzn �g1�z��s

z=0

=
2−�2n+s�

�s − 1�!�j=0

n−1
�n − 1 + j�!�s + n − 1 − j�!

j!�n − 1 − j�!
.

�22�

Setting n=s−2 and substituting into Eq. �13�, we can com-
plete the remaining sum to get

�s = �1 − ln 2�−1 �3s − 5�!
�s − 1�!�2s − 2�!

s23−3s. �23�

In Fig. 1 we show the form of this distribution, along with
those for the Poisson and exponential networks, Eqs. �16�
and �19�. Also shown in the figure are numerical results for
the distributions of component sizes measured on computer-
generated networks with the same degree distributions. As
the figure shows, there is excellent agreement between the
simulations and the exact calculations.

As with the exponential network, we can study the
asymptotic form of the component size distribution �23� for
the power-law network by making use of Stirling’s approxi-
mation. We find that in the limit of large s, �s�s3e−�s, where
�=5 ln 2−3 ln 3�0.1699. . . . Thus again we have an expo-
nential tail to the distribution.

This last result is at first surprising. One might imagine
that the component size distribution should itself fall off as a
power law or slower because the degree of a vertex provides
a lower bound on the size of the component to which the
vertex belongs—the fraction of vertices in components of
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size s or greater must be at least as large as the fraction of
vertices of degree s or greater and hence the cumulative dis-
tribution of components falls off as slow or slower than the
cumulative distribution of degrees.

So how is it possible that we have an exponential distri-
bution of component sizes in the present case? The answer is
that we are studying a network that has a giant component.
Vertices not in the giant component—which make up almost
all of the component size distribution—have a different de-
gree distribution from the graph as a whole because the prob-
ability of not being in the giant component dwindles expo-
nentially with increasing degree �6�. This creates an
exponential cutoff for the degree distribution, and hence we
are back to the situation we had for the exponential network,
which gave an exponential component size distribution.

Thus in a power-law network we expect �s to have an
exponential tail whenever there is a giant component in the
network, but a power-law tail when there is no giant compo-
nent. This contrasts with the case for essentially every other
degree distribution, where we expect a power-law distribu-
tion of component sizes only precisely at the phase transition
where the giant component forms; everywhere else, we ex-
pect the distribution to fall off exponentially or faster �4�.

The methods described here can be extended to the cal-

culation of cluster sizes for percolation processes on net-
works also. Of particular interest is the bond percolation pro-
cess, whose cluster sizes give the distribution of outbreaks
for a standard susceptible-infective-recovered �SIR� epide-
miological process on the same network �5�. Bond percola-
tion can be framed in the same language as the calculation of
component sizes above by considering the network formed
by just the occupied edges. If the occupation probability is �,
then it is straightforward to show �6� that the generating
functions for the degree distribution and excess degree dis-
tribution of this latter network are g0�1−�+�z� and g1�1
−�+�z�, with g0 and g1 defined as before. Substituting into
Eq. �13�, we then find

�s��� =
�s−1�k�
�s − 1�!� ds−2

dzs−2 �g1�z��s

z=1−�

. �24�

This implies, contrary to what one might at first expect,
that the distribution of cluster sizes need not fall off faster
when �	1: although removing edges from the network nec-
essarily makes clusters smaller, it can paradoxically also
make the cluster distribution decay more slowly. As an ex-
ample, consider again the Poisson degree distribution, Eq.
�15�, for which Eq. �24� takes the form

�s��� =
e−cs��cs��s−1

s!
=

�s�1�
�

exp��c�1 − �� + ln ��s� . �25�

Thus �s��� decays either slower or faster than the distribu-
tion for the underlying network depending on whether
c�1−��+ln � is positive or negative, with a �-dependent
transition between the two regimes when c=ln � / ��−1�.

To conclude, we have given an exact solution for the dis-
tribution of component sizes in random graphs with arbitrary
degree distributions and applied it to networks with Poisson,
exponential, and power-law distributed degrees. In the latter
case we find that though the network has a power-law distri-
bution of component sizes when there is no giant component,
the distribution develops an exponential tail once a giant
component appears.
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FIG. 1. �Color online� The distribution of component sizes in
random graphs with Poisson �c=1.5�, exponential ��=1�, and
power-law ��=2.5� degree distributions. Solid lines indicate the
exact solutions derived in this paper. Points are the results of com-
puter simulations for the same degree distributions. Each point is an
average over 5000 networks of 106 vertices each. Error bars have
been omitted, but are smaller than the data points in each case.
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