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Abstract

New phase transition phenomena have recently been discovered for the stochastic block model, for the special case of two
non-overlapping symmetric communities. This gives raise in particular to new algorithmic challenges driven by the thresholds.
This paper investigates whether a general phenomenon takes place for multiple communities, without imposing symmetry.

In the general stochastic block model SBM(n, p,W ), n vertices are split into k communities of relative size {pi}i∈[k],
and vertices in community i and j connect independently with probability {Wi,j}i,j∈[k]. This paper investigates the partial and
exact recovery of communities in the general SBM (in the constant and logarithmic degree regimes), and uses the generality
of the results to tackle overlapping communities.

The contributions of the paper are: (i) an explicit characterization of the recovery threshold in the general SBM in terms of a
new f -divergence function D+, which generalizes the Hellinger and Chernoff divergences, and which provides an operational
meaning to a divergence function analog to the KL-divergence in the channel coding theorem, (ii) the development of an
algorithm that recovers the communities all the way down to the optimal threshold and runs in quasi-linear time, showing
that exact recovery has no information-theoretic to computational gap for multiple communities, (iii) the development of an
efficient algorithm that detects communities in the constant degree regime with an explicit accuracy bound that can be made
arbitrarily close to 1 when a prescribed signal-to-noise ratio (defined in term of the spectrum of diag(p)W ) tends to infinity.
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I. INTRODUCTION

Detecting communities (or clusters) in graphs is a fundamental problem in computer science and machine learning. This

applies to a large variety of complex networks in social sciences and biology, as well as to data sets engineered as networks

via similarity graphs, where one often attempts to get a first impression on the data by trying to identify groups with

similar behavior. In particular, finding communities allows one to find like-minded people in social networks [1], [2], to

improve recommendation systems [3], [4], to segment or classify images [5], [6], to detect protein complexes [7], [8], to

find genetically related sub-populations [9], [10], or to discover new tumor subclasses [11].

While a large variety of community detection algorithms have been deployed in the past decades, understanding the

fundamental limits of community detection and establishing rigorous benchmarks for algorithms remains a major challenge.

Significant progress has recently been made for the stochastic block model, but mainly for the special case of two non-

overlapping communities. The goal of this paper is to establish the fundamental limits of recovering communities in general

stochastic block models, with multiple (possibly overlapping) communities. We first provide some motivations behind these

questions.

Probabilistic network models can be used to model real networks [12], to study the average-case complexity of NP-hard

problems on graphs (such as min-bisection or max-cut [13], [14], [15], [16]), or to set benchmarks for clustering algorithms

with well defined ground truth. In particular, the latter holds irrespective of how exactly the model fits the data sets, and

is a crucial aspect in community detection as a vast majority of algorithms are based on heuristics and no ground truth is

typically available in applications. This is in particular a well known challenge for Big Data problems where one cannot

manually determine the quality of the clusters [17].

Evaluating the performance of algorithms on models is, however, non-trivial. In some regimes, most reasonable algorithms

may succeed, while in others, algorithms may be doomed to fail due to computational barriers. Thus, an important question

is to characterize the regimes where the clustering tasks can be solved efficiently or information-theoretically. In particular,

models may benefit from asymptotic phase transition phenomena, which, in addition to being mathematically interesting,

allow location of the bottleneck regimes to benchmark algorithms. Such phenomena are commonly used in coding theory
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(with the channel capacity [18]), or in constraint satisfaction problems (with the SAT thresholds, see [19] and references

therein).

Recently, similar phenomena have been identified for the stochastic block model (SBM), one of the most popular network

models exhibiting community structures [20], [21], [22], [23], [24], [25]. The model1 was first proposed in the 80s [20]

and received significant attention in the mathematics and computer science literature [14], [13], [26], [27], [15], [28], [29],

as well as in the statistics and machine learning literature [30], [24], [31], [32]. The SBM puts a distribution on n-vertices

graphs with a hidden (or planted) partition of the nodes into k communities. Denoting by pi, i ∈ [k], the relative size of

each community, and assuming that a pair of nodes in communities i and j connects independently with probability Wi,j ,

the SBM can be defined by the triplet (n, p,W ), where p is a probability vector of dimension k and W a k× k symmetric

matrix with entries in [0, 1].
The SBM recently came back at the center of the attention at both the practical level, due to extensions allowing overlapping

communities [33] that have proved to fit well real data sets in massive networks [34], and at the theoretical level due to

new phase transition phenomena discovered for the two-community case [35], [36], [37], [38], [39], [40]. To discuss these

phenomena, we need to first introduce the recovery requirements (formal definitions are in Section II):

• Weak recovery (also called detection). This only requires the algorithm to output a partition of the nodes which is

positively correlated with the true partition (whp2). Note that weak recovery is relevant in the fully symmetric case

where all nodes have identical average degree,3 since otherwise weak recovery can be trivially solved. If the model

is perfectly symmetric, like the SBM with two equally-sized clusters having the same connectivity parameters, then

weak recovery is non-trivial. Full symmetry may not be representative of reality, but it sets analytical and algorithmic

challenges. The weak-recovery threshold for two symmetric communities was achieved efficiently in [37], [38], settling

a conjecture established in [36]. The case with more than two communities remains open.

• Partial recovery. One may ask for the finer question of how much can be recovered about the communities. For a

given set of parameters of the block model, finding the proportion of nodes (as a function of p and W ) that can be

correctly recovered (whp) is an open problem. Obtaining a closed form formula for this question is unlikely, even in

the symmetric case with two communities. Partial results were obtained in [41] for two symmetric communities, but

the general problem remains open even for determining scaling laws. One may also consider the special case of partial

recovery where only an o(n) fraction of nodes is allowed to be mis-classified (whp), called almost exact recovery or

weak consistency, but no sharp phase transition is to be expected for this requirement (when parameters differ at the

first order).

• Exact recovery (also called recovery or strong consistency.) Finally, one may ask for the regimes for which an algorithm

can recover the entire clusters (whp). This is non-trivial for both symmetric and asymmetric parameters. One can also

study “partial-exact-recovery,” namely, which communities can be exactly recovered. While exact recovery has been the

main focus in the literature for the past decades (see table in Section V), the phase transition for exact recovery was only

obtained last year for the case of two symmetric communities [39], [40]. The case with more than two communities

remains open.

This paper addresses items 2 and 3 for the general stochastic block model. Note that the above questions naturally require

studying different regimes for the parameters. Weak recovery requires the edge probabilities to be Ω(1/n), in order to have

many vertices in all but one community to be non-isolated (i.e., a giant component in the symmetric case), and recovery

requires the edge probabilities to be Ω(ln(n)/n), in order to have all vertices in all but one community to be non-isolated

(i.e., a connected graph in the symmetric case). The difficulty is to understand how much more is needed in order to weakly

or exactly recover the communities. In particular, giants and connectivity have phase transitions, and similar phenomena

may be expected for weak and exact recovery.

Note that these regimes are not only rich mathematically, but are also relevant for applications, as a vast collection of

real networks ranging from social (LinkedIn, MSN), collaborative (movies, arXiv), or biological (yeast) networks and more

were shown to be sparse [42], [43]. Note however that the average degree is typically not small in real networks, and it

seems hard to distinguish between a large constant or a slowly growing function. Both regimes are of interest to us.

Finally, there is an important distinction to be made between the information-theoretic thresholds, which do not put

constraints on the algorithm’s complexity, and the computational thresholds, which require polynomial-time algorithms. In

the case of two symmetric communities, the information-theoretic and computational thresholds were proved to be the same

1See Section V for further references.
2whp means with high probablity, i.e., with probability 1− on(1) when the number of nodes in the graph diverges.
3At least for the case for communities having linear size. One may otherwise define stronger notions of weak recovery that apply to non-symmetric

cases.
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for weak recovery [37], [38] and exact recovery [39], [40]. A gap is conjectured to take place for weak recovery for more

than 4 communities [36]. No conjectures were made for exact recovery for multiple communities.

This paper focuses on partial and exact recovery (items 2 and 3) for the general stochastic block model with linear size

communities, and uses the generality of the results to address overlapping communities (see Section IV). Recall that for the

case of two communities, if

qin = a ln(n)/n,

qout = b ln(n)/n,

are respectively the intra- and extra-cluster probabilities, with a > b > 0, then exact recovery is possible if and only if
√
a−

√
b ≥

√
2, (1)

and this is efficiently achievable. However, there is currently no general insight regarding equation (1), as it emerges from

estimating a tail event for Binomial random variable specific to the case of two symmetric communities. Moreover, no

results are known to prove partial recovery bounds for more than two communities (recent progress where made in [44]).

This represents a limitation of the current techniques, and an impediment to progress towards more realistic network models

that may have overlapping communities, and for which analytical results are currently unknown.4 We next present our effort

towards such a general treatment.

II. RESULTS

The main advances of this paper are:

(i) an algorithm (Sphere-comparison) that detects communities in the general SBM with W = Q/n with an explicit

accuracy guarantee: introducing a signal-to-noise ratio defined by the ratio |λmin|2/λmax where λmin and λmax are

respectively the smallest5 and largest eigenvalue of diag(p)Q, it is shown that when the SNR diverges, the algorithm

accuracy tends to 1 (exponentially fast) and its complexity becomes quasi-linear, i.e., o(n1+ε), for all ε > 0,

(ii) an explicit characterization of the recovery threshold in the general SBM in terms of a divergence function D+, which

provides a new operational meaning to a divergence analog to the KL-divergence in the channel coding theorem (see

Section II-C), and which allows determining which communities can be recovered by solving a packing problem in the

appropriate embedding,

(iii) a quasi-linear time algorithm (Degree-profiling) that solves exact recovery in the regime W = Q ln(n)/n
whenever it is information-theoretically solvable6, showing in particular that there is no information-theoretic to com-

putational gap for exact recovery with multiple communities (as opposed to the conjectures on weak recovery). Note that

the algorithm replicates statistically the performance of maximum-likelihood (which is NP-hard in the worst-case) with

an optimal (i.e., quasi-linear) complexity. In particular, it improves significantly on the SDPs developed for symmetric

communities (see Section V) both in terms of generality and complexity.

A. Definitions and terminologies

The general stochastic block model, SBM(n, p,W ), is a random graph ensemble defined as follows:

• n is the number of vertices in the graph, V = [n] denotes the vertex set.

• Each vertex v ∈ V is assigned independently a hidden (or planted) label σv in [k] under a probability distribution

p = (p1, . . . , pk) on [k]. That is, P{σv = i} = pi, i ∈ [k]. We also define P = diag(p).
• Each (unordered) pair of nodes (u, v) ∈ V × V is connected independently with probability Wσu,σv

, where Wσu,σv
is

specified by a symmetric k × k matrix W with entries in [0, 1].

The above gives a distribution on n-vertex graphs. Note that G ∼ SBM(n, p,W ) denotes a random graph drawn under

this model, without the hidden (or planted) clusters (i.e., the labels σv ) revealed. The goal is to recover these labels by

observing only the graph.

This paper focuses on p independent of n (the communities have linear size), W dependent on n such that the average

node degrees are either constant or logarithmically growing and k fixed. These assumptions on p and k could be relaxed,

for example to slowly growing k, but we leave this for future work. As discussed in the introduction, the above regimes for

W are both motivated by applications and by the fact that interesting mathematical phenomena take place in these regimes.

For convenience, we attribute specific notations for the model in these regimes:

4Different models than the SBM allowing for overlapping communities have been studied for example in [45].
5The smallest eigenvalue of diag(p)Q is the one with least magnitude.
6Assuming that the entries of Qij are non-zero — see Remark 1 for zero entries.
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Definition 1. For a symmetric matrix Q ∈ Rk×k
+ ,

• G1(n, p,Q) denotes SBM(n, p,Q/n),
• G2(n, p,Q) denotes SBM(n, p, ln(n)Q/n).

We now discuss the recovery requirements.

Definition 2. (Partial recovery.) An algorithm recovers or detects communities in SBM(n, p,W ) with an accuracy of α ∈
[0, 1], if it outputs a labelling of the nodes {σ′(v), v ∈ V }, which agrees with the true labelling σ on a fraction α of the
nodes with probability 1− on(1). The agreement is maximized over relabellings of the communities.

Definition 3. (Exact recovery.) Exact recovery is solvable in SBM(n, p,W ) for a community partition [k] = �t
s=1As, where

As is a subset of [k], if there exists an algorithm that takes G ∼ SBM(n, p,W ) and, with probability 1− on(1), assigns to
every node in G an element of {A1, . . . , At} that contains its true community7. Exact recovery is solvable in SBM(n, p,W )
if it is solvable for the partition of [k] into k singletons, i.e., all communities can be recovered. The problem is solvable
information-theoretically if there exists an algorithm that solves it, and efficiently if the algorithm runs in polynomial-time
in n.

Note that exact recovery for the partition [k] = {i} � ([k] \ {i}) is equivalent to extracting community i. In general,

recovering a partition [k] = �t
s=1As is equivalent to merging the communities that are in a common subset As and recovering

the merged communities. Note also that exact recovery in SBM(n, p,W ) requires the graph not to have vertices of degree 0
in multiple communities (with high probability). In the symmetric case, this amounts to asking for connectivity. Therefore,

for exact recovery, we will focus below on W scaling like
ln(n)
n Q where Q is a fixed matrix, i.e., on the G2(n, p,Q) model.

B. Main results

We next present our main results and algorithms for partial and exact recovery in the general SBM. We present slightly

simplified versions in this section, and provide full statements in Sections 6 and 7 of [46].

The CH-embedding and exact recovery. We explain first how to identify the communities that can be extracted from a

graph drawn under G2(n, p,Q). Define first the community profile of community i ∈ [k] by the vector

θi := (PQ)i ∈ Rk
+, (2)

i.e., the i-th column of the matrix diag(p)Q. Note that ‖θi‖1 log(n) gives the average degree of a node in community i. Two

communities having the same community profile cannot be distinguished, in that the random graph distribution is invariant

under any permutation of the nodes in these communities. Intuitively, one would expect that the further “apart” the community

profiles are, the easier it should be to distinguish the communities. The challenge is to quantify what “apart” means, and

whether there exists a proper distance notion to rely on. We found that the following function gives the appropriate notion,

D+ : Rk
+ × Rk

+ → R+

(θi, θj) 	→ D+(θi, θj) = max
t∈[0,1]

∑
x∈[k]

(
tθi(x) + (1− t)θj(x)− θi(x)

tθj(x)
1−t

)
. (3)

For a fixed t, the above is a so-called f -divergence (obtained for f(x) = 1 − t + tx − xt), a family of divergences

generalizing the KL-divergence (relative entropy) defined in [47], [48], [49] and used in information theory and statistics.

As explained in Section II-C, D+ can be viewed as a generalization of the Hellinger divergence (obtained for t = 1/2)

and the Chernoff divergence. We therefore call D+ the Chernoff-Hellinger (CH) divergence. Note that for the case of two

symmetric communities, D+(θ1, θ2) =
1
2 (
√
a−√b)2, recovering the result in [39], [40].

To determine which communities can be recovered, partition the community profiles into the largest collection of disjoint

subsets such that the CH-divergence among these subsets is at least 1 (where the H-divergence between two subsets of

profiles is the minimum of the H-divergence between any two profiles in each subset). We refer to this as the finest partition
of the communities. Note that it is the set of connected components in the graph where each community is a vertex, and two

communities are adjacent if and only if they have CH-divergence less than 1. Figure 1 illustrates this partition. The theorem

below shows that this is indeed the most granular partition that can be recovered about the communities, in particular, it

characterizes the information-theoretic and computational threshold for exact recovery.

Theorem 1. (See Theorem 6 in [46]) Let Q be a k × k matrix with nonzero entries, p ∈ (0, 1)k with
∑

p = 1.

7This is again up to relabellings of the communities.
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Figure 1: Finest partition: To determine which communities can be recovered in the SBM G2(n, p,Q), embed each community

with its community profile θi = (PQ)i in Rk
+ and find the partition of θ1, . . . , θk into the largest number of subsets that are

at CH-divergence at least 1 from each other.

• Exact recovery is information-theoretically solvable in the stochastic block model G2(n, p,Q) for a partition [k] =
�t
s=1As if and only if for all i and j in different subsets of the partition,

D+((PQ)i, (PQ)j) ≥ 1, (4)

In particular, exact recovery is information-theoretically solvable in G2(n, p,Q) if and only if
mini,j∈[k],i �=j D+((PQ)i||(PQ)j) ≥ 1.

• The Degree-profiling algorithm (see Section III-B) recovers the finest partition with probability 1−on(1) and runs
in o(n1+ε) time for all ε > 0. In particular, exact recovery is efficiently solvable whenever it is information-theoretically
solvable.

Let us stress that the regime considered in the above theorem with W = Q log(n)/n is the “bottleneck regime”, i.e.,

unless the entries of W are of the exact same order, the theorem characterizes when exact recovery is possible or not. For

example, in the dense regime where all the entires of W are different constants, the condition of the theorem becomes

extremal and trivially verified. In addition, this extends McSherry [29] unless pin ∼ pout.
To achieve this result we rely on a two step procedure, via a “graph-splitting” technique. First an algorithm is developed

on a random sub-graph to recover all but a vanishing fraction of nodes — this is the main focus of our partial recovery result

next discussed — and then a procedure is used to “clean up” the leftover graphs using the node degrees of the preliminary

classification. This turns out to be much more efficient than aiming for an algorithm that directly achieves exact recovery.

This strategy was already used in [39] for the two-community case, and similar ideas appeared in earlier works such as

[13], [50]. The problem is much more involved here as no algorithm is known to ensure partial recovery in the general

SBM (with partial results in [35]), and as classifying the nodes based on their degrees requires solving a general hypothesis

testing problem for the degree-profiles in the SBM (rather than evaluating tail events of Binomial distributions). The latter

part reveals the CH-divergence as the threshold for exact recovery. We next present our result for partial recovery.

Remark 1. If Qij = 0 for some i and j then the theorem above still hold, except that if for all i and j in different subsets
of the partition,

D+((PQ)i, (PQ)j) ≥ 1, (5)

but there exist i and j in different subsets of the partition such that D+((PQ)i, (PQ)j) = 1 and ((PQ)i,k · (PQ)j,k ·
((PQ)i,k − (PQ)j,k) = 0 for all k, then the optimal algorithm will have an assymptotically constant failure rate. The
recovery algorithm also needs to be modified to accomodate 0’s in Q.

Partial recovery. We obtain an algorithm that recovers the communities with an accuracy bound that tends to 1 when the

average degree of the nodes gets large, and which runs in quasi-linear time.

Theorem 2. [See Theorem 4 in [46]] Given any k ∈ Z, p ∈ (0, 1)k with |p| = 1, and symmetric matrix Q with no two
rows equal, let λ be the largest eigenvalue of PQ, and λ′ be the eigenvalue of PQ with the smallest nonzero magnitude.
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If the following signal-to-noise ratio (SNR) ρ satisfies

ρ :=
|λ′|2
λ

> 4, (6)

λ7 < (λ′)8, (7)

4λ3 < (λ′)4, (8)

then for some ε = ε(λ, λ′) and C = C(p,Q) > 0, the algorithm Sphere-comparison (see Section III-A) detects with
high probability communities in graphs drawn from G1(n, p,Q) with accuracy

1− 4ke−
Cρ
16k

1− e
− Cρ

16k

(
(λ′)4
λ3 −1

) , (9)

provided that the above is larger than 1− mini pi

2 ln(4k) , and runs in O(n1+ε) time. Moreover, ε = O(ln(λ
√
2/|λ′|)/ ln(λ)), and

C(p, αQ) is independent of α.

We next detail what the previous theorem gives in the case of k symmetric clusters.

Corollary 1. Consider the k-block symmetric case. In other words, pi = 1
k for all i, and Qi,j is α if i = j and β otherwise.

The vector whose entries are all 1s is an eigenvector of PQ with eigenvalue α+(k−1)β
k , and every vector whose entries add

up to 0 is an eigenvector of PQ with eigenvalue α−β
k . So, λ = α+(k−1)β

k and λ′ = α−β
k and

ρ > 4 ⇔ (α− β)2

k(α+ (k − 1)β)
> 4, (10)

and as long as k(α+(k−1)β)7 < (α−β)8 and 4k(α+(k−1)β)3 < (α−β)4, there exists a constant c > 0 (see Corollary
4 in [46] for details on c) such that Sphere-comparison detects communities, and the accuracy is

1−O(e−c(α−β)2/(k(α+(k−1)β)))

for sufficiently large (α− β)2/(k(α+ (k − 1)β)).

Note that ρ is the SNR appearing in the conjecture on the detection threshold for multiple blocks [36], but the conjecture

is that ρ > 1 is necessary and sufficient, so that the above gives a only sufficient condition. The following is an important

consequence of the previous theorem, as it shows that Sphere-comparison achieves almost exact recovery when the

entries of Q are amplified.

Corollary 2. For any k ∈ Z, p ∈ (0, 1)k with |p| = 1, and symmetric matrix Q with no two rows equal, there exists ε(x) =
O(1/ ln(x)) and constant c1 > 0 such that for all sufficiently large x there exists an algorithm (Sphere-comparison)
that detects communities in graphs drawn from G1(n, p, xQ) with accuracy at least 1−Ox(e

−c1x) in On(n
1+ε(x)) time for

all sufficiently large n.

C. Information theoretic interpretation of the results

We give in this section an interpretation of Theorem 1 related to Shannon’s channel coding theorem in information theory.

At a high level, clustering the SBM is similar to reliably decoding a codeword on a channel which is non-conventional

in information theory. The channel inputs are the nodes’ community assignments and the channel outputs are the network

edges. We next show that this analogy is more than just high-level: reliable communication on this channel is equivalent to

exact recovery, and Theorem 1 shows that the “clustering capacity” is obtained from the CH-divergence of channel-kernel

PQ, which is an f -divergence like the KL-divergence governing the communication capacity.

Consider the problem of transmitting a string of n k-ary information bits on a memoryless channel. Namely, let X1, . . . , Xn

be i.i.d. from a distribution p on [k], the input distribution, and assume that we want to transmit those k-ary bits on a

memoryless channel, whose one-time probability transition is W . This requires using a code, which embeds8 the vector

Xn = (X1, . . . , Xn) into a larger dimension vector UN = (U1, . . . , UN ), the codeword (N ≥ n), such that the corrupted

version of UN that the memoryless channel produces, say Y N , still allows recovery of the original UN (hence Xn) with high

probability on the channel corruptions. In other words, a code design provides the map C from Xn to UN (see Figure 2a),

and a decoding map that allows recovery of Xn from Y N with a vanishing error probability (i.e., reliable communication).

8This embedding is injective.
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Of course, if n = N , the encoder C is just a one-to-one map, and there is no hope of defeating the corruptions of the

channel W , unless this one is deterministic to start with. The purpose of the channel coding theorem is to quantify the best

tradeoffs between n, N and the amount of randomness in W , for which one can reliably communicate. When the channel

is fixed and memoryless, N can grow linearly with n, and defining the code rate by R = n/N , Shannon’s coding theorem

tells us that R is achievable (i.e., there exists an encoder and decoder that allow for reliable communication at that rate) if
and only if

R < max
p

I(p,W ), (11)

where I(p,W ) is the mutual information of the channel W for the input distribution p, defined as

I(p,W ) = D(p ◦W ||p× pW ) =
∑
x,y

p(x)W (y|x) log p(x)W (y|x)
p(x)

∑
u p(u)W (y|u) . (12)

Note that the channel capacity maxp I(p,W ) is expressed in terms of the the Kullback-Leibler divergence (relative entropy)

between the joint and product distribution of the channel.

(a) An encoder C for data transmission. (b) The SBM encoder for network modelling.

Figure 2: Clustering over the SBM can be related to channel coding over a discrete memoryless channel, for a different type

of encoder and one-time channel.

We now explain how this relates to our Theorem 1. Clustering the SBM can be cast as a decoding problem on a channel

similar to the above. The n k-ary information bits Xn represent the community assignments to the n nodes in the network.

As for channel coding, these are assumed to be i.i.d. under some prior distribution p on [k]. However, clustering has several

important distinctions with coding. First of all, we do not have degree of freedom on the encoder C. The encoder is part

of the model, and in the SBM C takes all possible
(
n
2

)
pair of information bits. In other words, the SBM corresponds to

a specific encoder which has only degree 2 on the check-nodes (the squared nodes in Figure 2b) and for which N =
(
n
2

)
.

Next, as in channel coding, the SBM assumes that the codeword is corrupted from a memoryless channel, which takes the

two selected k-ary bits and maps them to an edge variable (presence or absence of edge) with a channel W defined by the

connectivity matrix:

W (1|x1, x2) = qx1,x2
, (13)

W (0|x1, x2) = 1− qx1,x2
, (14)

where q scales with n here. Hence, the SBM can be viewed as a specific encoder on a memoryless channel defined by

the connectivity matrix q. We removed half of the degrees of freedom from channel coding (i.e., the encoder and p are

fixed), but the goal of clustering is otherwise similar to channel coding: design a decoding map that recovers the information

k-ary bits Xn from the network Y N with a vanishing error probability. In particular, exact recovery is equivalent to reliable

communication.
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A naive guess would be that some mutual information derived from the input distribution p and the channel induced from

q could give the fundamental tradeoffs, as for channel coding. However, this is where the difference between coding and

clustering is important. An encoder that achieves capacity in the traditional setting is typically “well spread,” for example,

like a random code which picks each edge in the bipartite graph of Figure 2a with probability one half. The SBM encoder,

instead, is structured in a very special way, which may not be well suited for communication purposes9. This makes of

course sense as the formation of a real network should have nothing to do with the design of an engineering system. Note

also that the code rate in the SBM channel is fixed to R = n

(n2)
∼ 2

n , which means that there is hope to still decode such a

“poor” code, even on a very noisy channel.

Theorem 1 shows that indeed a similar phenomenon to channel coding takes place for clustering. Namely, there exists

a notion of “capacity,” governed not by KL-divergence but the CH-divergence introduced in Section II-B. The resulting

capacity captures if reliable communication is possible or not. The relevant regime is for q that scales like ln(n)Q/n, and

the theorem says that it is possible to decode the inputs (i.e., to recover the communities) if and only if

1 ≤ J(p,Q), (15)

where

J(p,Q) = min
i�=j

D+((pQ)i, (pQ)j). (16)

Note again the difference with the channel coding theorem: here we cannot optimize over p (since the community sizes

are not a design parameter), and the rate R is fixed. One could change the latter requirement, defining a model where the

information about the edges is only revealed at a given rate, in which case the analogy with Shannon’s theorem can be made

even stronger (see for example [51].)

The conclusiong is that we can characterize the fundamental limit for clustering, with a sharp transition governed by a

measure of the channel “noisiness,” that is related to the KL-divergence used in the channel coding theorem. This is due to

the hypothesis testing procedures underneath both frameworks (see Section 7.2 in [46]). Defining

Dt(μ, ν) :=
∑
x∈[k]

(
tμ(x) + (1− t)ν(x)− μ(x)tν(x)1−t

)
(17)

we have that

• Dt is an f -divergence, that is, it can be expressed as
∑

x ν(x)f(μ(x)/ν(x)), where f(x) = 1− t+ tx− xt, which is

convex. The family of f -divergences were defined in [47], [48], [49] and shown to have various common properties

when f is convex. Note that the KL-divergence is also an f -divergence for the convex function f(x) = x ln(x),
• D1/2(μ, ν) =

1
2‖
√
μ−√ν‖22 is the Hellinger divergence (or distance), in particular, this is the maximizer for the case

of two symmetric communities, recovering the expression 1
2 (
√
a−√b)2 obtained in [39], [40],

• Dt(μ, ν) = tμ̄ − (1 − t)ν̄ − e−Dt(μ||ν), where Dt(·||·) is the Rényi divergence, and the maximization over t of this

divergence is the Chernoff divergence.

As a result, D+ can be viewed as a generalization of the Hellinger and Chernoff divergences. We hence call it the Chernoff-

Hellinger (CH) divergence. Theorem 1 gives hence an operational meaning to D+ with the community recovery problem.

It further shows that the limit can be efficiently achieved.

III. PROOF TECHNIQUES AND ALGORITHMS

A. Partial recovery and the Sphere-comparison algorithm

The first key observation used to classify graphs’ vertices is that if v is a vertex in a graph drawn from G1(n, p,Q) then

for all small r the expected number of vertices in community i that are r edges away from v is approximately ei ·(PQ)reσv
.

So, we define:

Definition 4. For any vertex v, let Nr[G](v) be the set of all vertices with shortest paths in G to v of length r. We may
use the notation Nr(v) when there is no ambiguity about the background noise. When Nr(v) is used as a vector, it refers
to the vector whose i-th entry is the number of vertices in the set Nr(v) that are in community i.

Given a vertex v, one could determine eσv
given (PQ)reσv

for some r, but using Nr(v) to approximate that would require

knowing how many of the vertices in Nr(v) are in each community. There is no way to determine that exactly. However,

9It corresponds for example to a 2-right degree LDGM code in the case of the symmetric two-community SBM, a code typically not used for
communication purposes.
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given a vertex v′ and appropriate integer r′, we will get some information on how similar the community distribution of

vertices in Nr(v) is to the community distribution of vertices in Nr′(v
′) by comparing these “spheres” in some way. This

comparison gives us some information on how likely v and v′ are to be in the same community, which can be used to help

classify the vertices.

For example, in the case where pi = 1/k for all i, Qi,i = α for all i, Qi,j = β for all i = j, and α − β is sufficiently

large, Nr(v) will typically have more vertices in v’s community than in any other community when r is even. So, we could

test whether two vertices v and v′ are in the same community simply by checking whether
|Nr(v)∩Nr(v

′)|
|Nr(v)|·|Nr(v′)| is greater than

its average over all pairs of vertices for an appropriate r. We could then classify the vertices as follows. First, compute

the average value of
|Nr(v)∩Nr(v

′)|
|Nr(v)|·|Nr(v′)| (or an approximation of it). Next, find one vertex in each community, v1, v2, ..., vk, by

repeatedly picking a vertex v′ at random, checking whether
|Nr(vi)∩Nr(v

′)|
|Nr(vi)|·|Nr(v′)| is greater than the average for any vi that has

already been found, and adding v′ to the list if it is not. Finally, for every remaining vertex in the graph, v′′, conclude that

v′′ is in the same community as the vi that maximizes the value of
|Nr(vi)∩Nr(v

′′)|
|Nr(vi)|·|Nr(v′′)| .

In the general case, classifying vertices will require a more detailed analysis. First, let λ1, ..., λh be the distinct eigenvalues

of PQ, ordered so that |λ1| ≥ |λ2| ≥ ... ≥ |λh| ≥ 0. Also define η so that η = h if λh = 0 and η = h− 1 if λh = 0. If Wi

is the eigenspace of PQ corresponding to the eigenvalue λi, and PWi
is the projection operator on to Wi, then for any v

and v′ from different communities, the fact that no two columns of Q are equal implies that PQ · eσv = PQ · eσv′ , which

implies that there exists 1 ≤ i ≤ η such that PWi(eσv ) = PWi(eσv′ ). Therefore, v’s community can be determined from the

list of PWi
(eσv

) for all 1 ≤ i ≤ η. Furthermore,

PWi
(Nr(v)) ≈ PWi

((PQ)reσv
) ≈ λr

iPWi
(eσv

)

So, v’s community can typically be determined from the eigenvector decomposition of Nr(v). Our ignorance of the

communities of the vertices in Nr(v) usually prevents us from determining this, but given v′ and r′ we can hope to

use some comparison between Nr(v) and Nr′(v
′) to approximate PWi

(eσv
) · P−1PWi

(eσv′ ) for each i. Unfortunately,

|Nr(v) ∩ Nr′(v
′)| is generally not useful for this calculation because the lack of independence between which vertices in

a given community are in Nr(v) and which vertices in a given community are in Nr′(v
′) throws its value off. Instead, we

randomly assign every edge in G to a set E with probability c, and define the following.

Definition 5. For any vertices v, v′ ∈ G, r, r′ ∈ Z, and subset of G’s edges E, let Nr,r′[E](v · v′) be the number of pairs
of vertices (v1, v2) such that v1 ∈ Nr[G\E](v), v2 ∈ Nr′[G\E](v

′), and (v1, v2) ∈ E.

Note that E and G\E are disjoint; however, G is sparse enough that even if they were generated independently a given

pair of vertices would have an edge between them in both with probability O( 1
n2 ). So, E is approximately independent of

G\E. Thus, for any v1 ∈ Nr[G/E](v) and v2 ∈ Nr′[G/E](v
′), (v1, v2) ∈ E with a probability of approximately cQσv1 ,σv2

/n.

As a result,

Nr,r′ [E](v · v′) ≈ Nr[G\E](v) · cQ
n

Nr′[G\E](v
′)

≈ ((1− c)PQ)reσv
· cQ
n

((1− c)PQ)r
′
eσv′

= c(1− c)r+r′eσv ·Q(PQ)r+r′eσv′ /n

We probably could have used a count of the non-backtracking walks of a given length between v and v′ like in [38]
instead of using Nr,r′[E](v · v′). However, proving that the number of non-backtracking walks is close to its expected value

is difficult. Proving that Nr,r′[E](v · v′) is within a desired range is substantially easier because for any v1 and v2, whether

or not there is an edge between v1 and v2 directly effects Nr(v) for at most one value of r. For appropriate E, r, and r′,
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we have that

Nr,r′ [E](v · v′) ≈ c(1− c)r+r′eσv
·Q(PQ)r+r′eσv′ /n

=
c(1− c)r+r′

n

(∑
i

PWi
(eσv

)

)
·Q(PQ)r+r′

⎛
⎝∑

j

PWj
(eσv′ )

⎞
⎠

=
c(1− c)r+r′

n

∑
i,j

PWi
(eσv

) ·Q(PQ)r+r′PWj
(eσv′ )

=
c(1− c)r+r′

n

∑
i,j

PWi
(eσv

) · P−1(λj)
r+r′+1PWj

(eσv′ )

=
c(1− c)r+r′

n

∑
i

λr+r′+1
i PWi(eσv ) · P−1PWi(eσv′ )

where the final equality holds because for all i = j,

λiPWi(eσv ) · P−1PWj (eσv′ ) = (PQPWi(eσv )) · P−1PWj (eσv′ )

= PWi(eσv ) ·QPWj (eσv′ )

= PWi(eσv ) · P−1λjPWj (eσv′ ),

and since λi = λj , this implies that PWi(eσv ) · P−1PWj (eσv′ ) = 0.

That implies that one can approximately solve for PWieσv · P−1PWieσv′ given Nr,r′+j(v · v′) for all 0 ≤ j < η. Of

course, this requires r and r′ to be large enough such that

c(1− c)r+r′

n
λr+r′+1
i PWi(eσv ) · P−1PWi(eσv′ )

is large relative to the error terms for all i ≤ η. At a minimum, that requires that |(1− c)λi|r+r′+1 = ω(n), so

r + r′ > log(n)/ log((1− c)|λη|).
On the flip side, one also needs

r, r′ < log(n)/ log((1− c)λ1)

because otherwise the graph will start running out of vertices before one gets r steps away from v or r′ steps away from v′.
Furthermore, for any v and v′,

0 ≤ PWi(eσv − eσv′ ) · P−1PWi(eσv − eσv′ )

= PWieσv · P−1PWieσv − 2PWieσv · P−1PWieσv′ + PWieσv′ · P−1PWieσv′

with equality for all i if and only if σv = σv′ , so sufficiently good approximations of PWieσv · P−1PWieσv , PWieσv ·
P−1PWi

eσv′ and PWi
eσ′v · P−1PWi

eσv′ can be used to determine which pairs of vertices are in the same community as

follows.

The Vertex comparison algorithm. The inputs are (p,Q,G, v, v′, r, r′, E, x, c), where p ∈ (0, 1)k with
∑

pi = 1, Q is a

k × k symmetric matrix with nonnegative coefficients, G is a graph, v, v′ are two vertices, r, r′ are positive integers, E is

a subset of G’s edges, x is a positive real number, and c is a real number between 0 and 1.

The algorithm outputs a decision on whether v and v′ are in the same community or not. It proceeds as follows.

(1) Use Nr+j,r′[E](v·v′), Nr+j,r′[E](v·v), and Nr+j,r′[E](v
′·v′) for 0 ≤ j < η to approximate PWi

eσv
·P−1PWi

eσv
, PWi

eσv
·

P−1PWi
eσv′ and PWi

eσ′v · P−1PWi
eσv′ for each 1 ≤ i ≤ η.

(2) If the resulting approximation of PWi
(eσv

− eσv′ ) · P−1PWi
(eσv

− eσv′ ) is greater than 5(2x(min pj)
−1/2 + x2) for

any i then conclude that v and v′ are in different communities. Otherwise, conclude that v and v′ are in the same community.

One could generate a reasonable classification based solely on this method of comparing vertices (with an appropriate

choice of the parameters, as later detailed). However, that would require computing Nr,r′[E](v · v) for every vertex in the
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graph with fairly large r + r′, which would be slow. Instead, we use the fact that for any vertices v, v′, and v′′ with

σv = σv′ = σv′′ ,

PWi
eσv′ · P−1PWi

eσv′ − 2PWi
eσv

· P−1PWi
eσv′ + PWi

eσv
· P−1PWi

eσv
= 0

≤ PWi
eσv′′ · P−1PWi

eσv′′ − 2PWi
eσv

· P−1PWi
eσv′′ + PWi

eσv
· P−1PWi

eσv

for all i, and the inequality is strict for at least one i. So, subtracting PWi
eσv

· P−1PWi
eσv

from both sides gives us that

PWi
eσv′ · P−1PWi

eσv′ − 2PWi
eσv

· P−1PWi
eσv′ ≤ PWi

eσv′′ · P−1PWi
eσv′′ − 2PWi

eσv
· P−1PWi

eσv′′

for all i, and the inequality is still strict for at least one i.
So, given a representative vertex in each community, we can determine which of them a given vertex, v, is in the same

community as without needing to know the value of PWieσv · P−1PWieσv as follows.

The Vertex classification algorithm. The inputs are (p,Q,G, v[], v′, r, r′, E, x, c), where p ∈ (0, 1)k with
∑

pi = 1, Q is

a k×k symmetric matrix with nonnegative coefficients, G is a graph, v[] is a list of vertices, v′ is a vertex, r, r′ are positive

integers, E is a subset of G’s edges, x is a positive real number, and c is a real number between 0 and 1. It is assumed that

approximations of PWi
eσv[j]

· P−1PWi
eσv[j]

have already been computed for all 1 ≤ i ≤ η and 0 ≤ j < k
The algorithm is supposed to output σ such that v′ is in the same community as v[σ]. It works as follows.

(1) Approximate PWieσv′ · P−1PWieσv[j]
for every 1 ≤ i ≤ η and 0 ≤ j < k based on the values of Nr+i,r′[E](v[j] · v′)

for 1 ≤ i ≤ η and 0 ≤ j < k.

(2) If there exists a unique j such that for all j′ = j and all i, the approximation of PWi
eσv[j]

·P−1PWi
eσv[j]

−2PWi
eσv′ ·

P−1PWi
eσv[j]

does not exceed the approximation of PWi
eσv[j′] · P−1PWi

eσv[j′] − 2PWi
eσv′ · P−1PWi

eσv[j′] by more than

the acceptable error of the approximations, then conclude that v′ is in the same community as v[j].
(3) Otherwise, Fail.

This runs fairly quickly if r is large and r′ is small because the algorithm only requires focusing on Nr′(v
′) vertices.

This leads to the following plan for partial recovery. First, randomly select a set of vertices that is large enough to contain

at least one vertex from each community with high probability. Next, compare all of the selected vertices in an attempt to

determine which of them are in the same communities. Then, pick one in each community. After that, use the algorithm

above to attempt to determine which community each of the remaining vertices is in. As long as there actually was at least

one vertex from each community in the initial set and none of the approximations were particularly bad, this should give a

reasonably accurate classification.

The Unreliable graph classification algorithm. The inputs are (p,Q,G, c,m, ε, x), where p ∈ (0, 1)k with
∑

pi = 1, Q
is a k×k symmetric matrix with nonnegative coefficients, G is a graph, c is a real number between 0 and 1, m is a positive

integer, ε is a real number between 0 and 1, and x is a positive real number.

The algorithm outputs an alleged list of communities for G. It works as follows.

(1) Randomly assign each edge in G to E independently with probability c.
(2) Randomly select m vertices in G, v[0], ..., v[m− 1].
(3) Set r = (1− ε

3 ) log n/ log((1− c)λ1)− η and r′ = 2ε
3 · log n/ log((1− c)λ1)

(4) Compute Nr′′[G\E](v[i]) for each r′′ < r + η and 0 ≤ i < m.

(5) Run Vertex comparison algorithm(p,Q,G, v[i], v[j], r, r′, E, x) for every i and j
(6) If these give results consistent with some community memberships which indicate that there is at least one vertex in

each community in v[], randomly select one alleged member of each community v′[σ]. Otherwise, fail.

(7) For every v′′ in the graph, compute Nr′′[G\E](v
′′) for each r′′ < r′. Then, run

Vertex classification algorithm(p,Q,G, v′[], v′′, r, r′, E, x) in order to get a hypothesized classification of v′′.
(8) Return the resulting classification.

The risk that this randomly gives a bad classification due to a bad set of initial vertices can be mitigated as follows.

First, repeat the previous classification procedure several times. Next, discard any classification that differs too badly from

the majority. Assuming that the procedure gives a good classification more often than not, this should eliminate any

really bad classification. Finally, average the remaining classifications together. This last procedure completes the Sphere
comparison algorithm.
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The Reliable graph classification algorithm (i.e., Sphere comparison). The inputs are (p,Q,G, c,m, ε, x, T (n)),
where p ∈ (0, 1)k with

∑
pi = 1, Q is a k × k symmetric matrix with nonnegative coefficients, G is a graph, c is a real

number between 0 and 1, m is a positive integer, ε is a real number between 0 and 1, x is a positive real number, and T is

a function from the positive integers to itself.

The algorithm outputs an alleged list of communities for G. It works as follows.

(1) Run Unreliable graph classification algorithm(p,Q,G, c,m, ε, x) T (n) times and record the resulting classifications.

(2) Discard any classification that has greater than

4ke
− (1−c)x2λ2

η min pi
16λ1k(1+x) /(1− e

− (1−c)x2λ2
η min pi

16λ1k(1+x)
·(( (1−c)λ4

η

4λ3
1

)−1)
)

disagreement with more than half of the other classifications. In this step, define the disagreement between two classifications

as the minimum disagreement over all bijections between their communities.

(3) Let {σ[i]} be the remaining classifications. For each vertex v ∈ G, randomly select some i and assert that σv is the

j that maximizes |{v′ : σ[1]v′ = j} ∩ {v′ : σ[i]v′ = σ[i]v}|. In other words, assume that σ[i] classifies v correctly and then

translate that to a community of σ[1] by assuming the communities of σ[i] correspond to the communities of σ[1] that they

have the greatest overlap with.

(4) Return the resulting combined classification.

If the conditions of theorem 2 are satisfied, then there exists x such that for all sufficiently small c,

Reliable graph classification algorithm(G, c, ln(4k)/min pi, ε, x, lnn)

classifies at least

1− 4ke−
Cρ
16k

1− e
− Cρ

16k

(
(λ′)2
4λ2 ρ−1

) (18)

of G’s vertices correctly with probability 1− o(1) and it runs in O(n1+ε) time.

B. Exact recovery and the Degree-profiling algorithm

With our previous result achieving almost exact recovery of the nodes, we are in a position to complete the exact recovery

via a procedure that performs local improvements on the rough solution. While, the exact recovery requirement is rather

strong, we show that it benefits from a phase transition, as opposed to almost exact recovery, which allows us to benchmark

algorithms on a sharp limit (see Introduction).

Our analysis of exact recovery relies on the fact that the probability distribution of the numbers of neighbors a given vertex

has in each community is essentially a multivariable Poisson distribution. We hence investigate an hypothesis problem (see

Section 7.2 in [46]), where a node in the SBM graph with known clusters (up to o(n) errors due to our previous results) is

taken and re-classified based on its degree profile, i.e., on the number of neighbors it has in each community. This requires

solving the following hypothesis testing problem, between k multivariate Poisson distributions.

The random variable H takes values in [k] with P{H = j} = pj (this is the a priori distribution of H). Under H = j,

an observed random variable D is drawn from a multivariate Poisson distribution with mean λ(j) ∈ Rk
+, i.e.,

P{D = d|H = j} = Pλ(j)(d), d ∈ Zk
+, (19)

where

Pλ(j)(d) =
∏
i∈[k]

Pλi(j)(di), (20)

and

Pλi(j)(di) =
λi(j)

di

di!
e−λi(j). (21)

In other words, D has independent Poisson entries with different means. We use the following notation to summarize the

above setting:

D|H = j ∼ P(λ(j)), j ∈ [k]. (22)
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Our goal is to infer the value of H by observing a realization of D. To minimize the error probability given a realization

of D, we must pick the most likely hypothesis conditioned on this realization, i.e.,

argmaxj∈[k]P{D = d|H = j}pj , (23)

which is the Maximum A Posteriori (MAP) decoding rule.10 To resolve this maximization, we can proceed to a tournament

of k − 1 pairwise comparisons of the hypotheses. Each comparison allows us to eliminate one candidate for the maxima,

i.e.,

P{D = d|H = i}pi > P{D = d|H = j}pj ⇒ H = j. (24)

The error probability Pe of this decoding rule is then given by,

Pe =
∑
i∈[k]

P{D ∈ Bad(i)|H = i}pi, (25)

where Bad(i) is the region in Zk
+ where i is not maximizing (23). Moreover, for any i ∈ [k],

P{D ∈ Bad(i)|H = i} ≤
∑
j �=i

P{D ∈ Badj(i)|H = i} (26)

where Badj(i) is the region in Zk
+ where P{D = x|H = i}pi ≤ P{D = x|H = j}pj . Note that with this upper-bound, we

are counting the overlap regions where P{D = x|H = i}pi ≤ P{D = x|H = j}pj for different j’s multiple times, but no

more than k − 1 times. Hence,∑
j �=i

P{D ∈ Badj(i)|H = i} ≤ (k − 1)P{D ∈ Bad(i)|H = i}. (27)

Putting (25) and (26) together, we have

Pe ≤
∑
i �=j

P{D ∈ Badj(i)|H = i}pi, (28)

=
∑
i<j

∑
d∈Zk

+

min(P{D = d|H = i}pi,P{D = d|H = j}pj) (29)

and from (27),

Pe ≥ 1

k − 1

∑
i<j

∑
d∈Zk

+

min(P{D = d|H = i}pi,P{D = d|H = j}pj). (30)

Therefore the error probability Pe can be controlled by estimating the terms
∑

d∈Zk
+
min(P{D = d|H = i}pi,P{D =

d|H = j}pj). In our case, recall that

P{D = d|H = i} = Pλ(i)(d), (31)

which is a multivariate Poisson distribution. In particular, we are interested in the regime where k is constant and λ(i) =
ln(n)ci, ci ∈ Rk

+, and n diverges. Due to (29), (30), we can then control the error probability by controlling
∑

x∈Zk
+
min(Pln(n)ci(x)pi,Pln(n

which we will want to be o(1/n) to classify vertices in the SBM correctly with high probability based on their degree profiles

(see next section). The following lemma provides the relevant estimates.

Theorem 3. For any c1, c2 ∈ (R+ \ {0})k with c1 = c2 and p1, p2 ∈ R+ \ {0},∑
x∈Zk

+

min(Pln(n)c1(x)p1,Pln(n)c2(x)p2) = O
(
n−D+(c1,c2)− ln ln(n)

2 ln(n)

)
, (32)

∑
x∈Zk

+

min(Pln(n)c1(x)p1,Pln(n)c2(x)p2) = Ω
(
n−D+(c1,c2)− k ln ln(n)

2 ln(n)

)
, (33)

where D+(c1, c2) is the CH-divergence as defined previously.

10Ties can be broken arbitrarily.
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In other words, the CH-divergence provides the error exponent for deciding among multivariate Poisson distributions. We

did not find this result in the literature, but found a similar result obtained by Verdú [71], who shows that the Hellinger

distance (the special case with t = 1/2 instead of the maximization over t) appears in the error exponent for testing Poisson

point-processes, although [71] does not investigate the exact error exponent.

Using this result, the error probability of the optimal test is either o( 1n ) or ω( 1n ) depending on mini<j D+(θi, θj). If

the error probability is ω( 1n ) then any method of distinguishing between vertices in those two communities must fail with

probability ω( 1n ), so any possible algorithm attempting to distinguish between them must misclassify at least one vertex

with probability 1− o(1). On the other hand, if the degree of overlap between all communities we are trying to distinguish

between is o(1/n) then with probability 1 − o(1) one could correctly classify any vertex in the graph if one knew what

community each of its neighbors was in. There exists δ such that attempting to classify a vertex based on classifications of

its neighbors that are wrong with probability x results in a probability of misclassifying the vertex that is only nδx times

as high as it would be if they were all classified correctly. Based on this, the obvious approach to exact recovery would

be to use a partial recovery algorithm to create a preliminary classification and then attempt to determine which family of

communities each vertex is in based on its neighbors’ alleged communities. However, the standard partial recovery algorithm

has a constant error rate, so this proceedure’s output would have an error rate nc times as large as if each vertex were being

classified based on its neighbors’ true communities for some c > 0. If the degrees of overlap are only barely below 1/n then

this would increase the error rate enough that this procedure would misclassify at least one vertex with high probability.

Instead, we go through three successively more accurate classifications as follows. Given a partial reconstruction of the

communities with an error rate that is a sufficiently low constant, one can classify vertices based on their neighbors’ alleged

communities with an accuracy of 1 − O(n−c) for some constant c > 0. Then one can use this classification of a vertex’s

neighbors to determine which family of communities it is in with an accuracy of 1−o( 1n ·nδc′n−c

) = 1−o(1/n). Therefore,

the resulting classification is correct with probability 1− o(1).
We formulate the algorithm in an adaptive way, where we first identify which communities can be exactly recovered with

the notion of “finest partition,” and then proceed to extract this partition. In other words, even in the case where not all

communities can be exactly recovered, the algorithm may be able to fully extract a subset of the communities. Overall, the

algorithm for exact recovery works as follows.

The Degree-profiling algorithm. The inputs are (G, γ), where G is a graph, and γ ∈ [0, 1] (see Theorem 6 in [46]

for how to set γ). The algorithm outputs an assignment of each vertex to one of the groups of communities {A1, . . . , At},
where A1, . . . , At is the partition of [k] in to the largest number of subsets such that D+((pQ)i, (pQ)j) ≥ 1 for all i, j in

[k] that are in different subsets (i.e., the “finest partition,” see Firgure 1). It does the following:

(1) Define the graph g′ on the vertex set [n] by selecting each edge in g independently with probability γ, and define the

graph g′′ that contains the edges in g that are not in g′.
(2) Run Sphere-comparison on g′ to obtain the preliminary classification σ′ ∈ [k]n (see Section III-A.)

(3) Determine the edge density between each pair of alleged communities, and use this information and the alleged

communities’ sizes to attempt to identify the communities up to symmetry.

(4) For each node v ∈ [n], determine in which community node v is most likely to belong to based on its degree profile

in g′′ computed from the preliminary classification σ′ (see Section III-B), and call it σ′′v
(5) For each node v ∈ [n], determine in which group A1, . . . , At node v is most likely to belong to based on its degree

profile in g′′ computed from the preliminary classification σ′′. See Section 7.2 in [46] for more details.

IV. OVERLAPPING COMMUNITIES

We now define a model that accounts for overlapping communities, we refer to it as the overlapping stochastic block

model (OSBM).

Definition 6. Let n, t ∈ Z+, f : {0, 1}t×{0, 1}t → [0, 1] symmetric, and p a probability distribution on {0, 1}t. A random
graph with distribution OSBM(n, p, f) is generated on the vertex set [n] by drawing independently for each v ∈ [n] the
vector-labels (or user profiles) X(v) under p, and by drawing independently for each u, v ∈ [n], u < v, an edge between
u and v with probability f(X(u), X(v)).

Example 1. One may consider f(x, y) = θg(x, y), where xi encodes whether a node is in community i or not, and

θg(x, y) = g(〈x, y〉), (34)

where 〈x, y〉 = ∑t
i=1 xiyi counts the number of common communities between the labels x and y, and g : {0, 1, . . . , t} →

[0, 1] is a function that maps the overlap score into probabilities (g is typically increasing).
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Example 2. As a special case of the previous example, one may consider that a connection takes place between each pair
of nodes as follows: each community (i.e., each component in the user profile) generates a connection independently with
probability q+ if the two nodes are in that community (i.e., if that component is 1 for both profiles), and multiple connections
are equivalent to one connection. We also assume that any pair of nodes without a common community connects with
probability q−, so that

g(s) =

{
1− (1− q+)

s, if s = 0,

p−, if s = 0.
(35)

If we consider q− and q+ to be vanishing, like O(log(n)/n), we may consider the equivalent model where

g(s) =

{
sq+, if s = 0,

p−, if s = 0.
(36)

If t = 1, this model collapses to the usual symmetric stochastic block model with non-overlapping communities.

Note that in general we can represent the OSBM as a SBM with k = 2t communities, where each community represents

a possible profile in {0, 1}t. For example, two overlapping communities can be modelled by assigning nodes with a single

attribute (1, 0) and (0, 1) to each of the disjoint communities and nodes with both attributes (1, 1) to the overlap community,

while nodes having none of the attributes, i.e., (0, 0), may be assigned to the null community.

Assume now that we identify community i ∈ [k] with the profile corresponding to the binary expansion of i − 1. The

prior and connectivity matrix of the corresponding SBM are then given by

pi = p(b(i)) (37)

qi,j = f(b(i), b(j)), (38)

where b(i) is the binary expansion of i− 1, and

OSBM(n, p, f)
(d)
= SBM(n, p, q). (39)

We can then use the results of previous sections to obtain exact recovery in the OSBM.

Corollary 3. Exact recovery is solvable for the OSBM if the conditions of Theorem 1 apply to the SBM(n, p, q) with p and
q as defined in (37), (38).

V. FURTHER LITERATURE

The stochastic block model was first introduced in [20], and in [14], [13] as the planted bisection model. For the first

three decades, a major portion of the literature has focused on exact recovery, in particular on the case with two symmetric

communities. The table below summarizes a partial list of works for exact recovery:
Bui, Chaudhuri,

Leighton, Sipser ’84 min-cut method p = Ω(1/n), q = o(n−1−4/((p+q)n))
Dyer, Frieze ’89 min-cut via degrees p− q = Ω(1)

Boppana ’87 spectral method (p− q)/
√
p+ q = Ω(

√
log(n)/n)

Snijders, Nowicki ’97 EM algorithm p− q = Ω(1)

Jerrum, Sorkin ’98 Metropolis algorithm p− q = Ω(n−1/6+ε)

Condon, Karp ’99 augmentation algorithm p− q = Ω(n−1/2+ε)

Carson, Impagliazzo ’01 hill-climbing algorithm p− q = Ω(n−1/2 log4(n))

Mcsherry ’01 spectral method (p− q)/
√
p ≥ Ω(

√
log(n)/n)

Bickel, Chen ’09 N-G modularity (p− q)/
√
p+ q = Ω(log(n)/

√
n)

Rohe, Chatterjee, Yu ’11 spectral method p− q = Ω(1)

These works display an impressive diversity of algorithms, but are mainly driven by the methodology and do not reveal the

sharp behavioral transition that takes place in this model, as later shown in [39], [40] (see below). Before discussing these

results, one should mention that various other works have considered recovery algorithms for multiple communities without

identifying phase transitions. We refer to [52], [53] for a summary of these results. In particular, [53] has recently studied

information-theoretic vs. computational tradeoffs in coarse regimes of the parameters for symmetric block models with a

growing number of communities.

Phase transition phenomena for the SBM appeared first for weak recovery. In 2010, Coja-Oghalan [35] introduced the

weak-recovery problem, and obtained bounds for the constant average degree regime using a spectral algorithm. Soon after,
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[36] proposed a precise picture for weak-recovery using statistical physics arguments, with a sharp threshold conjectured

at (a − b)2 = 2(a + b), when a = pn and b = pn. This has opened the door to a new series of work on the SBM driven

by phase transitions. The impossibility part of the conjecture was first proved in [54], using a reduction to broadcasting on

trees [55], and the conjecture was fully established in 2014 with [37], [38].

Recently it was realized that exact recovery also admits a phase transition pheonemon. This was set in [39], and shortly

after in [40], with the threshold located11 at
√
a −√b =

√
2 when a = pn/ ln(n) and b = qn/ ln(n). Efficient algorithms

were also obtained in these papers. Hence, weak and exact recovery are solved in the symmetric two-community SBM.

One should also mention a line of work on another community detection model called the Censored Block Model (CBM),

studied in [56], [51]. This model and its variants were also studied in [57], [58], [59], [60], [61], [62]. A SDP relaxation

as in [39] for the SBM was first proposed in [51] for the CBM, with a performance gap having roughly a factor 2. This

gap was recently closed in [63]. SDP relaxations for block models were also studied in [53], [64], [65]. Note that SDP

algorithms are polynomial time but far from quasi-linear time. For the CBM, recent works [44], [66] obtained tight bounds

for weak recovery using spectral methods.

Two recent works [65], [44] have also obtained bounds for partial recovery in the SBM with multiple communities, for

the case of symmetric blocks or with bounds on the connectivity probabilities in terms of symmetric blocks. The general

SBM was treated in [67] for exact recovery with a spectral method, but the phase transition is not identified. No phase

transitions for exact or weak recovery have yet been proved for the SBM with more than two communities.

VI. OPEN PROBLEMS

Several extensions would be interesting for the SBM with specified parameters, such as considering parameters that vary

with n, in particular for the number of communities, or communities of sub-linear sizes. Part of the results obtained in

this paper should extend without much difficulty to some of these cases. It would also be interesting to investigate how

the complexity of algorithms scales with the number of communities.12 It would also be important to obtain results and

algorithms that do not rely on the knowledge of the model parameters. Here also, some of the techniques in this paper may

extend. For partial recovery, it would interesting to obtain tight upper-bounds on the accuracy of the reconstruction in the

general SBM, in particular for the regime of large constant degrees, to check if the bound obtained in this paper is tight.

For the symmetric case, the information-theoretic and computational thresholds for weak-recovery remain open for more

than 2 communities.

Finally, there are many interesting other models to investigate, such as the Censored Block Model [56], [51], [61], [57],

[58], [59], [60], [62], the Labelled Block Model [68], [69] and many more. It would be natural to expect that for these

models as well, an information-measure à la CH-divergence obtained in this paper determines the recovery threshold.
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