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Random Walks, Markov Processes
and the Multiscale Modular Organization
of Complex Networks

Renaud Lambiotte, Jean-Charles Delvenne, and Mauricio Barahona

Abstract—Most methods proposed to uncover communities in complex networks rely on combinatorial graph properties. Usually an
edge-counting quality function, such as modularity, is optimized over all partitions of the graph compared against a null random graph
model. Here we introduce a systematic dynamical framework to design and analyze a wide variety of quality functions for community
detection. The quality of a partition is measured by its Markov Stability, a time-parametrized function defined in terms of the statistical
properties of a Markov process taking place on the graph. The Markov process provides a dynamical sweeping across all scales in the
graph, and the time scale is an intrinsic parameter that uncovers communities at different resolutions. This dynamic-based community
detection leads to a compound optimization, which favours communities of comparable centrality (as defined by the stationary
distribution), and provides a unifying framework for spectral algorithms, as well as different heuristics for community detection,
including versions of modularity and Potts model. Our dynamic framework creates a systematic link between different stochastic
dynamics and their corresponding notions of optimal communities under distinct (node and edge) centralities. We show that the Markov
Stability can be computed efficiently to find multi-scale community structure in large networks.

Index Terms—Community detection, partition stability, multiscale structure, random walks, graph theory, centrality, optimization

1 INTRODUCTION

OW the structure of a network affects the dynamics

(e.g., diffusion or synchronization) that takes place on
it has been studied extensively in recent years [1], [2], [3].
This relationship is particularly relevant when the network
is composed of tightly-knit modules or communities [4], [5],
[6], [7], [8], [9], which can lead, for instance, to partially
coherent dynamics [10], [11], or to the emergence of co-oper-
ation [12] and coexistence of heterogeneous ideas in a social
network [13]. Conversely, it has been proposed that dynam-
ical processes such as random walks [14], [15], [16], [17] and
synchronization [10] could be used as empirical means to
extract information about the network and, specifically, to
uncover its community structure.

Recently, there has been extensive research on the detec-
tion of communities and hierarchies in real world systems,
ranging from social systems to technological and bio-chemi-
cal systems (for a review see [6]). Most of these studies fol-
low from the classical problem of graph partitioning and
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are thus based on structural properties of graphs [6], [7]. In
order to discover communities, such methods usually pro-
ceed by optimizing a quantity that captures what is thought
to be the goodness of a partition in terms of combinatorial
properties of the graph. A variety of such quality functions
(and associated optimization strategies) have been pro-
posed, including different versions of balanced and normal-
ized cuts, as well as modularity and its extensions [6], [7]. In
general, these combinatorial definitions operate by counting
the number of links within and between the communities,
and are thus blind to the flows of information taking place
on the network.

In contrast, we adopt here a dynamical viewpoint for the
analysis of community structure in graphs. Specifically, we
use statistical properties of a random walk (or its associated
Markov processes) evolving on a given network to quantify
the quality of partitions across all time scales. Consider, for
instance, the simple random walk, where a random walker
jumps at every step from the node where it sits to one of its
immediate neighbours with a probability proportional to
the weight of the link joining the nodes. We define the
Markov Stability [14], [18], [19], [20] of a partition of the
graph at time t as the probability of a walker to be in
the same community at time zero and at time ¢ when the
system is at stationarity, discounting the expected probabil-
ity as ¢ — oo. For an ergodic and mixing random walk (i.e.,
on an aperiodic, strongly connected graph), this limiting
probability is the probability of two independent walkers to
be in the same community. The Markov Stability so defined
measures the quality of a partition in terms of the persis-
tence of the Markov dynamics within the communities of
the partition within the time scale ¢, i.e., the Markov Stabil-
ity is large when it is unlikely that a random walker will
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escape the communities within time ¢. Alternatively, the
Markov stability can also be understood as the time auto-
correlation of a coarse-grained signal. Hence, a large Mar-
kov Stability is equivalent to a non-asymptotic time scale
separation [21], [22] within the diffusion dynamics, where
the fast dynamics mixes the probability flow inside the
communities and the slow dynamics describes the trans-
fer of probability between the communities. It can be
shown that the Markov Stability so defined, which we
will make more explicit below, is monotonically decreas-
ing for most partitions on most graphs [14].

The dynamics-based Markov Stability framework for
community detection introduced in [14], [18], [19] has math-
ematical connections with the wider literature relating ran-
dom walks on graphs and graph properties and allows us
to link those results with applications in community detec-
tion. A strong initial motivation for our work was the theory
of quasi-stationary distributions in Markov chains [23], [24],
and the theory of quasi-stable (long-lived) states in the
physics of energy landscapes [25]. Random walks have
been used by a variety of methods in graph partitioning
and clustering. For example, the mixing rate of the random
walker is closely related to the conductance, a measure of
quality for two-way partitions [26], [27], [28]. Through their
commute times [29] or through more general spectral
embeddings [30], random walks also allow representations
of the graph in a euclidean space on which classic machine
learning techniques can be used, including clustering. Other
partitioning algorithms have also made use of random walk
measures [15], [31], [32], [33]. The distinguishing feature of
the Markov Stability approach is the systematic sweeping
through all time scales, fast to slow, in order to discover fine
or coarse partitions, thus relating characteristic time scales
of the dynamics to the structural scales present in the net-
work. In contrast, the precited methods focus on a fixed
time scale (e.g., one-step) or a fixed number of communities
(e.g., two) and hence do not exploit fully the dynamical
aspects of the random walk. See [14] for a more extensive
discussion, and Section 2 for an overview of the unifying
character of the Markov Stability framework, whose
dynamical character allows the interpolation between
the structural (edge-counting) measures and the spectral
approach to community detection.

In this paper, we extend the Markov Stability formalism
and show that any random walk on a given network,
whether in discrete or continuous time, generates a different
partition Stability function, and therefore a different notion
of community reliant on specific measures of node and/or
edge centrality. Indeed, classical notions of centrality (e.g.,
degree, eigencentrality, pagerank) can be shown to corre-
spond to different random walks on the networks.
Within this framework, we observe that good communities
appear as a result of an optimization that balances the cost
of severing many or highly central edges against a maxi-
mum-entropy spread of the centrality across communities.
This compound optimization is parametrically modulated
by time, which gives varying weight to the energetic cost of
the cut against the maximum entropy term. At long times,
the problem turns out to be solved exactly by spectral meth-
ods. We show how these dynamical, graph-theoretical and
optimization concepts are intertwined, providing insight on

the nature of different community structures, the centrality
optimizations they entail, and associated spectral partition-
ing algorithms known in the literature. Our work thus pro-
vides a unifying viewpoint for different variants and
heuristics used in the graph-partitioning, clustering and
community detection literatures, including several variants
of null-model-based modularity or spectral algorithms,
which appear as particular cases of our formalism. Concep-
tually, our work indicates that, rather than searching for a
single partition at a particular scale, dynamics can be used
to unfold and detect systematically the relevant partitions
by scanning across all scales in the graph [14], [19]. Simi-
larly, we show here that the choice of dynamics can also be
used to find the most appropriate community structure (if
particular information about the system is available) or to
explore the network under different (and complementary)
viewpoints to gain deeper information about the system.

The paper is organized as follows. First, the framework is
introduced via the standard (simple) random walk and its
associated continuous-time processes, including those gen-
erated by the normalized and combinatorial Laplacians. We
show how the relevant centrality measure in this case is the
degree, yet different continuous-time Markov processes
(potentially relevant for different network dynamics) lead
to different communities linked to particular heuristic null
models used in the community detection literature. The
dynamical scanning implicit in our framework is used to
illustrate the detection of community structure across scales
in several examples without imposing the scale or number
of communities a priori. Part of these results were reported
in the unpublished preprint [18]. We then consider the anal-
ysis of less standard random walks, specifically the Ruelle-
Bowen (RB) case, and show that its notion of community is
based on a different kind of centrality, i.e., eigencentrality.
This is followed by a brief section where we show how the
dynamical viewpoint afforded by Markov Stability seam-
lessly extends to the case of directed graphs, thus allowing
us to recast the concept of structural communities in terms
of flow communities. The final section illustrates the frame-
work with the analysis of synthetic benchmarks and real-
world examples, and discusses computational and practical
issues for Markov Stability, e.g. assessing the presence of
robust partitions, or of a hierarchical structure.

2 THE SivPLE RANDOM WALK AND COMMUNITY
DETECTION: DISCRETE-TIME MARKOV STABILITY
FOR UNDIRECTED GRAPHS

To make our arguments more precise, we first review
briefly some of the notation and results from [14], [19],
where mathematical proofs and further results can be
found. For simplicity, we start by considering the case of
undirected graphs, although we will see below that the
arguments extend to directed graphs too.

Consider an undirected graph with N nodes and
weighted adjacency matrix A € RV*Y, such that the weight
of the link between node i and node j is given by A;; = Aj;.
The vector containing the degrees (or strengths) of the
nodes is d = A1, where 1 is the N x 1 vector of ones, and
we also define the diagonal matrix D = diag(d). The sum of
all degrees is 2m = 17d. The combinatorial graph Laplacian
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is defined as L = D — A and the normalized graph Laplacian
is defined as £ = D~'/2LD~'/2. Both Laplacians are sym-
metric nonnegative definite, with a simple zero eigenvalue
when the graph is connected [34]. We denote the trace with
the notation Tr[ .

Consider the simple (unbiased) random walk governed
by the standard dynamics:

Pii1 =Py [D_IA] =p,M, (D

where p denotes the 1 x N dimensional probability vector
and M is the transition matrix. Note that following the
Markov chain literature, the probability vectors are defined
as row vectors. Under the assumptions of a connected,
undirected, and non-bipartite graph this dynamics converge
to a unique stationary distribution

7 =d"/2m. (2)

Each partition of the graph into ¢ communities is
encoded by a N x ¢ indicator matrix H with H;; € {0,1},
where a 1 denotes that node i belongs to community j.
Given a partition H, the clustered autocovariance matrix of
the diffusion process at time ¢ is:

Ry(H)=H"[IIM' — n" x| H, 3)

where Il = diag(r). The ¢ x ¢ matrix R(t) reflects the proba-
bility of the random walk to remain within each block (diag-
onal elements) and to transfer between blocks (off diagonal
elements) after a time ¢. Consequently, we define the Mar-
kov Stability of the partition H as

n(H) = min TR (H)] ~ TR, @

the approximation coming from the computational observa-
tion that Tr[R,(H)] is mostly monotonically decreasing for
empirical graphs [35]. A ‘good’ partition over a time scale
t has well-defined communities that preserve probability
flows within them, hence maximizing the trace of R; and,
conversely, the Markov Stability r,(H) can be seen as a qual-
ity function for a partition of a graph as a function of the
time horizon of the random walk.

The Markov Stability r;(H) can be used to rank parti-
tions of a given graph at different time scales or, alterna-
tively, r,(H) can be used as an objective function to be
maximized for every time t in the space of all possible
partitions of the graph:

re = max ri(H). (5)

Such an optimization results in a sequence of partitions
optimal over different time interval. Although this opti-
mization is NP-hard, a variety of efficient optimization
heuristics for graph clustering can be used, as discussed
in later sections.

The discrete-time Markov Stability r,(H) for undirected
graphs encompasses several well-known heuristics and has
other desirable theoretical properties, some of which we
highlight here succinctly (see [14], [19] for proofs):
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e Discrete-time Markov Stability at time ¢ = 1 is equal
to the ‘usual’ modularity Qcons, i.e., with the configu-
ration model as null model [4], [37]:

ri(H) = Tr [HT (% - nTn) H} = Qeont- (6)

e Markov Stability at time ¢t =0 is equivalent to the
Gini-Simpson diversity index of the partition H [38]:

c

ro(H) = 1= (whe)’ = GSy, @)
Cc=1

where h¢ is the Cth column of the matrix H. GS;; is a
measure of entropy of the partition according to
the values of 7, i.e., the degree. GS; is large when the
partition has many communities of equal size
(according to m), and is low when the partition has
few and uneven communities. GS,; is maximum for
the partition into one-node communities. This index
is well known in economics (Hirschman-Herfindahl
index [39]) and information theory (Rényi entropy
[40]), among others.
e The probability of changing community in one step

A
T()(H)*TI(H):lfTr[HT%H] = Cut, (€©)]

is a measure of the cut induced by the partition, i.e.,
the fraction of edges between all the communities.

e The long-term behavior of r; is governed by the nor-
malized Fiedler eigenvector associated with the sec-
ond dominant eigenvalue of J/, i.e., that which is
closest to 1 in absolute value. Hence the optimal
community structure as ¢ — oo is typically'given by
the bipartition according to the sign of the entries of
the normalized Fiedler eigenvector [14], [19].

e Spectral algorithms (either iterative or based on sev-
eral eigenvectors at a time) are classic relaxation heu-
ristics [41], [42] for the optimization of a variety of
NP-hard partitioning quality functions, including
modularity [43] or normalized cut [44]. We have
shown that spectral clustering methods provide exact
procedures for the optimization of Markov Stability
at long times.

3 CONTINUOUS-TIME MARKOV STABILITY: THE
DYNAMICAL ORIGIN OF DIFFERENT QUALITY
FUNCTIONS

We now consider continuous-time Markov processes associ-
ated with the simple random walk (1) in order to extend our
dynamics-based framework for community detection in
undirected graphs.

1. Close-to-bipartite graphs are the exception: they have a strongly
negative eigenvalue whose odd and even powers generate an alternat-
ing 7.
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Fig. 1. Unfolding the multiscale community structure of a hierarchical
network as a function of Markov time. As an illustration, consider a hier-
archical graph generated as follows [36]: start with a pair of nodes con-
nected by a link of weight ¢ < 1, duplicate them and add a link of weight
¢* between all pairs of nodes in different modules. lterate the procedure
K times to obtain a fully connected, weighted network of 2% nodes. The
figure shows a network with 2* = 16 nodes with edges shaded according
to their strength (c = 1/4). By symmetry, the natural partitions are into
16 single nodes, eight pairs (colours), four tetrads (shapes) and two
groups of eight nodes (upper and lower hemispheres). Evaluation of the
Markov Stability 7,0, () shows that, as ¢ grows, the optimal partition
goes from 16 communities to 8 to 4 to 2 over different time intervals.

3.1 Normalized Laplacian Markov Stability

Given the random walk (1) on an undirected graph, a stan-
dard way to derive a continuous-time model is to assign a
continuous Poisson process of given density at each node
[45], [46]. If we assume identically distributed Poisson pro-
cesses (i.e., with identical waiting times) for all nodes, we
obtain the standard diffusive dynamics:

CfTI; =—pll-D'A=—p[D'L]. 9)
Note that the operator D' L is isospectral with the normal-
ized Laplacian L since they are related by the similarity
transformation D~Y/2£DY/? = D~'L. Hence the dynamics of
(9) is dictated by the spectral properties of L. In particular,
this process converges to the same unique stationary distri-
bution (2) as the (discrete-time) simple random walk. As
above, we thus define the continuous-time Markov Stability as:

Poom(t; H) = Tr[HT (Me P — 2Tx)H],  (10)
where the notation 7, emphasizes the connection with the
normalized Laplacian. This continuous-time version of
Markov Stability shares broadly similar properties with the
discrete-time version (4), and most of the discussion pre-
sented in Section 2 applies here. For instance, Fig. 1 shows
the results of the optimization of 7om (¢; H) over time and
over the space of partitions for a simple example. Note that
the Markov Stability explores the community structure at
all scales (from finer to coarser) using the dynamic zooming
provided by the Markov time of the diffusion process ¢. The
relevant (time) scales emerge as the ones leading to persis-
tent (robust) partitions over extended intervals of time. See
Section 6 and Refs. [19], [20] for a discussion of some of the

practical issues of the computational implementation and
more illustrative examples.

It is also instructive to consider the behavior of (10) in the
limit of small times, ¢ — 0. Keeping terms to first order, we
obtain the linearized Markov stability:

norm

' L
plin (t: H) — rnorm(o; H) —tTr {HT_ —H}
2m (11)

= GS,; —tCut

— (1 — t) GS]‘[ + thonfv

where we have used (6)-(8) and the fact that Tr[H' LH| =
2m — Tr[HTAH|. A few remarks about the linearized
Markov Stability follow:

(12)

e Analogously to (8), the instantaneous probability rate
of the walker escaping from its initial community
—drporm (t; H) /dt|,_, = Tr[H" LH]/2m is the Cut.

e The Potts model heuristic proposed by Reichardt &
Bornholdt [47] is exactly recovered as the linearized
Markov stability. Hence we can see the Markov time
t as the equivalent of a resolution parameter. From
(12) it also follows that the ‘usual’ modularity [4],
[37] is recovered at t = 1 for undirected graphs:

Tﬁgrm(l; H) = Qcont- (13)

e Equation (11) provides an interpretation of Markov
Stability as a compound quality function to be opti-
mized under two competing objectives: minimize the
Cut size while trying to maximize the diversity GS,,
which favours a large number of equally-sized com-
munities according to 7, thus resulting in more bal-
anced partitions. The relative weight between both
objectives is modulated as the Markov time ¢ increases.

The stationary distribution 7 plays a key role in the defi-

nition of the community quality function:

e Firstly, m can be understood as originating the null
model of modularity, i.e., the model of random graph
against which the network is compared to detect the
significance of the communities. The null model in
the ‘usual’ modularity is the configuration model,
which randomly rewires the edges of a given graph
preserving the degree of every node. The probabilis-
tic description of this model is given by the outer
product 7’7, which in our dynamical interpretation
corresponds to the expected transfer probabilities at
stationarity for this Markov process.

e Secondly, GS,; measures the diversity of the parti-
tions according to the node property 7. Hence, as the
value of ¢ grows, the optimization leads to balanced
distributions of 7 across communities, splitting
nodes with high values of 7; into different communi-
ties. In this case, we tend to segregate nodes with
high degree into different groups.

3.2 Combinatorial Laplacian Markov Stability

Given a discrete-time random walk, a variety of continuous-
time Markov processes are possible. Although in (9) we
assumed identical Poisson processes at all nodes, we have
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the flexibility to assign different waiting times at each node.
An interesting choice is to consider that the waiting time at
each node is inversely proportional to its degree, i.e., the
walker spends less time on nodes of high degree. Using an
inhomogeneous rescaling of time this leads to a Markov
process governed by the combinatorial Laplacian:

P pid) = —p Dt D - 4]

di
dp 1
L
“w T @t

(14)

where (d) = (17 D1)/N is the average degree and p = pD .
The stationary distribution of (14) is now the uniform distri-
bution over the nodes:

. =17/N, (15)

and the combinatorial continuous-time Markov Stability is:

71comb(t; H) =Tr [HT (Hceit Lid) _ ﬂcTﬂc) H] . (16)

The corresponding linearized version is then:
pin (t; H) = GS,, —tCut a7
= (1—1¢)GSy, + ¢ Qpr. (18)

In this case, the stationary distribution . leads to a dif-
ferent diversity index:

c C

GSro=1-Y (1The/N)* =1- (nc/N)’,

C=1 C=1

(19)

where n¢ is the number of nodes of community C. The mod-
ularity associated with this process is:

T
Qer = GSz, — Cut =Tr {HT <i - i) H} : (20)

2m N2

which is precisely the modularity based on the Erdos-Rényi
(ER) null model with a probabilistic description given by the
outer product 117 /N2. This version of modularity was origi-
nally discussed by Newman [4], [37] and has been recently
studied against network benchmarks [48]. Based on our
arguments above, the combinatorial Markov Stability opti-
mizes partitions that balance the Cut against the diversity =,
which ignores degrees and counts only the fraction of nodes
present in each community. Hence, it is more likely to group
nodes with high degree in the same community when using
combinatorial Markov Stability, as we will discuss below.
Finally, we remark that at long Markov time scales, the
combinatorial Laplacian dynamics recovers the bipartition
based on the classic heuristic of the signs of the components
of the Fiedler eigenvector [41], which constitutes the basis of
several spectral algorithms. As stated above, the normalized
Laplacian version converges to the bipartition based on the
normalized Fiedler eigenvector, which is also used in other
spectral algorithms like Shi-Malik [44]. Seeing those algo-
rithms as the coarser extreme of a range of community detec-
tion problems provides additional insight into the meaning
and differences between those popular spectral algorithms.

NO.2, JULY-DECEMBER 2014
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Fig. 2. Dynamical coherence in synchronization and community struc-
ture. We computed the coherence of Kuramoto oscillators in this toy net-
work and represented it in the bottom panel by using a colour code, from
black to red as the coherence grows. The lower triangle is always more
coherent than the upper triangle. The partitions obtained by optimizing
the combinatorial Markov Stability r..u., (¢; H), related to the Erdos-Rényi
null model, capture this behavior. On the other hand, the optimization of
the normalized Markov Stability r,..,(t; H), related to the usual configu-
ration model, does not find the relevant sequence of partitions.

3.3 Normalized versus Combinatorial Markov
Stability: Some Examples

3.3.1 The Relevance of Dynamical Coherence

As discussed above, a driving force in the definition of qual-
ity functions for community detection has been the use of
null models, i.e., random graph models that preserve certain
properties of the graph under study and act as bootstraps to
establish the significance of communities. Early on, it was
proposed [4], [37] that the configuration model should be
preferable to Erdos-Rényi as the null model, because the for-
mer takes into account the degree heterogeneity typically
found in realistic networks. However, it has been recently
shown[48] that the Erdos-Rényi model behaves at least as
well as the configuration modularity on benchmarks [49]
and leads to improved results in particular graphs.

Under our dynamical framework, the two null models
correspond to the stationary distributions of the Markov
processes governed by the normalized and combinatorial
Laplacians. The two Laplacian dynamics can emerge natu-
rally in the modelling of different continuous-time dynam-
ics on networks, such as heat diffusion [34], [50], the
linearization of Kuramoto oscillators [3], [10], or consensus
dynamics [11], [51], [52]. In the important cases when the
dynamics of the system is governed by the combinatorial
Laplacian (e.g., synchronization, consensus, or vibrational
dynamics), we expect that the relevant dynamical group-
ings should correspond to communities obtained using the
combinatorial version of Markov Stability (i.e., correspond-
ing to the ER null model) and not the canonical configura-
tion model.

Fig. 2 illustrates this point by examining relevance of
dynamic communities in synchronization dynamics on a
toy network made of two triangles: links in the upper trian-
gle have weight 5; links in the lower triangle have weight
25; and they are connected by links of weight 1. The dynam-
ics of the network is given by the Kuramoto model with
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uniform frequencies, a prototypal model for synchroniza-
tion where each node has a phase ¢, evolving as

¢7 :w—i—ZAijsin(qu—qbi). (21)
J

The coherence between nodes ¢ and j is measured by the
order parameter p;;(t) = (cos (¢;(t) — ¢;(t)));-, where the
average is performed over an ensemble of random initial
conditions. The coherence p;;(t) computed from simulations
(bottom panel) shows that the lower triangle is always more
coherent than the upper triangle, as expected. If we thresh-
old to find coherent clusters [10], the first group detected is
the lower triangle, followed by the upper triangle at later
times. If we use the combinatorial Markov Stability on this
toy graph, this sequence of partitions is correctly uncovered.
This follows unsurprisingly from our dynamical interpreta-
tion since the linearization of the Kuramoto dynamics leads
to the combinatorial Laplacian. In contrast, r,m(t) does not
recover this result, as it first uncovers a dynamically irrele-
vant partition where the upper triangle is found. Interest-
ingly, numerics on Kuramoto dynamics [10], [53] have
shown that the ‘usual’ modularity Qcont is only optimized
for near-regular graphs, i.e.,, when it is equivalent to the
true optimization performed by the dynamics, Qgr. There-
fore, if we are interested in coherent Kuramoto communities
(e.g., motivated by power grid applications [54]), the parti-
tions found with the “usual’ modularity could be mislead-
ing. On the other hand, if we are interested in the study of
probabilistic diffusive dynamics, the relevant communities
should follow from the study of 7o (2).

3.3.2 An Optimization Perspective: Distinct Cost
Functions

Further insight into the communities for each version of
Markov Stability can be gained by examining the role of the
stationary distribution of the Markov process in the defini-
tion of the diversity index appearing in the compound cost
function to be optimized. From the definitions (7) and (19)
of the diversity indices GS, and GS;, (associated with the
normalized and combinatorial versions of Markov Stability,
respectively), it follows that the normalized version balan-
ces communities with respect to their edge volume while
the combinatorial version balances communities with
respect to their node volume. Therefore, the normalized ver-
sion (related to the ‘usual’ modularity) tends to separate
nodes with high degree into different communities. This
may lead to unexpected results, e.g., in assortative net-
works, where high degree nodes tend to be strongly con-
nected to one another, yet could be split when using quality
functions based on the configuration model.

To illustrate this point, consider the community structure
uncovered in the symmetrized version of the C. elegans
neural network, a weighted network with 297 nodes and
2m = 17,598 edges. The partitions found by the combinato-
rial and normalized versions of Markov Stability are signifi-
cantly different—not unexpectedly since the graph is far
from being degree-homogeneous. In Fig. 3, we present the
partitions at ¢ = 7.8 for both versions consisting of mainly
three large communities. As discussed, the optimization of

Log(degree)

. 'y
L]

Normalized

Combinatorial

Fig. 3. Different random walks, different community structure: the C.
Elegans neural network. The choice of Laplacian dynamics leads to differ-
ent communities in this real-life example. Here we present the partitions at
t = 7.8 that optimize 7,,,..,, (left) and r.,.,; (right) consisting mainly of three
large communities in both cases (indicated by different colors). The nodes
are displayed along the vertical axis according to their degree centrality.
The normalized Laplacian Markov Stability biases towards equicentral
communities thus leading to a separation of high degree nodes into differ-
ent communities, whereas high degree nodes can be grouped within the
same community for the combinatorial Laplacian version.

Torm (t) tends to balance the total degree >, . d; of the com-
munities C, while 7¢omp(t) tends to balance the number of
nodes n¢ of the communities. Indeed, for the combinatorial
Laplacian, the total degree of each of the three communities
are {1984,11782,3424}, whereas these numbers are
more balanced for the normalized Laplacian: {5753, 5561,
6284}. On the other hand, the fact that the combinatorial
Markov Stability does not penalize as much grouping
together nodes with high degree into the same community
can also be seen in Fig. 3. The high degree nodes tend to be
split evenly among the three communities for the normal-
ized Laplacian, while the combinatorial Laplacian has a
disproportionately large number of high degree nodes
grouped together in the red community, less so in the green
community and even fewer in the blue community. More
specifically, the top 20 nodes with the highest degree are
distributed among the three communities in the ratios
{18,2,0} for reom, while the corresponding ratios for 7em
are {13,5,2}.

3.4 The Simple Random Walk and Its Continuous-
Time Versions: Degree as Centrality

Our discussion above leads to the following generalization

of the continuous-time versions of the simple (unbiased)

random walk. When taking the continuum limit, the wait-

ing times at each node can be weighted by any power of the

degree:

Cjl—lzpmrk') = —pD" DI - DA
dp 1

TP RS

(22)

where the notation (...) denotes the average over all the
nodes, i.e., (d™*) = (1"D7*1)/N, and we have introduced
the k-scaled Laplacian:

L, =D*I—- DA (23)
The stationary distribution of (22) is then
m, = 17D/ (1T DF L), (24)
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and the corresponding k-scaled Markov Stability is:

Tk(t; H) =Tr [HT (erith/Mik) - TL’kTT[k)H] . (25)

The linearized version reads:

it H) = ryp(0; H) — t Tr [HT (W) H}

_ a8, —t ——

)

(26)

and, again, the diversity index of the partition is measured
as a function of the stationary distribution m;;:

Gsnk —1— Z(lTDthC/ (lTDkHl))Q‘
c=1

(27

Clearly, k& = 0 corresponds to making the waiting time inde-
pendent of the degree and leads to the normalized Lapla-
cian Markov Stability, while £ = —1 corresponds to making
the waiting time inversely proportional to the degree and
produces the combinatorial Laplacian version.

This generalization allows us the flexibility to modulate
the effect of degree centrality in community detection using
other continuous-time dynamics. We could consider a
model where the waiting time is proportional to the degree,
i.e.,, k = 1. This could be interpreted as the model of a ran-
dom web surfer, spending on average more time reading a
page with higher number of links. The community detection
on such a system would then be based on the non-standard
Laplacian L; = D™t — D2A and the diversity index (27)
will try and balance communities according to the square of
the degree, making it even more unlikely to group high
degree nodes in the same community. If, on the contrary,
we consider a model where the waiting times have an
inverse square dependence on the degree (k= —2), the
diversity index (27) would then be based on the inverse of
the degree, and the community detection will tend to push
neighboring high degree nodes together in a single commu-
nity, while low degree nodes stand separated, as in a core-
periphery decomposition. This phenomenon will be more
acute as we make k£ more negative, whereas, conversely, a
large and positive k will put the emphasis on separating the
few top degree nodes, disregarding almost entirely the
effect of the majority of nodes.

This extended discussion of the simple random walk and
associated Markov processes highlights the connection of
dynamical community detection with concepts of centrality.
Measures of centrality aim at rating how connected nodes
are with the rest of the network. The weighted degree is per-
haps the most elementary concept of centrality—indeed, it
is sometimes referred as ‘degree centrality’. As shown
above, the degree appears as the stationary distribution of
the simple random walk (1), and the optimization of the
quality function for community detection balances the parti-
tions according to the diversity of degree centrality. In par-
ticular, it is optimal to split apart highly central nodes (.e.,
with high degree in this case) into different communities for
short enough Markov time scales, and to aim towards bal-
anced intra-community edge centrality. The continuous-
time versions are able to modulate, amplify, attenuate,
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cancel or even invert the effect of degree centrality as the
power k is varied. We consider the connection of dynamical
community detection with other measures of centrality in
the following section.

4 CoMMUNITY DETECTION BASED ON OTHER
NOTIONS OF CENTRALITY: THE RUELLE-BOWEN
RANDOM WALK

4.1 The Role of Centrality in Community Detection
In different applications, it might be desirable to employ
other measures of centrality as the linchpin for community
detection. We can achieve this using the random-walk
framework discussed above. Many discrete-time random
walks other than the simple random walk may be per-
formed on a network. We then may think of the stationary
distribution of every random walk as a centrality measure.
Every random walk with transition matrix A/ will then be
associated with a dynamical Markov Stability quality func-
tion, and the corresponding community detection will pro-
duce optimized partitions which are balanced according to
different measures of centrality. A generic way to generate
random walks is to bias the simple random walk [55]. For
instance, one may attribute a positive number b; to every
node i (e.g., a property related to a measure of centrality)
and let a random walker at i jump to j with probability pro-
portional to b; A;;b;.

Once the discrete-time random walk (and its associated
centrality) is chosen, different continuous-time processes
can be obtained. Generically, this is done by combining two
ingredients: the transition probabilities of the discrete-time
random walk (i.e., the row-stochastic matrix M) and the
waiting times of the continuous-time process at each node
(compiled in a node vector w). The resulting process is then:

P _ w1 29)
dt
with W = diag(w). These two ingredients come into play
differently in determining the corresponding Markov
Stability function for community detection. The discrete-time
random walk defined by M determines the stationary distri-
bution 7 4. on nodes. On the other hand, the continuous-time
stationary distribution on node %, or node centrality, is given
by w;mgisc,i/{(w), where (w) is the normalization constant
Taiscw. As shown in the examples above, the choice of wait-
ing times can thus modulate the effect of the node centrali-
ties. The centrality of edge ij, on the other hand, is the
probability that an observed transition links i to j, which
does not depend on the time elapsed between transition but
rather on the respective frequencies of transitions given by
Taise,iMij. Edge centralities are therefore given by Ilg M,
hence completely determined by the discrete-time transi-
tions and unaffected by waiting times. As a result, the dis-
crete-time transitions and waiting times have a different
effect on the resulting Markov Stability function: waiting
times have no influence on the edge centrality but afford
complete control over the node centrality (and on the Gini-
Simpson term of the cost function), whereas the Cut term is
completely determined by the edge centralities (i.e., the
underlying discrete-time random walk). At long times, the
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optimal split is provided by the sign pattern of the second
eigenvector of the ‘generalized Laplacian” W~!(I — M),
which depends both on the discrete-time transitions A/ and
the waiting times 1. We now explore a classic discrete-time
random walk with distinctive properties.

4.2 Community Detection According to the
Ruelle-Bowen Random Walk

A vparticularly interesting example is the random walk
introduced by Ruelle, Bowen and others [56]. Consider a
graph with adjacency matrix A = A”, under the usual
assumptions of connected, undirected, and non-bipartite,
for simplicity. An important notion of centrality is associ-
ated with v, the dominant eigenvector of A (i.e., the eigen-
vector with the largest eigenvalue):

Av = \v. (29)

The eigencentrality [57] of node i is given by wv;, its corre-
spondent component of this eigenvector.

The discrete-time Ruelle-Bowen random walk is defined
such that the transition between nodes i and j occurs with
probability v; A;;v;:

Piy1 = Py L\il A;lAAv} = p, Mgs, (30
with p the 1 x N probability vector and Ay = diag(v). Under
such assumptions, the unique stationary distribution of the
RB random walk is

mrp = 17A2/(17A21) = 17A2, (31)
since (17A21) =v’v =1 for the normalized eigenvector.
The stationary distribution 7rg can be seen as a centrality
measure, which is called entropy rank (for the unweighted
case) or free energy rank (for the weighted case) [58], thus
essentially equivalent to eigencentrality in terms of ranking
(although the concepts diverge in the directed case, not ana-
lyzed here).

This classic random walk has an interesting interpreta-
tion in terms of entropy: it is maximally exploratory in the
sense that its per-step entropy is maximal. More precisely,
let h denote the (Kolmogorov-Sinai) entropy rate of the ran-
dom walk, which is the average per-step entropy that is
asymptotically approached for long paths, and let £ be the
expectation of the edge transition energies F;;, such that
A;j = exp(E;j;). Then the RB random walk maximizes the
‘free energy’ h + E. It therefore tends to make all paths of
same length equiprobable, with a bias to make high energy
paths more probable [59]. Beyond its thermodynamic prop-
erties, the Ruelle-Bowen walk naturally emerges in other
contexts, such as the computation of quasi-stationary distri-
butions [23], [24].

Similarly to the simple random walk, we can associate
continuous-time Markov processes to the RB random walk.
The simplest is given by the homogeneous waiting times:

dp

Lo plI-M
=Pl ®rBJ:
with Mgg as in (30). The node stationary distribution of (32)

is given by (31), whereas the edge centralities are given by

(32)

the matrix A%MRB = AyAAy/);. The full and linearized ver-
sions of the RB Markov Stability follow closely the expres-
sions in (10)-(12). This continuous-time process can be
generalized through the choice of waiting times.

The RB Markov Stability has connections with other heu-
ristics in the literature. For instance, the spectral algorithm
associated with the RB random walk on an undirected
graph makes use of the second eigenvector of the adjacency
matrix A, similarly to the ‘adjacency spectral clustering’ of
Sussman et al. [60]. To illustrate the flexibility of the frame-
work in designing cost functions associated to different
notions of communities, let us consider waiting times
W = DA, ”. This choice makes thenode centralities propor-
tional to the degree, since the discrete-time RB walk induces
stationary probability on nodes proportional to A? (see
Eq. (31)), while the edge centralities, unaffected by waiting
times, are still determined by the edge entropy rank. The
linearized Markov Stability optimization will now look for
communities balanced in terms of number of edges
(through diversity term) while cutting edges with low
entropy rank (through the Cut term).

As a simple example of the impact of such a choice on the
outcome of partitioning, consider the graph A — B — C' com-
posed of two N-cliques A and B and a N-cycle C, intercon-
nected by single edges. From the point of view of the simple
random walk Markov Stability, cutting the A — B edge or the
B — C edge is indifferent as far as the cut term is concerned.
However, RB Markov Stability favours cutting the less cen-
tral B — C edge, thus isolating first the "hollow” module C on
the account of cut minimization, while the Gini-Simpson
term tends in this case to keep apart high-degree nodes, thus
inducing non-trivial results [61]. This priming of eigencen-
trality in the allocation of community splits could be desir-
able for particular applications, e.g.,, when analyzing
networks with highly heterogeneous eigencentrality across
the nodes. This will be particularly important in networks
whose node eigencentrality is not fully captured by the
degree centrality [62], e.g., when a low-degree individual is
connected to high degree others or in which a high-degree
node is only connected to low degree others.

Finally, an interesting property of the Ruelle-Bowen ran-
dom walk is its universality. Any linear dynamics
x111 = x; A, where x; is a row vector of real entries over the
nodes and A is a nonnegative primitive matrix, can be trans-
formed to make it interpretable as a random walk [63].
Hence, besides consensus, heat diffusion, linearized syn-
chronization, etc, random walks can also be used to repre-
sent a wider class of dynamics on networks.

5 MARKOV STABILITY FOR DIRECTED GRAPHS

Another advantage of the dynamical framework for com-
munity detection introduced above is that it extends natu-
rally to directed graphs, whereas the extension of structural
quality functions, such as modularity, to the case of directed
graphs is not trivial. For instance, although it has been
argued [64], [65] that the null configuration model in modu-
larity should become dj,d’ , /2m in order to account for the
directionality of the links, this choice and justification of the
null model for directed graphs is not unique. Under our
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Fig. 4. Directed Markov Stability versus extensions of modularity. In this
toy network [16], the weight of the bold links is twice the weight of the
other links. The partition on the left (indicated by different colors) opti-
mizes directed Markov Stability (34), which intrinsically contains the pag-
erank as a null model. The partition on the right instead optimizes an
extension of modularity based on in- and out-degrees [64], [65]. Hence
directed Markov Stability produces flow communities, whereas the
extension of modularity ignores the effect of flows.

S

dynamical viewpoint, the notion of community becomes
that of flow community, and the relevant centrality is pag-
erank with its associated null model, as we show below.

Consider the simple random walk for a directed graph
wit the (non-symmetric) adjacency matrix: A # AT. Each
node has an in-degree, collected in the vector d;, = AT,
and an out-degree, collected in the vector d,,; = A1, i.e., the
sum of the weights of the edges directed at and departing
from the node, respectively. The simple random walk in
this case is given by

Pri1 = Py Do A = P, Mai, 33)
where Do, = diag(dyy) and Mg, = D,} A. For nodes where
douti = 0, we set Dy (4,7) = 1.

For simplicity, consider first the case when the graph is
strongly connected and aperiodic. Then the random walk
(33) is ergodic and has a unique, stationary distribution g
corresponding to the dominant left eigenvector of Mg;,. The
stationary distribution mg;, is called pagerank, a key mea-
sure of centrality in directed graphs [66]. We can then define
the directed Markov Stability based on the random walk
(33), which has the same form as (4) and (3). This quality
function can be used the same way as the undirected ver-
sion to extract multiscale structure in graphs by using the
Markov time ¢ as a resolution parameter. The directed Mar-
kov Stability at time ¢t = 1 which, following (6) above, corre-
sponds to our quality function most closely related to
‘directed modularity”:

rdir,l =Tr [HT(HdiI-D71 A — ”gl-”dir)H} .

out

(34)

Note that the null model we obtained here corresponds to
the outer product of the normalized pagerank vector
ngirndir, in lieu of in- and/or out-degree vectors [64], [65].
Clearly, using (34) gives different results to structural
versions of directed modularity based on in- and out-degree
null models. While optimization of (34) favours partitions
with persistent flows of probability within modules, modu-
larity favours partitions with high densities of links and is
blind to the flow actually taking place on these links. To
illustrate the difference, consider the toy example given by
[16] (Fig. 4), on which the directed random walk is ergodic.
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In this case, optimizing the in/out-degree modularity of
this toy network leads to a partition where heavily weighted
links are concentrated inside communities, as expected. On
the other hand, optimization of directed Markov Stability
leads to a partition where flows are trapped within mod-
ules. It is also interesting to stress that the partition that opti-
mizes (34) also optimizes the map equation proposed by
Rosvall and Bergstrom [16]. For an independent study of
directed modularity based on other arguments, see Kim
etal. [67].

Our definition of directed Markov Stability relies on the
condition that the dynamics is ergodic. When the directed
network is not ergodic, it is common to generalize the stan-
dard random walk by incorporating a random teleportation
term (also known as ‘Google teleportation’). If the walker is
located on a node with at least one outlink, it follows one of
those outlinks with probability v € (0,1). Otherwise, with
probability 1 — t, the random walker teleports with a uni-
form probability to a random node. Instead of Mg;,, the new
transition matrix of the random walk (33) becomes:

T

Mair(t) = tMaie + [(1 — 7)1 + v diag(a)] %, (35)
where the N x 1 vector a is an indicator for dangling nodes:
a; =1 if dyy; =0 (and the corresponding row of Mg, is
assumed to be zero) and a; = 0 otherwise. Upon visiting a
dangling node, a random walker is teleported with probabil-
ity 1. It is customary to use the value r = 0.85. The teleporta-
tion scheme is known to make the dynamics ergodic and to
ensure the existence of a single stationary solution g (7)
that is an attractor of the dynamics. Indeed, teleportation is
sometimes introduced even in the ergodic case to improve
the numerical convergence of pagerank computation.

Finally, we remark that, as for the undirected case, there
are continuous-time versions of directed Markov Stability.
The simplest is given by the corresponding Kolmogorov
equation:

dp_

pri (36)

p [ — Mai(7)],
and our discussion above applies to these processes too. An
application to a large graph of airport connections is pre-
sented in the next section. See also [68] for an application to
social network analysis.

6 COMPUTATIONAL METHODOLOGY
AND PRACTICAL CONSIDERATIONS

Given a network, and based on modelling considerations or
other assumptions, we can choose a discrete- or continuous-
time Markov process to scan dynamically the structure of
the graph at all scales. As shown in the toy example of
Fig. 1, the optimization of the chosen Markov Stability
across time leads to a sequence of partitions that are optimal
at different time scales. The extraction of these optimized
partitions is the first step to uncover the multi-scale modu-
lar structure of the network (if present), but the practical
application of the method still involves at least two non-
trivial steps, which we now discuss in conjunction with sev-
eral larger examples. Although the examples in this section
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exhibit a relatively hierarchical community structure, in
Supp.Inf., which can be found on the Computer Society Dig-
ital Library at http://doi.ieeecomputersociety.org/10.1109/
TNSE.2015.2391998, we illustrate and measure quantita-
tively non-hierarchical multi-scale structures.

6.1 Optimization of Markov Stability

Although it has been shown that modularity optimization is
NP-hard [69], several heuristic algorithms have been pro-
posed to provide satisfactory solutions, in the sense that
they efficiently recover planted solutions in benchmark
graphs, or that they can uncover groups that are clearly
meaningful (e.g. classes in a school social network, etc) [6].
It has also been shown that in real-world examples the mod-
ularity landscape over partitions tends to exhibit large rug-
ged plateaux, making it possible to find an approximately
optimal partition [70].

We will now show that it is always possible to rewrite the
Markov Stability for any choice of random walk as the mod-
ularity of another symmetric graph. This observation has
important practical implications, as it makes it possible to
use any modularity-maximization algorithm, e.g. spectral
or greedy, for the optimization of any version of Markov
Stability. For example, consider the discrete-time stability
r(t) = Tr[HT(IIM" — n"7)H], for transition matrix M and
the corresponding centrality . It is easy to see that this is
the usual modularity for the graph of weighted adjacency
matrix A = (IIM" + (IIM")")/2, a symmetric matrix of
degree sequence A1 = 7’. A similar observation holds in
continuous time (where the exponential can be evaluated
by Padé approximations), and also for the linearized ver-
sions of Markov Stability.

Any modularity maximization algorithm can therefore
be used for Markov Stability optimization. As some of those
algorithms [71] are empirically known to run in O(m log m)
on m-edge graphs, the most expensive step turns out to be
matrix multiplication or computation of the exponential,
which limits the application of full Markov Stability to
graphs with N ~ 20,000 nodes. These overheard costs are
spared when using the linearized version of Stability, which
becomes the most suitable for the multi-scale analysis of
very large networks N > 10°. In our applications below, we
have used mainly the Louvain algorithm [71] adapted to the
optimization of Markov Stability?, although spectral bisec-
tion methods [72] for the generation of optimized partitions
yields good results [14].

6.2 Robustness of Partitions

Once the sequence of optimized partitions is obtained, we
need to select the most relevant scales (partitions) for our
description. This is a well-known challenge for multi-reso-
lution methods. Notions of robustness are usually consid-
ered when dealing with NP-hard optimizations to reflect
the ruggedness of the landscape of the quality function to
be optimized [70]. In our approach, we establish the signifi-
cance of a particular partition based on its robustness in

2. An efficient code, also with a Matlab interface, can be down-
loaded at http://wwwf.imperial.ac.uk/~mpbara/Partition_Stability /
or http:/ /michaelschaub.github.io/PartitionStability /
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Fig. 5. Selecting robust partitions in the sequence of optimized partitions
across Markov time. (a) The American football network [4] composed of
N =115 teams is known to be organized into 12 divisions. (Left) The
block structure of the normalized variation of information (37) between
the optimized partitions at time ¢ and ¢ and a long plateau in the number
of communities indicates that the most persistent partition is made of 12
communities, as expected. (Right) The randomized version of the net-
work, where links have been reshuffled while preserving the node
degrees, does not exhibit robust communities. (b) A benchmark hierar-
chical random network consisting of N =640 nodes with 3 levels:
64 modules of 10 nodes; 16 modules of 40 nodes; 4 modules of 160
nodes [8]. We use one realization of the benchmark. Similarly to (a), the
long plateaux in the number of communities and the block structure with
low values of V(P(t), P(t')) reveal the three levels of the hierarchy (left).
No significant community structure is detected in the randomized net-
work (right). Both sequences of partitions were obtained optimizing
rnorm (¢; H) with the Louvain algorithm [71].

three different ways [73], [74], [75], [76], [77], [78]: (i) robust
(persistent) across time; (ii) robust to small perturbations
to the graph; and (iii) robust to the optimization algorithm
and the starting point of the optimization. We now exem-
plify (i) and (iii).

The basic notion is to evaluate the effect of these perturb-
ing factors on the optimized partition: a partition is robust if
such perturbations have little effect on the outcome and
the perturbed result remains close to the unperturbed one.
A popular way to compare two partitions P; and P; is the
normalized variation of information [79]

, H(Py | Py) + H(Py | P
V(P17P2): ( 1| 2) ( 2| 1)7

log (37

where H(P;|Ps) is the conditional entropy of the parti-
tion P; given P, i.e., the additional information needed
to describe P; once P, is known assuming a uniform
probability on the nodes. The conditional entropy is
defined in the standard way for the joint distribution
P(Cy,C5) that a node belongs to a community C; of P,
and to a community Cy of P,. The normalized variation
of information V(P;,P;) € [0,1] has been shown to be a
true metric on the space of partitions and vanishes only
when the two partitions are identical.

Within the Markov Stability framework, we use this met-
ric to evaluate the persistence of partitions across time.
By looking for block-diagonal regions with low values of
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Fig. 6. Hierarchical benchmark and statistical tests. Benchmark random
network with N = 2560 nodes and 4 hierarchical levels (with modules of
10, 40, 160 and 640 nodes) [8]. (a) The long plateaux in the number of
communities (blue) and the dips in the normalized variation of informa-

tion across time V(P(t), P(\t)) (green) signal that the four levels of the
hierarchy have been detected. (b) Same as (a) for a randomized version
of the network preserving node degrees: no community structure is
found at any scale. In both cases, A\ = 20/19 and the sequences of parti-
tions were obtained optimizing .. (t; H) with the Louvain algorithm.

V(P(t), P(t"), as well as plateaux in the number of commu-
nities as a function of time [80], we can detect the relevant
partitions and scales without assuming them a priori. Two
examples of this approach are shown in Fig. 5, where we
illustrate the detection of the relevant scale (12 communi-
ties) in a small real-life network of American football teams
(N = 115), as well as three scales in a hierarchical bench-
mark random network with N = 640 nodes. The same
notion is evaluated in Fig. 6, where we detect 4 hierarchical
levels in a larger benchmark network with N = 2,560 nodes
by comparing partitions across time using the scaling factor

) to evaluate V(P(t), P(\t)).

In addition to the robustness of partitions based on persis-
tence across time, it is also helpful to evaluate the robustness
of the solution with respect to the optimization. We do this
by repeating the Louvain optimization many times (in excess
of 100 random initial seeds for each Markov time) and evalu-
ating the average normalized variation of information within
the ensemble of optimized solutions. If a partition is robust to
the optimization, we expect a small value (or a dip) in the
normalized variation of information of the ensemble of opti-
mized solutions, signaling a relevant partition. This robust-
ness to the optimization probes the ruggedness of the
landscape and can be tested for different optimization algo-
rithms [70]. Here we use the Louvain algorithmic heuristic,
which has been shown to perform well both in benchmarks
and real-life examples [78]. In Figs. 7 and 8, we show the
application of this approach to two large networks: an undi-
rected, weighted atomic protein network with N = 8757
nodes; and a directed, weighted network of airport connec-
tions with V = 2905 nodes. In both networks, we find rele-
vant structure at different resolutions. Of note is that our
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Fig. 7. Finding robust communities at multiple scales in the atomic net-
work of hemoglobin, a protein tetramer. The atomic network of the pro-
tein is generated as detailed in Refs. [74], [81] using physico-chemical
potentials and atomic X-ray crystallographic data (PDB file: 1GZX). This
weighted, undirected network has N = 8757 nodes (atoms) and 12813
edges (bonds). The multi-scale nature of our method reveals relevant
communities across scales, from small chemical groupings to large-
scale conformations, signalled by dips of the normalized variation of
information. These dips deviate significantly from chemically-consistent
randomized versions of the network (not shown; see [74], [81]). Note the
long plateau and dip of the normalized variation of information for the 4-
way partition, corresponding to the identification of the four monomers in
the hemoglobin tetramer. Here the combinatorial version of Markov Sta-
bility 7comn(t; H) was optimized, as it is more closely matched to the
vibrational dynamics of the protein network.

results in the protein network are able to identify partitions
corresponding to relevant chemical structures (involving
only a few nodes), through secondary structures such as heli-
ces (involving several hundreds of atoms) to large conforma-
tional domains and, importantly, the subunits (involving
several thousands of atoms). In the case of the airport net-
work, the different levels of resolution reveal geographical
and socio-political groupings. In this case, the directed char-
acter of Markov Stability is able to reveal communities with
specific flow characteristics, including regions with focalized
entry points coupled to a local asymmetric distribution net-
work (e.g., Alaska and Greenland).

The selection of the relevant scales is still an open area of
research in multiscale community methods and has strong
links with non-convex optimization. Our notions of robust-
ness reveal that the optimized partitions found at peaks of
the variation of information tend to be hybrid combinations
of natural partitions with non-uniform resolution, splitting
some but not all the coarser communities, thereby explain-
ing a high sensitivity to the random seed or Markov time. In
other cases, such peaks correspond to the coexistence of a
few ‘good’ partitions, which might indicate a tendency to
flip between such outcomes and, hence, a lack of robustness.
In this sense, the peaks in the variation of information tend
to signal the separation between the relevant scales in the
community structure of the network, and can also be related
to the existence of non-hierarchical (yet multi-scale) com-
munity structure (see Supp. Info., available online for some
examples). These topics will be the object of further work.

7 DISCUSSION

Our work emphasizes the importance of choosing proper
dynamical processes in order to uncover information in
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Fig. 8. Flow communities at multiple scales in an airport network. The airport network [82] contains N = 2,905 nodes (airports) and 30,442 weighted
directed edges. The weights record the number of flights between airports (i.e., the network does not take into account passenger numbers, just the
number of connections). Representative partitions at different levels of resolution with (b) 44, (c) 18 and (d) 5 communities are presented. The parti-
tions correspond to dips in the normalized variation of information in (a) and show persistence across time (see Suppl. Info., available online).

networked systems. Here, we have focused on random walk
processes, which are known to be mathematically equiva-
lent to a broad range of diffusive processes: heat diffusion,
evolution on a (free) energy landscape [25], opinion dynam-
ics on social networks and other kinds of consensus prob-
lems [52], [83], linearization of synchronization [3], [84] and
power networks [54], among others. Importantly, using the
random walk corresponding to the natural dynamics of the
system allows us to find its central nodes (according to its
intrinsic centrality measure) and to recover dynamically
meaningful communities, i.e., the communities of nodes
that best retain the diffusive flow for a certain time scale. If
there is no intrinsic dynamics in the system, and hence no
unique choice for the exploratory Markov dynamics, our
approach provides tools to understand the effect of the dif-
ferent choices of random walks and associated centrality
measures on the community structure obtained through
Markov Stability optimization.

More generally, our approach provides a unified view-
point for a number of existing approaches, as summa-
rized on Fig. 9, and Our approach paves the way for the
development of metrics and algorithms that exploit real-
world non-Markovian random walks [86] or incorporate

non-trivial temporal patterns into diffusive models [87].
Our work also opens perspectives in community detec-
tion by providing a dynamical interpretation of quality
functions, and by interpreting the standard null-model
paradigm in terms of stationary distributions [4], [85].
The dynamical approach that we advocate here, not only
generalizes the null model paradigm, but can also lead to
fundamentally different quality functions. For instance,
even the simple random walk on a directed graph leads
to a Stability function containing the pagerank, which is
not expressible in terms of combinatorial quantities,
hence different from any null-model-based variant of
modularity. The dynamic and null-model paradigms do
overlap in a number of interesting cases. We have shown
that for undirected networks, the two most common continu-
ous-time dynamics, described by the normalized and combi-
natorial Laplacians, correspond to the two most meaningful
null models, i.e., the configuration model and the Erdos-
Rényi model. Through the intuition gained from the corre-
sponding dynamics, we reinterpret the Erdos-Rényi null
model (long considered as inferior in the null-model litera-
ture [4], [85]) and show that it is linked to an optimization
that tends to produce node-balanced communities, and can

Simple Random Walk Normalized Laplacian Combinatorial Laplacian  Ruelle-Bowen
Type Discrete-time Continuous-time Continuous-time Discrete-time
Node centrality Degree Degree Uniform Eigencentrality
Linearized Stability Potts model[47] Potts model[47] Potts model[48], [47]
Time-one (linearized) stability Modularity[85] Modularity[85] Modularity[85]
Null model Configuration model Configuration model Erdos-Rényi
Spectral Algorithm Shi-Malik[72] Shi-Malik[72] Fiedler[41], [42] Sussman[60]

Fig. 9. Summary of the dynamics-based Markov Stability framework and connections with centrality measures, and other clustering and community

detection methods in the literature.
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be more relevant under particular dynamical processes, con-
sistent with the findings of Traag et al. [48]. The exploration
of alternative random walks, such as the Ruelle-Bowen walk,
also highlights the capability of introducing alternative
measures of centrality and extending community detection
to include non-standard Markov processes.
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