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Abstract
The authors of the paper ‘‘Bayesian Graphical Models for Modern Biological

Applications’’ have put forward an important framework for making graphical

models more useful in applied settings. In this discussion paper, we give a number

of suggestions for making this framework even more suitable for practical scenarios.

Firstly, we show that an alternative and simplified definition of covariate might

make the framework more manageable in high-dimensional settings. Secondly, we

point out that the inclusion of missing variables is important for practical data

analysis. Finally, we comment on the effect that the Gaussianity assumption has in

identifying the underlying conditional independence graph and how this can be

circumvented. The Bayesian framework proposed by the authors is flexible enough

to accommodate extensions that can deal with these aspects, which are often

encountered in real data analyses such as the complex modern applications con-

sidered by the authors.
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3 Università della Svizzera italiana, Via G. Buffi 13, 6900 Lugano, Switzerland

123

Statistical Methods & Applications (2022) 31:241–251
https://doi.org/10.1007/s10260-021-00605-2(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-4603-7541
http://crossmark.crossref.org/dialog/?doi=10.1007/s10260-021-00605-2&amp;domain=pdf
https://doi.org/10.1007/s10260-021-00605-2


1 Introduction

The authors of the discussion paper should be congratulated with the considerable

effort in making graphical models more suitable for real world applications.

Graphical models are the archetypal way of studying complex systems in an

integrated probabilistic way. The factorization of the likelihood in combination with

the graphical representation of the system make graphical models both formally

tractable and directly interpretable. However, until recently, graphical models were

rarely used in practice in conjunction with substantial covariate information. This

has limited the application of graphical models in experimental settings, where often

the aim is to describe the effect of one or more factors on the behaviour of the

system of interest. The aim of the discussion paper is to extend the graphical model

for those situations. In our discussion we focus on a number of aspects that deserve

further attention.

In particular, in Sect. 2 we discuss in what ways covariate information can be

included in a graphical model. Whereas the authors of the discussion paper have

chosen a particular approach, this is clearly not the only way one can include

dependent variables. We aim to clarify the various options that are available, what

their strengths and limitations are and how they are related. Furthermore, we

describe a related conditional graphical model approach that is particularly useful in

high-dimensional settings.

In Sect. 3 we discuss the situation of missing and censored data. Whereas we do

not intend to repeat the discussion that missing data can be the Achilles heel of any

statistical analysis, we do believe that especially in practical scenarios, where

missingness and other artifacts such as censoring or saturation are common, it is

crucial to include as many samples as possible in the analysis. Simply discarding

incomplete data can be disastrous, especially in the graphical model setting.

Although in principle the Bayesian framework should be particularly suitable for

dealing with data that is missing at random (or completely at random), the authors

unfortunately only dedicate a single line to the matter.

Finally, in Sect. 4 we return to the age-old issue of assuming normality. Although

we are all for making convenient and practically workable assumptions, it is

important to realize that in graphical model settings this tends to have dispropor-

tionate effect on the structural inference. Practically, this can affect the conclusions,

such as in the myeloma network analysis, where various inferred networks are

compared with each other. There are simple and practical ways to mitigate these

issues and we describe this in the Gaussian copula approach.

All our suggestions built forth on the very useful developments on practical and

accessible graphical modelling presented in the discussion paper. By making

graphical models more flexible, they can become a standard tool in the applied data

analyst’s tool box. A golden age of graphical models is ahead of us.
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2 What is a covariate?

It is instructive to go back to basics from time to time to take stock of what has

actually been achieved. Ni et al. (2021) introduce two types of graphical models that

depend on covariates and that might be called conditional graphical models. It does

raise the question: what exactly is a covariate? In short, covariates are observations

conditional on whom another observation, typically referred to as the response, has

a particular distribution. In a parametric setting, this means that X is a covariate

relative to Y if

Y jX ¼ x�LðhðxÞÞ;

for some parametric distribution L, whose parameters h are a function of x. Given

that a Gaussian graphical model is defined relative to its mean l, its precision matrix

X and its conditional independence graph G, a conditional Gaussian graphical
model ðY ;X; l;X;GÞ is defined as

YjX ¼ x�NðlðxÞ;XðxÞÞ relative to a conditional independence graph GðxÞ:

This definition is general and holds both for undirected and directed Gaussian

graphical models. It is easy to see that both the Bayesian multiple graph model of

Sect. 3.1, its dynamic extension in Sect. 3.3 and the covariate-dependent graph
models of Sect. 4 of the discussion paper are covered by this definition. For directed

conditional Gaussian graphical models, such as the graphical regression models in

Sect. 4.1, the functional space of precision matrix functions XðxÞ should be con-

strained to satisfy that the resulting graphical structure G(x) is a Directed Acyclic

Graph. The authors do not explicitly constrain their inference in this way, but

undoubtedly they do some a posteriori sanity checks to make sure that no cycles

occur.

The conditional graphical models described in Ni et al. (2021) focus heavily on

the precision matrix XðxÞ. In fact, the multiple graph models in Sect. 3 consider a

single categorical covariate with K levels and conditional on the level, say k, the

precision matrix is freely specified as Xk. The graphical regression considers

Q continuous covariates x and defines the entries XjkðxÞ of the precision matrix as a

thresholded function fjk (for example defined as a sum of Q univariate b-splines),

XjkðxÞ ¼ fjkðxÞ1fjfjkðxÞj[ tjkg:

This is a very useful class of models and it has the ability to show how certain

factors affect the strength of various interactions. Given the detailed nature of the

comparisons in the multiple graphs model and interpretation of the effect shapes in

the graphical regression model, this method comes to the fore best in low-dimen-

sional problems.

Given the fundamental linear structure of a Gaussian graphical model in the first

place, it seems not unreasonable to consider only linear functions with additional

hierarchical constraints, say,
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XjkðxÞ ¼ h0
jk þ

XQ

i¼1

hijkxi; such that 8i : h0
jk ¼ 0 ¼) hijk ¼ 0:

The hierarchical constraints impose that an intercept is always included. Further-

more, for undirected graphical models we impose hijk ¼ hikj, whereas for directed

graphical models we only consider XðxÞ that satisfy the DAG structure of GðxÞ. Due

to the hierarchical constraints, this means that we only have to put the DAG con-

straints on the intercepts fh0
jkg.

A simpler, but still interesting class of models are the conditional Gaussian

graphical models with a model structure on the mean parameters, such as

lðxÞ ¼ Bx:

This class of models can be studied easily in high-dimensional settings, given the

straightforward nature of the interpretation of the parameters.

So far, we have not spoken about inference. Whereas the authors suggest a

Bayesian implementation, which can indeed be suitable for low- to medium-

dimensional settings, for high-dimensional settings, penalized likelihood approaches

can be particularly useful.

2.1 Conditional graphical lasso

In this section, we consider a recent development of Gaussian graphical modelling

approaches that allow for dependency of the mean on the covariates. These models

are generally referred to as conditional Gaussian graphical models, also known as

covariate adjusted Gaussian graphical models, and are a class of conditional

probabilistic graphical models used to encode the dependence structure among the

elements of a set of random variables conditional on a second set of random

variables (Lafferty et al. 2001). Formally, let y ¼ ðy1; . . .; ypÞ> and x ¼
ðx1; . . .; xqÞ> be p- and q-dimensional random vectors, respectively, and let G ¼
ðV;EÞ be an undirected graph with vertex set V ¼ f1; . . .; pg, indexing only the

entries in y, and edge set E � V � V , where ðh; kÞ 2 E iff there is a directed edge

from the vertex h to k in G. Suppose that the distribution of y conditional on x is a

multivariate Gaussian distribution with probability density function defined as

follows:

/ðyjx;B;XÞ ¼ ð2pÞ�
p
2jXj

1
2 exp � 1

2
ðy� B>xÞ>Xðy� B>xÞ

� �
; ð1Þ

where, with a little abuse of notation, we let x ¼ ð1; x>Þ> be the vector of predictors

and B ¼ ðb0; b
>Þ> the ðqþ 1Þ � p regression coefficient matrix. The model in (1)

assumes that the predictors affect the distribution of the response variables y only

via the p conditional expected values and through a linear function, that is:
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EðyjxÞ ¼ B>x; VðyjxÞ ¼ R:

The inverse of the variance matrix, denoted as before by X ¼ ðxhkÞ, is called the

precision matrix and its entries have a one-to-one correspondence with the partial

correlation coefficients. Using standard results about the multivariate Gaussian

distribution, it is possible to show that yh and yk are conditionally independent given

x and all the remaining variables in y iff the corresponding partial correlation

coefficient is zero (Lauritzen 1996). This remarkable property of the multivariate

Gaussian distribution gives rise in a natural way to the notion of conditional

Gaussian graphical model, which is based on the idea of relating the factorization of

the density (1) to the topological structure of the undirected graph G.

Inference of a conditional Gaussian graphical model is particularly challenging

under censoring and missing-at-random structures, which occur frequently in real

data and which raise computational challenges already for moderate sized datasets

(Augugliaro et al. 2020). In order to see this, consider a set of n independent

observations denoted by ðyi; xiÞ with i ¼ 1; . . .; n. For observations i 2 O, in which

the observation vector yi is fully observed, the contribution to the log-likelihood is

‘iðB;XÞ ¼ log/ðyijxi;B;XÞ:

However, for observations i 2 C, in which some entries j of yi are censored, j 2 ci,
either from below or from above, the contribution to the likelihood is given by the

multi-dimensional integral across the censored variables,

‘iðB;XÞ ¼ log

Z

Dci

/ðyijxi;B;XÞdyici ;

where the region Dci ¼
Q

j2ci Dij is the censoring region, with Dij ¼ ð�1; ljÞ if

yij � lj (censored from below) or Dij ¼ ðuj;1Þ if yij � uj (censored from above).

Finally, if some entries yij are missing-at-random, then it is possible to extend the

definition of the censoring region to encompass such missingness in the likelihood.

In particular, Dij ¼ R for these cases. Considering all possible cases, the relevant

average observed log-likelihood function is given by

�‘ðB;XÞ ¼ 1

n

Xn

i¼1

‘iðB;XÞ: ð2Þ

Under a high-dimensional setting, that is minfp; qg[ n, inference about B and X
can be carried out under the assumption that these matrices have a sparse structure,

i.e., only a few regression coefficients and partial correlation coefficients are dif-

ferent from zero. To this end, Augugliaro et al. (2020) propose to estimate the

parameters of a conditional Gaussian graphical model by maximizing a new

objective function whereby two specific lasso-type penalty functions are added to

the average observed log-likelihood. The resulting estimator is defined as follows:
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f bB; bXg ¼ arg max �‘ðB;XÞ � k
Xp

k¼1

xkkkbkk1 � qkXk�1 ð3Þ

where bk denotes the kth column of b, kbkk1 ¼
P

h;k jbhkj and kXk�1 ¼
P

h6¼k jxhkj.
Like in the standard penalized inference approaches, the tuning parameter k is used

to control the amount of sparsity in the estimated regression coefficient matrix

whereas q is devoted to control the sparsity in bX ¼ ðx̂hkÞ and, consequently, in the

corresponding estimated conditional independence graph bG ¼ fV; bEg, where

bE ¼ fðh; kÞ : x̂hk 6¼ 0g. When q is sufficiently large, some x̂hk are shrunken to zero

resulting in the removal of the corresponding link in bG; on the other hand, when q is

equal to zero and the sample size is large enough the estimator bX coincides with the

maximum likelihood estimator of the precision matrix, which implies a fully con-

nected conditional independence graph.

2.2 Computational time

Augugliaro et al. (2020) propose a unifying algorithm for inference of a sparse

conditional Gaussian graphical model that can accommodate both the case of

censoring (Augugliaro et al. 2020), missingness-at-random (Städler and Bühlmann

2012) as well as the high-dimensionality of the data. Inference is based on an

Expectation-Maximization (EM) algorithm for maximizing the penalized log-

likelihood and is efficiently implemented in the R package cglasso.

In general, the EM algorithm is based on the idea of repeating the expectation

and maximization steps, until a convergence criterion is met. For the sake of

simplicity, in the remaining part of this section, we use # ¼ fB;Hg for the

parameters and #̂ to denote their current estimates inside the EM. Moreover, rik
indicates whether yik is observed (rik ¼ 0) or not (rik 6¼ 0), with the latter case

including both censoring and missingness.

Since the complete probability density function is a member of the regular

exponential family, the E-step consists in computing two quantities. First, the

imputed response matrix bY ¼ ðŷi;kÞ is obtained, whose entries are defined as:

ŷi;k ¼
yik if rik ¼ 0

Eðyik j yici 2 Dci ; xi; #̂Þ otherwise ;

�

where Eð� j yici 2 Dci ; xi; #̂Þ denotes the expected value operator computed with

respect to the conditional Gaussian distribution of yici given fxi; yioig and truncated

over the region Dci . Secondly, it involves the matrix bCyy ¼
Pn

i¼1
bCi, whose com-

ponents have entries:
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bCi;hk ¼

yihyik if rih ¼ 0 and rik ¼ 0

yihEðyik j yici 2 Dci ; xi; #̂Þ if rih ¼ 0 and rik 6¼ 0

Eðyih j yici 2 Dci ; xi; #̂Þyik if rih 6¼ 0 and rik ¼ 0

Eðyihyik j yici 2 Dci ; xi; #̂Þ if rih 6¼ 0 and rik 6¼ 0:

8
>>><

>>>:

From this, the working empirical covariance matrix is given by:

bSyjxðBÞ ¼ n�1f bCyy � bY>
XB� ðXBÞ> bY þ X>XBg; ð4Þ

where X denotes the design matrix. Given the matrix (4), the M-step involves

solving a new maximization problem obtained by replacing the objective function in

definition (3), with the so-called penalized Q-function:

QðB;HÞ ¼ log detH� trfHbSyjxðBÞg � k
Xp

k¼1

hkkkbkk1 � qkHk�1 : ð5Þ

Since, for a fixed #̂, the penalized Q-function in (5) is a bi-convex function in B and

H, its maximization can be obtained by repeating two sub-steps until a convergence

criterion is met. Given the current estimate of the precision matrix bH, the first sub-

step consists in estimating the regression coefficient matrix by solving the following

maximization problem:

min
B

trf bH bSyjxðBÞg þ k
Xp

k¼1

ĥkkkbkk1; ð6Þ

whereas, in the second sub-step, given bB, the precision matrix is estimated by

solving the sub-problem:

max
H	0

log detH� trfHbSyjxð bBÞg � qkHk�1 : ð7Þ

While problem (7) is a standard graphical lasso problem that can be efficiently

solved using, for example, a block-coordinate descent algorithm (Friedman et al.

2008), problem (6) is similar to that studied by Rothman et al. (2010) and Yin and

Li (2011) in the case of no censoring. However, instead of solving this problem

through a cyclic coordinate descent algorithm, Augugliaro et al. (2020) use a more

efficient and easy-to-implement block-coordinate descent algorithm.

3 Who is afraid of missing data?

In the paper, the authors study an application of their methods to gene expressions

of 48 genes. Just like in many multivariate applications, the chances that one of

those 48 measurements is missing or corrupted in some way can be considerable. In

fact, the original study reports 414 multiple myeloma samples (Chapman et al.

2011), whereas the authors only consider 154 samples without missing values. This

will clearly have a downstream impact on the analysis.
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As an illustrative example, we consider the subset of 304 samples from the same

study, provided to us by the authors. Figure 1 (left) shows the regulatory network of

the same 48 genes, inferred from the samples in the first stage of myeloma, defined

according to the serum beta-2 microglobulin and serum albumin prognostic factors

as in the paper. We use a Gaussian graphical model and perform L1 penalised

inference accounting for missing data (cglasso R package Augugliaro et al.

2020). The red edges are those that would be inferred using only the 35 samples that

are fully observed, clearly providing only a partial view of the underlying network.

The right figure shows the network inferred from samples classified to belong to

the three stages of the disease (168 samples, including 1.6% of missing data). Here

we decide to include three covariates in the mean of the model, namely the

classification of the samples in the three stages, the gender of the patient and

whether they were treated or not. Using again a penalised inference approach, both

on the precision matrix and on the regression coefficients (cglasso R package

Augugliaro et al. 2020), the figure shows the reconstructed network, after

accounting for a difference in mean across the three stages and the treatment

status for two of the genes. Although this analysis does not have the same objective

as the analysis conducted in the paper and it is much simpler in many respects, it is

worth pointing out how it took 0.25 s across a default grid of 100 values for the two

tuning parameters. A significant difference to the 47 hours needed for the richer

analysis presented in the paper. We hope to see further computational developments

in Bayesian inferential procedures, in order to allow for more in-depth fine tuning of

individual analyses as well as to avoid unnecessary selections of the variables

(nodes) to be investigated.

Multiple Myeloma (Stage I)

MAP2K1
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MAP2K6
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JAK2
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GSK3B

CXCR4
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TNFRSF1A

STAT3

RAF1

PIK3R1

PIK3CG

PIK3CD

PIK3CB

PIK3CA

NRAS NFKBIA

NFKB2

NFKB1

MAP3K14

Multiple Myeloma (Covariates)
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Fig. 1 Regulatory network in multiple myeloma samples. Left: The eBIC selected network, inferred from
the 83 samples from Stage I myeloma. The red edges are those inferred from the 35 fully observed
samples (solid: in common, dashed: additional). Right: The eBIC-optimal network from 168 samples
(Stage I, II and III), including a mean dependency on three covariates (Stage, Gender and Treatment)
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4 Is there life beyond Gauss?

Normality is celebrated and despised in equal measure around the scientific

community. Whereas it is the workhorse of many elegant theoretical results as well

as many practical implementations, there is a vocal opposition that questions its

uncritical use. As any statistician knows—but which sometimes gets forgotten by

overly cautious practitioners—it is important to draw a distinction between

requiring the data to be normal or assuming that the estimated parameters are

normal. The former is typically not necessary for the latter.

4.1 Spurious links: model selection issues

The case considered here, however, is fundamentally different from typical

discussions of normality. Here the normality assumption of the data is crucial in

order to be able to connect zeroes in the precision matrix with the absence of a link

in the conditional independence graph, as the authors state early on in Sect. 2.1. So

what happens if normality is violated? In general, as shown e.g. in Abegaz and Wit

(2015), conditional independence does not correspond anymore to zeroes in the

precision matrix. Therefore, any Bayesian or frequentist method that aims to

identify zeroes in the precision matrix will result in incorrect identification of the

conditional independence graphs. In a small simulation study, we found that any

deviation from normality leads to lower true positive and true negative rates, and

that this is particularly pronounced for skewed distributions.

In short, deviations from normality lead to the identification of spurious links as

well as not being able to detect true edges.

4.2 Gaussian copula graphical models

There have been a number of suggestions to deal with non-Gaussian graphical

models. In fact, there is a rich literature of graphical models for discrete data

(Madigan et al. 1995). More recently, the nonparanormal graphical model was

developed for dealing with arbitrary distributions (Liu et al. 2009). Although the

original approach was entirely based on a frequentist approach, the method can be

formalized more generally via a Gaussian copula. The beauty of this method is that

it can model arbitrary marginal distributions, while retaining a simple Gaussian

covariance structure. Particularly simple is the case of absolute continuous Gaussian

copula random variable Y, whose components Yi have arbitrary marginal

distributions Fi and the joint distribution of ðU�1ðF1ðY1ÞÞ; . . .;U�1ðFdðYdÞÞÞ is

multivariate normally distributed. This approach can also easily be incorporated in

the framework proposed by Ni and co-authors.
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5 Conclusions

It has been an absolute pleasure and honour to be commenting on the excellent

discussion paper presented here. The authors have put forward an important

framework to make graphical models more useful in applied settings. They should

be congratulated for this. In this discussion paper, we have merely been giving a

number of suggestions for making this framework even more suitable for practical

scenarios.

In particular, firstly, we showed that an alternative and simplified definition of

covariate might make the framework more manageable in high-dimensional

settings. Secondly, we pointed out that the inclusion of missing variables is

important for practical data analysis. Fortunately, the Bayesian framework is

particularly suited for this and so, conceptually, including this feature in the method

should be straightforward. Finally, we commented on the fact that the Gaussianity

assumption is clearly a crucial assumption for identifying the underlying conditional

independence graph. However, recent ideas concerning gaussian Copula graphical

models should also allow the current framework to be extended to deal with more

general distributions.
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