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a b s t r a c t

We will consider models of the spread of disease or opinion through social networks,
represented as graphs. In our models, vertices will be in one of two states, 1 (‘‘infected’’)
or 0 (‘‘uninfected’’) and change of state will take place at discrete times. After describing
several such models, we will concentrate on the model, called an irreversible k-threshold
process, where a vertex enters state 1 if at least k of its neighbors are in state 1, and where
a vertex never leaves state 1 once it is in it. We will seek sets of vertices with the property
that, if they are in state 1 at the beginning, then eventually all vertices end up in state 1.
Such vertex sets correspond to vertices that can be infected with a disease or opinion so as
to guarantee saturation of the population with the disease or opinion. We will also discuss
ways to ‘‘defend’’ against such saturating sets, for example by ‘‘vaccination’’ or designing
network topologies.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical modeling of the spread of infectious disease has a long history, going back to the work of Bernoulli on
smallpox in 1760.Much of themodern diseasemodeling literature studies the spread of disease usingmethods of dynamical
systems. However, as diseases are spread through social networks, we can gain insight by using simple graph-theoretical
models. The models we will describe have a variety of other applications, and in particular fall into an extensive literature
on the spread of opinions through networks. Sample early work in this literature can be found in the work of Poljak and
Sûra [23], DeGroot [3] and French [8].
Wewill considermodels inwhich anetwork is represented by a graphG = (V , E), whereV is a set of vertices representing

people and E means that the people are connected in the network. We will assume that each vertex vi in a network is in
a state xi(t) at time t . In our models, we will consider these states as changing only at discrete times, t = 0, 1, . . . and
we will assume that each state is either 0 or 1. We will consider different models for how these states change over time,
depending on the states of neighboring vertices in the graph G. In the disease application, we think of 1 as corresponding
to a vertex having a given disease and 0 as corresponding to it not having the disease. In the case of opinion, we consider
either agreement (1) or disagreement (0) with a given position.
Our major emphasis will be on a model we call an irreversible k-threshold process, where a vertex never leaves state 1

(is never cured once infected) and enters state 1 from state 0 if at least k of its neighbors are in state 0. A variation on the
model will allow ‘‘vaccination’’ of a vertex, preventing it from ever entering state 1. We will be especially concerned with
identifying sets of vertices we will call irreversible k-conversion sets, sets of vertices with the property that if they are all in
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state 1 at the beginning, then eventually all vertices end up in state 1. Such a set of vertices represents a set of individuals
a bioterrorist could infect so as to be sure to infect everyone eventually, or a set of individuals we could recruit to have
a given opinion so as to eventually ‘‘infect’’ everyone with this opinion. Defense against infection would then amount to
finding good ‘‘vaccination’’ or ‘‘quarantine’’ strategies or to designing the network topology so as to prevent the network
from having small irreversible k-conversion sets.

1.1. Threshold processes

In a k-threshold process, we fix a number k and assume that a vertex changes its state at time t + 1 if at least k of its
neighbors are in the opposite state at time t . The number k is a threshold for state change. In an irreversible k-threshold
process, a vertex never changes from state 1 to state 0, but changes from state 0 to 1 if at least k of its neighbors are in state 0
at the previous time. In terms of diseases, the idea is that an infection spreads to a vertex if sufficientlymany of its neighbors
are infected. In some models, k = 1 will suffice. It does not seem likely that ordinary k-threshold processes make sense for
disease spread, since it is hard to understand the motivation for switching from 1 to 0. In this paper, we will concentrate on
irreversible k-threshold processes. Extensive analogous results on k-threshold processes are contained in [4], as are results
about themonotonic k-threshold processeswhere the set of vertices in state 1 at time t is a subset of the set at time t + 1.

1.2. Majority processes

Mention should be made ofmajority processes,where at each time step, a vertex v changes its state if and only if at least
half of its neighbors have the opposite state. There are variations of the majority process which include the state of v in
the determination of majority, along with various rules for breaking ties (always choose 1 or always 0, always keep the
current state, always switch states). These processes do not seem to be relevant to the spread of disease, though they do
seem interesting for opinion change.Wemention them here because theymotivate our interest in a key notion of ‘‘dynamo’’
or ‘‘conversion’’ set that we shall define below.
Majority processes (sometimes also called repetitive polling processes) have had applications in problems in distributed

computing (see [5,17]). A concrete example of an application in distributed computing, in particular, maintaining data
consistency, was suggested by Peleg in [22]. Assume that all of the processors in a distributed network store an identical bit
of data and some of these bits get changed for whatever reason (rounding error, for example). If a processor discovers that
the values (states) of the bits of some of its neighbors are different, a majority process could be used to update the values of
all of the processors until every processor has the same value for its bit. In a general context, though, there is no guarantee
that every processor will return to the same value, much less the correct one. Peleg also referred to other applications of
majority processes to distributed computing in system-level diagnosis and resource allocation.
The problem of maintaining data consistency raises an interesting question: for what graphs does the majority process

always lead to the situation of all of the vertices having the same state as the initial global majority state, regardless of the
initial state configuration? In [19], Mustafa and Pekeč analyzed democratic consensus computers (d.c.c.’s), graphs that exhibit
precisely this behavior. They produced a variety of results, including that a graph that is a d.c.c. has diameter at most four,
has a trivial min-cut and a non-unique max-cut, and that for a graph G on n vertices with maximum degree at least n− 3, if
G is a d.c.c., then Gmust have a vertex (called a master) that is adjacent to every other vertex. They conjectured that every
d.c.c. contains a master, and the question of a full characterization of d.c.c.’s remains open.
For a given graph, one might wonder what subsets of the vertex set can ‘‘force’’ a majority process to the situation with

every vertex in the same state. More formally, a set of vertices M is a dynamic monopoly, or dynamo for short, if when a
majority process is started with all of the vertices in M in state 1, then the system reaches the fixed point with all vertices
being in state 1. Dynamos can be incredibly small; Berger [1] proved that for every n, there exists a graph with at least
n vertices containing a dynamo of size 18. In addition, in [21], Peleg showed that for all graphs, the size of a dynamo that
converts all vertices to state 1 in a single step (Peleg called such a dynamo a (static)monopoly)must beΩ(

√
n), and that there

are graphs with static monopolies of size O(
√
n). We shall consider a similar concept for irreversible threshold processes.

One can also consider special classes of dynamos. For example, ifM is a dynamo and Pt denotes the set of vertices in state
1 at time t (P0 = M), then as in monotone k-threshold processes, M is a monotone dynamo if Pt ⊆ Pt+1 for all t ≥ 0. In
addition, one can consider a different update rule where the state of a vertex changes from 0 to 1 if and only if more than
half of its neighbors are in state 1, but not vice versa. These irreversible majority processes (and the associated irreversible
dynamos) appear in the context of fault-tolerant computing, where a vertex entering state 1 corresponds to permanent faults
occurring in the associated processor. In [5,6,17], bounds are shown for bothmonotone and irreversible dynamos in toroidal
graphs of various types and in butterflies, two graph structures which appear in parallel computation. In addition, Peleg [22]
showed that for most variants of majority processes, every monotone dynamo is of sizeΩ(

√
n). There are, however, some

majority process variants with constant size monotone dynamos; in the majority process where a vertex’s state is counted
in its own majority determination and in case of ties, the vertex enters state 1, any pair of adjacent vertices in the cycle Cn
is a monotone dynamo.
Majority processes are an interesting model for opinion change in social networks. However, in the case of disease, they

do not seem to be applicable.
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1.3. Vaccination

Motivated by the disease application, we can think of modifying an irreversible threshold process by allowing us to
‘‘vaccinate’’ certain vertices that are in state 0. Once a vertex is vaccinated, it can never change into the infected state 1. There
are several variants of the vaccination problem that one can consider. One is to only allow vaccination at the beginning (time
t = 0), say of f vertices (where f reflects a limitation on the amount of vaccine available). An alternative is to allow us to
vaccinate f (t) vertices at time t . The vaccination problem has been studied in the context of firefighting. We can think of the
vertices as trees in a forest, and the state 1 corresponding to a tree being on fire. A fire spreads to neighboring trees under
different rules, e.g., in an irreversible 1-threshold process. In such a process, if a tree is burning at time t , all its neighbors
burn at time t + 1 except those that are protected by ‘‘vaccination’’ or, what is equivalent, by placement of firefighters on
them at a time no later than time t . There is a rather robust literature about this problem, particularly on finite and infinite
planar grids and trees ([7,10,11,18,20,24], to list a few references). In the rest of this paper, we will not allow vaccinations.
However, we will allow epidemics to break out at more than one vertex.

1.4. k-conversion sets

For the rest of this paper, we consider a k-irreversible threshold process on a graph G. Let V1(t) be the set of all vertices in
state 1 at time t and letV0(t) be similarly defined.Motivated by the notion of dynamodiscussed in Section 1.2,we define a set
of vertices S to be an irreversible k-conversion set if when an irreversible k-threshold process is started with S ⊆ V1(0), then
the process reaches the situation with all of the vertices in state 1. We can define k-conversion sets for ordinary k-threshold
processes in an analogous manner, and in such processes, it is also of interest to study k-conversion sets in monotone k-
threshold processes. These two concepts are studied in detail in [4]. For a graph G, let Ck(G) denote the size of the smallest
irreversible k-conversion set for G. We will be interested in determining Ck(G) and in finding irreversible k-conversion sets
of minimum size.
Irreversible conversion sets have clear and interesting interpretations in various applications. In the case of opinion, they

correspond to sets of individuals with the property that if they agree with an opinion at the beginning, then the entire
group is guaranteed to agree with that opinion eventually. In the case of disease, we are looking for a set of vertices that an
intentional attacker (bioterrorist) can infect to guarantee to infect all vertices eventually. In terms of bioterrorism defense,
the goal is to design social networks so that irreversible conversion sets are either impossible to find or always large enough
to offset the ability of an attacker to infect that large a set. Irreversible conversion sets also have an economic interpretation.
We think of achieving saturation of a new product in a market by placing it with vertices of an irreversible conversion set
in a process where one buys a product if sufficiently many of our neighbors own it.
The rest of this paper is organized as follows: In the next section, we show that it is NP-complete to determine if a

graph has an irreversible k-conversion set of size at most d, at least for k ≥ 3. Section 3 considers special graphs: complete
multipartite graphs, trees, and various kinds of grids. It gives exact values and bounds on the size of the smallest irreversible
k-conversion set for such graphs. Section 4 gives a general lower bound for the size of such a set in a general graph.We close
with a discussion of open problems and future research.

2. NP-completeness of the problem of finding the smallest irreversible k-conversion set

The Irreversible k-CONVERSION SET problem is as follows:

Irreversible k-CONVERSION SET (IRk-CS)
Instance: A graph G and a positive integer d.
Question: Does G have an irreversible k-conversion set Dwhere |D| ≤ d? (Equivalently, is Ck(G) ≤ d?)

We will show that this problem is NP-complete for a fixed k ≥ 3, but we must first prove a result about irreversible
r-conversion sets in r-regular graphs that will also be useful later.

Lemma 1. Let G = (V , E) be a connected r-regular graph, and let D ⊆ V . Then D is an irreversible r-conversion set if and only
if V − D is independent.

Proof. In an irreversible r-conversion process, a vertexwill switch from state 0 to state 1 if and only if all of its neighbors are
in state 1. If V −D is independent, then every vertex in V −Dwill switch to state 1 at time t = 1. If V −D is not independent,
then two vertices starting in state 0 share an edge, and those adjacent vertices will never enter state 1. Hence, D cannot be
an irreversible conversion set. �

Corollary 1. Let G = (V , E) be a connected graph with no vertex of degree greater than r, let S ⊆ V be the set of vertices of
degree less than r, and let D ⊆ V . Then D is an irreversible r-conversion set if and only if S ⊆ D and V − D is independent.

Although we do not use this result immediately, we will now note a similar result about irreversible r-conversion sets
in (r + 1)-regular graphs. In a graph G, a feedback vertex set is a subset S of the vertices such that the subgraph G[V − S]
induced by the vertices in V − S is cycle-free (equivalently, G[V − S] is a forest).
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Proposition 1. Let G = (V , E) be an (r + 1)-regular graph, and let S ⊆ V . Then S is an irreversible r-conversion set if and only
if S is a feedback vertex set.

Proof. If S is not a feedback vertex set, then V − S contains a cycle. Suppose S = V0(0). At every time step, every vertex v
in the cycle will have at least two neighbors in state 0. If S is a feedback vertex set, then G[V − S] is a forest, so at each time
step, all of the isolated vertices and leaves in the forest induced by the vertices in state 0 will enter state 1, leaving a smaller
forest, and this process will eventually reach the fixed point with the entire vertex set in state 1. �

In a graph G, a detour is a simple path (no repeated vertices) of maximum length, and the detour number, denoted dn(G),
is the length of such a path. The detour number was first studied in [14]. The transient length of an irreversible threshold
process is that value T of time beyond which no vertex enters state 1.

Lemma 2. For an irreversible k-threshold process on a connected graph G = (V , E) of order n, the transient length is at most
dn(G) (dn(G)− 1 if k > 1).

Proof. Assume we have an irreversible k-threshold process on a graph G, and assume that there exists a vertex vi which
enters state 1 at a time T > dn(G). Let E(t) denote the set of vertices that enter state 1 at time t ≥ 0 (E(0) = V1(0)), and
assume that E(T ′) = ∅ for all T ′ > T . The E(t) are disjoint and every vertex in E(t) is adjacent to some vertex in E(t − 1).
Thus, every vertex in E(t) is the endpoint of a simple path of length t . If E(T ) 6= ∅, then there is a simple path in G of length
T > dn(G), a contradiction.
This bound canbe improved if k > 1. If k > 1, every vertex in E(t)has at least twoneighbors in E(0)∪· · ·∪E(t−1).Wewill

show that every vertex in E(T ) is in a simple path of length T +1 that includes a vertex in each of E(0), E(1), . . . , and E(T ).
Let v ∈ E(T ). It is the endpoint of a simple path P of length T , P = vi0vi1 . . . viT , viT = v, with vij ∈ E(j). If any of v’s neighbors
are not on P , then clearly G has a simple path of length T + 1 containing v. If all of v’s neighbors are on P , we construct a
simple path of length T + 1 as follows. We will show by induction that every edge vij−1vij in P is contained in a simple path
of length j+1 consisting solely of vertices in E(0)∪ · · ·∪ E(j). The claim is clearly true for j = 1; vi1 has another neighbor in
E(0) besides vi0 , so there is a path of length two containing the edge vi0vi1 . Assume the claim is true for all j ≤ p. Consider the
edge vipvip+1 in P , with p < T . If vip+1 has a neighborw ∈ E(0)∪ · · · ∪ E(p+ 1) not on P , then vi0vi1 . . . vipvip+1w is a simple
path of length p+ 2 containing the edge vipvip+1 . If all of the neighbors of vip+1 in E(0)∪ · · · ∪ E(p+ 1) are on P , then let vij
be a neighbor of vip+1 on P , j 6= p. By our inductive assumption, we know there is a simple path P

′ of length j+ 2 containing
the edge vijvij+1 consisting of vertices in E(0) ∪ · · · E(j+ 1). Let P

′
= P ′1vijvij+1P

′

2, where P
′

1 and P
′

2 are disjoint simple paths
in G[E(0) ∪ · · · ∪ E(j + 1)]. Consider the path P ′′ = P ′1vijvip+1vip . . . vij+1P

′

2. The vertices that were in P
′ are distinct, and

the vertices vim are in E(m) for j + 1 ≤ m ≤ p + 1, so they are distinct from the vertices in P
′ and from each other, so the

path is simple, of length p + 2, and consists solely of vertices in E(0) ∪ · · · ∪ E(p + 1). Thus, if k > 1, T + 1 ≤ dn(G), or
T ≤ dn(G)− 1. �

Remark. This result gives a sharp bound on transient length. Consider an irreversible 1-conversion process in a path Pn of n
vertices. IfV1(0) consists of one of the endpoints of the path, then the process completes entering all vertices in state 1 at time
n−1 = dn(Pn). This can be generalized for any irreversible k-conversion process by startingwith a path Pk+1 = v1v2 . . . vk+1,
adding k leaves to v1 and k − 1 leaves to each of v2, . . . , vk+1. If V1(0) consists of all of the leaves added to the path, then
vertex vi enters state 1 at time t = i. Therefore, the process reaches the situation of all vertices in state 1 at time t = k+ 1,
and the longest path in this graph is of length k+ 2, involving all of the vertices on the path and at most two leaves.

Theorem 1. For a fixed integer k ≥ 3, IRREVERSIBLE k-CONVERSION SET is NP-complete.

Proof. By Lemma 2, we know that the transient length of an irreversible threshold process is polynomial in the number of
vertices, so IRk-CS is in NP. Our reduction will be from the INDEPENDENT SET problem, given below.

INDEPENDENT SET
Instance: A graph G and an integerm.
Question: Is there an independent set in G of size≥ m?

Fricke, Hedetniemi, and Jacobs [9], using a reduction from NOT-ALL-EQUAL-3SAT, show that for a fixed k ≥ 3,
INDEPENDENT SET isNP-complete for the class of k-regular, non-bipartite graphs (the problem is in P for the class of bipartite
graphs).
Given an instance of INDEPENDENT SET for a k-regular, non-bipartite graph G: ‘‘Does G have an independent set of size

≥ m?’’, we construct an instance of IRk-CS: ‘‘DoesG have an irreversible k-conversion set of size≤ |V (G)|−m?’’ By Lemma 1,
a vertex set is an irreversible k-conversion set in a k-regular graph if and only if its complement is independent. Therefore,
there is an irreversible k-conversion set C of size ≤ |V (G)| − m if and only if there is an independent set S of size ≥ m. So,
there is a ‘yes’ answer to the instance of IRk-CS if and only if there is a ‘yes’ answer to the instance of INDEPENDENT SET. �

The complexity of IR2-CS still remains open. We cannot use the above arguments, since it is trivial to find independent
sets in 2-regular graphs (i.e., vertex-disjoint unions of cycles). In addition, Li and Liu [15] have developed a polynomial
algorithm for finding a minimum feedback vertex set in 3-regular graphs, so we cannot use Proposition 1.
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3. Irreversible k-conversion sets for special graphs

In this section, we give constructions for minimum k-conversion sets for some classes of graphs. For other classes, we
present constructive upper bounds for the value of Ck(G) and give proofs of lower bounds.

Proposition 2. For the path and cycle on n vertices, C2(Pn) = d n+12 e and C2(Cn) = d
n
2e.

Proof. For simplicity, we will denote the vertices of Pn (Cn) in order as v1, . . . , vn. By Lemma 1, if S is an irreversible 2-
conversion set in Cn, V − S must be independent. Thus, |V − S| ≤ b n2c and |S| ≥ d

n
2e. Picking the complement of an

independent set of size b n2c in Cn will be an irreversible 2-conversion set of size d
n
2e.

For the path Pn, by Corollary 1, both v1 and vn must be in any irreversible 2-conversion set S. The largest independent set
in Pn not containing v1 or vn has size b n−12 c, hence |S| ≥ n− b

n−1
2 c = d

n+1
2 e. Constructing irreversible 2-conversion sets of

size d n+12 e is straightforward. �

3.1. Complete bipartite and multipartite graphs

In this section, we consider the completemultipartite graph Kp1,p2,...,pm consisting ofm classes of vertices, with pi vertices
in the ith class Vi, and with edges between all vertices in different classes. We will assume that p1 ≥ p2 ≥ · · · ≥ pm.

Proposition 3. For the complete bipartite graph Km,n, m ≥ n:

Ck(Km,n) =

{k if m, n ≥ k
m if m ≥ k, n < k
m+ n if m, n < k.

Proof. Let V1 and V2 be the two partite sets of V , with |V1| = m ≥ n = |V2|. Any subset of V1 of size kwill be an irreversible
k-conversion set ifm, n ≥ k. Clearly k is the lower bound for the size of any irreversible k-conversion set. Ifm ≥ k and n < k,
V1 is an irreversible k-conversion set. There are not enough vertices in V2 to change the state of any vertex in V1, so all of V1
must be in state 1 at time t = 0. If both partite sets are smaller than k, then V is the only k-conversion set. �

Consider the complete m-partite graph Kp1,p2,...,pm with p1 ≥ p2 ≥ · · · ≥ pm. For any subset J ⊆ [m] = {1, . . . ,m}, let
VJ =

⋃
j∈J Vj. A union of partite sets VJ has size just above k if |VJ | ≥ k and if VJ ′ is created by removing the partite set of

highest index from VJ (J ′ = J − {max{j : j ∈ J}}), then |VJ ′ | < k.

Proposition 4. Let G be a complete m-partite graph Kp1,p2,...,pm with p1 ≥ p2 ≥ · · · ≥ pm. Suppose that there is a union VJ ⊆ V
of partite sets such that:

(1) VJ has size just above k, and
(2) n− ps ≥ k, where s is the largest element of J .

Then Ck(G) = k. Otherwise, Ck(G) = min{|VJ | : VJ is a union of partite sets of size just above k}.

Proof. Let VJ be a union of partite sets of V satisfying conditions (1) and (2). If VJ has size exactly k, then clearly VJ is an
irreversible k-conversion set for G. If VJ does not have size exactly k, let J ′ = J − {s}, where s is the largest element of J ,
and let V1(0) consist of VJ ′ and k − |VJ ′ | vertices in Vs. At time t = 1, all vertices will be in state 1 except for the state 0
vertices in Vs, which will enter state 1 at time t = 2 by condition (2). Thus, Ck(G) ≤ k. Since Ck(G)must be ≥ k, equality is
proven.
Assume that no union VJ of partite sets satisfies conditions (1) and (2). Let S be a minimum irreversible k-conversion

set for G, and let VJ be the smallest union of partite sets that contains S. At time t = 1, every vertex in V − VJ will be in
state 1. If no Vj, j ∈ J , contains elements of V − S, then VJ has size exactly k and the result is straightforward. Thus, let
us assume that some Vj, j ∈ J , contains elements of V − S. We will reach a contradiction. We may assume that at most
one partite set Vi ⊆ VJ has vertices in V − S. If two partite sets Vi, Vj ⊆ VJ contain vertices in V − S, let Si = S ∩ Vi
and Sj = S ∩ Vj. Removing min{pi − |Si|, |Sj|} vertices in S from Vj and adding the same number of vertices from Vi to
S gives a new irreversible k-conversion set S ′ for G. This is because nothing changes in the other partite sets during the
threshold process with V1(0) = S ′ as compared to the one with V1(0) = S, because Vj will be in state 1 at time t = 1,
and because a vertex in Vi will have at least as many state 1 neighbors in V − Vi at time t = 1 as it did in the original
process.
We can also assume that the partite set in VJ containing members of V − S is the partite set Vs in VJ of highest index.

To see this, let Vj be the partite set in VJ containing vertices in V − S. If ps > |(V − S) ∩ Vj|, consider the new set S ′ which
removes |(V − S) ∩ Vj| of the vertices in Vs from S and includes all of Vj. Clearly, S ′ is an irreversible k-conversion set. If
ps ≤ |(V − S) ∩ Vj|, then consider the new set S ′ that removes all of the vertices in Vs from S and includes ps more vertices
from Vj. We let J ′ = J − {s} and repeat the process of removing vertices in S from the partite set of highest index in J ′ and
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adding vertices from Vj to S until either no partite set contains vertices in S and V − S, or the only partite set that contains
vertices in S and V − S is the partite set of highest index in VJ ′ .
Suppose that Vs is the partite set of highest index in VJ and is the only partite set in VJ that contains vertices in V − S.

If n − ps < k, the 0 vertices in V − S will never switch to 1 and this contradicts S being an irreversible k-conversion set.
Suppose n− ps ≥ k. Then VJ does not have size just above k. Clearly, |VJ | ≥ k since S is an irreversible k-conversion set. This
implies that |VJ ′ | ≥ k where J ′ = J − {s}. But now VJ ′ is an irreversible k-conversion set. This is because if V1(0) = VJ ′ , at
time t = 1 all vertices in Vs become 1 and now S ⊂ V1(1). This contradicts S being a minimum irreversible k-conversion set
since VJ ′ is a proper subset of S. �

Proposition 5. Let G be the completem-partite graph Kp1,...,pm with p1 ≥ p2 ≥ . . . ≥ pm and p2+· · ·+pm ≥ k. Then Ck(G) = k.

Proof. Let S be any subset of V2 ∪ · · · ∪ Vm of size k, and let si = |S ∩ Vi| for 2 ≤ i ≤ m. We claim that S is an irreversible
k-conversion set. Since every vertex in V1 has k neighbors in state 1 in V2 ∪ · · · ∪ Vm, V1 ⊂ V1(1). If v ∈ V0(1) ∩ Vi, then at
time t = 2, v has at least k− si + p1 neighbors in state 1 in V − Vi. Since p1 ≥ pi ≥ si, v has at least k neighbors in V1(1), so
v ∈ V1(2). Hence, S is an irreversible k-conversion set. �

Remark. Let G be the complete m-partite graph Kp1,...,pm with p1 ≥ p2 ≥ · · · ≥ pm. If n ≥ 2k and p2 + · · · + pm < k, then
Ck(G) = p1.

3.2. Trees

For a tree T , let LT denote the set of leaves of T , i.e., vertices of degree 1. Clearly, LT must be contained in any irreversible
k-conversion set for k > 1, and in some circumstances, LT is a minimum irreversible k-conversion set. We will use the term
internal vertex in a tree to be any vertex that is not a leaf and use T [W ] to denote the subtree induced by vertices in setW .

Proposition 6. If T is a tree with every internal vertex of degree> k for k > 1, then Ck(T ) = |LT |.

Proof. Let v be an internal vertex of T , and let D = ecc(v), where the eccentricity ecc(v) is the greatest distance between
v and any other vertex. The result follows by proving the following statement by induction on t: ‘‘At time t ≥ 0, in a k-
threshold process with V1(0) = LT , {w : d(v,w) ≥ D− t} ⊆ V1(t).’’ �

For a graph G = (V , E), a set S ⊆ V is a vertex cover for G if for every edge uv ∈ E, u ∈ S or v ∈ S. It is easily shown that
S is a vertex cover if and only if V − S is independent.

Proposition 7. Let T be a tree with every internal vertex of degree k > 1. Then S is an irreversible k-conversion set if and only if
S = C ∪ LT , where C is a vertex cover of T [V − LT ].

Proof. If S is an irreversible k-conversion set for T , it must contain LT , and V −Smust be independent, since if two 0 vertices
shared an edge, they would never become 1. Hence, S = C ∪ LT for some vertex cover C of T [V − LT ]. It remains to show
that for any vertex cover C of T [V − LT ], S = C ∪ LT is an irreversible k-conversion set. Since V − S is independent, all of the
vertices in V − S will become 1 at time t = 1. �

To extend these results to all trees, we make a few simplifying assumptions. We will restrict our analysis to trees with
all internal vertices of degree ≥ k. If there is an internal vertex v with deg(v) < k, it will have to be in any irreversible
k-conversion set. Thus, to every neighbor of v, v acts exactly like a leaf, so we can break T into deg(v) subtrees with v as a
leaf in each subtree.
We define a k-region of T to be a maximal connected subset of vertices of degree k. We can partition the vertex set of a

tree into leaves, k-regions, and non-k-regions (maximal connected subsets of vertices of degree> k). For a k-region S, define
the outer boundary of S (denoted B(S)) to be the set of vertices not in S that have a neighbor in S (or, N[S] − S) and the inner
boundary of S (denoted b(S)) to be the set of vertices in S adjacent to vertices not in S (or, N[B(S)] ∩ S).

Proposition 8. Let T be a tree with every internal vertex of degree≥ k. If C is a vertex cover for every subtree T [S∪B(S)], where
S is a k-region of T , then C ∪ LT is an irreversible k-conversion set for T .

Proof. If C is a vertex cover for every subtree T [B(S) ∪ S], where S is a k-region, then after one time step, every vertex in
every k-region will be 1, since the set of 0 vertices in a k-region S will be independent. At time t = 1, every non-k-region
will be surrounded by vertices in state 1, and will proceed to turn to 1 as in the proof of Proposition 6. �

If C is an irreversible k-conversion set for a tree T where every internal vertex has degree ≥ k, then S − C must be
independent for every k-region S. This is guaranteed by Proposition 8, but there is no guarantee that the irreversible k-
conversion set described in Proposition 8 is minimum. If v is an inner boundary vertex of some k-region S, and w is its
neighbor on the outer boundary of S, then there is no need for C to cover the edge vw, as long as k other neighbors of w
eventually enter state 1.
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Fig. 1. The number in brackets in the ([i], [j])th entry in this table gives the class of (T , S) that results from composing (T1, S1) of class [i]with (T2, S2) of
class [j]. Examples are given for each pair ([i], [j]). The black vertices denote the vertices that appear in S. A dotted edge represents the edge joining the
roots of T1 and T2 . If it was necessary to add a copy of r1 or r2 to S to convert r2 , the added vertex is shown in grey, and the number of vertices that are
added to S is noted in parentheses. In some cases, the class of the resulting composition is different depending on whether r1 or r2 is added to S.

We now present an algorithm to compute Ck(T ) that runs in O(n) time, where n is the number of vertices in the tree. For
simplicity, we will present the algorithm for k = 2 and then discuss how to implement it for larger k.
For a tree T rooted at a vertex r , a set S of vertices is an almost irreversible 2-conversion set (a-I2CS) if when an irreversible

2-conversion process is startedwith the vertices in S in state 1, then all of the vertices in T−{r} enter state 1. The root vertex
r may be in S to convert other vertices in T , but it is not necessary for r to be in state 1 when the process reaches its fixed
point. However, if the root vertex r of T has degree 2 or greater, then any a-I2CS S for T is also an irreversible 2-conversion
set. If r is not in S, then r will enter state 1 after two of its neighbors enter state 1.
We define the composition of a tree T1 with a tree T2 and the composition of tree-subset pairs (T1, S1) and (T2, S2)

with Si being an a-I2CS. We use the rule of composition that joins a tree T1 rooted at r1 and a tree T2 rooted at r2 (with
V (T1) ∩ V (T2) = ∅) by adding the edge r1r2 and specifying r1 as the root of the resulting larger tree T . Let T1 and T2 be two
trees rooted at vertices r1 and r2, respectively. Also, let S1 and S2 be a-I2CS’s for T1 and T2, respectively. If T is the composition
of T1 with T2, then consider the set S ′ = S1 ∪ S2. S ′ might not be an a-I2CS for T , since if r2 is not converted to state 1 by S2 in
T2, then r2 has at most one neighbor in T2. If r2 is not an isolated vertex in T2 and r1 is converted to state 1 in T1 by S1, then r2
will eventually have two neighbors in T in state 1, so r2 will enter state 1 as well. If not, then either r1 or r2 must be added
to S ′ for it to be an a-I2CS. Let S be the resulting a-I2CS for T . We will use the notation (T , S) = (T1, S1) ◦ (T2, S2) to denote
this composition of two trees and their associated a-I2CS’s.
To construct an algorithm to compute C2(T ) for any tree T , we characterize the class of possible tree-subset pairs (T , S)

that can occur in a tree T with root vertex r , where S is an a-I2CS of T . For this problem, there are four classes of tree-subset
pairs:

[0] = {(T , S)|r ∈ S}
[1] = {(T , S)|r 6∈ S, deg(r) ≥ 2}
[2] = {(T , S)|r 6∈ S, deg(r) = 1}
[3] = {(T , S)|r 6∈ S, deg(r) = 0}.

If (T , S) = (T1, S1) ◦ (T2, S2), we can determine the class of (T , S) if (T1, S1) is of class [i] and (T2, S2) is of class [j] for each
pair (i, j), 0 ≤ i, j ≤ 3. The classes of (T , S) resulting from each composition are summarized in Fig. 1. The verification of
the class of (T , S) for each pair (i, j) is straightforward. Note that in some cases it is necessary to add r1 or r2 to S in order
to convert r2. For example, if one merges any tree-subset pair (T1, S1) with a tree-subset pair (T2, S2) of class [3], since the
degree of r2 in the resulting tree T is one, it must be added to S since it cannot be converted otherwise.
Using Fig. 1, we can write out a system of recurrence relations that capture how we can obtain a tree-subset pair of

class [j] after composition. It is impossible to compose two tree-subset pairs to get a tree-subset pair (T , S) of class [3],
because when two trees are composed, the root vertex has degree greater than zero. The superscripts 1 and 2 on some of the
compositions denote that r1 or r2 has been added to S to make an a-I2CS for T .
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Fig. 2. An illustration of the algorithm to compute C2(T ). At step i, the root vertex of each maximal connected subtree in Gi is denoted with a filled in
circle, and the class vector associated to each root vertex at step i is noted next to the vertex. The bold edge denotes the edge added by the composition
of the subtree rooted at vParent[n−i] with the subtree rooted at vn−i . The filled in circles in the lower right tree give the minimum irreversible 2-conversion
set S for T . Note that (T , S) is of class [1], as the root vertex is not in S. Also, the minimum of the first two entries of the class vector associated to the root
vertex of G4 = T is the entry associated with class [1].

[0] = [0] ◦ [0] ∪ [0] ◦ [1] ∪ [0] ◦ [2] ∪ [0] ◦ [3]2 ∪ [2] ◦ [2]1 ∪ [3] ◦ [2]1 (1)

[1] = [1] ◦ [0] ∪ [1] ◦ [1] ∪ [1] ◦ [2] ∪ [1] ◦ [3]2 (2)
∪ [2] ◦ [0] ∪ [2] ◦ [1] ∪ [2] ◦ [2]2 ∪ [2] ◦ [3]2

[2] = [3] ◦ [0] ∪ [3] ◦ [1] ∪ [3] ◦ [2]2 ∪ [3] ◦ [3]2. (3)

For example, to see recurrence (2), we note that if (T , S) = (T1, S1) ◦ (T2, S2) is of class [1], then (T1, S1)must be of class [1]
or [2] and (T2, S2) can be of any class. However, if (T2, S2) is of class [3] or if both (T1, S1) and (T2, S2) are of class [2], then r2
must be added to S to produce an a-I2CS.
Given a tree T of order n, we root it at an arbitrary vertex that we label v1. We then label the remaining vertices v2, . . . , vn

using the well-known depth first search procedure so that if vj is vi’s parent, then i > j. For each vertex vi, let Parent[i] equal
the subscript of the label of the parent of vi (assume that Parent[1] = 0).
The algorithm will build the tree T one edge at a time. At step i, the algorithm builds a graph Gi with vertex set V and

designates a root for each maximal connected subtree of Gi. Gi is obtained from Gi−1 by composing the subtree rooted at
vParent[n−i] with the subtree rooted at vn−i.
In graph Gi there will be a 4-place class vector associated to each root vertex. If vk is the root of a subtree Tk in Gi, then

the jth entry of its class vector at step i equals the size of the smallest a-I2CS Sk for Tk such that (Tk, Sk) is of class [j]. The size
can be∞ if there is no such a-I2CS.
G0 consists of n isolated vertices, each the root of a one vertex tree. The class vector associated with each vertex vk in G0

is [1,∞,∞, 0], where ‘∞’ is the entry for class [1] and [2], as the degree of an isolated vertex is zero, so it is impossible for
a tree-subset pair to be of class [1] or [2] at the start of the algorithm. For classes [0] and [3], we associate the a-I2CS’s {vk}
and ∅ of sizes 1 and 0, respectively.
At step i of the algorithm, the only class vector that will change will be the one associated with the vertex vParent[n−i]. This

is updated using the table in Fig. 1 and the recurrences (1)–(3).
Gn−1 is the tree T rooted at v1. Therefore, the jth entry of the class vector associated to v1 is the size of the smallest a-I2CS

S of T such that (T , S) is of class [j]. If (T , S) is of class [0] or [1], then S is also an irreversible 2-conversion set, but not if
(T , S) is of class [2] or [3], since v1 is not converted by S. Thus, C2(T ) equals the minimum of the first two entries of the class
vector associated to v1.
We now have all the ingredients for an algorithm to compute C2(T ) for a tree T . The input to the algorithm is an n-place

vector Parent[1 . . . n] for T , whose ith entry is Parent[i], as defined above. The output of the algorithm is the value of C2(T ).
Every vertex vi has an associated class vector Class[i] whose jth entry is denoted Class[i, j]. Every class vector is initialized
with the vector Class[i] = [1,∞,∞, 0].
At step i, where i runs from 0 to n− 2, the tree rooted at vParent[n−i] is composed with the tree rooted at vn−i producing a

tree T ′. The vector Class[Parent[n−i]] is updated by a procedure called combine that is derived directly from the recurrences
(1)–(3) summarized in Fig. 1. Class[Parent[n− i], j] equals the size of the smallest a-I2CS S ′ for T ′ such that the pair (T ′, S ′)
is of class [j]. For example, let T ′ be the composition of a tree T1 rooted at va with a tree T2 rooted at vb. Let S ′ be a minimum
a-I2CS for T ′ such that (T ′, S ′) is of class [2]. By relation (3), if (T1, S1) is of class [2], then S ′ is the union of the smallest a-I2CS
S1 for T1 such that (T1, S1) is of class [3] and the smallest a-I2CS S2 for T2 such that (T2, S2) is of class [0] or [1], or the smallest
a-I2CS S2 for T2 such that (T2, S2) is of class [2] or [3], plus the vertex vb. Since Class[a, j] equals the size of the smallest a-I2CS
S1 for T1 such that (T1, S1) is of class [j], and Class[b, j] is similarly defined for T2, then Class[a, 2]will be updated to equal the
minimum of Class[a, 3] + Class[b, 0], Class[a, 3] + Class[b, 1], Class[a, 3] + Class[b, 2] + 1, and Class[a, 3] + Class[b, 3] + 1.
The other values of Class[a, j] are updated similarly.
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After step n− 1, all of the edges of the tree T rooted at v1 have been included. Therefore, Class[1, j] equals the size of the
smallest a-I2CS S for T such that (T , S) is of class [j]. We want S to be an irreversible 2-conversion set for T , so C2(T )will be
the minimum of Class[1, 0] and Class[1, 1]. An example of the algorithm is illustrated in Fig. 2.
Pseudo-code for the algorithm is given below.

procedure C2(Parent);

begin

for i:= 1 to n do
initialize Class[i, 0 . . . 3] to [1,∞,∞, 0];

for j:= 0 to n-2 do
p:= Parent[n-j];
combine(Class,p,n-j);

C2(T ) := min {Class[1,0], Class[1,1]};
output C2(T );
end(C2);

procedure combine(Class,a,b);

begin

Class′[0]:= min {Class[a,0]+Class[b,0], Class[a,0]+Class[b,1],
Class[a,0]+Class[b,2], Class[a,0]+Class[b,3]+1,
Class[a,2]+Class[b,2]+1, Class[a,3]+Class[b,2]+1};

Class′[1]:= min {Class[a,1]+Class[b,0], Class[a,1]+Class[b,1],
Class[a,1]+Class[b,2], Class[a,1]+Class[b,3]+1,
Class[a,2]+Class[b,0], Class[a,2]+Class[b,1],
Class[a,2]+Class[b,2]+1, Class[a,2]+Class[b,3]+1};

Class′[2]:= min {Class[a,3]+Class[b,0], Class[a,3]+Class[b,1],
Class[a,3]+Class[b,2]+1, Class[a,3]+Class[b,3]+1};

Class′[3]:= ∞;
for j:= 0 to 3 do

Class[p,j] = Class′[j];
end(combine);

Since the procedure combine takes O(1) time to compute, it is clear that the procedure C2 runs in O(n) time. To
summarize, we have the following theorem.

Theorem 2. For a tree T of order n, the procedure C2 (Parent) computes C2(T ) in O(n) time.

To extend this algorithm to compute Ck(T ) for k ≥ 3, one simply defines additional classes of trees: one where the root
is in S, one where the root is not in S but its degree is at least k, and k classes where the root is not in S and the degree is
j, 0 ≤ j < k. For a fixed k, running the combine procedure takes O(1) time, and the procedure is executed n − 1 times,
producing an O(n) algorithm.

3.3. Grids

Let Gm,n = Pm × Pn be the standard m × n grid. Here, the vertices will be denoted vi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and there
is an edge between vi,j and vk,l if and only if |i − k| + |j − l| = 1. We will frequently refer to the parity (even or odd) of
i + j as the parity of a vertex vi,j. For simplicity, we will refer to even vertices or odd vertices, instead of vertices of even
(odd) parity. We also introduce the circulant grid Cm,n = Pm × Cn, which is the standard grid with the edge vi,1vi,n added for
every i, 1 ≤ i ≤ m and the toroidal grid Tm,n = Cm × Cn which is the circulant grid with the edge v1,jvm,j added for every j,
1 ≤ j ≤ n. We will refer to the rows and columns of a grid by Ri = {vi,1, . . . , vi,n} and C j = {v1,j, . . . , vm,j}.
The toroidal grid is 4-regular, which allows us to take advantage of some of our earlier results on conversion sets in

regular graphs.

Proposition 9. For the toroidal grid graph Tm,n:

C4(Tm,n) =

{
max{ndm/2e,mdn/2e} if m or n is odd
mn
2

if m and n are even.



1624 P.A. Dreyer Jr., F.S. Roberts / Discrete Applied Mathematics 157 (2009) 1615–1627

Proof. By Lemma 1, S is an irreversible 4-conversion set in a 4-regular graph if and only if V − S is independent. S ∩ Ri must
be a vertex cover for each Ri, and S ∩ C j must be a vertex cover for each C j, so each row must contain at least dn/2e state 1
vertices and each column must contain at least dm/2e state 1 vertices. Hence,

C4(Tm,n) ≥ max{ndm/2e,mdn/2e}. (4)

We can construct a 4-conversion set as follows. Given a row Ri of a grid and a set of vertices T in that row, T ′ is a left cyclic
shift of T in row Ri

′

if vi,j ∈ T ⇔ vi′,j−1 ∈ T ′ for 2 ≤ j ≤ n and vi,n ∈ T ⇔ vi′,1 ∈ T ′. Similarly, T ′ is a right cyclic shift of T
in row Ri

′

if vi,j ∈ T ⇔ vi′,j+1 ∈ T ′ for 1 ≤ j ≤ n − 1 and vi,1 ∈ T ⇔ vi′,n ∈ T ′. Assume that n is odd, and let C be a vertex
cover for R1 of size dn/2e. Ifm is even, then let C ′ be the right cyclic shift of C in R2, and then let C ′′ be the left cyclic shift of
C ′ in R3, and so on. Ifm is odd, then assume that n ≤ m. For the first n+ 2 rows (or n rows if n = m), generate a vertex cover
for Rj via a right cyclic shift of the cover for Rj−1 (where C is the vertex cover for R1). If m = n, then the cover for Rm is the
left cyclic shift of C , and if m = n+ 2, then the cover for Rm is the right cyclic shift of C . If m > n+ 2, in Rn+3, let C ′ be the
left cyclic shift of the vertex cover in Rn+2, and in Rn+4, let C ′′ be the right cyclic shift of C ′, and continue to alternate cyclic
shifts to the left and right so that the cover for row Rm is the right cyclic shift of C .
Let S be the union of all of these vertex covers. Since we have assumed that n is odd and that if m is odd, then n ≤ m,

mdn/2e ≥ ndm/2e. We claim that S forms an irreversible 4-conversion set of sizemdn/2e = max{ndm/2e,mdn/2e}, which
together with the lower bound in Eq. (4) gives us the desired result for the case when n is odd. No vertex in V − S has a
neighbor in V − S in its row, since S is a vertex cover for each row. Also, no vertex in V − S has a neighbor in V − S in its
column, since both of its neighbors in the row are in S, so when the vertex cover in its row is cyclically shifted, a vertex in
V − S will have a neighbor in S in the row above and below it. Finally, it is easy to see that either the first or the last vertex
in each row or columns is in S. Hence, V − S is independent.
If both m and n are even, then simply start with a vertex cover of row R1 by n/2 vertices and generate each subsequent

row’s covering by a right cyclic shift. The proof that V − S is independent is straightforward. �

Proposition 10. For the standard grid graph Gm,n:

C4(Gm,n) = 2m+ 2n− 4+ b(m− 2)(n− 2)/2c.

Proof. Because all of the vertices on the border of the grid have degree less than 4, they must be in any 4-conversion
set S. The vertices in the interior of the grid have degree 4, and no two vertices in V − S can be neighbors. Hence,
|V − S| ≤ d(m− 2)(n− 2)/2e, corresponding to the set of even non-border vertices or the set of odd non-border vertices.
Let V − S be the larger of these two sets. It can be shown (as in Corollary 1) that every vertex within distance d of any
border vertex will be in state 1 for all t ≥ d, as long as V0(t) remains independent for all t ≥ 0, which is guaranteed by the
independence of V0(0). Thus, the smallest irreversible 4-conversion set for Gm,n has size 2m+ 2n− 4+b(m− 2)(n− 2)/2c.

�

The following results on irreversible 3-conversion sets in grids are derived from the work on ‘‘irreversible dynamos’’ by
Flocchini, et al. [5,6], and from the work on minimum feedback sets in grids by Luccio [16].

Proposition 11 ([5,6,16]). For the toroidal grid graph Tm,n and the standard grid graph Gm,n, assume that m ≤ n. Then:

1. (m−1)(n−1)+13 ≤ C3(Gm,n) ≤ (m−1)(n−1)
3 +

3m+2n−3
4 + 5

2. mn+23 ≤ C3(Tm,n) ≤
mn
3 +

23m+13n−5
12 .

The results in this proposition come from the work of Flocchini, et al. and Luccio, where they provided constructions of
strong dynamos and feedback vertex sets in toroidal grid graphs, which correspond to irreversible 3-conversion sets. With
some small modifications, their results can also be modified for standard grid graphs (which are no longer 4-regular, hence
requiring some additional border vertices in S). Some sample constructions are given in Fig. 3.
We close this section with some results on 2× n and 3× n grids.

Theorem 3. For the toroidal grid graph Tm,n, the standard grid graph Gm,n, and the circulant grid graph Cm,n:

C3(T3,n) = n+ 1

C3(G3,n) =
{
(3n+ 1)/2 if n is odd
(3n+ 2)/2 if n is even

C3(C3,n) =
{
(3n+ 1)/2 if n is odd
3n/2 if n is even.
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Fig. 3. Some constructions of conversion sets based on work from Flocchini et al., and Luccio. (a) A minimum irreversible 2-conversion set for G4,4 . (b) A
minimum irreversible 3-conversion set for G9,9 .

Proof. For the toroidal grid graph T3,n, by Proposition 1, S is an irreversible 3-conversion set if and only if V −S is cycle-free.
Every columnmust contain a vertex in S, so |S| ≥ n. However, if every column has exactly one vertex in S, then every column
has two adjacent vertices in V−S. Therefore, in every column C j, some vertex in (V−S)∩C j has a neighbor in (V−S)∩C j−1
and some vertex in (V − S)∩ C j has a neighbor in (V − S)∩ C j+1. Therefore, the subgraph induced by V − S contains a cycle
which contains at least one vertex from each column in the grid, which is a contradiction. Hence, C3(T3,n) ≥ n+ 1. Let S be
v1,1 and all of the even vertices in rows R2 ∪ R3. V − S is cycle-free, so S is an irreversible 3-conversion set of size n+ 1.
For the standard grid graph G3,n, if S is an irreversible 3-conversion set, S must contain the four corners, since they have

degree two. In addition, S must be a vertex cover of R1 and R3, since all of the non-corner border vertices have degree three.
Finally, there cannot be a path in V − S connecting two border vertices in V − S, as none of the vertices along such a path
would ever enter state 1, since all of the non-border vertices would always have two state 0 neighbors, and the two border
vertices would always have a state 0 neighbor. So, every path between two border vertices in V − S must contain a vertex
in R2 in S.
If a column C j contains two border vertices in V − S, then v2,j must be in S. In addition, we know that v1,j−1, v1,j+1, v3,j−1,

and v3,j+1 must be in S, since there cannot be two consecutive border vertices in V − S.
Let C i, C i+1, . . . , C j be a maximal collection of consecutive columns where each column has two border vertices in S. We

can assume that no vertex v2,j′ , i ≤ j′ ≤ j, is in S. To see this, let S be a minimum irreversible 3-conversion set that contains
v2,j′ for some j′, i ≤ j′ ≤ j. S − {v2,j′} ∪ {v2,i−1} is also a minimum irreversible 3-conversion set, because any shortest path
between two border vertices one of which is in a column Cu for u < i and that contains v2,j′ also contains v2,i−1. Similarly,
S − {v2,j′} ∪ {v2,j+1} is a minimum irreversible 3-conversion set. If either v2,i−1 or v2,j+1 was already in S, then S was not
minimal, since v2,j′ could be removed.
Let C i, C i+1, . . . , C j be amaximal collection of consecutive columns where each column has one border vertex in S. Since

V−Smust be independent in the border vertices, the border vertices in Swill have to alternate rows in consecutive columns.
In addition, columns C i−1 and C j+1 must have two border vertices in S, since if v1,i is in V − S, v1,i−1 must be in S, and since
the collection of columns is maximal, v3,i−1 must also be in S. For every consecutive pair of columns Ca and Ca+1 in this
collection, at least one of v2,a and v2,a+1 must be in S, or else there would be a path of length four between two border
vertices in (V − S) ∩ (Ca ∪ Ca+1).
Therefore, every column that contains only one vertex in S has two neighboring columns that each contain two vertices

in S. If S is minimal, we can assume that no column contains three vertices in S. Thus, if ci is the number of columns
with i vertices in S, then c0 = 0, c3 = 0, and |S| = c1 + 2c2. If n is even, then c2 ≥ n/2 + 1, c1 ≤ n/2 − 1, and
|S| = c1 + 2c2 ≥ n/2 − 1 + 2(n/2 + 1) = (3n + 2)/2. If n is odd, then c2 ≥ (n + 1)/2, c1 ≤ (n − 1)/2, and
|S| ≥ (n − 1)/2 + 2[(n + 1)/2] = (3n + 1)/2. If n is odd, letting S be the even vertices of G3,n gives an irreversible 3-
conversion set of size (3n + 1)/2. If n is even, letting S be the even vertices of G3,n except v2,n, and including v1,n and v3,n
gives an irreversible 3-conversion set of size (3n+ 2)/2.
For the circulant grid graph C3,n, we apply the same argument as above, that every column with one vertex in S has

two neighboring columns each containing two vertices of S. Again, c0 = 0, c3 = 0, and |S| = c1 + 2c2. If n is even,
then c2 ≥ n/2, c1 ≤ n/2, so |S| ≥ n/2 + 2(n/2) = 3n/2. If n is odd, then c2 ≥ (n + 1)/2, c1 ≤ (n − 1)/2, so
|S| ≥ (n− 1)/2+ 2[(n+ 1)/2] = (3n+ 1)/2. In both cases, letting S consist of the even vertices in C3,n gives an irreversible
3-conversion set of the desired size. �

Some of the conversion sets constructed in the proofs above are shown in Fig. 4.

4. Lower bounds on Ck(G)

For the irreversible threshold process, we have the trivial lower bound Ck(G) ≥ k, and there are several graphs that
achieve this bound.
The following lower bound for irreversible conversion set sizes for r-regular graphs is obtained using amethod suggested

by Eli Berger [2].
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Fig. 4. Minimum irreversible conversion sets (c.s.) for various 2× n and 3× n grids. (a) An irreversible 3-c.s. for T3,5 . (b) An irreversible 3-c.s. for C3,6 . All
edges that extend beyond the border of the grid are assumed to wrap around to the opposite side.

Proposition 12. If G is an r-regular graph with n vertices, Ck(G) ≥ (1− r
2k )n for k ≤ r < 2k.

Proof. We define a slightly different method for updating an irreversible k-threshold network. Instead of switching every 0
vertex with k or more 1 neighbors simultaneously, at each time step, we pick any 0 vertex with k or more 1 neighbors and
switch it to 1, and repeat this process until no more vertices can be switched. If S is an irreversible k-conversion set under
the normal update rule and St is the set of vertices that enter state 1 at time t , then under the new update rule, one can
switch all of the vertices in S1 one at a time, then the vertices in S2, and so on. Therefore, if S is an irreversible k-conversion
set under the normal update rule, S will also be an irreversible k-conversion set under this new update rule.
Define the energy of a network to be the number of edges between vertices of opposite state. Let E(t) be the energy of the

network at time t . For every vertex that we switch from 0 to 1, we lose an amount of energy of size at least k and create an
amount of energy of size at most r − k. Hence, switching a vertex from 0 to 1 reduces the amount of energy in the network
by at least 2k − r , so E(t + 1) + (2k − r) ≤ E(t). If S is an irreversible k-conversion set, then E(n − |S|) = 0. Therefore,
(n− |S|)(2k− r) ≤ E(0), or n ≤ |S| + E(0)

2k−r . However, E(0) is at most r|S|, so n ≤ |S| +
r|S|
2k−r =

2k|S|
2k−r , and |S| ≥ (1−

r
2k )n.

�

If we consider irreversible 4-conversion on the toroidal grid Tm,n, this result provides a sharp bound (C4(Tm,n) ≥ mn/2)
for irreversible 4-conversion sets whenm and n are even.

5. Discussion and open problems

The results described here have been formulated mostly in the language of spread of disease. As models of disease
spread, they are somewhat oversimplified. However, we feel that models are tools for reasoning about problems and, as
such, these models provide ways to formalize concepts such as effect of the topology of social networks on the spread of
disease; alternative vaccination strategies; and other concepts. As we have noted, the concepts and ideas developed here
also have potential interest in other applications. They were originally developed for understanding how opinions might
spread through social networks. Clearly the work also has interest in the context of the ‘‘firefighter problem’’. We hope that
the results and ideas are also of interest as mathematical concepts and problems.
There are several questions that would provide avenues for further research.

1. Wewould like a characterization of irreversible minimum conversion sets for all completemultipartite graphs and trees,
as well as other classes of graphs (chordal graphs, interval graphs, planar graphs, other kinds of grids, etc.), or possibly
algorithms for finding such sets.

2. We would like to know the complexity of the IR2-CS problem.
3. In ourwork, updates to the vertices occur in parallel at each time step.We could update individual vertices serially, which
would certainly have an effect on the dynamics of the network. In addition, we have considered a deterministic update
rule. In [12,13], Hassin and Peleg replace the deterministic update rule with a random one, where the probability that a
vertex switches signs is equal to the fraction of its neighbors with the opposite sign. We could also replace this with any
probability function, perhaps one based on some threshold k (for example, a vertex switches sign with probability i/k
where i is the number of neighbors with the opposite sign: if i ≥ k the vertex switches sign automatically).

4. As we have noted, analogous results on the k-threshold processes where one can switch back from state 1 to state 0
would be of interest. There are extensive results about this process and also the process we have called monotone in [4].
However, exact results for minimum conversion sets are still missing for the most part. Other models of interest could
allow switching back from state 1 to state 0 automatically after a given number of time steps (given number of days
for a disease to run its course). We could also bring in ‘‘immunity’’ after a vertex has changed from state 1 to state 0.
Probabilistic variants of all of these models would also be of interest.

5. We have described vaccination strategies in Section 1.3. A number of questions and research directions remain open
here. For instance, the bulk of the work described in Section 1.3 involves rectangular grids and trees. The same problems
are of interest for chordal graphs, interval graphs, planar graphs, and other kinds of grids such as annular grids. There is
very little known about vaccination strategies wherewe have a varying number f (t) of doses of vaccine each time period.
Also, the models considered so far do not consider the possibility that vaccination will only be successful with a certain
probability and they do not consider the possible side effects of vaccination, which could be brought into the models in
various ways.
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6. Other public health interventions could be made precise in the language of the irreversible k-threshold processes. For
example, can we make precise the notion of ‘‘ring quarantine’’ — quarantining all individuals within a certain graph
distance D from newly-infected individuals? What are ‘‘optimal’’ values of D? Could we have quarantines only lasting a
certain number of time steps? Could we bring in non-compliance with quarantines?

7. Wewould like to find graph topologies that protect against having small irreversible k-conversion sets. For example, one
could ask, given n andm, what are graphs on n vertices that have no irreversible k-conversion sets ofm or fewer vertices?

In short, the results in this paper are just a beginning. They illustrate the types of analyses one can make using graph-
theoretical models of the spread of disease or opinion. There is much more work to do.
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