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Abstract

Suppose that a graph is realized from a stochastic block model where one of the blocks is

of interest, but many or all of the graph vertices’ block labels are unobserved. The task is to

order the vertices with unobserved block labels into a “nomination list” such that, with high

probability, vertices from the interesting block are concentrated near the list’s beginning.

We propose several vertex nomination schemes which include the utilization of recent graph

matching and spectral partitioning machinery.

Our basic—but principled—setting and development yields a best nomination scheme

(which is a Bayes-Optimal analogue), and a likelihood maximization nomination scheme

that is practical to implement when there are a thousand vertices, and which is empirically

near-optimal when the number of vertices is small enough to allow the comparison. We then

illustrate the robustness of likelihood maximization to the modeling challenges inherent in

real data, using examples which include the Enron Graph, a worm brain connectome, and a

political blog network.

1 Article overview

In a stochastic block model, the vertices are partitioned into blocks, and existence/nonexistence of

an edge between any pair of vertices is an independent Bernoulli trial, with the Bernoulli parameter

being a function of the block memberships of the pair of vertices. We are concerned here with a

graph realized from a stochastic block model such that many or all of the vertices’ block labels

are hidden (unobserved). Suppose that one particular block is of interest, and the task is to order
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the vertices with hidden block label into a “nomination list” with the goal of having vertices of

the interesting block concentrated near the beginning of the list. Forming such a nomination list

can be assisted by any available knowledge about the underlying model parameters, as well as

by utilizing knowledge of block membership for any of the vertices for which such block labels

are observed. A vertex nomination scheme is a function that, to each such possible observed

graph, assigns an associated nomination list. In this paper we present, analyze, and illustrate

the effectiveness of several vertex nomination schemes. Some of these vertex nomination schemes

utilize graph matching and spectral partitioning machinery. See [6] and [13] for recent work on

vertex nomination, as well as a survey of closely related problems.

One illustrative example of vertex nomination with real data is the political blogosphere data

example, treated in greater detail later in Section 7.3. The graph vertices are a set of political

blogs, and graph adjacency between two blogs is defined as one blog citing the other. This graph

can be modeled (very roughly) as being an instantiation of a stochastic block model with two

blocks; namely, the liberal blogs and the conservative blogs. Suppose you work for a political

action committee, and want to read as many liberal blogs as possible over a limited amount of

time, in order to write a report about the liberal position on some issue of interest in current

events. Every one of the blogs is either liberal or conservative, but suppose that you know a-

priori the political philosophy of only a very few of the blogs. However, you do observe the entire

graph. Since your blog-reading time is limited, you would like to use this partial knowledge to

prioritize the rest of the blogs (whose political philosophy is not known a-priori) into a reading

list (i.e. nomination list) in such a manner that there will be an abundance of liberal blogs at

the beginning of your reading list. In particular, the nomination task here is a task which is not

simply classification—it is prioritization.

In Section 2 we formally and carefully define the setting and the concept of a vertex nomination

scheme. Although prioritization is a ubiquitous need that can be treated in an ad hoc fashion

specific to individual applications, we here formally set the problem in the stochastic block model

setting, which has gained so much popularity in recent literature (e.g., see [2, 4, 20]) and is a useful

model for real data. This formal setting will be useful for principled development of techniques

that have both solid theoretical foundations are also robust to the modeling challenges inherent

in real data.

In Section 3 we introduce the canonical vertex nomination scheme. It is analogous to the Bayes

classifier in the setting of classification. Indeed, we prove in Proposition 1 that the canonical vertex

nomination scheme is at least as effective as every other vertex nomination scheme, and thus serves

the valuable role of a “gold standard” with which to gauge the success of other vertex nomination
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schemes. However it is computationally practical to implement only when there are on the order

of a very few tens of vertices.

In Section 4 we introduce the likelihood maximization vertex nomination scheme, which fun-

damentally utilizes graph matching machinery. The graph matching problem is to find a bijection

between the vertex sets of two graphs that minimizes the number of induced adjacency disagree-

ments; there is a vast literature dedicated to this problem, e.g. see the 2004 article Thirty Years of

Graph Matching in Pattern Recognition [5] for an excellent survey. Although graph matching is

intractable in theory, there have been recent advances in approximate graph matching algorithms

that are both tractable and effective; for example see [16], [25], and [26]. In particular, the very

recent SGM algorithm of [16] has been shown in [15] to be theoretically and practically superior to

convex relaxation approaches. Using the SGM algorithm of [16] for approximate graph matching,

the likelihood maximization vertex nomination scheme is practical to implement for on the order

of 1000 vertices. In Sections 7.1, 7.2, 7.3, and 7.4 we illustrate the robustness of the likelihood

maximization vertex nomination scheme to the model mis-specifications inherent in real data. On

the other hand, when there are few enough vertices so that canonical is computable, we find in

Section 6 that likelihood maximization performs nearly as well as the canonical “gold standard.”

In Section 5 we introduce the spectral partitioning vertex nomination scheme; it is practical

to implement for tens of thousands of vertices or more. Based on the results in [24] and [8], then

followed up in [18], the spectral partitioning vertex nomination scheme nominates perfectly as the

number of vertices goes to infinity, under mild conditions.

In Section 6 we perform illustrative simulations at three different scales; that is, a “small scale”

experiment with ten ambiguous vertices, a “medium scale” experiment with 500 ambiguous ver-

tices, and a “large scale” experiment with 10000 ambiguous vertices. With respect to nomination

effectiveness and practicality of implementation, the canonical vertex nomination scheme domi-

nates at the small scale, the likelihood maximization scheme dominates at the medium scale, and

the spectral partitioning scheme dominates at the large scale.

In Section 7.1 we illustrate our vertex nomination schemes on the “Enron Graph,” a graph with

email addresses of former employees of the failed Enron Corporation as vertices, and edges indi-

cating email contact between the associated vertices over a time interval. Our vertex nomination

schemes are used to nominate higher-echelon former Enron employees. Then, in Sections 7.2, 7.3,

and 7.4 we illustrate on examples with a worm-brain connectome (to nominate motor neurons), a

blog network (to nominate political affiliation), and a movie network (to nominate comedies).

We conclude the paper with an extended discussion in Section 8, and we describe how this

work paves the way for the next generation of vertex nomination schemes.
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2 Vertex nomination schemes; setting and definition

In this article we assume for simplicity that graphs are simple (edges are not directed, no parallel

edges, and no single-edge loops), but much of what we do is generalizable.

We begin by describing the stochastic block distribution SB(K,m, n, b,Λ), which will be our

random graph setting; its parameters are a positive integer K (the number of blocks), a nonneg-

ative integer m (the number of seeds), a positive integer n (the number of ambiguous vertices),

an arbitrary but fixed function b : {1, 2, . . . ,m + n} → {1, 2, . . . , K} (the block membership func-

tion), and a symmetric matrix Λ ∈ [0, 1]K×K (the adjacency probabilities). A random graph with

distribution SB(K,m, n, b,Λ) has the vertex set W := {1, 2, . . . ,m + n} and, for each unordered

pair of distinct vertices {w,w′} ∈
(
W
2

)
, w is adjacent to w′ (w ∼ w′) according to an independent

Bernoulli trial with parameter Λb(w),b(w′).

The vertex set W is partitioned into two sets, the set U := {1, 2, . . . ,m} (the seeds) and the

set V := {m + 1,m + 2, . . . ,m + n} (the ambiguous vertices). For each i = 1, 2, . . . , K, define

mi := |{u ∈ U : b(u) = i}| and ni := |{v ∈ V : b(v) = i}|. The function b is only partially

observed; its values are known on U , but not on V . In other words, the block memberships of

the seeds are known, and the block memberships of the ambiguous vertices are unknown, but we

will assume for simplicity that Λ is known, and that n1, n2, . . . , nK are known. Given a random

graph from SB(K,m, n, b,Λ), the most general inferential task would be to estimate b on W , but

we will fine-tune this task very soon. (Note that if Λ and n1, n2, . . . , nK were not known then,

if there are enough seeds, Λ could be approximated from edge densities of subgraphs induced by

various subsets of the seeds and, in addition, the values of n1, n2, . . . , nK might be approximated

if it just so happens to be known that they are roughly proportional to the respective values of

m1,m2, . . . ,mK . Of course, m1,m2, . . . ,mK are known by virtue of the fact that b is known on U .)

Define Ξ to be the set of bijective functions from W to W that fix the elements of U ; of course,

|Ξ| = n!. Any two graphs G and H on vertex set W are called equivalent if G is isomorphic to H

under some function ξ ∈ Ξ; if G is also asymmetric (i.e. its automorphism group is trivial) then

such a ξ is unique to G,H, denote it ξG,H . For any graph G on vertex set W , the equivalence class

of equivalent-to-G graphs on vertex set W will be denoted 〈G〉; in particular, 〈G〉 is an event. The

set of all such equivalence classes is denoted Θ; the events in Θ partition the sample space.

A vertex nomination scheme Φ is a mapping that, to each asymmetric graph G with vertex

set W , associates a linear ordering of the vertices in V— called the nomination order, and de-

noted as a list (ΦG(1),ΦG(2), . . . ,ΦG(n))—such that for every H equivalent to G it holds that

(ξG,H(ΦG(1)), ξG,H(ΦG(2)), . . . , ξG,H(ΦG(n))) = (ΦH(1),ΦH(2), . . . ,ΦH(n)). In other words, and
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described somewhat informally, if each equivalence class of graphs is viewed as a (single) graph

whose vertex set is comprised of labeled vertices U and unlabeled vertices V , then to each equiv-

alence class (i.e. partially-vertex-labeled graph) Φ associates a list of unlabeled vertices of V .

Note that the fraction of all graphs on vertex set W which are symmetric goes very quickly

to zero as |W | goes to infinity [7, 21]. Although symmetric graphs are thus negligibly-many,

it is helpful for notation to extend the domain of Φ to include symmetric graphs, and this can

be done in many different ways. For simplicity of analysis we will simply say for now that, to

every symmetric graph G on the vertex set W , the associated nomination list is declared to be

(m + 1,m + 2, . . . ,m + n) (and we do not require the nomination list in this case to meet the

property mentioned above).

In this article, we assume that only membership in the first block is of interest; the specific

task we are concerned with is to find vertex nomination schemes under which there will be, with

high probability, an abundance of members of the first block that are near the beginning of the

nomination list. As an illustrative example related to the Enron Graph example in Section 7.1,

consider a corporation with m+n = m1 +m2 +n1 +n2 employees, of which m1 +n1 are involved in

fraud and m2 +n2 are not involved in fraud. The probability of communication between fraudsters

is fixed, as is the probability of communication between nonfraudsters, as is the probability of

communication between any fraudster and any nonfraudster. Of the m1 + n1 fraudsters, m1 have

been identified as fraudsters and, among the m2 + n2 nonfraudsters, m2 have been identified as

nonfraudsters. Based on observing all of the employee communications (together with knowledge

of the identities of m1 fraudsters and m2 nonfraudsters), we wish to draw up a nomination list of

the n1 + n2 ambiguous employees so that there are many fraudsters early in the list.

The effectiveness of a vertex nomination scheme Φ is quantified in the following manner. For

any graph G with vertex set W , and for any integer j such that 1 ≤ j ≤ n, the precision at depth j

of Φ for G is defined to be |{1≤i≤j : b(ΦG(i))=1}|
j

; for the corporate illustration, this represents the

fraction of the first j employees on the nomination list that are actual fraudsters in truth. The

average precision of Φ for G is defined to be 1
n1

∑n1

j=1
|{1≤i≤j : b(ΦG(i))=1}|

j
; it has a value between 0

(per the corporate example, if none of the first n1 nominated employees are fraudsters) and 1 (if

all of the first n1 nominated employees are fraudsters). Note that the average precision of Φ for

G is equal to
∑n1

i=1

(
1
n1

∑n1

j=i
1
j

)
δb(ΦG(i))=1, where δ is the usual indicator function. In particular,

the average precision of Φ for G is a convex combination of the indicators δb(ΦG(i))=1, with more

weight in this convex combination for indicators associated with lower values of i. The mean

average precision of the vertex nomination scheme Φ is the expected value of the average precision

for a random graph G distributed SB(K,m, n, b,Λ). The closer that this number is to 1, the
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more effective a vertex nomination scheme Φ is deemed. Note that a “chance” vertex nomination

scheme would have the value n1

n
as its mean average precision.

We point out that our definition of average precision is slightly different than a definition

commonly used in the information retrieval community; our definition is a pure average precision,

whereas the other definition is actually an integral of the precision over recall.

3 The canonical vertex nomination scheme

In this section we define the canonical vertex nomination scheme, which is analogous to the Bayes

classifier in the Bayes classifier’s setting of classification. Indeed, we prove in Proposition 1 that

the mean average precision of the canonical vertex nomination scheme is greater than or equal to

the mean average precision of every other vertex nomination scheme. Unfortunately, because of its

computational intractability (a visibly exponential runtime as the number of vertices increases)

the canonical vertex nomination scheme is only practical to implement for up to a few tens of

vertices. Nonetheless, because of Proposition 1, the canonical vertex nomination scheme serves as

a valuable “gold standard” to evaluate the performance of other more computationally tractable

vertex nomination schemes. (This is analogous to the role of the Bayes classifier in the classification

setting.) Our ongoing research seeks to approximate the canonical vertex nomination scheme in a

scalable fashion.

3.1 Definition of the scheme

Consider the random graph G distributed SB(K,m, n, b,Λ). When G is asymmetric then, for any

v ∈ V , the conditional probability

P
[{
H ∈ 〈G〉 : b(ξG,H(v)) = 1

}∣∣∣〈G〉] (1)

may be described as the probability, given the event that we observe a graph equivalent to G,

that the vertex corresponding to v would be in the first block. The canonical vertex nomination

scheme, which we denote as ΦC , orders the vertices of V as ΦC
G(1),ΦC

G(2), . . . ,ΦC
G(n) in decreasing

order of this conditional probability; that is, we define ΦC so that, for all i = 1, 2, . . . , n− 1,

P
[{
H ∈ 〈G〉 : b(ξG,H(ΦC

G(i))) = 1
}∣∣∣〈G〉] ≥ P

[{
H ∈ 〈G〉 : b(ξG,H(ΦC

G(i+ 1))) = 1
}∣∣∣〈G〉]. (2)

To more easily compute the conditional probability in Equation 1, let
(

V
n1,n2,...,nK

)
denote the

collection of all the
(

n
n1,n2,...,nk

)
partitions of the elements of V into subsets called V1, V2, . . . , VK with
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respective cardinalities n1, n2, . . . , nK . Given any such partition (V1, V2, . . . , VK) ∈
(

V
n1,n2,...,nK

)
, let

us create the following notation. For any k = 1, 2, . . . , K and ` = k+1, k+2, . . . , K, let ek,` denote

the number of edges in G with one endpoint in Vk ∪ {u ∈ U : b(u) = k} and the other endpoint

in V` ∪ {u ∈ U : b(u) = `}, define ck,` := (mk + nk)(m` + n`) − ek,`. Let ek,k denote the number

of edges in G with both endpoints in Vk ∪ {u ∈ U : b(u) = k}, and define ck,k :=
(
mk+nk

2

)
− ek,k.

Then, in the stochastic block model, the conditional probability in Equation (1) can be computed

as ∑
(V1,V2,...,VK)∈( V

n1,n2,...,nK
) such that v∈V1

∏K
k=1

∏K
`=k(Λk,`)

ek,`(1− Λk,`)
ck,`∑

(V1,V2,...,VK)∈( V
n1,n2,...,nK

)
∏K

k=1

∏K
`=k(Λk,`)ek,`(1− Λk,`)ck,`

. (3)

Although we are not able to evaluate the probability of G since the block membership function b

is not fully observed, nonetheless the conditional probabilities in Equation (1) can be indeed be

evaluated via Equation (3) by just knowing the values of the parameters n1, n2, . . . , nK and Λ.

3.2 Optimality of the canonical vertex nomination scheme

Theorem 1. For any vertex nomination scheme Φ, the mean average precision of the canonical

vertex nomination scheme ΦC is greater then or equal to the mean average precision of Φ.

Proof: For each i = 1, 2, . . . , n1, define αi := 1
n1

∑n1

j=i
1
j

and, for each i = n1 + 1, n1 + 2, . . . , n,

define αi := 0. The sequence α1, α2, . . . , αn is clearly a nonnegative, nonincreasing sequence.

Note that if a1, a2, . . . , an is any (other) nonincreasing, nonnegative sequence of real numbers, and

a′1, a
′
2, . . . , a

′
n is any permutation of the sequence a1, a2, . . . , an, then

n∑
i=1

αia
′
i ≤

n∑
i=1

αiai. (4)

Indeed, this is easily verified by first considering particular sequences a1, a2, . . . , an of the form

1, 1, . . . , 1, 0, . . . , 0, 0 [i.e., j consecutive 1’s followed by n − j consecutive 0’s, for different values

of j = 1, 2, . . . , n] and then noting that the nonnegative combinations of such particular sequences

indeed comprise all nonincreasing, nonnegative sequences with n entries.

Consider random graph G distributed SB(K,m, n, b,Λ). Recall that Θ denotes the set of

equivalence classes of graphs on the vertex set W .
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Expanding the mean average precisions of Φ, then bounding and simplifying, yields

E
( n∑
i=1

αiδb(ΦG(i))=1

)
=

n∑
i=1

αiP
(
b(ΦG(i)) = 1

)
=

n∑
i=1

αi

(∑
G∈Θ

P
(
G
)
P
(
b(ΦG(i)) = 1

∣∣∣ G))

=
∑
G∈Θ

P
(
G
)( n∑

i=1

αi P
(
b(ΦG(i)) = 1

∣∣∣ G))

≤
∑
G∈Θ

P
(
G
)( n∑

i=1

αi P
(
b(ΦC

G(i)) = 1
∣∣∣ G)) (5)

=
n∑
i=1

αiP
(
b(ΦC

G(i)) = 1
)

= E
( n∑
i=1

αiδb(ΦCG(i))=1

)
,

where the inequality in Equation (5) follows from Equations (4) and (2), (and from our assumption

that all nomination schemes agree when G is symmetric). The desired result is shown.

4 Likelihood maximization vertex nomination scheme

In this section we define the likelihood maximization vertex nomination scheme. It will be practical

to implement even when there are on the order of a thousand vertices. We will see in Section 6 that

it is a very effective vertex nomination scheme, when compared to the canonical vertex nomination

scheme “gold standard” on graphs small enough to make the comparison. In Sections 7.1, 7.2,

7.3, and 7.4 we will see that likelihood maximization appears to be nicely robust to the modeling

challenges inherent in real data.

4.1 Definition of the scheme

Suppose the random graph G is distributed SB(K,m, n, b,Λ). There are two stages in defining—

and computing—the likelihood maximization vertex nomination scheme.

The first stage is concerned with estimating the block assignment function b. Let B denote

the set of functions b : W → {1, 2, . . . , K} such that b agrees with b on U , and such that it

also holds, for all i = 1, 2, . . . , K, that |{v ∈ V : b(v) = i}| = ni. For any b ∈ B, and for all

k = 1, 2, . . . , K and ` = k + 1, k + 2, . . . , K, let ek,`(b) denote the number of edges in G with one

endpoint in {w ∈ W : b(w) = k} and the other endpoint in {w ∈ W : b(w) = `}, and also denote

ck,`(b) := (mk+nk)(m`+n`)−ek,`(b). For all k = 1, 2, . . . , K, let ek,k(b) denote the number of edges

8



in G with both endpoints in {w ∈ W : b(w) = k}, and also denote ck,k(b) :=
(
mk+nk

2

)
− ek,k(b).

In the SB(K,m, n, b,Λ) distribution, if b had been replaced with b ∈ B, then the probability of

realizing the graph G would have been

p(b, G) :=
K∏
k=1

K∏
`=k

(Λk,`)
ek,`(b)(1− Λk,`)

ck,`(b). (6)

Define b̂, the maximum likelihood estimator of b, to be the member of B such that the probability

of G is maximized. In other words, (then taking logarithms and ignoring additive constants)

b̂ := arg max
b∈B

p(b, G) = arg max
b∈B

K∑
k=1

K∑
`=k

ek,`(b) log

(
Λk,`

1− Λk,`

)
= arg max

b∈B

∑
{w,w′}∈(W2 )

δw∼Gw′ log

(
Λb(w),b(w′)

1− Λb(w),b(w′)

)
. (7)

The optimization problem in Equation (7) is an example of seeded graph matching, and we can

efficiently and effectively approximate its solution. The details of this are deferred to the next

section, Section 4.2, and we now continue on to the second stage of defining and computing the

likelihood maximization vertex nomination scheme, assuming that we have computed b̂.

For any v, v′ ∈ V such that b̂(v) = 1 and b̂(v′) 6= 1, define b̂v↔v′ ∈ B such that b̂v↔v′ agrees

with b̂ for all w ∈ W except that b̂v↔v′(v
′) = 1 and b̂v↔v′(v) = b̂(v′). For any v, v′ ∈ V such that

b̂(v) = 1 and b̂(v′) 6= 1, we can interpret a low/high value of the quantity
p(b̂v↔v′ ,G)

p(b̂,G)
as a measure

of our conviction/lack-of-conviction that b̂ should be used to estimate b, as opposed to estimating

b with specifically b̂v↔v′ . In this spirit, for all v ∈ V such that b̂(v) = 1, a low/high value of the

geometric mean  ∏
v′∈V :b̂(v′)6=1

p(b̂v↔v′ , G)

p(b̂, G)

 1
n−n1

(8)

can be interpreted as a measure (for the purpose of ordering) of our conviction/lack-of-conviction

in our estimation that b(v) is 1. Also, for for all v′ ∈ V such that b̂(v′) 6= 1, a low/high value of

the geometric mean  ∏
v∈V :b̂(v)=1

p(b̂v↔v′ , G)

p(b̂, G)

 1
n1

(9)

can be interpreted as a measure (just for the purpose of ordering) of our conviction/lack-of-

conviction in our estimation that b(v′) is not 1.
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We now define the likelihood maximization vertex nomination scheme ΦL to be such that it

satisfies ΦL
G(1),ΦL

G(2), . . . ,ΦL
G(n1) are the v ∈ V such that b̂(v) = 1, listed in increasing order of

the geometric mean in Equation (8), and ΦL
G(n1 + 1),ΦL

G(n1 + 2), . . . ,ΦL
G(n) are the v′ ∈ V such

that b̂(v′) 6= 1, listed in decreasing order of the geometric mean in Equation (9).

4.2 Solving the seeded graph matching problem

In this section we discuss how to compute b̂ in the likelihood maximization vertex nomination

scheme ΦL defined in the previous section.

Given anyA,B ∈ R(m+n)×(m+n), the quadratic assignment problem is to minimize ‖A−PBP T‖2
F

over all permutation matrices P ∈ {0, 1}(m+n)×(m+n), where ‖ · ‖F denotes the Frobenius matrix

norm. If A and B are respectively adjacency matrices for two graphs, then this is called the graph

matching problem; it is clearly equivalent to finding a bijection from the vertex set of one graph

to the vertex set of the other graph so as to minimize the number of adjacency disagreements

induced by the bijection. If P is further constrained so that the upper left corner is the m ×m
identity matrix, then the problem is called the seeded quadratic assignment problem/ seeded graph

matching problem; for graphs, this further restriction just means that part of the bijection between

the vertex sets is fixed.

Note that the objective function can be simplified (under the restriction that P is a permutation

matrix) as ‖A− PBP T‖2
F = ‖A‖2

F + ‖B‖2
F − 2〈A,PBP T 〉, where 〈·, ·〉 is the usual inner product

〈C,D〉 :=
∑

i,j CijDij. Thus the above problems can be phrased as maximize 〈A,PBP T 〉 over all

permutation matrices P .

The optimization problem in Equation (7), for which b̂ is the solution, is precisely the seeded

quadratic assignment problem above, where A ∈ R(m+n)×(m+n) is the adjacency matrix for the

graph G, that is Ai,j := δi∼Gj for all i, j ∈ W ≡ {1, 2, . . . ,m + n}, and B ∈ R(m+n)×(m+n) is the

matrix wherein Bi,j := log
(

Λb′(i),b′(j)
1−Λb′(i),b′(j)

)
for all i, j ∈ W , where b′ is the member of B for which the

sequence b′(m+ 1), b′(m+ 2), . . . , b′(m+ n) are 1’s contiguously, then 2’s contiguously, . . . , then

K’s contiguously. The b ∈ B—over which the objective function in Equation (7) is maximized—

correspond precisely to the permutation matrices P in the seeded quadratic assignment problem,

where the upper left corner of P is restricted to be the m ×m identity matrix. We will call this

problem a seeded graph matching problem because A is an adjacency matrix. (And we can also

choose to think of B as an weighted adjacency matrix for a graph.)

The seeded graph matching problem is computationally hard; indeed, the quadratic assignment

problem is NP-hard, and even deciding if two graphs are isomorphic is notoriously of unknown
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complexity [12], [23]. However, approximate solutions can be found efficiently with the SGM

(Seeded Graph Matching) Algorithm of [16], which is a seeded version of the FAQ algorithm

of [25]. (Indeed, SGM is more effective than convex relaxation techniques, as was recently shown

in [15].) We employ the SGM algorithm to obtain an approximate solution to b̂ for use in the

likelihood maximization vertex nomination scheme. It runs in time O(n3), and can be implemented

even when n is approximately 1000.

5 The spectral partitioning vertex nomination scheme

In this section we introduce the spectral partitioning vertex nomination scheme. Suppose G is

distributed SB(K,m, n, b,Λ). We do not need to assume here that we know n1, n2, . . . , nK , nor

the entries of Λ; we just need to know the value of K and d := the rank of Λ. (Indeed, by the results

in [8], even just knowing an upper bound on d will be sufficient to obtain good performance.)

Say that the adjacency matrix for G is A ∈ {0, 1}(m+n)×(m+n), that is Ai,j := δi∼Gj for all

i, j ∈ W ≡ {1, 2, . . . ,m+ n}. Compute d eigenvectors associated, respectively, with the d largest-

modulus eigenvalues of A. Scale these eigenvectors so that their respective lengths are the square

roots of the absolute values of their corresponding eigenvalues, and define X ∈ R(m+n)×d to have

these scaled eigenvectors as its respective columns. The rows of X are low-dimensional embeddings

of the corresponding vertices. Now, cluster the rows of X into K clusters; i.e. solve the problem

minimize ‖X − C‖F over all matrices C ∈ R(m+n)×d with the property that each row of C is

equal to one of just K row vectors, and the values of these K row vectors are also variables to be

optimized over.

Say that c is the most frequent value of row vector in the optimal C among the rows corre-

sponding to the vertices {u ∈ U : b(u) = 1}. (In other words, c is the centroid associated with

the most vertices known to be in the first block.) The spectral partitioning vertex nominating

scheme, denote it by ΦS, associates with G the ordering (of vertices in V ) ΦS
G(1),ΦS

G(2), . . . ,ΦS
G(n)

in increasing order of Euclidean distance between c and their corresponding row in X.

Suppose we consider a sequence of graphs realized from the distributions SB(K,m, n, b,Λ) for,

successively, m + n = 1, 2, 3, . . ., where K and Λ are fixed, and Λ is positive semi-definite with

the property that no two of its rows are equal. Also, assume that m1 ≥ 1, and there exists a

positive constant γ such that, for all i = 1, 2, . . . , K, it holds that mi + ni ≥ γ(m + n)
3
4

+γ. It

was recently shown in [18] (following the work in [24] and [8]) that almost surely there are no

incorrectly clustered vertices in the limit. This implies that the mean average precision of ΦS

converges to 1 as m+ n→∞.
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It will be computationally convenient to approximately (but very quickly) solve the clustering

subproblem. This approximate clustering can be done with the (computationally simple) k-means

algorithm or with the more general mclust procedure[10, 11]. In both cases, the vertices are

nominated based on distance to cluster centroids; in k-means this amounts to the usual Euclidean

distance, while for mclust this amounts to nominating based on the Mahalonobis distance. We used

mclust for the simulations and real-data experiments in this paper, since empirically it nominated

better than k-means.

6 Simulations: Comparing the vertex nomination schemes

at three different scales

In this section, we compare and contrast these vertex nomination schemes using three simulation

experiments—essentially the same experiment at three different scales, “small scale,” “medium

scale,” and “large scale.” For each of the three experiments, we have K = 3 blocks in the stochastic

block model. The matrix of Bernoulli parameters Λ is

Λ(ϑ) := ϑ


.5 .3 .4

.3 .8 .6

.4 .6 .3

+ (1− ϑ)


.5 .5 .5

.5 .5 .5

.5 .5 .5


with the value ϑ = 1 for the small scale experiment, ϑ = 0.3 for the medium scale experiment,

and ϑ = 0.1 for the large scale experiment, in order to decrease the signal when the number of

vertices is larger.

Specifically, the matrix Λ for the small scale experiment, for the medium scale experiment, and

for the large scale experiment are, respectively,

Λ(1) =


.5 .3 .4

.3 .8 .6

.4 .6 .3

 , Λ(0.3) =


.50 .44 .47

.44 .59 .53

.47 .53 .44

 , Λ(0.1) =


.50 .48 .49

.48 .53 .51

.49 .51 .48

 ,
so that as the number of vertices increases we have that ϑ gets closer to zero, which means

that the blocks become less and less stochastically differentiable one from the other. Another

notable feature of the Λ here is that the block of interest—the first block—is the intermediate

density block; i.e. the Bernoulli adjacency parameter for vertices in the first block is between the

Bernoulli adjacency parameter for vertices in the second block and in the third block. This makes

it more challenging to identify the vertices of the first block, which is the block of interest.
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The values of (n1, n2, n3) are taken to be multiples of (4, 3, 3); specifically, in the small scale

experiment (n1, n2, n3) = (4, 3, 3), in the medium scale experiment (n1, n2, n3) = (200, 150, 150),

and in the large scale experiment (n1, n2, n3) = (4000, 3000, 3000). As for the seeds, the values of

(m1,m2,m3) in the respective experiments were taken as (4, 0, 0), (20, 0, 0), and (40, 0, 0).

These three experiments were performed as follows. We independently realized 50000 graphs

from the associated distribution of the small scale experiment, 200 graphs in the medium range

experiment, and 100 graphs in the large scale experiment. To each observed graph we applied each

of: the canonical vertex nomination scheme ΦC , the likelihood maximization vertex nomination

scheme ΦL, and the spectral partitioning vertex nomination scheme ΦS. Then, for each vertex

nomination scheme, we recorded the fraction of the realizations for which the first nominee of the

nomination list was a member of the block of interest, the fraction of the realizations for which the

second nominee was a member of the block of interest,..., the fraction of the realizations for which

the nth nominee was a member of the block of interest. In Figure 1a, Figure 1b, and Figure 1c

these empirical probabilities are plotted against nomination list position, for the three respective

experiments and nomination schemes.

In the small scale experiment, where n = 10, the likelihood maximization nomination scheme

performed about as well as the (“gold standard”) canonical nomination scheme, and the spectral

partitioning nomination scheme performed very poorly—near chance. Then, in the medium scale

experiment where n = 500, the canonical nomination scheme was no longer practical to compute,

and the spectral partitioning nomination scheme performed nearly as well as the likelihood max-

imization nomination scheme. For a few thousand vertices it was not practical to implement the

likelihood maximization nomination scheme, so in the large scale experiment, where n = 10000,

the only nomination scheme that could be implemented was the spectral partitioning nomination

scheme.

The empirical mean average precision for the canonical, likelihood maximization, and spectral

partitioning vertex nomination schemes in the three experiments were as follows: (Note that the

mean average precision for chance is .4.)

Mean Average Precision canonical likelihood-max spectral part.

small scale exper., n = 10, ϑ = 1 .6953 .6716 .3999

medium scale exper., n = 500, ϑ = 0.3 * .9541 .8683

large scale exper., n = 10000, ϑ = 0.1 * * .9901
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(a) Small-scale; n = 10
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(b) Medium-scale; n = 500
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(c) Large-scale n = 10, 000

Figure 1: The canonical vertex nomination scheme is in red, the likelihood maximization vertex

nomination scheme is in blue, and the spectral partitioning vertex nomination scheme is in green.

Note: The canonical vertex nomination scheme is not shown in the medium-scale experiment, nor

are the canonical and likelihood maximization vertex nomination schemes shown in the large scale

experiment; they are not remotely practical to compute for their respective values of n.
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The running times were as follows:

Running Time per simulation canonical likelihood-max. spectral part.

small scale experiment, n = 10 ≈ 1.4 seconds ≈ .04 seconds ≈ .02 seconds

medium scale experiment, n = 500 * ≈ 286 seconds ≈ .8 seconds

large scale experiment, n = 10000 * * ≈ 534 seconds

Indeed, each of the three vertex nomination schemes is superior (in the sense of effectiveness,

given practical computability limitations) to the other two at one of the three scales. At a small

scale you should use canonical, at a medium scale you should use likelihood maximization, and at

a large scale you should use spectral partitioning vertex nomination scheme.

7 Real data examples

While the stochastic block model is often useful for modeling real data, many times real data

does not fit the model particularly well. In the following real-data experiments we see that the

likelihood maximization vertex nomination scheme is robust to the pathologies inherent to real

data.

7.1 Example: The Enron Graph

The Enron Corporation was a highly regarded, large energy company that went spectacularly

bankrupt in the early 2000’s amid systemic internal fraud. Enron has since become a popular

exemplar of corporate fraud and corruption. In the wake of Enron’s collapse, the US Energy Reg-

ulatory Commission collected a corpus of more than 600, 000 emails sent between Enron employees,

and this corpus was made public by the US Department of Justice and is available online at a num-

ber of websites, including http://research.cs.queensu.ca/home/skill/siamworkshop.html.

In [22], the authors restrict their attention to a 189 week period from the year 1998 through

the year 2002; they identify 184 distinct email addresses in the Enron email corpus over this time

interval, and they identify the pairs of these email addresses that had email communication with

each other. Our “Enron Graph” that we use here is based on the graph in [22]; our vertex set W

consists of the 128 active email addresses for which the employee’s job title in Enron was known.

For every pair of such vertices, the pair of vertices are declared adjacent to each other when there

was at least one email sent from either of the email addresses to the other. We then divided the
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vertices into two blocks: The “upper-echelon” set of vertices {w ∈ W : b(w) = 1} are the vertices

whose job titles were designated as CEO, president, vice president, chief manager, company attor-

ney, and chief employee. The “lower-echelon” set of vertices {w ∈ W : b(w) = 2} are the vertices

whose job titles were designated as employee, employee administrative, specialist, analyst, trader,

director, and manager (besides chief manager, which we designated upper echelon). We chose to

group the job titles of manager and director with lower-echelon because a by-eye assessment of the

graph indicated that their adjacency affinity was closer to the rest of the lower-echelon vertices.

Indeed, this graph is certainly not a realization of an actual two-block stochastic block model, but

for the purpose of illustration we will view it as very roughly having some two-block structure.

The graph is pictured in Figure 2, as rendered by the standard graph drawing tool in igraph,

which can be found at http://cran.r-project.org/web/packages/igraph/index.html.

Figure 2: The Enron Graph, as rendered by the standard graph drawing package in igraph.

Upper-echelon vertices are red, lower-echelon vertices are green.

We consider the follow experiment. From the 43 upper-echelon vertices {w ∈ W : b(w) = 1},
discrete-uniform randomly select m1 = 10 to have their block labels known, and the remaining

n1 = 33 have their block labels obscured. From the 85 lower-echelon vertices {w ∈ W : b(w) = 2},
independently, discrete-uniform randomly select m2 = 20 to have their block labels known, and

the remaining n2 = 65 have their block labels obscured. Then compute Λ̂1,1, Λ̂2,2, and Λ̂1,2 as,

respectively, the number of edges in the graph induced by the known upper-echelon vertices, the
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Figure 3: Vertex nomination in the Enron Graph. The likelihood maximization, spectral parti-

tioning, and OTS vertex nomination schemes are, respectively, in blue, green, and purple.

number of edges in the graph induced by the known lower-echelon vertices, and the number of

edges in the bipartite graph induced by the known upper-echelon and the known lower-echelon

vertices, divided respectively by
(
n1

2

)
,
(
n2

2

)
, and n1n2. Then perform likelihood maximization and

spectral partitioning vertex nomination on this graph, using Λ̂ as an substitute for Λ.

We independently repeated this experiment 30000 times; Figure 3 plots the empirical probabil-

ities of vertex membership in the upper echelon for the respective 98 positions in the nomination

list, using the likelihood maximization vertex nomination scheme (in blue) and the spectral parti-

tioning vertex nomination schemes (in green). We also included a vertex nomination scheme OTS

(in purple), which is described and discussed later in Section 8. These three vertex nomination

schemes had empirical mean average precisions .7779 (likelihood maximization), .7619 (spectral

partitioning), and .5970 (OTS). For comparison, the mean average precision of chance is .3367.

Note here that the overall classification success of spectral partitioning (i.e. the nominating

success averaged over the first 33 positions of the nomination list) is seen in Figure 3 as being

comparable to the classification success of likelihood maximization. Also, here the mean average

precision of spectral partitioning nomination is comparable to that of likelihood maximization

nomination. However, here, very near the top of the nomination list, there is a visible plateau

in the spectral partitioning nomination success, whereas maximum-likelihood is nominating very
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well; indeed, the first few nominees are almost always from the block of interest.

7.2 Example: The Caenorhabditis elegans connectome

The Caenorhabditis elegans (C.elegans) is a small roundworm whose connectome (neural-wiring)

has been completely mapped out; see http://www.openconnectomeproject.org/#!celegans/c5tg.

Our graph here has vertex set W consisting of the 253 non-isolated neurons and, for every pair of

vertices, the two vertices are defined to be adjacent to each other if they are adjoined by a chemical

synapse. Each neuron (i.e. vertex) is exactly one of the following neuron types: motor neuron,

interneuron, or sensory neuron. For each w ∈ W , we define the block membership b(w) to be

1, 2, 3 respectively according as the neuron is a motor neuron (there are 110 of these), interneuron

(there are 76 of these), or sensory neuron (there are 67 of these). The graph is pictured in Figure

4 as rendered by the standard graph drawing tool in igraph.

Figure 4: The C. Elegans connectome graph, as drawn by igraph; the motor neurons are colored

red, the interneurons are colored green, and the sensory neurons are colored blue.

Consider the following experiment. Block membership is revealed for 30 discrete-uniformly

selected motor neurons, 20 discrete-uniformly selected interneurons, and 10 discrete-uniformly

selected sensory neurons. We are interested in forming a nomination list out of the remaining

193 ambiguous neurons so that the beginning of the nomination list has an abundance of (the

remaining 80) ambiguous motor neurons.

Perhaps the story behind your desire for this nomination list might be that you wish to study

motor neurons, but have limited resources to biochemically test neuron type for the ambiguous neu-
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rons. The nomination list would be used to order the ambiguous neurons for the testing, to identify

as many motor neurons as possible from the ambiguous neurons before your resources are depleted.
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Figure 5: Vertex nomination for motor neurons in C. Elegans: Likelihood maximization is colored

blue, spectral partitioning is colored green, and OTS is colored purple.

We repeated this experiment 1000 times, each time nominating for motor neurons using the

likelihood maximization and the spectral partitioning vertex nomination schemes. We also used

the OTS vertex nomination scheme described later in Section 8. In each repetition, we estimated

Λ with Λ̂, whose entries reflect the edge densities in the subgraphs induced by the various blocks

intersecting the seeds. The empirical mean average precision for the likelihood maximization,

spectral partitioning, and OTS vertex nomination schemes were respectively 0.7272, 0.5096, and

0.5041; the mean average precision of chance is 0.4145. Figure 5 shows that empirical probability

of being a motor neuron at every position in the vertex nomination list, for the likelihood maxi-

mization (blue), spectral partitioning (green) and OTS (purple) vertex nomination schemes. (The

OTS vertex nomination scheme is defined and described later in Section 8.)

Note that here spectral partitioning performed very erratically and (overall) poorly. This might

be attributed to a lack of our idealized three-block-structure here; that is to say, this graph doesn’t

appear to be an instantiation of monolithic stochastic behavior for vertices within the respective

three blocks. In this case here, likelihood maximization is seen to be more robust to the lack of

idealized block model setting, and still maintained a steady and very pronounced slope in Figure 5.
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7.3 Example: A political blog network

The political blogosphere data in our next example was collected in [1] around the time of the

US presidential election in 2004. This data set consists of 1224 weblogs (“blogs”), each of which

web-links to—or is web-linked from—at least one other of these blogs. These blogs form the vertex

set W of our graph. Each of the blogs was classified by [1] as being either liberal or conservative;

for each w ∈ W we define b(w) to be 1 or 2, according as w was classified liberal or conservative.

There are 588 liberal blogs and 636 conservative blogs here. For each pair of vertices/ blogs, the

pair are adjacent if at least one of the blogs links to the other. In Figure 6 this graph is drawn

using igraph.

Figure 6: The political blogosphere graph, as drawn by igraph; liberal blogs/vertices are colored

blue and conservative blogs/vertices are colored red.

Consider the following experiment. Discrete-uniform-randomly select 80 liberal and 80 con-

servative blogs to have their political orientation revealed, and create a nomination list for the

remaining 1064 ambiguous blogs. The story could be that you work for a political action commit-

tee, and want to make a report summarizing liberal blog views on some current event. You have

a limited amount of blog-reading time, and only know the content and political affiliations of a

few of the blogs. Thus, you want to create a nomination list which will provide the order for your

reading the ambiguous blogs, so that you read many liberal blogs in your limited time.

We repeated this experiment 1000 times, and calculated the likelihood maximization, spectral

partitioning, and OTS vertex nomination schemes for each repetition. See the results in Figure 7.
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Figure 7: Nominating blogs; likelihood maximization vertex nomination scheme is colored blue,

spectral partitioning vertex nomination scheme is colored green, OTS is colored purple.

The mean average precision for the likelihood maximization, spectral partitioning, and OTS vertex

nomination schemes were, respectively, .8922, .7856, and .5429; the mean average precision for

chance nomination is .4774.

7.4 Example: A movie network

The movie data set for this section was created by scraping movie infoboxes from Wikipedia. We

examined all movies released between the year 2000 and the year 2010 from any of the five movie

studios 20th Century Fox, Columbia Pictures, Paramount, Universal, and Warner Brothers. For

each of these movies, we recorded the directors, producers, and actors from the Wikipedia infobox,

along with the movie genre.

The vertex set W of our Movie Graph is taken to be the the set of above-mentioned movies

which belong to exactly one genre out of comedy, action thriller, and drama. For each w ∈ W ,

b(w) is defined to be 1, 2, 3 according as the movie was classified comedy, action thriller, or drama.

There were 227 comedies, 157 action thrillers, and 235 drama movies, so the number of vertices

in the graph is 619. For any pair of vertices in W , we declare them to be adjacent if they have a

director, producer, or actor in common. Figure 8 illustrates the graph, as drawn by igraph.
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Figure 8: The movie graph, as drawn by igraph; comedies are colored black, action thrillers are

colored green, and dramas are colored red.

Consider the experiment where we discrete-uniform randomly select 30 vertices from each

block to serve as seeds, which leaves 529 ambiguous vertices. We then seek a nomination list

which nominates the movies to be comedies. Indeed, the story might be that you have a limited

amount of time to watch movies, and want to get some laughs. Such a nomination list would tell

you the order to watch the movies in, until you run out of movie-watching time.

We performed 1000 repetitions of this experiment. The mean average precision for the likeli-

hood maximization, spectral partitioning, and OTS vertex nomination schemes were, respectively,

.5814, .3764, and .3766. The latter two performed approximately the same as chance, which has

a mean average precision of .3724. Figure 9 shows a plot for the empirical probability of be-

ing a comedy for the different positions in the nomination list under different vertex nomination

schemes.

Note that here the erratic behavior of spectral partitioning nomination rendered it effectively

useless. There seems to be very significant deviations from the idealized stochastic three-block

model, and there seems to be less-than-subtle sub-block structure that threw off the spectral ma-

chinery from separating out the gross three-block structure we hypothesized. In addition, the

movie genre field in the Wikipedia infobox does not seem much more than a vague characteri-

zation, since the dividing lines between genre are blurred and somewhat arbitrary. Nonetheless,
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Figure 9: The movie graph; likelihood maximization vertex nomination scheme is colored blue,

spectral partitioning vertex nomination scheme is colored green, OTS is colored purple.

here likelihood maximization is showing much robustness to the lack of idealized conditions hy-

pothesized, and the top of its nominating list is showing a pronounced early slope. In all of these

real-data experiments of Sections 7.1, 7.2, 7.3, and 7.4, where the number of ambiguous vertices

ranged from around 100 to around 1000, likelihood maximization was the best vertex nomination

scheme among those we tried.

8 Discussion

In this paper, the currently-popular stochastic block model setting enables the principled de-

velopment of vertex nomination schemes. We introduced three vertex nomination schemes; the

canonical, likelihood maximization, and spectral partitioning vertex nomination schemes. In Sec-

tion 6 we compared and contrasted the effectiveness and runtime of these three vertex nomination

schemes at small, medium, and large scales. In Proposition 1 we proved that the canonical vertex

nomination scheme has maximum possible mean average precision among all vertex nomination

schemes, and thus it should be used as long as it is computationally feasible, which is up to a

few tens of vertices. (The runtime visibly grows exponentially in the number of vertices.) The
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likelihood maximization vertex nomination scheme, which utilizes state of the art graph match-

ing machinery, should be used next (i.e. when the canonical vertex nomination scheme can’t be

used), as long as it is computationally feasible, which is up to around 1000 or 1500 vertices. Sec-

tions 7.1, 7.2, 7.3, and 7.4 then feature illustrations with real data, and illustrate robustness of

maximum-likelihood nomination to model pathology inherent in real data.

These vertex nomination schemes are simple, yet effective. The likelihood maximization and

spectral partitioning vertex nomination schemes are grown from basic block estimation strategies.

Going forward, we expect to see the next generation of vertex nomination schemes build on

similar such adaptations of block estimation strategies. For an excellent survey of the literature on

community detection in networks—including the setting of stochastic block models—and available

algorithms, see the very comprehensive survey article of Fortunato [9] and papers cited therein,

such as Newman and Girvan [19] and the classic article of Nowicki and Snijders [20]. Also see

Latent Dirichlet Allocation (LDA) [3] of Blei, Ng, and Jordan. Under-the-hood modifications of

existing community detection algorithms, including LDA and LDA-based methodologies, will yield

new vertex nomination schemes that will be increasingly effective and fast. We also expect even

more effective vertex nomination schemes to come from merging vertex nomination techniques,

perhaps similar in spirit to the work in [17], where graph matching and spectral partitioning are

merged into a more effective avenue of graph matching for large graphs.

Lastly, it is worth mentioning that we also took state of the art, off-the-shelf block estimation

R code from http://cran.r-project.org/web/packages/lda/lda.pdf based on the article [2],

and used it on our real data from this paper. We produced a nomination order based on that

algorithm’s outputted estimated parameter of the Dirichlet priors per-vertex block distribution

(and the vertices with known block labels served the purpose of identifying which estimated block

was the block of interest). We called this vertex nomination scheme “OTS” (“Off the Shelf”). In-

deed, the block estimation algorithm was not specifically designed for vertex nomination; we used it

off the shelf, and some under the hood modification are expected to yield substantial improvement.
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Appendix A A limit result related to likelihood maximiza-

tion vertex nomination scheme

The purpose of this section/appendix is to state and prove Theorem 2. Consider here a sequence

of random graphs realized from SB(K,m, n, b,Λ) for, successively, n = 1, 2, 3, . . ., where K and Λ

are fixed. The values of n1, n2, . . . , nK are each functions of n, and we assume there exists a real

number γ > 0 such that, for all i = 1, 2, . . . , K, it holds that ni ≥ γ · n for all but a finite number

of values of n. The values of m1,m2, . . . ,mK are each taken to be 0; i.e. seeds are not required in

the context of Theorem 2, thus here we will have W = V and U = ∅. Now, B denotes the set of

functions b : W → {1, 2, . . . , K} such that for all i = 1, 2, . . . , K, |{w ∈ W : b(w) = i}| = ni.

For each b ∈ B define

f(b) :=
∑

{w,w′}∈(W2 )

δw∼Gw′ log

(
Λb(w),b(w′)

1− Λb(w),b(w′)

)
and g(b) :=

∑
{w,w′}∈(W2 )

δw∼Gw′Λb(w),b(w′).

In the description of the likelihood maximization vertex nomination scheme in Section 4.1, recall

that the first step consisted of computing the classifier b̂ = arg maxb∈B f(b), which was an estimate

of the block membership function b; in this section/appendix we shall consider the related classifier

b̃ = arg maxb∈B g(b). Whereas we did not formally prove the consistency of b̂, we will now

prove in Theorem 2 the consistency of b̃, under mild conditions. Define the number of first-block

misclassifications ε := |{w ∈ W : b(w) = 1 and b̃(w) 6= 1}|. Of course, ε is a function of n.

Theorem 2. With the above assumptions and notation,

a) If Λ1,1 6= Λi,j for all {i, j} 6= {1, 1} then there exists a real number c > 0 such that almost surely

ε ≤ c log n for all but a finite number of values of n, and

b) If Λi′,i′ 6= Λi,j for all {i, j} 6= {i′, i′} then almost surely ε = 0 for all but a finite number of

values of n.

Proof of Theorem 2, part a: Let us denote ζ := min |Λ1,1 − Λi,j| over all {i, j} 6= {1, 1}.
Let b ∈ B be arbitrarily selected. We have

g(b)− g(b) =
∑

{w,w′}∈(W2 )

(
Λb(w),b(w′) − Λb(w),b(w′)

)
δw∼Gw′ . (10)

Next note that, by the definition of B,∑
{w,w′}∈(W2 )

(
Λb(w),b(w′)

)2

=
∑

{w,w′}∈(W2 )

(
Λb(w),b(w′)

)2

. (11)
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Taking the expectation in Equation (10), then subtracting and adding half of Equation (11),

E
[
g(b)− g(b)

]
=

∑
{w,w′}∈(W2 )

(
Λb(w),b(w′) − Λb(w),b(w′)

)
Λb(w),b(w′)

=
∑

{w,w′}∈(W2 )

1

2

((
Λb(w),b(w′)

)2

− 2 · Λb(w),b(w′)Λb(w),b(w′) +
(

Λb(w),b(w′)

)2
)

=
∑

{w,w′}∈(W2 )

1

2

(
Λb(w),b(w′) − Λb(w),b(w′)

)2

. (12)

Now, for any positive integer s, any independent random variables Z1, Z2, . . . , Zs, and any real

numbers a1, a2, . . . , as, a
′
1, a
′
2, . . . , a

′
s such that, for all i = 1, 2, . . . , s, Zi is interval-[ai, a

′
i]-valued,

recall that Hoeffding’s Inequality asserts that, for any positive t ∈ R,

P

[∣∣∣ s∑
i=1

Zi − E
s∑
i=1

Zi

∣∣∣ ≥ t

]
≤ 2 · e

(
−2·t2∑s

i=1
(a′
i
−ai)2

)
. (13)

When the Zi are taken to be the independent random variables summed in Equation (10), note

by Equation (12) that
∑s

i=1(a′i − ai)2 = 2 ·E
[
g(b)− g(b)

]
here. Thus Hoeffding’s inequality here,

taking t := E[g(b)− g(b)], states that

P
[
g(b)− g(b) ≤ 0

]
≤ P

[∣∣∣g(b)− g(b)− E
[
g(b)− g(b)

]∣∣∣ ≥ E
[
g(b)− g(b)

]]

≤ 2 · e
(
−2E2[g(b)−g(b)]
2E[g(b)−g(b)]

)
= 2 · e−E[g(b)−g(b)] . (14)

Define the set Ω :=
{
{w,w′} ∈

(
W
2

)
: b(w) = b(w′) = 1 and b(w) 6= 1 and b(w′) 6= 1

}
. Define

the set Υ :=
{
{w,w′} ∈

(
W
2

)
: b(w) = b(w′) = 1 and [b(w) 6= 1 exclusive-or b(w′) 6= 1]

}
. Also,

define εb := |{w ∈ W : b(w) = 1 and b(w) 6= 1}|. By Equation (12), we then have that

E
[
g(b)− g(b)

]
≥

∑
{w,w′}∈Ω

1

2

(
Λb(w),b(w′) − Λb(w),b(w′)

)2

+
∑

{w,w′}∈Υ

1

2

(
Λb(w),b(w′) − Λb(w),b(w′)

)2

≥ 1

2
ζ2 εb(εb − 1)

2
+

1

2
ζ2(n1 − εb)εb ≥ ζ2

5
n1 · εb ≥ ζ2γ

5
n · εb (15)

when n is large enough.

Thus, if we define B′ to be the set of b ∈ B such that εb ≥ 10
ζ2γ

log n, then we have by

Equation (14), the fact that |B′| ≤ |B| ≤ nn, and subadditivity of the probability measure, that

P
[
∃b ∈ B′ : g(b) ≤ g(b)

]
≤
∑
b∈B′

2 · e−2n logn ≤ 2 · en logn−2n logn =
2

nn
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which is finitely summable over all n, hence by the Borel-Cantelli Lemma we have almost surely

that there are at most a finite number of values of n for which any member of arg maxb∈B g(b)

has at least 10
ζ2γ

log n misclassifications, and Theorem 2, part a) is shown.

Proof of Theorem 2, part b: Let us denote ζ̃ := min |Λi′,i′ − Λi,j| over all {i, j} 6= {i′, i′}.
Let b ∈ B be arbitrarily selected. For each i = 1, 2, . . . , K,

define Ωi :=
{
{w,w′} ∈

(
W
2

)
: b(w) = b(w′) = i and b(w) 6= i and b(w′) 6= i

}
, and

define Υi :=
{
{w,w′} ∈

(
W
2

)
: b(w) = b(w′) = i and [b(w) 6= i exclusive-or b(w′) 6= i]

}
, and

define εb,i := |{w ∈ W : b(w) = i and b(w) 6= i}|. Now, by Equation (12), we have that

E
[
g(b)− g(b)

]
≥

K∑
i=1

 ∑
{w,w′}∈Ωi

1

2

(
Λb(w),b(w′) − Λb(w),b(w′)

)2

+
∑

{w,w′}∈Υi

1

2

(
Λb(w),b(w′) − Λb(w),b(w′)

)2


≥

K∑
i=1

(
1

2
ζ̃2 εb,i(εb,i − 1)

2
+

1

2
ζ̃2(ni − εb,i)εb,i

)
≥

K∑
i=1

(
ζ̃2

5
niεb,i

)
≥ ζ̃2γ

5
n

K∑
i=1

εb,i (16)

when n is large enough.

Now, define B′′ to be the set of b ∈ B such that
∑K

i=1 εb,i ≥
10
ζ̃2γ

log n. Then, we have by

Equation (14), the fact that |B′′| ≤ |B| ≤ nn, and subadditivity of the probability measure, that

P
[
∃b ∈ B′′ : g(b) ≤ g(b)

]
≤
∑
b∈B′′

2 · e−2n logn ≤ 2 · en logn−2n logn =
2

nn
(17)

Finally, define B′′′ to be the set of b ∈ B such that 0 <
∑K

i=1 εb,i <
10
ζ̃2γ

log n. Note that |B′′′| ≤(
n

d 10
ζ̃2γ

logne

)
d 10
ζ̃2γ

log ne! ≤ n
11
ζ̃2γ

logn
= e

11
ζ̃2γ

log2 n
, when n is large enough. Thus, by Equation (14) and

Equation (16) we have

P
[
∃b ∈ B′′′ : g(b) ≤ g(b)

]
≤

∑
b∈B′′′

2 · e−
ζ̃2γ
5
n

≤ 2e
− ζ̃

2γ
5
n+ 11

ζ̃2γ
log2 n ≤ 2e−

ζ̃2γ
6
n. (18)

Since the bounds in Equations (17) and (18) are finitely summable over all n, we have by the Borel-

Cantelli Lemma that, almost surely, it happens for all but a finite number of values of n that there

is no b ∈ B such that
∑K

i=1 εb,i > 0 and g(b) ≤ g(b), so Theorem 2, part b) is proved.
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